microblaze: convert to clocksource_register_hz/khz
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / ialloc.c
blobeb9097aec6f091a788b876840e53d26727d538ee
1 /*
2 * linux/fs/ext4/ialloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
27 #include "ext4.h"
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
32 #include <trace/events/ext4.h>
35 * ialloc.c contains the inodes allocation and deallocation routines
39 * The free inodes are managed by bitmaps. A file system contains several
40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
41 * block for inodes, N blocks for the inode table and data blocks.
43 * The file system contains group descriptors which are located after the
44 * super block. Each descriptor contains the number of the bitmap block and
45 * the free blocks count in the block.
49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
50 * need to use it within a single byte (to ensure we get endianness right).
51 * We can use memset for the rest of the bitmap as there are no other users.
53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
55 int i;
57 if (start_bit >= end_bit)
58 return;
60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 ext4_set_bit(i, bitmap);
63 if (i < end_bit)
64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 /* Initializes an uninitialized inode bitmap */
68 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 struct buffer_head *bh,
70 ext4_group_t block_group,
71 struct ext4_group_desc *gdp)
73 struct ext4_sb_info *sbi = EXT4_SB(sb);
75 J_ASSERT_BH(bh, buffer_locked(bh));
77 /* If checksum is bad mark all blocks and inodes use to prevent
78 * allocation, essentially implementing a per-group read-only flag. */
79 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
80 ext4_error(sb, "Checksum bad for group %u", block_group);
81 ext4_free_blks_set(sb, gdp, 0);
82 ext4_free_inodes_set(sb, gdp, 0);
83 ext4_itable_unused_set(sb, gdp, 0);
84 memset(bh->b_data, 0xff, sb->s_blocksize);
85 return 0;
88 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
89 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
90 bh->b_data);
92 return EXT4_INODES_PER_GROUP(sb);
96 * Read the inode allocation bitmap for a given block_group, reading
97 * into the specified slot in the superblock's bitmap cache.
99 * Return buffer_head of bitmap on success or NULL.
101 static struct buffer_head *
102 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
104 struct ext4_group_desc *desc;
105 struct buffer_head *bh = NULL;
106 ext4_fsblk_t bitmap_blk;
108 desc = ext4_get_group_desc(sb, block_group, NULL);
109 if (!desc)
110 return NULL;
112 bitmap_blk = ext4_inode_bitmap(sb, desc);
113 bh = sb_getblk(sb, bitmap_blk);
114 if (unlikely(!bh)) {
115 ext4_error(sb, "Cannot read inode bitmap - "
116 "block_group = %u, inode_bitmap = %llu",
117 block_group, bitmap_blk);
118 return NULL;
120 if (bitmap_uptodate(bh))
121 return bh;
123 lock_buffer(bh);
124 if (bitmap_uptodate(bh)) {
125 unlock_buffer(bh);
126 return bh;
129 ext4_lock_group(sb, block_group);
130 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
131 ext4_init_inode_bitmap(sb, bh, block_group, desc);
132 set_bitmap_uptodate(bh);
133 set_buffer_uptodate(bh);
134 ext4_unlock_group(sb, block_group);
135 unlock_buffer(bh);
136 return bh;
138 ext4_unlock_group(sb, block_group);
140 if (buffer_uptodate(bh)) {
142 * if not uninit if bh is uptodate,
143 * bitmap is also uptodate
145 set_bitmap_uptodate(bh);
146 unlock_buffer(bh);
147 return bh;
150 * submit the buffer_head for read. We can
151 * safely mark the bitmap as uptodate now.
152 * We do it here so the bitmap uptodate bit
153 * get set with buffer lock held.
155 set_bitmap_uptodate(bh);
156 if (bh_submit_read(bh) < 0) {
157 put_bh(bh);
158 ext4_error(sb, "Cannot read inode bitmap - "
159 "block_group = %u, inode_bitmap = %llu",
160 block_group, bitmap_blk);
161 return NULL;
163 return bh;
167 * NOTE! When we get the inode, we're the only people
168 * that have access to it, and as such there are no
169 * race conditions we have to worry about. The inode
170 * is not on the hash-lists, and it cannot be reached
171 * through the filesystem because the directory entry
172 * has been deleted earlier.
174 * HOWEVER: we must make sure that we get no aliases,
175 * which means that we have to call "clear_inode()"
176 * _before_ we mark the inode not in use in the inode
177 * bitmaps. Otherwise a newly created file might use
178 * the same inode number (not actually the same pointer
179 * though), and then we'd have two inodes sharing the
180 * same inode number and space on the harddisk.
182 void ext4_free_inode(handle_t *handle, struct inode *inode)
184 struct super_block *sb = inode->i_sb;
185 int is_directory;
186 unsigned long ino;
187 struct buffer_head *bitmap_bh = NULL;
188 struct buffer_head *bh2;
189 ext4_group_t block_group;
190 unsigned long bit;
191 struct ext4_group_desc *gdp;
192 struct ext4_super_block *es;
193 struct ext4_sb_info *sbi;
194 int fatal = 0, err, count, cleared;
196 if (atomic_read(&inode->i_count) > 1) {
197 printk(KERN_ERR "ext4_free_inode: inode has count=%d\n",
198 atomic_read(&inode->i_count));
199 return;
201 if (inode->i_nlink) {
202 printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n",
203 inode->i_nlink);
204 return;
206 if (!sb) {
207 printk(KERN_ERR "ext4_free_inode: inode on "
208 "nonexistent device\n");
209 return;
211 sbi = EXT4_SB(sb);
213 ino = inode->i_ino;
214 ext4_debug("freeing inode %lu\n", ino);
215 trace_ext4_free_inode(inode);
218 * Note: we must free any quota before locking the superblock,
219 * as writing the quota to disk may need the lock as well.
221 dquot_initialize(inode);
222 ext4_xattr_delete_inode(handle, inode);
223 dquot_free_inode(inode);
224 dquot_drop(inode);
226 is_directory = S_ISDIR(inode->i_mode);
228 /* Do this BEFORE marking the inode not in use or returning an error */
229 ext4_clear_inode(inode);
231 es = EXT4_SB(sb)->s_es;
232 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
233 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
234 goto error_return;
236 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
237 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
238 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
239 if (!bitmap_bh)
240 goto error_return;
242 BUFFER_TRACE(bitmap_bh, "get_write_access");
243 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
244 if (fatal)
245 goto error_return;
247 fatal = -ESRCH;
248 gdp = ext4_get_group_desc(sb, block_group, &bh2);
249 if (gdp) {
250 BUFFER_TRACE(bh2, "get_write_access");
251 fatal = ext4_journal_get_write_access(handle, bh2);
253 ext4_lock_group(sb, block_group);
254 cleared = ext4_clear_bit(bit, bitmap_bh->b_data);
255 if (fatal || !cleared) {
256 ext4_unlock_group(sb, block_group);
257 goto out;
260 count = ext4_free_inodes_count(sb, gdp) + 1;
261 ext4_free_inodes_set(sb, gdp, count);
262 if (is_directory) {
263 count = ext4_used_dirs_count(sb, gdp) - 1;
264 ext4_used_dirs_set(sb, gdp, count);
265 percpu_counter_dec(&sbi->s_dirs_counter);
267 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
268 ext4_unlock_group(sb, block_group);
270 percpu_counter_inc(&sbi->s_freeinodes_counter);
271 if (sbi->s_log_groups_per_flex) {
272 ext4_group_t f = ext4_flex_group(sbi, block_group);
274 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
275 if (is_directory)
276 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
278 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
279 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
280 out:
281 if (cleared) {
282 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
283 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
284 if (!fatal)
285 fatal = err;
286 ext4_mark_super_dirty(sb);
287 } else
288 ext4_error(sb, "bit already cleared for inode %lu", ino);
290 error_return:
291 brelse(bitmap_bh);
292 ext4_std_error(sb, fatal);
296 * There are two policies for allocating an inode. If the new inode is
297 * a directory, then a forward search is made for a block group with both
298 * free space and a low directory-to-inode ratio; if that fails, then of
299 * the groups with above-average free space, that group with the fewest
300 * directories already is chosen.
302 * For other inodes, search forward from the parent directory\'s block
303 * group to find a free inode.
305 static int find_group_dir(struct super_block *sb, struct inode *parent,
306 ext4_group_t *best_group)
308 ext4_group_t ngroups = ext4_get_groups_count(sb);
309 unsigned int freei, avefreei;
310 struct ext4_group_desc *desc, *best_desc = NULL;
311 ext4_group_t group;
312 int ret = -1;
314 freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter);
315 avefreei = freei / ngroups;
317 for (group = 0; group < ngroups; group++) {
318 desc = ext4_get_group_desc(sb, group, NULL);
319 if (!desc || !ext4_free_inodes_count(sb, desc))
320 continue;
321 if (ext4_free_inodes_count(sb, desc) < avefreei)
322 continue;
323 if (!best_desc ||
324 (ext4_free_blks_count(sb, desc) >
325 ext4_free_blks_count(sb, best_desc))) {
326 *best_group = group;
327 best_desc = desc;
328 ret = 0;
331 return ret;
334 #define free_block_ratio 10
336 static int find_group_flex(struct super_block *sb, struct inode *parent,
337 ext4_group_t *best_group)
339 struct ext4_sb_info *sbi = EXT4_SB(sb);
340 struct ext4_group_desc *desc;
341 struct flex_groups *flex_group = sbi->s_flex_groups;
342 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
343 ext4_group_t parent_fbg_group = ext4_flex_group(sbi, parent_group);
344 ext4_group_t ngroups = ext4_get_groups_count(sb);
345 int flex_size = ext4_flex_bg_size(sbi);
346 ext4_group_t best_flex = parent_fbg_group;
347 int blocks_per_flex = sbi->s_blocks_per_group * flex_size;
348 int flexbg_free_blocks;
349 int flex_freeb_ratio;
350 ext4_group_t n_fbg_groups;
351 ext4_group_t i;
353 n_fbg_groups = (ngroups + flex_size - 1) >>
354 sbi->s_log_groups_per_flex;
356 find_close_to_parent:
357 flexbg_free_blocks = atomic_read(&flex_group[best_flex].free_blocks);
358 flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
359 if (atomic_read(&flex_group[best_flex].free_inodes) &&
360 flex_freeb_ratio > free_block_ratio)
361 goto found_flexbg;
363 if (best_flex && best_flex == parent_fbg_group) {
364 best_flex--;
365 goto find_close_to_parent;
368 for (i = 0; i < n_fbg_groups; i++) {
369 if (i == parent_fbg_group || i == parent_fbg_group - 1)
370 continue;
372 flexbg_free_blocks = atomic_read(&flex_group[i].free_blocks);
373 flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
375 if (flex_freeb_ratio > free_block_ratio &&
376 (atomic_read(&flex_group[i].free_inodes))) {
377 best_flex = i;
378 goto found_flexbg;
381 if ((atomic_read(&flex_group[best_flex].free_inodes) == 0) ||
382 ((atomic_read(&flex_group[i].free_blocks) >
383 atomic_read(&flex_group[best_flex].free_blocks)) &&
384 atomic_read(&flex_group[i].free_inodes)))
385 best_flex = i;
388 if (!atomic_read(&flex_group[best_flex].free_inodes) ||
389 !atomic_read(&flex_group[best_flex].free_blocks))
390 return -1;
392 found_flexbg:
393 for (i = best_flex * flex_size; i < ngroups &&
394 i < (best_flex + 1) * flex_size; i++) {
395 desc = ext4_get_group_desc(sb, i, NULL);
396 if (ext4_free_inodes_count(sb, desc)) {
397 *best_group = i;
398 goto out;
402 return -1;
403 out:
404 return 0;
407 struct orlov_stats {
408 __u32 free_inodes;
409 __u32 free_blocks;
410 __u32 used_dirs;
414 * Helper function for Orlov's allocator; returns critical information
415 * for a particular block group or flex_bg. If flex_size is 1, then g
416 * is a block group number; otherwise it is flex_bg number.
418 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
419 int flex_size, struct orlov_stats *stats)
421 struct ext4_group_desc *desc;
422 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
424 if (flex_size > 1) {
425 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
426 stats->free_blocks = atomic_read(&flex_group[g].free_blocks);
427 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
428 return;
431 desc = ext4_get_group_desc(sb, g, NULL);
432 if (desc) {
433 stats->free_inodes = ext4_free_inodes_count(sb, desc);
434 stats->free_blocks = ext4_free_blks_count(sb, desc);
435 stats->used_dirs = ext4_used_dirs_count(sb, desc);
436 } else {
437 stats->free_inodes = 0;
438 stats->free_blocks = 0;
439 stats->used_dirs = 0;
444 * Orlov's allocator for directories.
446 * We always try to spread first-level directories.
448 * If there are blockgroups with both free inodes and free blocks counts
449 * not worse than average we return one with smallest directory count.
450 * Otherwise we simply return a random group.
452 * For the rest rules look so:
454 * It's OK to put directory into a group unless
455 * it has too many directories already (max_dirs) or
456 * it has too few free inodes left (min_inodes) or
457 * it has too few free blocks left (min_blocks) or
458 * Parent's group is preferred, if it doesn't satisfy these
459 * conditions we search cyclically through the rest. If none
460 * of the groups look good we just look for a group with more
461 * free inodes than average (starting at parent's group).
464 static int find_group_orlov(struct super_block *sb, struct inode *parent,
465 ext4_group_t *group, int mode,
466 const struct qstr *qstr)
468 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
469 struct ext4_sb_info *sbi = EXT4_SB(sb);
470 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
471 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
472 unsigned int freei, avefreei;
473 ext4_fsblk_t freeb, avefreeb;
474 unsigned int ndirs;
475 int max_dirs, min_inodes;
476 ext4_grpblk_t min_blocks;
477 ext4_group_t i, grp, g, ngroups;
478 struct ext4_group_desc *desc;
479 struct orlov_stats stats;
480 int flex_size = ext4_flex_bg_size(sbi);
481 struct dx_hash_info hinfo;
483 ngroups = real_ngroups;
484 if (flex_size > 1) {
485 ngroups = (real_ngroups + flex_size - 1) >>
486 sbi->s_log_groups_per_flex;
487 parent_group >>= sbi->s_log_groups_per_flex;
490 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
491 avefreei = freei / ngroups;
492 freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
493 avefreeb = freeb;
494 do_div(avefreeb, ngroups);
495 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
497 if (S_ISDIR(mode) &&
498 ((parent == sb->s_root->d_inode) ||
499 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
500 int best_ndir = inodes_per_group;
501 int ret = -1;
503 if (qstr) {
504 hinfo.hash_version = DX_HASH_HALF_MD4;
505 hinfo.seed = sbi->s_hash_seed;
506 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
507 grp = hinfo.hash;
508 } else
509 get_random_bytes(&grp, sizeof(grp));
510 parent_group = (unsigned)grp % ngroups;
511 for (i = 0; i < ngroups; i++) {
512 g = (parent_group + i) % ngroups;
513 get_orlov_stats(sb, g, flex_size, &stats);
514 if (!stats.free_inodes)
515 continue;
516 if (stats.used_dirs >= best_ndir)
517 continue;
518 if (stats.free_inodes < avefreei)
519 continue;
520 if (stats.free_blocks < avefreeb)
521 continue;
522 grp = g;
523 ret = 0;
524 best_ndir = stats.used_dirs;
526 if (ret)
527 goto fallback;
528 found_flex_bg:
529 if (flex_size == 1) {
530 *group = grp;
531 return 0;
535 * We pack inodes at the beginning of the flexgroup's
536 * inode tables. Block allocation decisions will do
537 * something similar, although regular files will
538 * start at 2nd block group of the flexgroup. See
539 * ext4_ext_find_goal() and ext4_find_near().
541 grp *= flex_size;
542 for (i = 0; i < flex_size; i++) {
543 if (grp+i >= real_ngroups)
544 break;
545 desc = ext4_get_group_desc(sb, grp+i, NULL);
546 if (desc && ext4_free_inodes_count(sb, desc)) {
547 *group = grp+i;
548 return 0;
551 goto fallback;
554 max_dirs = ndirs / ngroups + inodes_per_group / 16;
555 min_inodes = avefreei - inodes_per_group*flex_size / 4;
556 if (min_inodes < 1)
557 min_inodes = 1;
558 min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb)*flex_size / 4;
561 * Start looking in the flex group where we last allocated an
562 * inode for this parent directory
564 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
565 parent_group = EXT4_I(parent)->i_last_alloc_group;
566 if (flex_size > 1)
567 parent_group >>= sbi->s_log_groups_per_flex;
570 for (i = 0; i < ngroups; i++) {
571 grp = (parent_group + i) % ngroups;
572 get_orlov_stats(sb, grp, flex_size, &stats);
573 if (stats.used_dirs >= max_dirs)
574 continue;
575 if (stats.free_inodes < min_inodes)
576 continue;
577 if (stats.free_blocks < min_blocks)
578 continue;
579 goto found_flex_bg;
582 fallback:
583 ngroups = real_ngroups;
584 avefreei = freei / ngroups;
585 fallback_retry:
586 parent_group = EXT4_I(parent)->i_block_group;
587 for (i = 0; i < ngroups; i++) {
588 grp = (parent_group + i) % ngroups;
589 desc = ext4_get_group_desc(sb, grp, NULL);
590 if (desc && ext4_free_inodes_count(sb, desc) &&
591 ext4_free_inodes_count(sb, desc) >= avefreei) {
592 *group = grp;
593 return 0;
597 if (avefreei) {
599 * The free-inodes counter is approximate, and for really small
600 * filesystems the above test can fail to find any blockgroups
602 avefreei = 0;
603 goto fallback_retry;
606 return -1;
609 static int find_group_other(struct super_block *sb, struct inode *parent,
610 ext4_group_t *group, int mode)
612 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
613 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
614 struct ext4_group_desc *desc;
615 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
618 * Try to place the inode is the same flex group as its
619 * parent. If we can't find space, use the Orlov algorithm to
620 * find another flex group, and store that information in the
621 * parent directory's inode information so that use that flex
622 * group for future allocations.
624 if (flex_size > 1) {
625 int retry = 0;
627 try_again:
628 parent_group &= ~(flex_size-1);
629 last = parent_group + flex_size;
630 if (last > ngroups)
631 last = ngroups;
632 for (i = parent_group; i < last; i++) {
633 desc = ext4_get_group_desc(sb, i, NULL);
634 if (desc && ext4_free_inodes_count(sb, desc)) {
635 *group = i;
636 return 0;
639 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
640 retry = 1;
641 parent_group = EXT4_I(parent)->i_last_alloc_group;
642 goto try_again;
645 * If this didn't work, use the Orlov search algorithm
646 * to find a new flex group; we pass in the mode to
647 * avoid the topdir algorithms.
649 *group = parent_group + flex_size;
650 if (*group > ngroups)
651 *group = 0;
652 return find_group_orlov(sb, parent, group, mode, 0);
656 * Try to place the inode in its parent directory
658 *group = parent_group;
659 desc = ext4_get_group_desc(sb, *group, NULL);
660 if (desc && ext4_free_inodes_count(sb, desc) &&
661 ext4_free_blks_count(sb, desc))
662 return 0;
665 * We're going to place this inode in a different blockgroup from its
666 * parent. We want to cause files in a common directory to all land in
667 * the same blockgroup. But we want files which are in a different
668 * directory which shares a blockgroup with our parent to land in a
669 * different blockgroup.
671 * So add our directory's i_ino into the starting point for the hash.
673 *group = (*group + parent->i_ino) % ngroups;
676 * Use a quadratic hash to find a group with a free inode and some free
677 * blocks.
679 for (i = 1; i < ngroups; i <<= 1) {
680 *group += i;
681 if (*group >= ngroups)
682 *group -= ngroups;
683 desc = ext4_get_group_desc(sb, *group, NULL);
684 if (desc && ext4_free_inodes_count(sb, desc) &&
685 ext4_free_blks_count(sb, desc))
686 return 0;
690 * That failed: try linear search for a free inode, even if that group
691 * has no free blocks.
693 *group = parent_group;
694 for (i = 0; i < ngroups; i++) {
695 if (++*group >= ngroups)
696 *group = 0;
697 desc = ext4_get_group_desc(sb, *group, NULL);
698 if (desc && ext4_free_inodes_count(sb, desc))
699 return 0;
702 return -1;
706 * claim the inode from the inode bitmap. If the group
707 * is uninit we need to take the groups's ext4_group_lock
708 * and clear the uninit flag. The inode bitmap update
709 * and group desc uninit flag clear should be done
710 * after holding ext4_group_lock so that ext4_read_inode_bitmap
711 * doesn't race with the ext4_claim_inode
713 static int ext4_claim_inode(struct super_block *sb,
714 struct buffer_head *inode_bitmap_bh,
715 unsigned long ino, ext4_group_t group, int mode)
717 int free = 0, retval = 0, count;
718 struct ext4_sb_info *sbi = EXT4_SB(sb);
719 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
720 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
723 * We have to be sure that new inode allocation does not race with
724 * inode table initialization, because otherwise we may end up
725 * allocating and writing new inode right before sb_issue_zeroout
726 * takes place and overwriting our new inode with zeroes. So we
727 * take alloc_sem to prevent it.
729 down_read(&grp->alloc_sem);
730 ext4_lock_group(sb, group);
731 if (ext4_set_bit(ino, inode_bitmap_bh->b_data)) {
732 /* not a free inode */
733 retval = 1;
734 goto err_ret;
736 ino++;
737 if ((group == 0 && ino < EXT4_FIRST_INO(sb)) ||
738 ino > EXT4_INODES_PER_GROUP(sb)) {
739 ext4_unlock_group(sb, group);
740 up_read(&grp->alloc_sem);
741 ext4_error(sb, "reserved inode or inode > inodes count - "
742 "block_group = %u, inode=%lu", group,
743 ino + group * EXT4_INODES_PER_GROUP(sb));
744 return 1;
746 /* If we didn't allocate from within the initialized part of the inode
747 * table then we need to initialize up to this inode. */
748 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
750 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
751 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
752 /* When marking the block group with
753 * ~EXT4_BG_INODE_UNINIT we don't want to depend
754 * on the value of bg_itable_unused even though
755 * mke2fs could have initialized the same for us.
756 * Instead we calculated the value below
759 free = 0;
760 } else {
761 free = EXT4_INODES_PER_GROUP(sb) -
762 ext4_itable_unused_count(sb, gdp);
766 * Check the relative inode number against the last used
767 * relative inode number in this group. if it is greater
768 * we need to update the bg_itable_unused count
771 if (ino > free)
772 ext4_itable_unused_set(sb, gdp,
773 (EXT4_INODES_PER_GROUP(sb) - ino));
775 count = ext4_free_inodes_count(sb, gdp) - 1;
776 ext4_free_inodes_set(sb, gdp, count);
777 if (S_ISDIR(mode)) {
778 count = ext4_used_dirs_count(sb, gdp) + 1;
779 ext4_used_dirs_set(sb, gdp, count);
780 if (sbi->s_log_groups_per_flex) {
781 ext4_group_t f = ext4_flex_group(sbi, group);
783 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
786 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
787 err_ret:
788 ext4_unlock_group(sb, group);
789 up_read(&grp->alloc_sem);
790 return retval;
794 * There are two policies for allocating an inode. If the new inode is
795 * a directory, then a forward search is made for a block group with both
796 * free space and a low directory-to-inode ratio; if that fails, then of
797 * the groups with above-average free space, that group with the fewest
798 * directories already is chosen.
800 * For other inodes, search forward from the parent directory's block
801 * group to find a free inode.
803 struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, int mode,
804 const struct qstr *qstr, __u32 goal)
806 struct super_block *sb;
807 struct buffer_head *inode_bitmap_bh = NULL;
808 struct buffer_head *group_desc_bh;
809 ext4_group_t ngroups, group = 0;
810 unsigned long ino = 0;
811 struct inode *inode;
812 struct ext4_group_desc *gdp = NULL;
813 struct ext4_inode_info *ei;
814 struct ext4_sb_info *sbi;
815 int ret2, err = 0;
816 struct inode *ret;
817 ext4_group_t i;
818 int free = 0;
819 static int once = 1;
820 ext4_group_t flex_group;
822 /* Cannot create files in a deleted directory */
823 if (!dir || !dir->i_nlink)
824 return ERR_PTR(-EPERM);
826 sb = dir->i_sb;
827 ngroups = ext4_get_groups_count(sb);
828 trace_ext4_request_inode(dir, mode);
829 inode = new_inode(sb);
830 if (!inode)
831 return ERR_PTR(-ENOMEM);
832 ei = EXT4_I(inode);
833 sbi = EXT4_SB(sb);
835 if (!goal)
836 goal = sbi->s_inode_goal;
838 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
839 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
840 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
841 ret2 = 0;
842 goto got_group;
845 if (sbi->s_log_groups_per_flex && test_opt(sb, OLDALLOC)) {
846 ret2 = find_group_flex(sb, dir, &group);
847 if (ret2 == -1) {
848 ret2 = find_group_other(sb, dir, &group, mode);
849 if (ret2 == 0 && once) {
850 once = 0;
851 printk(KERN_NOTICE "ext4: find_group_flex "
852 "failed, fallback succeeded dir %lu\n",
853 dir->i_ino);
856 goto got_group;
859 if (S_ISDIR(mode)) {
860 if (test_opt(sb, OLDALLOC))
861 ret2 = find_group_dir(sb, dir, &group);
862 else
863 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
864 } else
865 ret2 = find_group_other(sb, dir, &group, mode);
867 got_group:
868 EXT4_I(dir)->i_last_alloc_group = group;
869 err = -ENOSPC;
870 if (ret2 == -1)
871 goto out;
873 for (i = 0; i < ngroups; i++, ino = 0) {
874 err = -EIO;
876 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
877 if (!gdp)
878 goto fail;
880 brelse(inode_bitmap_bh);
881 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
882 if (!inode_bitmap_bh)
883 goto fail;
885 repeat_in_this_group:
886 ino = ext4_find_next_zero_bit((unsigned long *)
887 inode_bitmap_bh->b_data,
888 EXT4_INODES_PER_GROUP(sb), ino);
890 if (ino < EXT4_INODES_PER_GROUP(sb)) {
892 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
893 err = ext4_journal_get_write_access(handle,
894 inode_bitmap_bh);
895 if (err)
896 goto fail;
898 BUFFER_TRACE(group_desc_bh, "get_write_access");
899 err = ext4_journal_get_write_access(handle,
900 group_desc_bh);
901 if (err)
902 goto fail;
903 if (!ext4_claim_inode(sb, inode_bitmap_bh,
904 ino, group, mode)) {
905 /* we won it */
906 BUFFER_TRACE(inode_bitmap_bh,
907 "call ext4_handle_dirty_metadata");
908 err = ext4_handle_dirty_metadata(handle,
909 NULL,
910 inode_bitmap_bh);
911 if (err)
912 goto fail;
913 /* zero bit is inode number 1*/
914 ino++;
915 goto got;
917 /* we lost it */
918 ext4_handle_release_buffer(handle, inode_bitmap_bh);
919 ext4_handle_release_buffer(handle, group_desc_bh);
921 if (++ino < EXT4_INODES_PER_GROUP(sb))
922 goto repeat_in_this_group;
926 * This case is possible in concurrent environment. It is very
927 * rare. We cannot repeat the find_group_xxx() call because
928 * that will simply return the same blockgroup, because the
929 * group descriptor metadata has not yet been updated.
930 * So we just go onto the next blockgroup.
932 if (++group == ngroups)
933 group = 0;
935 err = -ENOSPC;
936 goto out;
938 got:
939 /* We may have to initialize the block bitmap if it isn't already */
940 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) &&
941 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
942 struct buffer_head *block_bitmap_bh;
944 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
945 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
946 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
947 if (err) {
948 brelse(block_bitmap_bh);
949 goto fail;
952 free = 0;
953 ext4_lock_group(sb, group);
954 /* recheck and clear flag under lock if we still need to */
955 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
956 free = ext4_free_blocks_after_init(sb, group, gdp);
957 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
958 ext4_free_blks_set(sb, gdp, free);
959 gdp->bg_checksum = ext4_group_desc_csum(sbi, group,
960 gdp);
962 ext4_unlock_group(sb, group);
964 /* Don't need to dirty bitmap block if we didn't change it */
965 if (free) {
966 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
967 err = ext4_handle_dirty_metadata(handle,
968 NULL, block_bitmap_bh);
971 brelse(block_bitmap_bh);
972 if (err)
973 goto fail;
975 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
976 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
977 if (err)
978 goto fail;
980 percpu_counter_dec(&sbi->s_freeinodes_counter);
981 if (S_ISDIR(mode))
982 percpu_counter_inc(&sbi->s_dirs_counter);
983 ext4_mark_super_dirty(sb);
985 if (sbi->s_log_groups_per_flex) {
986 flex_group = ext4_flex_group(sbi, group);
987 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
990 if (test_opt(sb, GRPID)) {
991 inode->i_mode = mode;
992 inode->i_uid = current_fsuid();
993 inode->i_gid = dir->i_gid;
994 } else
995 inode_init_owner(inode, dir, mode);
997 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
998 /* This is the optimal IO size (for stat), not the fs block size */
999 inode->i_blocks = 0;
1000 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1001 ext4_current_time(inode);
1003 memset(ei->i_data, 0, sizeof(ei->i_data));
1004 ei->i_dir_start_lookup = 0;
1005 ei->i_disksize = 0;
1008 * Don't inherit extent flag from directory, amongst others. We set
1009 * extent flag on newly created directory and file only if -o extent
1010 * mount option is specified
1012 ei->i_flags =
1013 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1014 ei->i_file_acl = 0;
1015 ei->i_dtime = 0;
1016 ei->i_block_group = group;
1017 ei->i_last_alloc_group = ~0;
1019 ext4_set_inode_flags(inode);
1020 if (IS_DIRSYNC(inode))
1021 ext4_handle_sync(handle);
1022 if (insert_inode_locked(inode) < 0) {
1023 err = -EINVAL;
1024 goto fail_drop;
1026 spin_lock(&sbi->s_next_gen_lock);
1027 inode->i_generation = sbi->s_next_generation++;
1028 spin_unlock(&sbi->s_next_gen_lock);
1030 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1031 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1033 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1035 ret = inode;
1036 dquot_initialize(inode);
1037 err = dquot_alloc_inode(inode);
1038 if (err)
1039 goto fail_drop;
1041 err = ext4_init_acl(handle, inode, dir);
1042 if (err)
1043 goto fail_free_drop;
1045 err = ext4_init_security(handle, inode, dir);
1046 if (err)
1047 goto fail_free_drop;
1049 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1050 /* set extent flag only for directory, file and normal symlink*/
1051 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1052 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1053 ext4_ext_tree_init(handle, inode);
1057 err = ext4_mark_inode_dirty(handle, inode);
1058 if (err) {
1059 ext4_std_error(sb, err);
1060 goto fail_free_drop;
1063 ext4_debug("allocating inode %lu\n", inode->i_ino);
1064 trace_ext4_allocate_inode(inode, dir, mode);
1065 goto really_out;
1066 fail:
1067 ext4_std_error(sb, err);
1068 out:
1069 iput(inode);
1070 ret = ERR_PTR(err);
1071 really_out:
1072 brelse(inode_bitmap_bh);
1073 return ret;
1075 fail_free_drop:
1076 dquot_free_inode(inode);
1078 fail_drop:
1079 dquot_drop(inode);
1080 inode->i_flags |= S_NOQUOTA;
1081 inode->i_nlink = 0;
1082 unlock_new_inode(inode);
1083 iput(inode);
1084 brelse(inode_bitmap_bh);
1085 return ERR_PTR(err);
1088 /* Verify that we are loading a valid orphan from disk */
1089 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1091 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1092 ext4_group_t block_group;
1093 int bit;
1094 struct buffer_head *bitmap_bh;
1095 struct inode *inode = NULL;
1096 long err = -EIO;
1098 /* Error cases - e2fsck has already cleaned up for us */
1099 if (ino > max_ino) {
1100 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
1101 goto error;
1104 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1105 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1106 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1107 if (!bitmap_bh) {
1108 ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1109 goto error;
1112 /* Having the inode bit set should be a 100% indicator that this
1113 * is a valid orphan (no e2fsck run on fs). Orphans also include
1114 * inodes that were being truncated, so we can't check i_nlink==0.
1116 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1117 goto bad_orphan;
1119 inode = ext4_iget(sb, ino);
1120 if (IS_ERR(inode))
1121 goto iget_failed;
1124 * If the orphans has i_nlinks > 0 then it should be able to be
1125 * truncated, otherwise it won't be removed from the orphan list
1126 * during processing and an infinite loop will result.
1128 if (inode->i_nlink && !ext4_can_truncate(inode))
1129 goto bad_orphan;
1131 if (NEXT_ORPHAN(inode) > max_ino)
1132 goto bad_orphan;
1133 brelse(bitmap_bh);
1134 return inode;
1136 iget_failed:
1137 err = PTR_ERR(inode);
1138 inode = NULL;
1139 bad_orphan:
1140 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
1141 printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1142 bit, (unsigned long long)bitmap_bh->b_blocknr,
1143 ext4_test_bit(bit, bitmap_bh->b_data));
1144 printk(KERN_NOTICE "inode=%p\n", inode);
1145 if (inode) {
1146 printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
1147 is_bad_inode(inode));
1148 printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
1149 NEXT_ORPHAN(inode));
1150 printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
1151 printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
1152 /* Avoid freeing blocks if we got a bad deleted inode */
1153 if (inode->i_nlink == 0)
1154 inode->i_blocks = 0;
1155 iput(inode);
1157 brelse(bitmap_bh);
1158 error:
1159 return ERR_PTR(err);
1162 unsigned long ext4_count_free_inodes(struct super_block *sb)
1164 unsigned long desc_count;
1165 struct ext4_group_desc *gdp;
1166 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1167 #ifdef EXT4FS_DEBUG
1168 struct ext4_super_block *es;
1169 unsigned long bitmap_count, x;
1170 struct buffer_head *bitmap_bh = NULL;
1172 es = EXT4_SB(sb)->s_es;
1173 desc_count = 0;
1174 bitmap_count = 0;
1175 gdp = NULL;
1176 for (i = 0; i < ngroups; i++) {
1177 gdp = ext4_get_group_desc(sb, i, NULL);
1178 if (!gdp)
1179 continue;
1180 desc_count += ext4_free_inodes_count(sb, gdp);
1181 brelse(bitmap_bh);
1182 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1183 if (!bitmap_bh)
1184 continue;
1186 x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
1187 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1188 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1189 bitmap_count += x;
1191 brelse(bitmap_bh);
1192 printk(KERN_DEBUG "ext4_count_free_inodes: "
1193 "stored = %u, computed = %lu, %lu\n",
1194 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1195 return desc_count;
1196 #else
1197 desc_count = 0;
1198 for (i = 0; i < ngroups; i++) {
1199 gdp = ext4_get_group_desc(sb, i, NULL);
1200 if (!gdp)
1201 continue;
1202 desc_count += ext4_free_inodes_count(sb, gdp);
1203 cond_resched();
1205 return desc_count;
1206 #endif
1209 /* Called at mount-time, super-block is locked */
1210 unsigned long ext4_count_dirs(struct super_block * sb)
1212 unsigned long count = 0;
1213 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1215 for (i = 0; i < ngroups; i++) {
1216 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1217 if (!gdp)
1218 continue;
1219 count += ext4_used_dirs_count(sb, gdp);
1221 return count;
1225 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1226 * inode table. Must be called without any spinlock held. The only place
1227 * where it is called from on active part of filesystem is ext4lazyinit
1228 * thread, so we do not need any special locks, however we have to prevent
1229 * inode allocation from the current group, so we take alloc_sem lock, to
1230 * block ext4_claim_inode until we are finished.
1232 extern int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1233 int barrier)
1235 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1236 struct ext4_sb_info *sbi = EXT4_SB(sb);
1237 struct ext4_group_desc *gdp = NULL;
1238 struct buffer_head *group_desc_bh;
1239 handle_t *handle;
1240 ext4_fsblk_t blk;
1241 int num, ret = 0, used_blks = 0;
1243 /* This should not happen, but just to be sure check this */
1244 if (sb->s_flags & MS_RDONLY) {
1245 ret = 1;
1246 goto out;
1249 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1250 if (!gdp)
1251 goto out;
1254 * We do not need to lock this, because we are the only one
1255 * handling this flag.
1257 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1258 goto out;
1260 handle = ext4_journal_start_sb(sb, 1);
1261 if (IS_ERR(handle)) {
1262 ret = PTR_ERR(handle);
1263 goto out;
1266 down_write(&grp->alloc_sem);
1268 * If inode bitmap was already initialized there may be some
1269 * used inodes so we need to skip blocks with used inodes in
1270 * inode table.
1272 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1273 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1274 ext4_itable_unused_count(sb, gdp)),
1275 sbi->s_inodes_per_block);
1277 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1278 ext4_error(sb, "Something is wrong with group %u\n"
1279 "Used itable blocks: %d"
1280 "itable unused count: %u\n",
1281 group, used_blks,
1282 ext4_itable_unused_count(sb, gdp));
1283 ret = 1;
1284 goto out;
1287 blk = ext4_inode_table(sb, gdp) + used_blks;
1288 num = sbi->s_itb_per_group - used_blks;
1290 BUFFER_TRACE(group_desc_bh, "get_write_access");
1291 ret = ext4_journal_get_write_access(handle,
1292 group_desc_bh);
1293 if (ret)
1294 goto err_out;
1297 * Skip zeroout if the inode table is full. But we set the ZEROED
1298 * flag anyway, because obviously, when it is full it does not need
1299 * further zeroing.
1301 if (unlikely(num == 0))
1302 goto skip_zeroout;
1304 ext4_debug("going to zero out inode table in group %d\n",
1305 group);
1306 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1307 if (ret < 0)
1308 goto err_out;
1309 if (barrier)
1310 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1312 skip_zeroout:
1313 ext4_lock_group(sb, group);
1314 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1315 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
1316 ext4_unlock_group(sb, group);
1318 BUFFER_TRACE(group_desc_bh,
1319 "call ext4_handle_dirty_metadata");
1320 ret = ext4_handle_dirty_metadata(handle, NULL,
1321 group_desc_bh);
1323 err_out:
1324 up_write(&grp->alloc_sem);
1325 ext4_journal_stop(handle);
1326 out:
1327 return ret;