tuntap: switch to use rtnl_dereference()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / umem.c
blobad70868f8a967b40bc866bc5430387b55f4601ac
1 /*
2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
4 * (C) 2001 San Mehat <nettwerk@valinux.com>
5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
9 * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
11 * This driver is released to the public under the terms of the
12 * GNU GENERAL PUBLIC LICENSE version 2
13 * See the file COPYING for details.
15 * This driver provides a standard block device interface for Micro Memory(tm)
16 * PCI based RAM boards.
17 * 10/05/01: Phap Nguyen - Rebuilt the driver
18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19 * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
20 * - use stand disk partitioning (so fdisk works).
21 * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
22 * - incorporate into main kernel
23 * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
24 * - use spin_lock_bh instead of _irq
25 * - Never block on make_request. queue
26 * bh's instead.
27 * - unregister umem from devfs at mod unload
28 * - Change version to 2.3
29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30 * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
31 * 15May2002:NeilBrown - convert to bio for 2.5
32 * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
33 * - a sequence of writes that cover the card, and
34 * - set initialised bit then.
37 #undef DEBUG /* #define DEBUG if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/gfp.h>
44 #include <linux/ioctl.h>
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/timer.h>
49 #include <linux/pci.h>
50 #include <linux/dma-mapping.h>
52 #include <linux/fcntl.h> /* O_ACCMODE */
53 #include <linux/hdreg.h> /* HDIO_GETGEO */
55 #include "umem.h"
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2 /* two sectors */
62 #define MM_BLKSIZE 1024 /* 1k blocks */
63 #define MM_HARDSECT 512 /* 512-byte hardware sectors */
64 #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
67 * Version Information
70 #define DRIVER_NAME "umem"
71 #define DRIVER_VERSION "v2.3"
72 #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
75 static int debug;
76 /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77 #define HW_TRACE(x)
79 #define DEBUG_LED_ON_TRANSFER 0x01
80 #define DEBUG_BATTERY_POLLING 0x02
82 module_param(debug, int, 0644);
83 MODULE_PARM_DESC(debug, "Debug bitmask");
85 static int pci_read_cmd = 0x0C; /* Read Multiple */
86 module_param(pci_read_cmd, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
89 static int pci_write_cmd = 0x0F; /* Write and Invalidate */
90 module_param(pci_write_cmd, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
93 static int pci_cmds;
95 static int major_nr;
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
100 struct cardinfo {
101 struct pci_dev *dev;
103 unsigned char __iomem *csr_remap;
104 unsigned int mm_size; /* size in kbytes */
106 unsigned int init_size; /* initial segment, in sectors,
107 * that we know to
108 * have been written
110 struct bio *bio, *currentbio, **biotail;
111 int current_idx;
112 sector_t current_sector;
114 struct request_queue *queue;
116 struct mm_page {
117 dma_addr_t page_dma;
118 struct mm_dma_desc *desc;
119 int cnt, headcnt;
120 struct bio *bio, **biotail;
121 int idx;
122 } mm_pages[2];
123 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
125 int Active, Ready;
127 struct tasklet_struct tasklet;
128 unsigned int dma_status;
130 struct {
131 int good;
132 int warned;
133 unsigned long last_change;
134 } battery[2];
136 spinlock_t lock;
137 int check_batteries;
139 int flags;
142 static struct cardinfo cards[MM_MAXCARDS];
143 static struct timer_list battery_timer;
145 static int num_cards;
147 static struct gendisk *mm_gendisk[MM_MAXCARDS];
149 static void check_batteries(struct cardinfo *card);
151 static int get_userbit(struct cardinfo *card, int bit)
153 unsigned char led;
155 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
156 return led & bit;
159 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
161 unsigned char led;
163 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
164 if (state)
165 led |= bit;
166 else
167 led &= ~bit;
168 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
170 return 0;
174 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
176 static void set_led(struct cardinfo *card, int shift, unsigned char state)
178 unsigned char led;
180 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
181 if (state == LED_FLIP)
182 led ^= (1<<shift);
183 else {
184 led &= ~(0x03 << shift);
185 led |= (state << shift);
187 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
191 #ifdef MM_DIAG
192 static void dump_regs(struct cardinfo *card)
194 unsigned char *p;
195 int i, i1;
197 p = card->csr_remap;
198 for (i = 0; i < 8; i++) {
199 printk(KERN_DEBUG "%p ", p);
201 for (i1 = 0; i1 < 16; i1++)
202 printk("%02x ", *p++);
204 printk("\n");
207 #endif
209 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
211 dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
212 if (dmastat & DMASCR_ANY_ERR)
213 printk(KERN_CONT "ANY_ERR ");
214 if (dmastat & DMASCR_MBE_ERR)
215 printk(KERN_CONT "MBE_ERR ");
216 if (dmastat & DMASCR_PARITY_ERR_REP)
217 printk(KERN_CONT "PARITY_ERR_REP ");
218 if (dmastat & DMASCR_PARITY_ERR_DET)
219 printk(KERN_CONT "PARITY_ERR_DET ");
220 if (dmastat & DMASCR_SYSTEM_ERR_SIG)
221 printk(KERN_CONT "SYSTEM_ERR_SIG ");
222 if (dmastat & DMASCR_TARGET_ABT)
223 printk(KERN_CONT "TARGET_ABT ");
224 if (dmastat & DMASCR_MASTER_ABT)
225 printk(KERN_CONT "MASTER_ABT ");
226 if (dmastat & DMASCR_CHAIN_COMPLETE)
227 printk(KERN_CONT "CHAIN_COMPLETE ");
228 if (dmastat & DMASCR_DMA_COMPLETE)
229 printk(KERN_CONT "DMA_COMPLETE ");
230 printk("\n");
234 * Theory of request handling
236 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
237 * We have two pages of mm_dma_desc, holding about 64 descriptors
238 * each. These are allocated at init time.
239 * One page is "Ready" and is either full, or can have request added.
240 * The other page might be "Active", which DMA is happening on it.
242 * Whenever IO on the active page completes, the Ready page is activated
243 * and the ex-Active page is clean out and made Ready.
244 * Otherwise the Ready page is only activated when it becomes full.
246 * If a request arrives while both pages a full, it is queued, and b_rdev is
247 * overloaded to record whether it was a read or a write.
249 * The interrupt handler only polls the device to clear the interrupt.
250 * The processing of the result is done in a tasklet.
253 static void mm_start_io(struct cardinfo *card)
255 /* we have the lock, we know there is
256 * no IO active, and we know that card->Active
257 * is set
259 struct mm_dma_desc *desc;
260 struct mm_page *page;
261 int offset;
263 /* make the last descriptor end the chain */
264 page = &card->mm_pages[card->Active];
265 pr_debug("start_io: %d %d->%d\n",
266 card->Active, page->headcnt, page->cnt - 1);
267 desc = &page->desc[page->cnt-1];
269 desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
270 desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
271 desc->sem_control_bits = desc->control_bits;
274 if (debug & DEBUG_LED_ON_TRANSFER)
275 set_led(card, LED_REMOVE, LED_ON);
277 desc = &page->desc[page->headcnt];
278 writel(0, card->csr_remap + DMA_PCI_ADDR);
279 writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
281 writel(0, card->csr_remap + DMA_LOCAL_ADDR);
282 writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
284 writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
285 writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
287 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
288 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
290 offset = ((char *)desc) - ((char *)page->desc);
291 writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
292 card->csr_remap + DMA_DESCRIPTOR_ADDR);
293 /* Force the value to u64 before shifting otherwise >> 32 is undefined C
294 * and on some ports will do nothing ! */
295 writel(cpu_to_le32(((u64)page->page_dma)>>32),
296 card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
298 /* Go, go, go */
299 writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
300 card->csr_remap + DMA_STATUS_CTRL);
303 static int add_bio(struct cardinfo *card);
305 static void activate(struct cardinfo *card)
307 /* if No page is Active, and Ready is
308 * not empty, then switch Ready page
309 * to active and start IO.
310 * Then add any bh's that are available to Ready
313 do {
314 while (add_bio(card))
317 if (card->Active == -1 &&
318 card->mm_pages[card->Ready].cnt > 0) {
319 card->Active = card->Ready;
320 card->Ready = 1-card->Ready;
321 mm_start_io(card);
324 } while (card->Active == -1 && add_bio(card));
327 static inline void reset_page(struct mm_page *page)
329 page->cnt = 0;
330 page->headcnt = 0;
331 page->bio = NULL;
332 page->biotail = &page->bio;
336 * If there is room on Ready page, take
337 * one bh off list and add it.
338 * return 1 if there was room, else 0.
340 static int add_bio(struct cardinfo *card)
342 struct mm_page *p;
343 struct mm_dma_desc *desc;
344 dma_addr_t dma_handle;
345 int offset;
346 struct bio *bio;
347 struct bio_vec *vec;
348 int idx;
349 int rw;
350 int len;
352 bio = card->currentbio;
353 if (!bio && card->bio) {
354 card->currentbio = card->bio;
355 card->current_idx = card->bio->bi_idx;
356 card->current_sector = card->bio->bi_sector;
357 card->bio = card->bio->bi_next;
358 if (card->bio == NULL)
359 card->biotail = &card->bio;
360 card->currentbio->bi_next = NULL;
361 return 1;
363 if (!bio)
364 return 0;
365 idx = card->current_idx;
367 rw = bio_rw(bio);
368 if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
369 return 0;
371 vec = bio_iovec_idx(bio, idx);
372 len = vec->bv_len;
373 dma_handle = pci_map_page(card->dev,
374 vec->bv_page,
375 vec->bv_offset,
376 len,
377 (rw == READ) ?
378 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
380 p = &card->mm_pages[card->Ready];
381 desc = &p->desc[p->cnt];
382 p->cnt++;
383 if (p->bio == NULL)
384 p->idx = idx;
385 if ((p->biotail) != &bio->bi_next) {
386 *(p->biotail) = bio;
387 p->biotail = &(bio->bi_next);
388 bio->bi_next = NULL;
391 desc->data_dma_handle = dma_handle;
393 desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
394 desc->local_addr = cpu_to_le64(card->current_sector << 9);
395 desc->transfer_size = cpu_to_le32(len);
396 offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
397 desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
398 desc->zero1 = desc->zero2 = 0;
399 offset = (((char *)(desc+1)) - ((char *)p->desc));
400 desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
401 desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
402 DMASCR_PARITY_INT_EN|
403 DMASCR_CHAIN_EN |
404 DMASCR_SEM_EN |
405 pci_cmds);
406 if (rw == WRITE)
407 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
408 desc->sem_control_bits = desc->control_bits;
410 card->current_sector += (len >> 9);
411 idx++;
412 card->current_idx = idx;
413 if (idx >= bio->bi_vcnt)
414 card->currentbio = NULL;
416 return 1;
419 static void process_page(unsigned long data)
421 /* check if any of the requests in the page are DMA_COMPLETE,
422 * and deal with them appropriately.
423 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
424 * dma must have hit an error on that descriptor, so use dma_status
425 * instead and assume that all following descriptors must be re-tried.
427 struct mm_page *page;
428 struct bio *return_bio = NULL;
429 struct cardinfo *card = (struct cardinfo *)data;
430 unsigned int dma_status = card->dma_status;
432 spin_lock_bh(&card->lock);
433 if (card->Active < 0)
434 goto out_unlock;
435 page = &card->mm_pages[card->Active];
437 while (page->headcnt < page->cnt) {
438 struct bio *bio = page->bio;
439 struct mm_dma_desc *desc = &page->desc[page->headcnt];
440 int control = le32_to_cpu(desc->sem_control_bits);
441 int last = 0;
442 int idx;
444 if (!(control & DMASCR_DMA_COMPLETE)) {
445 control = dma_status;
446 last = 1;
448 page->headcnt++;
449 idx = page->idx;
450 page->idx++;
451 if (page->idx >= bio->bi_vcnt) {
452 page->bio = bio->bi_next;
453 if (page->bio)
454 page->idx = page->bio->bi_idx;
457 pci_unmap_page(card->dev, desc->data_dma_handle,
458 bio_iovec_idx(bio, idx)->bv_len,
459 (control & DMASCR_TRANSFER_READ) ?
460 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
461 if (control & DMASCR_HARD_ERROR) {
462 /* error */
463 clear_bit(BIO_UPTODATE, &bio->bi_flags);
464 dev_printk(KERN_WARNING, &card->dev->dev,
465 "I/O error on sector %d/%d\n",
466 le32_to_cpu(desc->local_addr)>>9,
467 le32_to_cpu(desc->transfer_size));
468 dump_dmastat(card, control);
469 } else if ((bio->bi_rw & REQ_WRITE) &&
470 le32_to_cpu(desc->local_addr) >> 9 ==
471 card->init_size) {
472 card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
473 if (card->init_size >> 1 >= card->mm_size) {
474 dev_printk(KERN_INFO, &card->dev->dev,
475 "memory now initialised\n");
476 set_userbit(card, MEMORY_INITIALIZED, 1);
479 if (bio != page->bio) {
480 bio->bi_next = return_bio;
481 return_bio = bio;
484 if (last)
485 break;
488 if (debug & DEBUG_LED_ON_TRANSFER)
489 set_led(card, LED_REMOVE, LED_OFF);
491 if (card->check_batteries) {
492 card->check_batteries = 0;
493 check_batteries(card);
495 if (page->headcnt >= page->cnt) {
496 reset_page(page);
497 card->Active = -1;
498 activate(card);
499 } else {
500 /* haven't finished with this one yet */
501 pr_debug("do some more\n");
502 mm_start_io(card);
504 out_unlock:
505 spin_unlock_bh(&card->lock);
507 while (return_bio) {
508 struct bio *bio = return_bio;
510 return_bio = bio->bi_next;
511 bio->bi_next = NULL;
512 bio_endio(bio, 0);
516 static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule)
518 struct cardinfo *card = cb->data;
520 spin_lock_irq(&card->lock);
521 activate(card);
522 spin_unlock_irq(&card->lock);
523 kfree(cb);
526 static int mm_check_plugged(struct cardinfo *card)
528 return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb));
531 static void mm_make_request(struct request_queue *q, struct bio *bio)
533 struct cardinfo *card = q->queuedata;
534 pr_debug("mm_make_request %llu %u\n",
535 (unsigned long long)bio->bi_sector, bio->bi_size);
537 spin_lock_irq(&card->lock);
538 *card->biotail = bio;
539 bio->bi_next = NULL;
540 card->biotail = &bio->bi_next;
541 if (bio->bi_rw & REQ_SYNC || !mm_check_plugged(card))
542 activate(card);
543 spin_unlock_irq(&card->lock);
545 return;
548 static irqreturn_t mm_interrupt(int irq, void *__card)
550 struct cardinfo *card = (struct cardinfo *) __card;
551 unsigned int dma_status;
552 unsigned short cfg_status;
554 HW_TRACE(0x30);
556 dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
558 if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
559 /* interrupt wasn't for me ... */
560 return IRQ_NONE;
563 /* clear COMPLETION interrupts */
564 if (card->flags & UM_FLAG_NO_BYTE_STATUS)
565 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
566 card->csr_remap + DMA_STATUS_CTRL);
567 else
568 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
569 card->csr_remap + DMA_STATUS_CTRL + 2);
571 /* log errors and clear interrupt status */
572 if (dma_status & DMASCR_ANY_ERR) {
573 unsigned int data_log1, data_log2;
574 unsigned int addr_log1, addr_log2;
575 unsigned char stat, count, syndrome, check;
577 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
579 data_log1 = le32_to_cpu(readl(card->csr_remap +
580 ERROR_DATA_LOG));
581 data_log2 = le32_to_cpu(readl(card->csr_remap +
582 ERROR_DATA_LOG + 4));
583 addr_log1 = le32_to_cpu(readl(card->csr_remap +
584 ERROR_ADDR_LOG));
585 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
587 count = readb(card->csr_remap + ERROR_COUNT);
588 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
589 check = readb(card->csr_remap + ERROR_CHECK);
591 dump_dmastat(card, dma_status);
593 if (stat & 0x01)
594 dev_printk(KERN_ERR, &card->dev->dev,
595 "Memory access error detected (err count %d)\n",
596 count);
597 if (stat & 0x02)
598 dev_printk(KERN_ERR, &card->dev->dev,
599 "Multi-bit EDC error\n");
601 dev_printk(KERN_ERR, &card->dev->dev,
602 "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
603 addr_log2, addr_log1, data_log2, data_log1);
604 dev_printk(KERN_ERR, &card->dev->dev,
605 "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
606 check, syndrome);
608 writeb(0, card->csr_remap + ERROR_COUNT);
611 if (dma_status & DMASCR_PARITY_ERR_REP) {
612 dev_printk(KERN_ERR, &card->dev->dev,
613 "PARITY ERROR REPORTED\n");
614 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
615 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
618 if (dma_status & DMASCR_PARITY_ERR_DET) {
619 dev_printk(KERN_ERR, &card->dev->dev,
620 "PARITY ERROR DETECTED\n");
621 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
622 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
625 if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
626 dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
627 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
628 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
631 if (dma_status & DMASCR_TARGET_ABT) {
632 dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
633 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
634 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
637 if (dma_status & DMASCR_MASTER_ABT) {
638 dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
639 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
640 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
643 /* and process the DMA descriptors */
644 card->dma_status = dma_status;
645 tasklet_schedule(&card->tasklet);
647 HW_TRACE(0x36);
649 return IRQ_HANDLED;
653 * If both batteries are good, no LED
654 * If either battery has been warned, solid LED
655 * If both batteries are bad, flash the LED quickly
656 * If either battery is bad, flash the LED semi quickly
658 static void set_fault_to_battery_status(struct cardinfo *card)
660 if (card->battery[0].good && card->battery[1].good)
661 set_led(card, LED_FAULT, LED_OFF);
662 else if (card->battery[0].warned || card->battery[1].warned)
663 set_led(card, LED_FAULT, LED_ON);
664 else if (!card->battery[0].good && !card->battery[1].good)
665 set_led(card, LED_FAULT, LED_FLASH_7_0);
666 else
667 set_led(card, LED_FAULT, LED_FLASH_3_5);
670 static void init_battery_timer(void);
672 static int check_battery(struct cardinfo *card, int battery, int status)
674 if (status != card->battery[battery].good) {
675 card->battery[battery].good = !card->battery[battery].good;
676 card->battery[battery].last_change = jiffies;
678 if (card->battery[battery].good) {
679 dev_printk(KERN_ERR, &card->dev->dev,
680 "Battery %d now good\n", battery + 1);
681 card->battery[battery].warned = 0;
682 } else
683 dev_printk(KERN_ERR, &card->dev->dev,
684 "Battery %d now FAILED\n", battery + 1);
686 return 1;
687 } else if (!card->battery[battery].good &&
688 !card->battery[battery].warned &&
689 time_after_eq(jiffies, card->battery[battery].last_change +
690 (HZ * 60 * 60 * 5))) {
691 dev_printk(KERN_ERR, &card->dev->dev,
692 "Battery %d still FAILED after 5 hours\n", battery + 1);
693 card->battery[battery].warned = 1;
695 return 1;
698 return 0;
701 static void check_batteries(struct cardinfo *card)
703 /* NOTE: this must *never* be called while the card
704 * is doing (bus-to-card) DMA, or you will need the
705 * reset switch
707 unsigned char status;
708 int ret1, ret2;
710 status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
711 if (debug & DEBUG_BATTERY_POLLING)
712 dev_printk(KERN_DEBUG, &card->dev->dev,
713 "checking battery status, 1 = %s, 2 = %s\n",
714 (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
715 (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
717 ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
718 ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
720 if (ret1 || ret2)
721 set_fault_to_battery_status(card);
724 static void check_all_batteries(unsigned long ptr)
726 int i;
728 for (i = 0; i < num_cards; i++)
729 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
730 struct cardinfo *card = &cards[i];
731 spin_lock_bh(&card->lock);
732 if (card->Active >= 0)
733 card->check_batteries = 1;
734 else
735 check_batteries(card);
736 spin_unlock_bh(&card->lock);
739 init_battery_timer();
742 static void init_battery_timer(void)
744 init_timer(&battery_timer);
745 battery_timer.function = check_all_batteries;
746 battery_timer.expires = jiffies + (HZ * 60);
747 add_timer(&battery_timer);
750 static void del_battery_timer(void)
752 del_timer(&battery_timer);
756 * Note no locks taken out here. In a worst case scenario, we could drop
757 * a chunk of system memory. But that should never happen, since validation
758 * happens at open or mount time, when locks are held.
760 * That's crap, since doing that while some partitions are opened
761 * or mounted will give you really nasty results.
763 static int mm_revalidate(struct gendisk *disk)
765 struct cardinfo *card = disk->private_data;
766 set_capacity(disk, card->mm_size << 1);
767 return 0;
770 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
772 struct cardinfo *card = bdev->bd_disk->private_data;
773 int size = card->mm_size * (1024 / MM_HARDSECT);
776 * get geometry: we have to fake one... trim the size to a
777 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
778 * whatever cylinders.
780 geo->heads = 64;
781 geo->sectors = 32;
782 geo->cylinders = size / (geo->heads * geo->sectors);
783 return 0;
786 static const struct block_device_operations mm_fops = {
787 .owner = THIS_MODULE,
788 .getgeo = mm_getgeo,
789 .revalidate_disk = mm_revalidate,
792 static int mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
794 int ret = -ENODEV;
795 struct cardinfo *card = &cards[num_cards];
796 unsigned char mem_present;
797 unsigned char batt_status;
798 unsigned int saved_bar, data;
799 unsigned long csr_base;
800 unsigned long csr_len;
801 int magic_number;
802 static int printed_version;
804 if (!printed_version++)
805 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
807 ret = pci_enable_device(dev);
808 if (ret)
809 return ret;
811 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
812 pci_set_master(dev);
814 card->dev = dev;
816 csr_base = pci_resource_start(dev, 0);
817 csr_len = pci_resource_len(dev, 0);
818 if (!csr_base || !csr_len)
819 return -ENODEV;
821 dev_printk(KERN_INFO, &dev->dev,
822 "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
824 if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
825 pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
826 dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
827 return -ENOMEM;
830 ret = pci_request_regions(dev, DRIVER_NAME);
831 if (ret) {
832 dev_printk(KERN_ERR, &card->dev->dev,
833 "Unable to request memory region\n");
834 goto failed_req_csr;
837 card->csr_remap = ioremap_nocache(csr_base, csr_len);
838 if (!card->csr_remap) {
839 dev_printk(KERN_ERR, &card->dev->dev,
840 "Unable to remap memory region\n");
841 ret = -ENOMEM;
843 goto failed_remap_csr;
846 dev_printk(KERN_INFO, &card->dev->dev,
847 "CSR 0x%08lx -> 0x%p (0x%lx)\n",
848 csr_base, card->csr_remap, csr_len);
850 switch (card->dev->device) {
851 case 0x5415:
852 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
853 magic_number = 0x59;
854 break;
856 case 0x5425:
857 card->flags |= UM_FLAG_NO_BYTE_STATUS;
858 magic_number = 0x5C;
859 break;
861 case 0x6155:
862 card->flags |= UM_FLAG_NO_BYTE_STATUS |
863 UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
864 magic_number = 0x99;
865 break;
867 default:
868 magic_number = 0x100;
869 break;
872 if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
873 dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
874 ret = -ENOMEM;
875 goto failed_magic;
878 card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
879 PAGE_SIZE * 2,
880 &card->mm_pages[0].page_dma);
881 card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
882 PAGE_SIZE * 2,
883 &card->mm_pages[1].page_dma);
884 if (card->mm_pages[0].desc == NULL ||
885 card->mm_pages[1].desc == NULL) {
886 dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
887 goto failed_alloc;
889 reset_page(&card->mm_pages[0]);
890 reset_page(&card->mm_pages[1]);
891 card->Ready = 0; /* page 0 is ready */
892 card->Active = -1; /* no page is active */
893 card->bio = NULL;
894 card->biotail = &card->bio;
896 card->queue = blk_alloc_queue(GFP_KERNEL);
897 if (!card->queue)
898 goto failed_alloc;
900 blk_queue_make_request(card->queue, mm_make_request);
901 card->queue->queue_lock = &card->lock;
902 card->queue->queuedata = card;
904 tasklet_init(&card->tasklet, process_page, (unsigned long)card);
906 card->check_batteries = 0;
908 mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
909 switch (mem_present) {
910 case MEM_128_MB:
911 card->mm_size = 1024 * 128;
912 break;
913 case MEM_256_MB:
914 card->mm_size = 1024 * 256;
915 break;
916 case MEM_512_MB:
917 card->mm_size = 1024 * 512;
918 break;
919 case MEM_1_GB:
920 card->mm_size = 1024 * 1024;
921 break;
922 case MEM_2_GB:
923 card->mm_size = 1024 * 2048;
924 break;
925 default:
926 card->mm_size = 0;
927 break;
930 /* Clear the LED's we control */
931 set_led(card, LED_REMOVE, LED_OFF);
932 set_led(card, LED_FAULT, LED_OFF);
934 batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
936 card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
937 card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
938 card->battery[0].last_change = card->battery[1].last_change = jiffies;
940 if (card->flags & UM_FLAG_NO_BATT)
941 dev_printk(KERN_INFO, &card->dev->dev,
942 "Size %d KB\n", card->mm_size);
943 else {
944 dev_printk(KERN_INFO, &card->dev->dev,
945 "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
946 card->mm_size,
947 batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
948 card->battery[0].good ? "OK" : "FAILURE",
949 batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
950 card->battery[1].good ? "OK" : "FAILURE");
952 set_fault_to_battery_status(card);
955 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
956 data = 0xffffffff;
957 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
958 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
959 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
960 data &= 0xfffffff0;
961 data = ~data;
962 data += 1;
964 if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
965 card)) {
966 dev_printk(KERN_ERR, &card->dev->dev,
967 "Unable to allocate IRQ\n");
968 ret = -ENODEV;
969 goto failed_req_irq;
972 dev_printk(KERN_INFO, &card->dev->dev,
973 "Window size %d bytes, IRQ %d\n", data, dev->irq);
975 spin_lock_init(&card->lock);
977 pci_set_drvdata(dev, card);
979 if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
980 pci_write_cmd = 0x07; /* then Memory Write command */
982 if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
983 unsigned short cfg_command;
984 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
985 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
986 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
988 pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
990 num_cards++;
992 if (!get_userbit(card, MEMORY_INITIALIZED)) {
993 dev_printk(KERN_INFO, &card->dev->dev,
994 "memory NOT initialized. Consider over-writing whole device.\n");
995 card->init_size = 0;
996 } else {
997 dev_printk(KERN_INFO, &card->dev->dev,
998 "memory already initialized\n");
999 card->init_size = card->mm_size;
1002 /* Enable ECC */
1003 writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1005 return 0;
1007 failed_req_irq:
1008 failed_alloc:
1009 if (card->mm_pages[0].desc)
1010 pci_free_consistent(card->dev, PAGE_SIZE*2,
1011 card->mm_pages[0].desc,
1012 card->mm_pages[0].page_dma);
1013 if (card->mm_pages[1].desc)
1014 pci_free_consistent(card->dev, PAGE_SIZE*2,
1015 card->mm_pages[1].desc,
1016 card->mm_pages[1].page_dma);
1017 failed_magic:
1018 iounmap(card->csr_remap);
1019 failed_remap_csr:
1020 pci_release_regions(dev);
1021 failed_req_csr:
1023 return ret;
1026 static void mm_pci_remove(struct pci_dev *dev)
1028 struct cardinfo *card = pci_get_drvdata(dev);
1030 tasklet_kill(&card->tasklet);
1031 free_irq(dev->irq, card);
1032 iounmap(card->csr_remap);
1034 if (card->mm_pages[0].desc)
1035 pci_free_consistent(card->dev, PAGE_SIZE*2,
1036 card->mm_pages[0].desc,
1037 card->mm_pages[0].page_dma);
1038 if (card->mm_pages[1].desc)
1039 pci_free_consistent(card->dev, PAGE_SIZE*2,
1040 card->mm_pages[1].desc,
1041 card->mm_pages[1].page_dma);
1042 blk_cleanup_queue(card->queue);
1044 pci_release_regions(dev);
1045 pci_disable_device(dev);
1048 static const struct pci_device_id mm_pci_ids[] = {
1049 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1050 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1051 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1053 .vendor = 0x8086,
1054 .device = 0xB555,
1055 .subvendor = 0x1332,
1056 .subdevice = 0x5460,
1057 .class = 0x050000,
1058 .class_mask = 0,
1059 }, { /* end: all zeroes */ }
1062 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1064 static struct pci_driver mm_pci_driver = {
1065 .name = DRIVER_NAME,
1066 .id_table = mm_pci_ids,
1067 .probe = mm_pci_probe,
1068 .remove = mm_pci_remove,
1071 static int __init mm_init(void)
1073 int retval, i;
1074 int err;
1076 retval = pci_register_driver(&mm_pci_driver);
1077 if (retval)
1078 return -ENOMEM;
1080 err = major_nr = register_blkdev(0, DRIVER_NAME);
1081 if (err < 0) {
1082 pci_unregister_driver(&mm_pci_driver);
1083 return -EIO;
1086 for (i = 0; i < num_cards; i++) {
1087 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1088 if (!mm_gendisk[i])
1089 goto out;
1092 for (i = 0; i < num_cards; i++) {
1093 struct gendisk *disk = mm_gendisk[i];
1094 sprintf(disk->disk_name, "umem%c", 'a'+i);
1095 spin_lock_init(&cards[i].lock);
1096 disk->major = major_nr;
1097 disk->first_minor = i << MM_SHIFT;
1098 disk->fops = &mm_fops;
1099 disk->private_data = &cards[i];
1100 disk->queue = cards[i].queue;
1101 set_capacity(disk, cards[i].mm_size << 1);
1102 add_disk(disk);
1105 init_battery_timer();
1106 printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1107 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1108 return 0;
1110 out:
1111 pci_unregister_driver(&mm_pci_driver);
1112 unregister_blkdev(major_nr, DRIVER_NAME);
1113 while (i--)
1114 put_disk(mm_gendisk[i]);
1115 return -ENOMEM;
1118 static void __exit mm_cleanup(void)
1120 int i;
1122 del_battery_timer();
1124 for (i = 0; i < num_cards ; i++) {
1125 del_gendisk(mm_gendisk[i]);
1126 put_disk(mm_gendisk[i]);
1129 pci_unregister_driver(&mm_pci_driver);
1131 unregister_blkdev(major_nr, DRIVER_NAME);
1134 module_init(mm_init);
1135 module_exit(mm_cleanup);
1137 MODULE_AUTHOR(DRIVER_AUTHOR);
1138 MODULE_DESCRIPTION(DRIVER_DESC);
1139 MODULE_LICENSE("GPL");