Btrfs: Fix memory leak in writepage fixup work
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / i8254.c
blobddeb2314b522455df6352bd434019030be9a88e5
1 /*
2 * 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affilates.
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
28 * Authors:
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
33 #define pr_fmt(fmt) "pit: " fmt
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37 #include <linux/workqueue.h>
39 #include "irq.h"
40 #include "i8254.h"
42 #ifndef CONFIG_X86_64
43 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
44 #else
45 #define mod_64(x, y) ((x) % (y))
46 #endif
48 #define RW_STATE_LSB 1
49 #define RW_STATE_MSB 2
50 #define RW_STATE_WORD0 3
51 #define RW_STATE_WORD1 4
53 /* Compute with 96 bit intermediate result: (a*b)/c */
54 static u64 muldiv64(u64 a, u32 b, u32 c)
56 union {
57 u64 ll;
58 struct {
59 u32 low, high;
60 } l;
61 } u, res;
62 u64 rl, rh;
64 u.ll = a;
65 rl = (u64)u.l.low * (u64)b;
66 rh = (u64)u.l.high * (u64)b;
67 rh += (rl >> 32);
68 res.l.high = div64_u64(rh, c);
69 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
70 return res.ll;
73 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
75 struct kvm_kpit_channel_state *c =
76 &kvm->arch.vpit->pit_state.channels[channel];
78 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
80 switch (c->mode) {
81 default:
82 case 0:
83 case 4:
84 /* XXX: just disable/enable counting */
85 break;
86 case 1:
87 case 2:
88 case 3:
89 case 5:
90 /* Restart counting on rising edge. */
91 if (c->gate < val)
92 c->count_load_time = ktime_get();
93 break;
96 c->gate = val;
99 static int pit_get_gate(struct kvm *kvm, int channel)
101 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
103 return kvm->arch.vpit->pit_state.channels[channel].gate;
106 static s64 __kpit_elapsed(struct kvm *kvm)
108 s64 elapsed;
109 ktime_t remaining;
110 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
112 if (!ps->pit_timer.period)
113 return 0;
116 * The Counter does not stop when it reaches zero. In
117 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
118 * the highest count, either FFFF hex for binary counting
119 * or 9999 for BCD counting, and continues counting.
120 * Modes 2 and 3 are periodic; the Counter reloads
121 * itself with the initial count and continues counting
122 * from there.
124 remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
125 elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
126 elapsed = mod_64(elapsed, ps->pit_timer.period);
128 return elapsed;
131 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
132 int channel)
134 if (channel == 0)
135 return __kpit_elapsed(kvm);
137 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
140 static int pit_get_count(struct kvm *kvm, int channel)
142 struct kvm_kpit_channel_state *c =
143 &kvm->arch.vpit->pit_state.channels[channel];
144 s64 d, t;
145 int counter;
147 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
149 t = kpit_elapsed(kvm, c, channel);
150 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
152 switch (c->mode) {
153 case 0:
154 case 1:
155 case 4:
156 case 5:
157 counter = (c->count - d) & 0xffff;
158 break;
159 case 3:
160 /* XXX: may be incorrect for odd counts */
161 counter = c->count - (mod_64((2 * d), c->count));
162 break;
163 default:
164 counter = c->count - mod_64(d, c->count);
165 break;
167 return counter;
170 static int pit_get_out(struct kvm *kvm, int channel)
172 struct kvm_kpit_channel_state *c =
173 &kvm->arch.vpit->pit_state.channels[channel];
174 s64 d, t;
175 int out;
177 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
179 t = kpit_elapsed(kvm, c, channel);
180 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
182 switch (c->mode) {
183 default:
184 case 0:
185 out = (d >= c->count);
186 break;
187 case 1:
188 out = (d < c->count);
189 break;
190 case 2:
191 out = ((mod_64(d, c->count) == 0) && (d != 0));
192 break;
193 case 3:
194 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
195 break;
196 case 4:
197 case 5:
198 out = (d == c->count);
199 break;
202 return out;
205 static void pit_latch_count(struct kvm *kvm, int channel)
207 struct kvm_kpit_channel_state *c =
208 &kvm->arch.vpit->pit_state.channels[channel];
210 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
212 if (!c->count_latched) {
213 c->latched_count = pit_get_count(kvm, channel);
214 c->count_latched = c->rw_mode;
218 static void pit_latch_status(struct kvm *kvm, int channel)
220 struct kvm_kpit_channel_state *c =
221 &kvm->arch.vpit->pit_state.channels[channel];
223 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
225 if (!c->status_latched) {
226 /* TODO: Return NULL COUNT (bit 6). */
227 c->status = ((pit_get_out(kvm, channel) << 7) |
228 (c->rw_mode << 4) |
229 (c->mode << 1) |
230 c->bcd);
231 c->status_latched = 1;
235 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
237 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
239 if (pit && kvm_vcpu_is_bsp(vcpu) && pit->pit_state.irq_ack)
240 return atomic_read(&pit->pit_state.pit_timer.pending);
241 return 0;
244 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
246 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
247 irq_ack_notifier);
248 int value;
250 spin_lock(&ps->inject_lock);
251 value = atomic_dec_return(&ps->pit_timer.pending);
252 if (value < 0)
253 /* spurious acks can be generated if, for example, the
254 * PIC is being reset. Handle it gracefully here
256 atomic_inc(&ps->pit_timer.pending);
257 else if (value > 0)
258 /* in this case, we had multiple outstanding pit interrupts
259 * that we needed to inject. Reinject
261 queue_work(ps->pit->wq, &ps->pit->expired);
262 ps->irq_ack = 1;
263 spin_unlock(&ps->inject_lock);
266 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
268 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
269 struct hrtimer *timer;
271 if (!kvm_vcpu_is_bsp(vcpu) || !pit)
272 return;
274 timer = &pit->pit_state.pit_timer.timer;
275 if (hrtimer_cancel(timer))
276 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
279 static void destroy_pit_timer(struct kvm_pit *pit)
281 hrtimer_cancel(&pit->pit_state.pit_timer.timer);
282 cancel_work_sync(&pit->expired);
285 static bool kpit_is_periodic(struct kvm_timer *ktimer)
287 struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
288 pit_timer);
289 return ps->is_periodic;
292 static struct kvm_timer_ops kpit_ops = {
293 .is_periodic = kpit_is_periodic,
296 static void pit_do_work(struct work_struct *work)
298 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
299 struct kvm *kvm = pit->kvm;
300 struct kvm_vcpu *vcpu;
301 int i;
302 struct kvm_kpit_state *ps = &pit->pit_state;
303 int inject = 0;
305 /* Try to inject pending interrupts when
306 * last one has been acked.
308 spin_lock(&ps->inject_lock);
309 if (ps->irq_ack) {
310 ps->irq_ack = 0;
311 inject = 1;
313 spin_unlock(&ps->inject_lock);
314 if (inject) {
315 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
316 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
319 * Provides NMI watchdog support via Virtual Wire mode.
320 * The route is: PIT -> PIC -> LVT0 in NMI mode.
322 * Note: Our Virtual Wire implementation is simplified, only
323 * propagating PIT interrupts to all VCPUs when they have set
324 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
325 * VCPU0, and only if its LVT0 is in EXTINT mode.
327 if (kvm->arch.vapics_in_nmi_mode > 0)
328 kvm_for_each_vcpu(i, vcpu, kvm)
329 kvm_apic_nmi_wd_deliver(vcpu);
333 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
335 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
336 struct kvm_pit *pt = ktimer->kvm->arch.vpit;
338 if (ktimer->reinject || !atomic_read(&ktimer->pending)) {
339 atomic_inc(&ktimer->pending);
340 queue_work(pt->wq, &pt->expired);
343 if (ktimer->t_ops->is_periodic(ktimer)) {
344 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
345 return HRTIMER_RESTART;
346 } else
347 return HRTIMER_NORESTART;
350 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
352 struct kvm_timer *pt = &ps->pit_timer;
353 s64 interval;
355 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
357 pr_debug("create pit timer, interval is %llu nsec\n", interval);
359 /* TODO The new value only affected after the retriggered */
360 hrtimer_cancel(&pt->timer);
361 cancel_work_sync(&ps->pit->expired);
362 pt->period = interval;
363 ps->is_periodic = is_period;
365 pt->timer.function = pit_timer_fn;
366 pt->t_ops = &kpit_ops;
367 pt->kvm = ps->pit->kvm;
369 atomic_set(&pt->pending, 0);
370 ps->irq_ack = 1;
372 hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
373 HRTIMER_MODE_ABS);
376 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
378 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
380 WARN_ON(!mutex_is_locked(&ps->lock));
382 pr_debug("load_count val is %d, channel is %d\n", val, channel);
385 * The largest possible initial count is 0; this is equivalent
386 * to 216 for binary counting and 104 for BCD counting.
388 if (val == 0)
389 val = 0x10000;
391 ps->channels[channel].count = val;
393 if (channel != 0) {
394 ps->channels[channel].count_load_time = ktime_get();
395 return;
398 /* Two types of timer
399 * mode 1 is one shot, mode 2 is period, otherwise del timer */
400 switch (ps->channels[0].mode) {
401 case 0:
402 case 1:
403 /* FIXME: enhance mode 4 precision */
404 case 4:
405 if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)) {
406 create_pit_timer(ps, val, 0);
408 break;
409 case 2:
410 case 3:
411 if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)){
412 create_pit_timer(ps, val, 1);
414 break;
415 default:
416 destroy_pit_timer(kvm->arch.vpit);
420 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
422 u8 saved_mode;
423 if (hpet_legacy_start) {
424 /* save existing mode for later reenablement */
425 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
426 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
427 pit_load_count(kvm, channel, val);
428 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
429 } else {
430 pit_load_count(kvm, channel, val);
434 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
436 return container_of(dev, struct kvm_pit, dev);
439 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
441 return container_of(dev, struct kvm_pit, speaker_dev);
444 static inline int pit_in_range(gpa_t addr)
446 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
447 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
450 static int pit_ioport_write(struct kvm_io_device *this,
451 gpa_t addr, int len, const void *data)
453 struct kvm_pit *pit = dev_to_pit(this);
454 struct kvm_kpit_state *pit_state = &pit->pit_state;
455 struct kvm *kvm = pit->kvm;
456 int channel, access;
457 struct kvm_kpit_channel_state *s;
458 u32 val = *(u32 *) data;
459 if (!pit_in_range(addr))
460 return -EOPNOTSUPP;
462 val &= 0xff;
463 addr &= KVM_PIT_CHANNEL_MASK;
465 mutex_lock(&pit_state->lock);
467 if (val != 0)
468 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
469 (unsigned int)addr, len, val);
471 if (addr == 3) {
472 channel = val >> 6;
473 if (channel == 3) {
474 /* Read-Back Command. */
475 for (channel = 0; channel < 3; channel++) {
476 s = &pit_state->channels[channel];
477 if (val & (2 << channel)) {
478 if (!(val & 0x20))
479 pit_latch_count(kvm, channel);
480 if (!(val & 0x10))
481 pit_latch_status(kvm, channel);
484 } else {
485 /* Select Counter <channel>. */
486 s = &pit_state->channels[channel];
487 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
488 if (access == 0) {
489 pit_latch_count(kvm, channel);
490 } else {
491 s->rw_mode = access;
492 s->read_state = access;
493 s->write_state = access;
494 s->mode = (val >> 1) & 7;
495 if (s->mode > 5)
496 s->mode -= 4;
497 s->bcd = val & 1;
500 } else {
501 /* Write Count. */
502 s = &pit_state->channels[addr];
503 switch (s->write_state) {
504 default:
505 case RW_STATE_LSB:
506 pit_load_count(kvm, addr, val);
507 break;
508 case RW_STATE_MSB:
509 pit_load_count(kvm, addr, val << 8);
510 break;
511 case RW_STATE_WORD0:
512 s->write_latch = val;
513 s->write_state = RW_STATE_WORD1;
514 break;
515 case RW_STATE_WORD1:
516 pit_load_count(kvm, addr, s->write_latch | (val << 8));
517 s->write_state = RW_STATE_WORD0;
518 break;
522 mutex_unlock(&pit_state->lock);
523 return 0;
526 static int pit_ioport_read(struct kvm_io_device *this,
527 gpa_t addr, int len, void *data)
529 struct kvm_pit *pit = dev_to_pit(this);
530 struct kvm_kpit_state *pit_state = &pit->pit_state;
531 struct kvm *kvm = pit->kvm;
532 int ret, count;
533 struct kvm_kpit_channel_state *s;
534 if (!pit_in_range(addr))
535 return -EOPNOTSUPP;
537 addr &= KVM_PIT_CHANNEL_MASK;
538 if (addr == 3)
539 return 0;
541 s = &pit_state->channels[addr];
543 mutex_lock(&pit_state->lock);
545 if (s->status_latched) {
546 s->status_latched = 0;
547 ret = s->status;
548 } else if (s->count_latched) {
549 switch (s->count_latched) {
550 default:
551 case RW_STATE_LSB:
552 ret = s->latched_count & 0xff;
553 s->count_latched = 0;
554 break;
555 case RW_STATE_MSB:
556 ret = s->latched_count >> 8;
557 s->count_latched = 0;
558 break;
559 case RW_STATE_WORD0:
560 ret = s->latched_count & 0xff;
561 s->count_latched = RW_STATE_MSB;
562 break;
564 } else {
565 switch (s->read_state) {
566 default:
567 case RW_STATE_LSB:
568 count = pit_get_count(kvm, addr);
569 ret = count & 0xff;
570 break;
571 case RW_STATE_MSB:
572 count = pit_get_count(kvm, addr);
573 ret = (count >> 8) & 0xff;
574 break;
575 case RW_STATE_WORD0:
576 count = pit_get_count(kvm, addr);
577 ret = count & 0xff;
578 s->read_state = RW_STATE_WORD1;
579 break;
580 case RW_STATE_WORD1:
581 count = pit_get_count(kvm, addr);
582 ret = (count >> 8) & 0xff;
583 s->read_state = RW_STATE_WORD0;
584 break;
588 if (len > sizeof(ret))
589 len = sizeof(ret);
590 memcpy(data, (char *)&ret, len);
592 mutex_unlock(&pit_state->lock);
593 return 0;
596 static int speaker_ioport_write(struct kvm_io_device *this,
597 gpa_t addr, int len, const void *data)
599 struct kvm_pit *pit = speaker_to_pit(this);
600 struct kvm_kpit_state *pit_state = &pit->pit_state;
601 struct kvm *kvm = pit->kvm;
602 u32 val = *(u32 *) data;
603 if (addr != KVM_SPEAKER_BASE_ADDRESS)
604 return -EOPNOTSUPP;
606 mutex_lock(&pit_state->lock);
607 pit_state->speaker_data_on = (val >> 1) & 1;
608 pit_set_gate(kvm, 2, val & 1);
609 mutex_unlock(&pit_state->lock);
610 return 0;
613 static int speaker_ioport_read(struct kvm_io_device *this,
614 gpa_t addr, int len, void *data)
616 struct kvm_pit *pit = speaker_to_pit(this);
617 struct kvm_kpit_state *pit_state = &pit->pit_state;
618 struct kvm *kvm = pit->kvm;
619 unsigned int refresh_clock;
620 int ret;
621 if (addr != KVM_SPEAKER_BASE_ADDRESS)
622 return -EOPNOTSUPP;
624 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
625 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
627 mutex_lock(&pit_state->lock);
628 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
629 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
630 if (len > sizeof(ret))
631 len = sizeof(ret);
632 memcpy(data, (char *)&ret, len);
633 mutex_unlock(&pit_state->lock);
634 return 0;
637 void kvm_pit_reset(struct kvm_pit *pit)
639 int i;
640 struct kvm_kpit_channel_state *c;
642 mutex_lock(&pit->pit_state.lock);
643 pit->pit_state.flags = 0;
644 for (i = 0; i < 3; i++) {
645 c = &pit->pit_state.channels[i];
646 c->mode = 0xff;
647 c->gate = (i != 2);
648 pit_load_count(pit->kvm, i, 0);
650 mutex_unlock(&pit->pit_state.lock);
652 atomic_set(&pit->pit_state.pit_timer.pending, 0);
653 pit->pit_state.irq_ack = 1;
656 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
658 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
660 if (!mask) {
661 atomic_set(&pit->pit_state.pit_timer.pending, 0);
662 pit->pit_state.irq_ack = 1;
666 static const struct kvm_io_device_ops pit_dev_ops = {
667 .read = pit_ioport_read,
668 .write = pit_ioport_write,
671 static const struct kvm_io_device_ops speaker_dev_ops = {
672 .read = speaker_ioport_read,
673 .write = speaker_ioport_write,
676 /* Caller must hold slots_lock */
677 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
679 struct kvm_pit *pit;
680 struct kvm_kpit_state *pit_state;
681 int ret;
683 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
684 if (!pit)
685 return NULL;
687 pit->irq_source_id = kvm_request_irq_source_id(kvm);
688 if (pit->irq_source_id < 0) {
689 kfree(pit);
690 return NULL;
693 mutex_init(&pit->pit_state.lock);
694 mutex_lock(&pit->pit_state.lock);
695 spin_lock_init(&pit->pit_state.inject_lock);
697 pit->wq = create_singlethread_workqueue("kvm-pit-wq");
698 if (!pit->wq) {
699 mutex_unlock(&pit->pit_state.lock);
700 kvm_free_irq_source_id(kvm, pit->irq_source_id);
701 kfree(pit);
702 return NULL;
704 INIT_WORK(&pit->expired, pit_do_work);
706 kvm->arch.vpit = pit;
707 pit->kvm = kvm;
709 pit_state = &pit->pit_state;
710 pit_state->pit = pit;
711 hrtimer_init(&pit_state->pit_timer.timer,
712 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
713 pit_state->irq_ack_notifier.gsi = 0;
714 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
715 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
716 pit_state->pit_timer.reinject = true;
717 mutex_unlock(&pit->pit_state.lock);
719 kvm_pit_reset(pit);
721 pit->mask_notifier.func = pit_mask_notifer;
722 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
724 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
725 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, &pit->dev);
726 if (ret < 0)
727 goto fail;
729 if (flags & KVM_PIT_SPEAKER_DUMMY) {
730 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
731 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
732 &pit->speaker_dev);
733 if (ret < 0)
734 goto fail_unregister;
737 return pit;
739 fail_unregister:
740 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
742 fail:
743 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
744 kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
745 kvm_free_irq_source_id(kvm, pit->irq_source_id);
746 destroy_workqueue(pit->wq);
747 kfree(pit);
748 return NULL;
751 void kvm_free_pit(struct kvm *kvm)
753 struct hrtimer *timer;
755 if (kvm->arch.vpit) {
756 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
757 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
758 &kvm->arch.vpit->speaker_dev);
759 kvm_unregister_irq_mask_notifier(kvm, 0,
760 &kvm->arch.vpit->mask_notifier);
761 kvm_unregister_irq_ack_notifier(kvm,
762 &kvm->arch.vpit->pit_state.irq_ack_notifier);
763 mutex_lock(&kvm->arch.vpit->pit_state.lock);
764 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
765 hrtimer_cancel(timer);
766 cancel_work_sync(&kvm->arch.vpit->expired);
767 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
768 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
769 destroy_workqueue(kvm->arch.vpit->wq);
770 kfree(kvm->arch.vpit);