1 #include <linux/linkage.h>
2 #include <linux/errno.h>
3 #include <linux/signal.h>
4 #include <linux/sched.h>
5 #include <linux/ioport.h>
6 #include <linux/interrupt.h>
7 #include <linux/timex.h>
8 #include <linux/random.h>
9 #include <linux/kprobes.h>
10 #include <linux/init.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/sysdev.h>
13 #include <linux/bitops.h>
14 #include <linux/acpi.h>
16 #include <linux/delay.h>
18 #include <asm/atomic.h>
19 #include <asm/system.h>
20 #include <asm/timer.h>
21 #include <asm/hw_irq.h>
22 #include <asm/pgtable.h>
25 #include <asm/setup.h>
26 #include <asm/i8259.h>
27 #include <asm/traps.h>
30 * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
31 * (these are usually mapped to vectors 0x30-0x3f)
35 * The IO-APIC gives us many more interrupt sources. Most of these
36 * are unused but an SMP system is supposed to have enough memory ...
37 * sometimes (mostly wrt. hw bugs) we get corrupted vectors all
38 * across the spectrum, so we really want to be prepared to get all
39 * of these. Plus, more powerful systems might have more than 64
42 * (these are usually mapped into the 0x30-0xff vector range)
47 * Note that on a 486, we don't want to do a SIGFPE on an irq13
48 * as the irq is unreliable, and exception 16 works correctly
49 * (ie as explained in the intel literature). On a 386, you
50 * can't use exception 16 due to bad IBM design, so we have to
51 * rely on the less exact irq13.
53 * Careful.. Not only is IRQ13 unreliable, but it is also
54 * leads to races. IBM designers who came up with it should
58 static irqreturn_t
math_error_irq(int cpl
, void *dev_id
)
61 if (ignore_fpu_irq
|| !boot_cpu_data
.hard_math
)
63 math_error(get_irq_regs(), 0, 16);
68 * New motherboards sometimes make IRQ 13 be a PCI interrupt,
69 * so allow interrupt sharing.
71 static struct irqaction fpu_irq
= {
72 .handler
= math_error_irq
,
78 * IRQ2 is cascade interrupt to second interrupt controller
80 static struct irqaction irq2
= {
85 DEFINE_PER_CPU(vector_irq_t
, vector_irq
) = {
86 [0 ... NR_VECTORS
- 1] = -1,
89 int vector_used_by_percpu_irq(unsigned int vector
)
93 for_each_online_cpu(cpu
) {
94 if (per_cpu(vector_irq
, cpu
)[vector
] != -1)
101 void __init
init_ISA_irqs(void)
103 struct irq_chip
*chip
= legacy_pic
->chip
;
104 const char *name
= chip
->name
;
107 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
112 for (i
= 0; i
< legacy_pic
->nr_legacy_irqs
; i
++)
113 set_irq_chip_and_handler_name(i
, chip
, handle_level_irq
, name
);
116 void __init
init_IRQ(void)
121 * On cpu 0, Assign IRQ0_VECTOR..IRQ15_VECTOR's to IRQ 0..15.
122 * If these IRQ's are handled by legacy interrupt-controllers like PIC,
123 * then this configuration will likely be static after the boot. If
124 * these IRQ's are handled by more mordern controllers like IO-APIC,
125 * then this vector space can be freed and re-used dynamically as the
128 for (i
= 0; i
< legacy_pic
->nr_legacy_irqs
; i
++)
129 per_cpu(vector_irq
, 0)[IRQ0_VECTOR
+ i
] = i
;
131 x86_init
.irqs
.intr_init();
135 * Setup the vector to irq mappings.
137 void setup_vector_irq(int cpu
)
139 #ifndef CONFIG_X86_IO_APIC
143 * On most of the platforms, legacy PIC delivers the interrupts on the
144 * boot cpu. But there are certain platforms where PIC interrupts are
145 * delivered to multiple cpu's. If the legacy IRQ is handled by the
146 * legacy PIC, for the new cpu that is coming online, setup the static
147 * legacy vector to irq mapping:
149 for (irq
= 0; irq
< legacy_pic
->nr_legacy_irqs
; irq
++)
150 per_cpu(vector_irq
, cpu
)[IRQ0_VECTOR
+ irq
] = irq
;
153 __setup_vector_irq(cpu
);
156 static void __init
smp_intr_init(void)
159 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
161 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
162 * IPI, driven by wakeup.
164 alloc_intr_gate(RESCHEDULE_VECTOR
, reschedule_interrupt
);
166 /* IPIs for invalidation */
167 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START
+0, invalidate_interrupt0
);
168 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START
+1, invalidate_interrupt1
);
169 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START
+2, invalidate_interrupt2
);
170 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START
+3, invalidate_interrupt3
);
171 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START
+4, invalidate_interrupt4
);
172 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START
+5, invalidate_interrupt5
);
173 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START
+6, invalidate_interrupt6
);
174 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START
+7, invalidate_interrupt7
);
176 /* IPI for generic function call */
177 alloc_intr_gate(CALL_FUNCTION_VECTOR
, call_function_interrupt
);
179 /* IPI for generic single function call */
180 alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR
,
181 call_function_single_interrupt
);
183 /* Low priority IPI to cleanup after moving an irq */
184 set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR
, irq_move_cleanup_interrupt
);
185 set_bit(IRQ_MOVE_CLEANUP_VECTOR
, used_vectors
);
187 /* IPI used for rebooting/stopping */
188 alloc_intr_gate(REBOOT_VECTOR
, reboot_interrupt
);
190 #endif /* CONFIG_SMP */
193 static void __init
apic_intr_init(void)
197 #ifdef CONFIG_X86_THERMAL_VECTOR
198 alloc_intr_gate(THERMAL_APIC_VECTOR
, thermal_interrupt
);
200 #ifdef CONFIG_X86_MCE_THRESHOLD
201 alloc_intr_gate(THRESHOLD_APIC_VECTOR
, threshold_interrupt
);
203 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_LOCAL_APIC)
204 alloc_intr_gate(MCE_SELF_VECTOR
, mce_self_interrupt
);
207 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
208 /* self generated IPI for local APIC timer */
209 alloc_intr_gate(LOCAL_TIMER_VECTOR
, apic_timer_interrupt
);
211 /* IPI for X86 platform specific use */
212 alloc_intr_gate(X86_PLATFORM_IPI_VECTOR
, x86_platform_ipi
);
214 /* IPI vectors for APIC spurious and error interrupts */
215 alloc_intr_gate(SPURIOUS_APIC_VECTOR
, spurious_interrupt
);
216 alloc_intr_gate(ERROR_APIC_VECTOR
, error_interrupt
);
218 /* IRQ work interrupts: */
219 # ifdef CONFIG_IRQ_WORK
220 alloc_intr_gate(IRQ_WORK_VECTOR
, irq_work_interrupt
);
226 void __init
native_init_IRQ(void)
230 /* Execute any quirks before the call gates are initialised: */
231 x86_init
.irqs
.pre_vector_init();
236 * Cover the whole vector space, no vector can escape
237 * us. (some of these will be overridden and become
238 * 'special' SMP interrupts)
240 for (i
= FIRST_EXTERNAL_VECTOR
; i
< NR_VECTORS
; i
++) {
241 /* IA32_SYSCALL_VECTOR could be used in trap_init already. */
242 if (!test_bit(i
, used_vectors
))
243 set_intr_gate(i
, interrupt
[i
-FIRST_EXTERNAL_VECTOR
]);
251 * External FPU? Set up irq13 if so, for
252 * original braindamaged IBM FERR coupling.
254 if (boot_cpu_data
.hard_math
&& !cpu_has_fpu
)
255 setup_irq(FPU_IRQ
, &fpu_irq
);
257 irq_ctx_init(smp_processor_id());