2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 #include <linux/kallsyms.h>
6 #include <linux/kprobes.h>
7 #include <linux/uaccess.h>
8 #include <linux/hardirq.h>
9 #include <linux/kdebug.h>
10 #include <linux/module.h>
11 #include <linux/ptrace.h>
12 #include <linux/kexec.h>
13 #include <linux/sysfs.h>
14 #include <linux/bug.h>
15 #include <linux/nmi.h>
17 #include <asm/stacktrace.h>
20 #define N_EXCEPTION_STACKS_END \
21 (N_EXCEPTION_STACKS + DEBUG_STKSZ/EXCEPTION_STKSZ - 2)
23 static char x86_stack_ids
[][8] = {
24 [ DEBUG_STACK
-1 ] = "#DB",
25 [ NMI_STACK
-1 ] = "NMI",
26 [ DOUBLEFAULT_STACK
-1 ] = "#DF",
27 [ STACKFAULT_STACK
-1 ] = "#SS",
28 [ MCE_STACK
-1 ] = "#MC",
29 #if DEBUG_STKSZ > EXCEPTION_STKSZ
30 [ N_EXCEPTION_STACKS
...
31 N_EXCEPTION_STACKS_END
] = "#DB[?]"
35 static unsigned long *in_exception_stack(unsigned cpu
, unsigned long stack
,
36 unsigned *usedp
, char **idp
)
41 * Iterate over all exception stacks, and figure out whether
42 * 'stack' is in one of them:
44 for (k
= 0; k
< N_EXCEPTION_STACKS
; k
++) {
45 unsigned long end
= per_cpu(orig_ist
, cpu
).ist
[k
];
47 * Is 'stack' above this exception frame's end?
48 * If yes then skip to the next frame.
53 * Is 'stack' above this exception frame's start address?
54 * If yes then we found the right frame.
56 if (stack
>= end
- EXCEPTION_STKSZ
) {
58 * Make sure we only iterate through an exception
59 * stack once. If it comes up for the second time
60 * then there's something wrong going on - just
61 * break out and return NULL:
63 if (*usedp
& (1U << k
))
66 *idp
= x86_stack_ids
[k
];
67 return (unsigned long *)end
;
70 * If this is a debug stack, and if it has a larger size than
71 * the usual exception stacks, then 'stack' might still
72 * be within the lower portion of the debug stack:
74 #if DEBUG_STKSZ > EXCEPTION_STKSZ
75 if (k
== DEBUG_STACK
- 1 && stack
>= end
- DEBUG_STKSZ
) {
76 unsigned j
= N_EXCEPTION_STACKS
- 1;
79 * Black magic. A large debug stack is composed of
80 * multiple exception stack entries, which we
81 * iterate through now. Dont look:
85 end
-= EXCEPTION_STKSZ
;
86 x86_stack_ids
[j
][4] = '1' +
87 (j
- N_EXCEPTION_STACKS
);
88 } while (stack
< end
- EXCEPTION_STKSZ
);
89 if (*usedp
& (1U << j
))
92 *idp
= x86_stack_ids
[j
];
93 return (unsigned long *)end
;
101 in_irq_stack(unsigned long *stack
, unsigned long *irq_stack
,
102 unsigned long *irq_stack_end
)
104 return (stack
>= irq_stack
&& stack
< irq_stack_end
);
108 * We are returning from the irq stack and go to the previous one.
109 * If the previous stack is also in the irq stack, then bp in the first
110 * frame of the irq stack points to the previous, interrupted one.
111 * Otherwise we have another level of indirection: We first save
112 * the bp of the previous stack, then we switch the stack to the irq one
113 * and save a new bp that links to the previous one.
116 static inline unsigned long
117 fixup_bp_irq_link(unsigned long bp
, unsigned long *stack
,
118 unsigned long *irq_stack
, unsigned long *irq_stack_end
)
120 #ifdef CONFIG_FRAME_POINTER
121 struct stack_frame
*frame
= (struct stack_frame
*)bp
;
124 if (!in_irq_stack(stack
, irq_stack
, irq_stack_end
)) {
125 if (!probe_kernel_address(&frame
->next_frame
, next
))
128 WARN_ONCE(1, "Perf: bad frame pointer = %p in "
129 "callchain\n", &frame
->next_frame
);
136 * x86-64 can have up to three kernel stacks:
139 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
142 void dump_trace(struct task_struct
*task
,
143 struct pt_regs
*regs
, unsigned long *stack
,
144 const struct stacktrace_ops
*ops
, void *data
)
146 const unsigned cpu
= get_cpu();
147 unsigned long *irq_stack_end
=
148 (unsigned long *)per_cpu(irq_stack_ptr
, cpu
);
150 struct thread_info
*tinfo
;
160 if (task
&& task
!= current
)
161 stack
= (unsigned long *)task
->thread
.sp
;
164 bp
= stack_frame(task
, regs
);
166 * Print function call entries in all stacks, starting at the
167 * current stack address. If the stacks consist of nested
170 tinfo
= task_thread_info(task
);
173 unsigned long *estack_end
;
174 estack_end
= in_exception_stack(cpu
, (unsigned long)stack
,
178 if (ops
->stack(data
, id
) < 0)
181 bp
= ops
->walk_stack(tinfo
, stack
, bp
, ops
,
182 data
, estack_end
, &graph
);
183 ops
->stack(data
, "<EOE>");
185 * We link to the next stack via the
186 * second-to-last pointer (index -2 to end) in the
189 stack
= (unsigned long *) estack_end
[-2];
193 unsigned long *irq_stack
;
194 irq_stack
= irq_stack_end
-
195 (IRQ_STACK_SIZE
- 64) / sizeof(*irq_stack
);
197 if (in_irq_stack(stack
, irq_stack
, irq_stack_end
)) {
198 if (ops
->stack(data
, "IRQ") < 0)
200 bp
= ops
->walk_stack(tinfo
, stack
, bp
,
201 ops
, data
, irq_stack_end
, &graph
);
203 * We link to the next stack (which would be
204 * the process stack normally) the last
205 * pointer (index -1 to end) in the IRQ stack:
207 stack
= (unsigned long *) (irq_stack_end
[-1]);
208 bp
= fixup_bp_irq_link(bp
, stack
, irq_stack
,
210 irq_stack_end
= NULL
;
211 ops
->stack(data
, "EOI");
219 * This handles the process stack:
221 bp
= ops
->walk_stack(tinfo
, stack
, bp
, ops
, data
, NULL
, &graph
);
224 EXPORT_SYMBOL(dump_trace
);
227 show_stack_log_lvl(struct task_struct
*task
, struct pt_regs
*regs
,
228 unsigned long *sp
, char *log_lvl
)
230 unsigned long *irq_stack_end
;
231 unsigned long *irq_stack
;
232 unsigned long *stack
;
237 cpu
= smp_processor_id();
239 irq_stack_end
= (unsigned long *)(per_cpu(irq_stack_ptr
, cpu
));
240 irq_stack
= (unsigned long *)(per_cpu(irq_stack_ptr
, cpu
) - IRQ_STACK_SIZE
);
243 * Debugging aid: "show_stack(NULL, NULL);" prints the
244 * back trace for this cpu:
248 sp
= (unsigned long *)task
->thread
.sp
;
250 sp
= (unsigned long *)&sp
;
254 for (i
= 0; i
< kstack_depth_to_print
; i
++) {
255 if (stack
>= irq_stack
&& stack
<= irq_stack_end
) {
256 if (stack
== irq_stack_end
) {
257 stack
= (unsigned long *) (irq_stack_end
[-1]);
258 printk(KERN_CONT
" <EOI> ");
261 if (((long) stack
& (THREAD_SIZE
-1)) == 0)
264 if (i
&& ((i
% STACKSLOTS_PER_LINE
) == 0))
265 printk(KERN_CONT
"\n");
266 printk(KERN_CONT
" %016lx", *stack
++);
267 touch_nmi_watchdog();
271 printk(KERN_CONT
"\n");
272 show_trace_log_lvl(task
, regs
, sp
, log_lvl
);
275 void show_registers(struct pt_regs
*regs
)
279 const int cpu
= smp_processor_id();
280 struct task_struct
*cur
= current
;
283 printk("CPU %d ", cpu
);
285 __show_regs(regs
, 1);
286 printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
287 cur
->comm
, cur
->pid
, task_thread_info(cur
), cur
);
290 * When in-kernel, we also print out the stack and code at the
291 * time of the fault..
293 if (!user_mode(regs
)) {
294 unsigned int code_prologue
= code_bytes
* 43 / 64;
295 unsigned int code_len
= code_bytes
;
299 printk(KERN_EMERG
"Stack:\n");
300 show_stack_log_lvl(NULL
, regs
, (unsigned long *)sp
,
303 printk(KERN_EMERG
"Code: ");
305 ip
= (u8
*)regs
->ip
- code_prologue
;
306 if (ip
< (u8
*)PAGE_OFFSET
|| probe_kernel_address(ip
, c
)) {
307 /* try starting at IP */
309 code_len
= code_len
- code_prologue
+ 1;
311 for (i
= 0; i
< code_len
; i
++, ip
++) {
312 if (ip
< (u8
*)PAGE_OFFSET
||
313 probe_kernel_address(ip
, c
)) {
314 printk(" Bad RIP value.");
317 if (ip
== (u8
*)regs
->ip
)
318 printk("<%02x> ", c
);
326 int is_valid_bugaddr(unsigned long ip
)
330 if (__copy_from_user(&ud2
, (const void __user
*) ip
, sizeof(ud2
)))
333 return ud2
== 0x0b0f;