2 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
109 #undef TTY_DEBUG_HANGUP
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
114 struct ktermios tty_std_termios
= { /* for the benefit of tty drivers */
115 .c_iflag
= ICRNL
| IXON
,
116 .c_oflag
= OPOST
| ONLCR
,
117 .c_cflag
= B38400
| CS8
| CREAD
| HUPCL
,
118 .c_lflag
= ISIG
| ICANON
| ECHO
| ECHOE
| ECHOK
|
119 ECHOCTL
| ECHOKE
| IEXTEN
,
125 EXPORT_SYMBOL(tty_std_termios
);
127 /* This list gets poked at by procfs and various bits of boot up code. This
128 could do with some rationalisation such as pulling the tty proc function
131 LIST_HEAD(tty_drivers
); /* linked list of tty drivers */
133 /* Mutex to protect creating and releasing a tty. This is shared with
134 vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex
);
136 EXPORT_SYMBOL(tty_mutex
);
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock
);
141 static ssize_t
tty_read(struct file
*, char __user
*, size_t, loff_t
*);
142 static ssize_t
tty_write(struct file
*, const char __user
*, size_t, loff_t
*);
143 ssize_t
redirected_tty_write(struct file
*, const char __user
*,
145 static unsigned int tty_poll(struct file
*, poll_table
*);
146 static int tty_open(struct inode
*, struct file
*);
147 long tty_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
149 static long tty_compat_ioctl(struct file
*file
, unsigned int cmd
,
152 #define tty_compat_ioctl NULL
154 static int __tty_fasync(int fd
, struct file
*filp
, int on
);
155 static int tty_fasync(int fd
, struct file
*filp
, int on
);
156 static void release_tty(struct tty_struct
*tty
, int idx
);
157 static void __proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
);
158 static void proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
);
161 * alloc_tty_struct - allocate a tty object
163 * Return a new empty tty structure. The data fields have not
164 * been initialized in any way but has been zeroed
169 struct tty_struct
*alloc_tty_struct(void)
171 return kzalloc(sizeof(struct tty_struct
), GFP_KERNEL
);
175 * free_tty_struct - free a disused tty
176 * @tty: tty struct to free
178 * Free the write buffers, tty queue and tty memory itself.
180 * Locking: none. Must be called after tty is definitely unused
183 void free_tty_struct(struct tty_struct
*tty
)
186 put_device(tty
->dev
);
187 kfree(tty
->write_buf
);
188 tty_buffer_free_all(tty
);
192 static inline struct tty_struct
*file_tty(struct file
*file
)
194 return ((struct tty_file_private
*)file
->private_data
)->tty
;
197 int tty_alloc_file(struct file
*file
)
199 struct tty_file_private
*priv
;
201 priv
= kmalloc(sizeof(*priv
), GFP_KERNEL
);
205 file
->private_data
= priv
;
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct
*tty
, struct file
*file
)
213 struct tty_file_private
*priv
= file
->private_data
;
218 spin_lock(&tty_files_lock
);
219 list_add(&priv
->list
, &tty
->tty_files
);
220 spin_unlock(&tty_files_lock
);
224 * tty_free_file - free file->private_data
226 * This shall be used only for fail path handling when tty_add_file was not
229 void tty_free_file(struct file
*file
)
231 struct tty_file_private
*priv
= file
->private_data
;
233 file
->private_data
= NULL
;
237 /* Delete file from its tty */
238 void tty_del_file(struct file
*file
)
240 struct tty_file_private
*priv
= file
->private_data
;
242 spin_lock(&tty_files_lock
);
243 list_del(&priv
->list
);
244 spin_unlock(&tty_files_lock
);
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
252 * tty_name - return tty naming
253 * @tty: tty structure
254 * @buf: buffer for output
256 * Convert a tty structure into a name. The name reflects the kernel
257 * naming policy and if udev is in use may not reflect user space
262 char *tty_name(struct tty_struct
*tty
, char *buf
)
264 if (!tty
) /* Hmm. NULL pointer. That's fun. */
265 strcpy(buf
, "NULL tty");
267 strcpy(buf
, tty
->name
);
271 EXPORT_SYMBOL(tty_name
);
273 int tty_paranoia_check(struct tty_struct
*tty
, struct inode
*inode
,
276 #ifdef TTY_PARANOIA_CHECK
279 "null TTY for (%d:%d) in %s\n",
280 imajor(inode
), iminor(inode
), routine
);
283 if (tty
->magic
!= TTY_MAGIC
) {
285 "bad magic number for tty struct (%d:%d) in %s\n",
286 imajor(inode
), iminor(inode
), routine
);
293 static int check_tty_count(struct tty_struct
*tty
, const char *routine
)
295 #ifdef CHECK_TTY_COUNT
299 spin_lock(&tty_files_lock
);
300 list_for_each(p
, &tty
->tty_files
) {
303 spin_unlock(&tty_files_lock
);
304 if (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
305 tty
->driver
->subtype
== PTY_TYPE_SLAVE
&&
306 tty
->link
&& tty
->link
->count
)
308 if (tty
->count
!= count
) {
309 printk(KERN_WARNING
"Warning: dev (%s) tty->count(%d) "
310 "!= #fd's(%d) in %s\n",
311 tty
->name
, tty
->count
, count
, routine
);
319 * get_tty_driver - find device of a tty
320 * @dev_t: device identifier
321 * @index: returns the index of the tty
323 * This routine returns a tty driver structure, given a device number
324 * and also passes back the index number.
326 * Locking: caller must hold tty_mutex
329 static struct tty_driver
*get_tty_driver(dev_t device
, int *index
)
331 struct tty_driver
*p
;
333 list_for_each_entry(p
, &tty_drivers
, tty_drivers
) {
334 dev_t base
= MKDEV(p
->major
, p
->minor_start
);
335 if (device
< base
|| device
>= base
+ p
->num
)
337 *index
= device
- base
;
338 return tty_driver_kref_get(p
);
343 #ifdef CONFIG_CONSOLE_POLL
346 * tty_find_polling_driver - find device of a polled tty
347 * @name: name string to match
348 * @line: pointer to resulting tty line nr
350 * This routine returns a tty driver structure, given a name
351 * and the condition that the tty driver is capable of polled
354 struct tty_driver
*tty_find_polling_driver(char *name
, int *line
)
356 struct tty_driver
*p
, *res
= NULL
;
361 for (str
= name
; *str
; str
++)
362 if ((*str
>= '0' && *str
<= '9') || *str
== ',')
368 tty_line
= simple_strtoul(str
, &str
, 10);
370 mutex_lock(&tty_mutex
);
371 /* Search through the tty devices to look for a match */
372 list_for_each_entry(p
, &tty_drivers
, tty_drivers
) {
373 if (strncmp(name
, p
->name
, len
) != 0)
381 if (tty_line
>= 0 && tty_line
< p
->num
&& p
->ops
&&
382 p
->ops
->poll_init
&& !p
->ops
->poll_init(p
, tty_line
, stp
)) {
383 res
= tty_driver_kref_get(p
);
388 mutex_unlock(&tty_mutex
);
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver
);
396 * tty_check_change - check for POSIX terminal changes
399 * If we try to write to, or set the state of, a terminal and we're
400 * not in the foreground, send a SIGTTOU. If the signal is blocked or
401 * ignored, go ahead and perform the operation. (POSIX 7.2)
406 int tty_check_change(struct tty_struct
*tty
)
411 if (current
->signal
->tty
!= tty
)
414 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
417 printk(KERN_WARNING
"tty_check_change: tty->pgrp == NULL!\n");
420 if (task_pgrp(current
) == tty
->pgrp
)
422 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
423 if (is_ignored(SIGTTOU
))
425 if (is_current_pgrp_orphaned()) {
429 kill_pgrp(task_pgrp(current
), SIGTTOU
, 1);
430 set_thread_flag(TIF_SIGPENDING
);
435 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
439 EXPORT_SYMBOL(tty_check_change
);
441 static ssize_t
hung_up_tty_read(struct file
*file
, char __user
*buf
,
442 size_t count
, loff_t
*ppos
)
447 static ssize_t
hung_up_tty_write(struct file
*file
, const char __user
*buf
,
448 size_t count
, loff_t
*ppos
)
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file
*filp
, poll_table
*wait
)
456 return POLLIN
| POLLOUT
| POLLERR
| POLLHUP
| POLLRDNORM
| POLLWRNORM
;
459 static long hung_up_tty_ioctl(struct file
*file
, unsigned int cmd
,
462 return cmd
== TIOCSPGRP
? -ENOTTY
: -EIO
;
465 static long hung_up_tty_compat_ioctl(struct file
*file
,
466 unsigned int cmd
, unsigned long arg
)
468 return cmd
== TIOCSPGRP
? -ENOTTY
: -EIO
;
471 static const struct file_operations tty_fops
= {
476 .unlocked_ioctl
= tty_ioctl
,
477 .compat_ioctl
= tty_compat_ioctl
,
479 .release
= tty_release
,
480 .fasync
= tty_fasync
,
483 static const struct file_operations console_fops
= {
486 .write
= redirected_tty_write
,
488 .unlocked_ioctl
= tty_ioctl
,
489 .compat_ioctl
= tty_compat_ioctl
,
491 .release
= tty_release
,
492 .fasync
= tty_fasync
,
495 static const struct file_operations hung_up_tty_fops
= {
497 .read
= hung_up_tty_read
,
498 .write
= hung_up_tty_write
,
499 .poll
= hung_up_tty_poll
,
500 .unlocked_ioctl
= hung_up_tty_ioctl
,
501 .compat_ioctl
= hung_up_tty_compat_ioctl
,
502 .release
= tty_release
,
505 static DEFINE_SPINLOCK(redirect_lock
);
506 static struct file
*redirect
;
509 * tty_wakeup - request more data
512 * Internal and external helper for wakeups of tty. This function
513 * informs the line discipline if present that the driver is ready
514 * to receive more output data.
517 void tty_wakeup(struct tty_struct
*tty
)
519 struct tty_ldisc
*ld
;
521 if (test_bit(TTY_DO_WRITE_WAKEUP
, &tty
->flags
)) {
522 ld
= tty_ldisc_ref(tty
);
524 if (ld
->ops
->write_wakeup
)
525 ld
->ops
->write_wakeup(tty
);
529 wake_up_interruptible_poll(&tty
->write_wait
, POLLOUT
);
532 EXPORT_SYMBOL_GPL(tty_wakeup
);
535 * __tty_hangup - actual handler for hangup events
538 * This can be called by the "eventd" kernel thread. That is process
539 * synchronous but doesn't hold any locks, so we need to make sure we
540 * have the appropriate locks for what we're doing.
542 * The hangup event clears any pending redirections onto the hung up
543 * device. It ensures future writes will error and it does the needed
544 * line discipline hangup and signal delivery. The tty object itself
549 * redirect lock for undoing redirection
550 * file list lock for manipulating list of ttys
551 * tty_ldisc_lock from called functions
552 * termios_mutex resetting termios data
553 * tasklist_lock to walk task list for hangup event
554 * ->siglock to protect ->signal/->sighand
556 void __tty_hangup(struct tty_struct
*tty
)
558 struct file
*cons_filp
= NULL
;
559 struct file
*filp
, *f
= NULL
;
560 struct task_struct
*p
;
561 struct tty_file_private
*priv
;
562 int closecount
= 0, n
;
570 spin_lock(&redirect_lock
);
571 if (redirect
&& file_tty(redirect
) == tty
) {
575 spin_unlock(&redirect_lock
);
579 /* some functions below drop BTM, so we need this bit */
580 set_bit(TTY_HUPPING
, &tty
->flags
);
582 /* inuse_filps is protected by the single tty lock,
583 this really needs to change if we want to flush the
584 workqueue with the lock held */
585 check_tty_count(tty
, "tty_hangup");
587 spin_lock(&tty_files_lock
);
588 /* This breaks for file handles being sent over AF_UNIX sockets ? */
589 list_for_each_entry(priv
, &tty
->tty_files
, list
) {
591 if (filp
->f_op
->write
== redirected_tty_write
)
593 if (filp
->f_op
->write
!= tty_write
)
596 __tty_fasync(-1, filp
, 0); /* can't block */
597 filp
->f_op
= &hung_up_tty_fops
;
599 spin_unlock(&tty_files_lock
);
602 * it drops BTM and thus races with reopen
603 * we protect the race by TTY_HUPPING
605 tty_ldisc_hangup(tty
);
607 read_lock(&tasklist_lock
);
609 do_each_pid_task(tty
->session
, PIDTYPE_SID
, p
) {
610 spin_lock_irq(&p
->sighand
->siglock
);
611 if (p
->signal
->tty
== tty
) {
612 p
->signal
->tty
= NULL
;
613 /* We defer the dereferences outside fo
617 if (!p
->signal
->leader
) {
618 spin_unlock_irq(&p
->sighand
->siglock
);
621 __group_send_sig_info(SIGHUP
, SEND_SIG_PRIV
, p
);
622 __group_send_sig_info(SIGCONT
, SEND_SIG_PRIV
, p
);
623 put_pid(p
->signal
->tty_old_pgrp
); /* A noop */
624 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
626 p
->signal
->tty_old_pgrp
= get_pid(tty
->pgrp
);
627 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
628 spin_unlock_irq(&p
->sighand
->siglock
);
629 } while_each_pid_task(tty
->session
, PIDTYPE_SID
, p
);
631 read_unlock(&tasklist_lock
);
633 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
634 clear_bit(TTY_THROTTLED
, &tty
->flags
);
635 clear_bit(TTY_PUSH
, &tty
->flags
);
636 clear_bit(TTY_DO_WRITE_WAKEUP
, &tty
->flags
);
637 put_pid(tty
->session
);
641 tty
->ctrl_status
= 0;
642 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
644 /* Account for the p->signal references we killed */
649 * If one of the devices matches a console pointer, we
650 * cannot just call hangup() because that will cause
651 * tty->count and state->count to go out of sync.
652 * So we just call close() the right number of times.
656 for (n
= 0; n
< closecount
; n
++)
657 tty
->ops
->close(tty
, cons_filp
);
658 } else if (tty
->ops
->hangup
)
659 (tty
->ops
->hangup
)(tty
);
661 * We don't want to have driver/ldisc interactions beyond
662 * the ones we did here. The driver layer expects no
663 * calls after ->hangup() from the ldisc side. However we
664 * can't yet guarantee all that.
666 set_bit(TTY_HUPPED
, &tty
->flags
);
667 clear_bit(TTY_HUPPING
, &tty
->flags
);
668 tty_ldisc_enable(tty
);
676 static void do_tty_hangup(struct work_struct
*work
)
678 struct tty_struct
*tty
=
679 container_of(work
, struct tty_struct
, hangup_work
);
685 * tty_hangup - trigger a hangup event
686 * @tty: tty to hangup
688 * A carrier loss (virtual or otherwise) has occurred on this like
689 * schedule a hangup sequence to run after this event.
692 void tty_hangup(struct tty_struct
*tty
)
694 #ifdef TTY_DEBUG_HANGUP
696 printk(KERN_DEBUG
"%s hangup...\n", tty_name(tty
, buf
));
698 schedule_work(&tty
->hangup_work
);
701 EXPORT_SYMBOL(tty_hangup
);
704 * tty_vhangup - process vhangup
705 * @tty: tty to hangup
707 * The user has asked via system call for the terminal to be hung up.
708 * We do this synchronously so that when the syscall returns the process
709 * is complete. That guarantee is necessary for security reasons.
712 void tty_vhangup(struct tty_struct
*tty
)
714 #ifdef TTY_DEBUG_HANGUP
717 printk(KERN_DEBUG
"%s vhangup...\n", tty_name(tty
, buf
));
722 EXPORT_SYMBOL(tty_vhangup
);
726 * tty_vhangup_self - process vhangup for own ctty
728 * Perform a vhangup on the current controlling tty
731 void tty_vhangup_self(void)
733 struct tty_struct
*tty
;
735 tty
= get_current_tty();
743 * tty_hung_up_p - was tty hung up
744 * @filp: file pointer of tty
746 * Return true if the tty has been subject to a vhangup or a carrier
750 int tty_hung_up_p(struct file
*filp
)
752 return (filp
->f_op
== &hung_up_tty_fops
);
755 EXPORT_SYMBOL(tty_hung_up_p
);
757 static void session_clear_tty(struct pid
*session
)
759 struct task_struct
*p
;
760 do_each_pid_task(session
, PIDTYPE_SID
, p
) {
762 } while_each_pid_task(session
, PIDTYPE_SID
, p
);
766 * disassociate_ctty - disconnect controlling tty
767 * @on_exit: true if exiting so need to "hang up" the session
769 * This function is typically called only by the session leader, when
770 * it wants to disassociate itself from its controlling tty.
772 * It performs the following functions:
773 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
774 * (2) Clears the tty from being controlling the session
775 * (3) Clears the controlling tty for all processes in the
778 * The argument on_exit is set to 1 if called when a process is
779 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
782 * BTM is taken for hysterical raisins, and held when
783 * called from no_tty().
784 * tty_mutex is taken to protect tty
785 * ->siglock is taken to protect ->signal/->sighand
786 * tasklist_lock is taken to walk process list for sessions
787 * ->siglock is taken to protect ->signal/->sighand
790 void disassociate_ctty(int on_exit
)
792 struct tty_struct
*tty
;
794 if (!current
->signal
->leader
)
797 tty
= get_current_tty();
799 struct pid
*tty_pgrp
= get_pid(tty
->pgrp
);
801 if (tty
->driver
->type
!= TTY_DRIVER_TYPE_PTY
)
806 kill_pgrp(tty_pgrp
, SIGHUP
, on_exit
);
808 kill_pgrp(tty_pgrp
, SIGCONT
, on_exit
);
811 } else if (on_exit
) {
812 struct pid
*old_pgrp
;
813 spin_lock_irq(¤t
->sighand
->siglock
);
814 old_pgrp
= current
->signal
->tty_old_pgrp
;
815 current
->signal
->tty_old_pgrp
= NULL
;
816 spin_unlock_irq(¤t
->sighand
->siglock
);
818 kill_pgrp(old_pgrp
, SIGHUP
, on_exit
);
819 kill_pgrp(old_pgrp
, SIGCONT
, on_exit
);
825 spin_lock_irq(¤t
->sighand
->siglock
);
826 put_pid(current
->signal
->tty_old_pgrp
);
827 current
->signal
->tty_old_pgrp
= NULL
;
828 spin_unlock_irq(¤t
->sighand
->siglock
);
830 tty
= get_current_tty();
833 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
834 put_pid(tty
->session
);
838 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
841 #ifdef TTY_DEBUG_HANGUP
842 printk(KERN_DEBUG
"error attempted to write to tty [0x%p]"
847 /* Now clear signal->tty under the lock */
848 read_lock(&tasklist_lock
);
849 session_clear_tty(task_session(current
));
850 read_unlock(&tasklist_lock
);
855 * no_tty - Ensure the current process does not have a controlling tty
859 struct task_struct
*tsk
= current
;
861 disassociate_ctty(0);
868 * stop_tty - propagate flow control
871 * Perform flow control to the driver. For PTY/TTY pairs we
872 * must also propagate the TIOCKPKT status. May be called
873 * on an already stopped device and will not re-call the driver
876 * This functionality is used by both the line disciplines for
877 * halting incoming flow and by the driver. It may therefore be
878 * called from any context, may be under the tty atomic_write_lock
882 * Uses the tty control lock internally
885 void stop_tty(struct tty_struct
*tty
)
888 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
890 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
894 if (tty
->link
&& tty
->link
->packet
) {
895 tty
->ctrl_status
&= ~TIOCPKT_START
;
896 tty
->ctrl_status
|= TIOCPKT_STOP
;
897 wake_up_interruptible_poll(&tty
->link
->read_wait
, POLLIN
);
899 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
901 (tty
->ops
->stop
)(tty
);
904 EXPORT_SYMBOL(stop_tty
);
907 * start_tty - propagate flow control
910 * Start a tty that has been stopped if at all possible. Perform
911 * any necessary wakeups and propagate the TIOCPKT status. If this
912 * is the tty was previous stopped and is being started then the
913 * driver start method is invoked and the line discipline woken.
919 void start_tty(struct tty_struct
*tty
)
922 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
923 if (!tty
->stopped
|| tty
->flow_stopped
) {
924 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
928 if (tty
->link
&& tty
->link
->packet
) {
929 tty
->ctrl_status
&= ~TIOCPKT_STOP
;
930 tty
->ctrl_status
|= TIOCPKT_START
;
931 wake_up_interruptible_poll(&tty
->link
->read_wait
, POLLIN
);
933 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
935 (tty
->ops
->start
)(tty
);
936 /* If we have a running line discipline it may need kicking */
940 EXPORT_SYMBOL(start_tty
);
943 * tty_read - read method for tty device files
944 * @file: pointer to tty file
946 * @count: size of user buffer
949 * Perform the read system call function on this terminal device. Checks
950 * for hung up devices before calling the line discipline method.
953 * Locks the line discipline internally while needed. Multiple
954 * read calls may be outstanding in parallel.
957 static ssize_t
tty_read(struct file
*file
, char __user
*buf
, size_t count
,
961 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
962 struct tty_struct
*tty
= file_tty(file
);
963 struct tty_ldisc
*ld
;
965 if (tty_paranoia_check(tty
, inode
, "tty_read"))
967 if (!tty
|| (test_bit(TTY_IO_ERROR
, &tty
->flags
)))
970 /* We want to wait for the line discipline to sort out in this
972 ld
= tty_ldisc_ref_wait(tty
);
974 i
= (ld
->ops
->read
)(tty
, file
, buf
, count
);
979 inode
->i_atime
= current_fs_time(inode
->i_sb
);
983 void tty_write_unlock(struct tty_struct
*tty
)
984 __releases(&tty
->atomic_write_lock
)
986 mutex_unlock(&tty
->atomic_write_lock
);
987 wake_up_interruptible_poll(&tty
->write_wait
, POLLOUT
);
990 int tty_write_lock(struct tty_struct
*tty
, int ndelay
)
991 __acquires(&tty
->atomic_write_lock
)
993 if (!mutex_trylock(&tty
->atomic_write_lock
)) {
996 if (mutex_lock_interruptible(&tty
->atomic_write_lock
))
1003 * Split writes up in sane blocksizes to avoid
1004 * denial-of-service type attacks
1006 static inline ssize_t
do_tty_write(
1007 ssize_t (*write
)(struct tty_struct
*, struct file
*, const unsigned char *, size_t),
1008 struct tty_struct
*tty
,
1010 const char __user
*buf
,
1013 ssize_t ret
, written
= 0;
1016 ret
= tty_write_lock(tty
, file
->f_flags
& O_NDELAY
);
1021 * We chunk up writes into a temporary buffer. This
1022 * simplifies low-level drivers immensely, since they
1023 * don't have locking issues and user mode accesses.
1025 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1028 * The default chunk-size is 2kB, because the NTTY
1029 * layer has problems with bigger chunks. It will
1030 * claim to be able to handle more characters than
1033 * FIXME: This can probably go away now except that 64K chunks
1034 * are too likely to fail unless switched to vmalloc...
1037 if (test_bit(TTY_NO_WRITE_SPLIT
, &tty
->flags
))
1042 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043 if (tty
->write_cnt
< chunk
) {
1044 unsigned char *buf_chunk
;
1049 buf_chunk
= kmalloc(chunk
, GFP_KERNEL
);
1054 kfree(tty
->write_buf
);
1055 tty
->write_cnt
= chunk
;
1056 tty
->write_buf
= buf_chunk
;
1059 /* Do the write .. */
1061 size_t size
= count
;
1065 if (copy_from_user(tty
->write_buf
, buf
, size
))
1067 ret
= write(tty
, file
, tty
->write_buf
, size
);
1076 if (signal_pending(current
))
1081 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1082 inode
->i_mtime
= current_fs_time(inode
->i_sb
);
1086 tty_write_unlock(tty
);
1091 * tty_write_message - write a message to a certain tty, not just the console.
1092 * @tty: the destination tty_struct
1093 * @msg: the message to write
1095 * This is used for messages that need to be redirected to a specific tty.
1096 * We don't put it into the syslog queue right now maybe in the future if
1099 * We must still hold the BTM and test the CLOSING flag for the moment.
1102 void tty_write_message(struct tty_struct
*tty
, char *msg
)
1105 mutex_lock(&tty
->atomic_write_lock
);
1107 if (tty
->ops
->write
&& !test_bit(TTY_CLOSING
, &tty
->flags
)) {
1109 tty
->ops
->write(tty
, msg
, strlen(msg
));
1112 tty_write_unlock(tty
);
1119 * tty_write - write method for tty device file
1120 * @file: tty file pointer
1121 * @buf: user data to write
1122 * @count: bytes to write
1125 * Write data to a tty device via the line discipline.
1128 * Locks the line discipline as required
1129 * Writes to the tty driver are serialized by the atomic_write_lock
1130 * and are then processed in chunks to the device. The line discipline
1131 * write method will not be invoked in parallel for each device.
1134 static ssize_t
tty_write(struct file
*file
, const char __user
*buf
,
1135 size_t count
, loff_t
*ppos
)
1137 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1138 struct tty_struct
*tty
= file_tty(file
);
1139 struct tty_ldisc
*ld
;
1142 if (tty_paranoia_check(tty
, inode
, "tty_write"))
1144 if (!tty
|| !tty
->ops
->write
||
1145 (test_bit(TTY_IO_ERROR
, &tty
->flags
)))
1147 /* Short term debug to catch buggy drivers */
1148 if (tty
->ops
->write_room
== NULL
)
1149 printk(KERN_ERR
"tty driver %s lacks a write_room method.\n",
1151 ld
= tty_ldisc_ref_wait(tty
);
1152 if (!ld
->ops
->write
)
1155 ret
= do_tty_write(ld
->ops
->write
, tty
, file
, buf
, count
);
1156 tty_ldisc_deref(ld
);
1160 ssize_t
redirected_tty_write(struct file
*file
, const char __user
*buf
,
1161 size_t count
, loff_t
*ppos
)
1163 struct file
*p
= NULL
;
1165 spin_lock(&redirect_lock
);
1170 spin_unlock(&redirect_lock
);
1174 res
= vfs_write(p
, buf
, count
, &p
->f_pos
);
1178 return tty_write(file
, buf
, count
, ppos
);
1181 static char ptychar
[] = "pqrstuvwxyzabcde";
1184 * pty_line_name - generate name for a pty
1185 * @driver: the tty driver in use
1186 * @index: the minor number
1187 * @p: output buffer of at least 6 bytes
1189 * Generate a name from a driver reference and write it to the output
1194 static void pty_line_name(struct tty_driver
*driver
, int index
, char *p
)
1196 int i
= index
+ driver
->name_base
;
1197 /* ->name is initialized to "ttyp", but "tty" is expected */
1198 sprintf(p
, "%s%c%x",
1199 driver
->subtype
== PTY_TYPE_SLAVE
? "tty" : driver
->name
,
1200 ptychar
[i
>> 4 & 0xf], i
& 0xf);
1204 * tty_line_name - generate name for a tty
1205 * @driver: the tty driver in use
1206 * @index: the minor number
1207 * @p: output buffer of at least 7 bytes
1209 * Generate a name from a driver reference and write it to the output
1214 static void tty_line_name(struct tty_driver
*driver
, int index
, char *p
)
1216 sprintf(p
, "%s%d", driver
->name
, index
+ driver
->name_base
);
1220 * tty_driver_lookup_tty() - find an existing tty, if any
1221 * @driver: the driver for the tty
1222 * @idx: the minor number
1224 * Return the tty, if found or ERR_PTR() otherwise.
1226 * Locking: tty_mutex must be held. If tty is found, the mutex must
1227 * be held until the 'fast-open' is also done. Will change once we
1228 * have refcounting in the driver and per driver locking
1230 static struct tty_struct
*tty_driver_lookup_tty(struct tty_driver
*driver
,
1231 struct inode
*inode
, int idx
)
1233 struct tty_struct
*tty
;
1235 if (driver
->ops
->lookup
)
1236 return driver
->ops
->lookup(driver
, inode
, idx
);
1238 tty
= driver
->ttys
[idx
];
1243 * tty_init_termios - helper for termios setup
1244 * @tty: the tty to set up
1246 * Initialise the termios structures for this tty. Thus runs under
1247 * the tty_mutex currently so we can be relaxed about ordering.
1250 int tty_init_termios(struct tty_struct
*tty
)
1252 struct ktermios
*tp
;
1253 int idx
= tty
->index
;
1255 tp
= tty
->driver
->termios
[idx
];
1257 tp
= kzalloc(sizeof(struct ktermios
[2]), GFP_KERNEL
);
1260 memcpy(tp
, &tty
->driver
->init_termios
,
1261 sizeof(struct ktermios
));
1262 tty
->driver
->termios
[idx
] = tp
;
1265 tty
->termios_locked
= tp
+ 1;
1267 /* Compatibility until drivers always set this */
1268 tty
->termios
->c_ispeed
= tty_termios_input_baud_rate(tty
->termios
);
1269 tty
->termios
->c_ospeed
= tty_termios_baud_rate(tty
->termios
);
1272 EXPORT_SYMBOL_GPL(tty_init_termios
);
1275 * tty_driver_install_tty() - install a tty entry in the driver
1276 * @driver: the driver for the tty
1279 * Install a tty object into the driver tables. The tty->index field
1280 * will be set by the time this is called. This method is responsible
1281 * for ensuring any need additional structures are allocated and
1284 * Locking: tty_mutex for now
1286 static int tty_driver_install_tty(struct tty_driver
*driver
,
1287 struct tty_struct
*tty
)
1289 int idx
= tty
->index
;
1292 if (driver
->ops
->install
) {
1293 ret
= driver
->ops
->install(driver
, tty
);
1297 if (tty_init_termios(tty
) == 0) {
1298 tty_driver_kref_get(driver
);
1300 driver
->ttys
[idx
] = tty
;
1307 * tty_driver_remove_tty() - remove a tty from the driver tables
1308 * @driver: the driver for the tty
1309 * @idx: the minor number
1311 * Remvoe a tty object from the driver tables. The tty->index field
1312 * will be set by the time this is called.
1314 * Locking: tty_mutex for now
1316 void tty_driver_remove_tty(struct tty_driver
*driver
, struct tty_struct
*tty
)
1318 if (driver
->ops
->remove
)
1319 driver
->ops
->remove(driver
, tty
);
1321 driver
->ttys
[tty
->index
] = NULL
;
1325 * tty_reopen() - fast re-open of an open tty
1326 * @tty - the tty to open
1328 * Return 0 on success, -errno on error.
1330 * Locking: tty_mutex must be held from the time the tty was found
1331 * till this open completes.
1333 static int tty_reopen(struct tty_struct
*tty
)
1335 struct tty_driver
*driver
= tty
->driver
;
1337 if (test_bit(TTY_CLOSING
, &tty
->flags
) ||
1338 test_bit(TTY_HUPPING
, &tty
->flags
) ||
1339 test_bit(TTY_LDISC_CHANGING
, &tty
->flags
))
1342 if (driver
->type
== TTY_DRIVER_TYPE_PTY
&&
1343 driver
->subtype
== PTY_TYPE_MASTER
) {
1345 * special case for PTY masters: only one open permitted,
1346 * and the slave side open count is incremented as well.
1354 tty
->driver
= driver
; /* N.B. why do this every time?? */
1356 mutex_lock(&tty
->ldisc_mutex
);
1357 WARN_ON(!test_bit(TTY_LDISC
, &tty
->flags
));
1358 mutex_unlock(&tty
->ldisc_mutex
);
1364 * tty_init_dev - initialise a tty device
1365 * @driver: tty driver we are opening a device on
1366 * @idx: device index
1367 * @ret_tty: returned tty structure
1368 * @first_ok: ok to open a new device (used by ptmx)
1370 * Prepare a tty device. This may not be a "new" clean device but
1371 * could also be an active device. The pty drivers require special
1372 * handling because of this.
1375 * The function is called under the tty_mutex, which
1376 * protects us from the tty struct or driver itself going away.
1378 * On exit the tty device has the line discipline attached and
1379 * a reference count of 1. If a pair was created for pty/tty use
1380 * and the other was a pty master then it too has a reference count of 1.
1382 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1383 * failed open. The new code protects the open with a mutex, so it's
1384 * really quite straightforward. The mutex locking can probably be
1385 * relaxed for the (most common) case of reopening a tty.
1388 struct tty_struct
*tty_init_dev(struct tty_driver
*driver
, int idx
,
1391 struct tty_struct
*tty
;
1394 /* Check if pty master is being opened multiple times */
1395 if (driver
->subtype
== PTY_TYPE_MASTER
&&
1396 (driver
->flags
& TTY_DRIVER_DEVPTS_MEM
) && !first_ok
) {
1397 return ERR_PTR(-EIO
);
1401 * First time open is complex, especially for PTY devices.
1402 * This code guarantees that either everything succeeds and the
1403 * TTY is ready for operation, or else the table slots are vacated
1404 * and the allocated memory released. (Except that the termios
1405 * and locked termios may be retained.)
1408 if (!try_module_get(driver
->owner
))
1409 return ERR_PTR(-ENODEV
);
1411 tty
= alloc_tty_struct();
1414 goto err_module_put
;
1416 initialize_tty_struct(tty
, driver
, idx
);
1418 retval
= tty_driver_install_tty(driver
, tty
);
1420 goto err_deinit_tty
;
1423 * Structures all installed ... call the ldisc open routines.
1424 * If we fail here just call release_tty to clean up. No need
1425 * to decrement the use counts, as release_tty doesn't care.
1427 retval
= tty_ldisc_setup(tty
, tty
->link
);
1429 goto err_release_tty
;
1433 deinitialize_tty_struct(tty
);
1434 free_tty_struct(tty
);
1436 module_put(driver
->owner
);
1437 return ERR_PTR(retval
);
1439 /* call the tty release_tty routine to clean out this slot */
1441 printk_ratelimited(KERN_INFO
"tty_init_dev: ldisc open failed, "
1442 "clearing slot %d\n", idx
);
1443 release_tty(tty
, idx
);
1444 return ERR_PTR(retval
);
1447 void tty_free_termios(struct tty_struct
*tty
)
1449 struct ktermios
*tp
;
1450 int idx
= tty
->index
;
1451 /* Kill this flag and push into drivers for locking etc */
1452 if (tty
->driver
->flags
& TTY_DRIVER_RESET_TERMIOS
) {
1453 /* FIXME: Locking on ->termios array */
1455 tty
->driver
->termios
[idx
] = NULL
;
1459 EXPORT_SYMBOL(tty_free_termios
);
1461 void tty_shutdown(struct tty_struct
*tty
)
1463 tty_driver_remove_tty(tty
->driver
, tty
);
1464 tty_free_termios(tty
);
1466 EXPORT_SYMBOL(tty_shutdown
);
1469 * release_one_tty - release tty structure memory
1470 * @kref: kref of tty we are obliterating
1472 * Releases memory associated with a tty structure, and clears out the
1473 * driver table slots. This function is called when a device is no longer
1474 * in use. It also gets called when setup of a device fails.
1477 * tty_mutex - sometimes only
1478 * takes the file list lock internally when working on the list
1479 * of ttys that the driver keeps.
1481 * This method gets called from a work queue so that the driver private
1482 * cleanup ops can sleep (needed for USB at least)
1484 static void release_one_tty(struct work_struct
*work
)
1486 struct tty_struct
*tty
=
1487 container_of(work
, struct tty_struct
, hangup_work
);
1488 struct tty_driver
*driver
= tty
->driver
;
1490 if (tty
->ops
->cleanup
)
1491 tty
->ops
->cleanup(tty
);
1494 tty_driver_kref_put(driver
);
1495 module_put(driver
->owner
);
1497 spin_lock(&tty_files_lock
);
1498 list_del_init(&tty
->tty_files
);
1499 spin_unlock(&tty_files_lock
);
1502 put_pid(tty
->session
);
1503 free_tty_struct(tty
);
1506 static void queue_release_one_tty(struct kref
*kref
)
1508 struct tty_struct
*tty
= container_of(kref
, struct tty_struct
, kref
);
1510 if (tty
->ops
->shutdown
)
1511 tty
->ops
->shutdown(tty
);
1515 /* The hangup queue is now free so we can reuse it rather than
1516 waste a chunk of memory for each port */
1517 INIT_WORK(&tty
->hangup_work
, release_one_tty
);
1518 schedule_work(&tty
->hangup_work
);
1522 * tty_kref_put - release a tty kref
1525 * Release a reference to a tty device and if need be let the kref
1526 * layer destruct the object for us
1529 void tty_kref_put(struct tty_struct
*tty
)
1532 kref_put(&tty
->kref
, queue_release_one_tty
);
1534 EXPORT_SYMBOL(tty_kref_put
);
1537 * release_tty - release tty structure memory
1539 * Release both @tty and a possible linked partner (think pty pair),
1540 * and decrement the refcount of the backing module.
1543 * tty_mutex - sometimes only
1544 * takes the file list lock internally when working on the list
1545 * of ttys that the driver keeps.
1546 * FIXME: should we require tty_mutex is held here ??
1549 static void release_tty(struct tty_struct
*tty
, int idx
)
1551 /* This should always be true but check for the moment */
1552 WARN_ON(tty
->index
!= idx
);
1555 tty_kref_put(tty
->link
);
1560 * tty_release_checks - check a tty before real release
1561 * @tty: tty to check
1562 * @o_tty: link of @tty (if any)
1563 * @idx: index of the tty
1565 * Performs some paranoid checking before true release of the @tty.
1566 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1568 static int tty_release_checks(struct tty_struct
*tty
, struct tty_struct
*o_tty
,
1571 #ifdef TTY_PARANOIA_CHECK
1572 if (idx
< 0 || idx
>= tty
->driver
->num
) {
1573 printk(KERN_DEBUG
"%s: bad idx when trying to free (%s)\n",
1574 __func__
, tty
->name
);
1578 /* not much to check for devpts */
1579 if (tty
->driver
->flags
& TTY_DRIVER_DEVPTS_MEM
)
1582 if (tty
!= tty
->driver
->ttys
[idx
]) {
1583 printk(KERN_DEBUG
"%s: driver.table[%d] not tty for (%s)\n",
1584 __func__
, idx
, tty
->name
);
1587 if (tty
->termios
!= tty
->driver
->termios
[idx
]) {
1588 printk(KERN_DEBUG
"%s: driver.termios[%d] not termios for (%s)\n",
1589 __func__
, idx
, tty
->name
);
1592 if (tty
->driver
->other
) {
1593 if (o_tty
!= tty
->driver
->other
->ttys
[idx
]) {
1594 printk(KERN_DEBUG
"%s: other->table[%d] not o_tty for (%s)\n",
1595 __func__
, idx
, tty
->name
);
1598 if (o_tty
->termios
!= tty
->driver
->other
->termios
[idx
]) {
1599 printk(KERN_DEBUG
"%s: other->termios[%d] not o_termios for (%s)\n",
1600 __func__
, idx
, tty
->name
);
1603 if (o_tty
->link
!= tty
) {
1604 printk(KERN_DEBUG
"%s: bad pty pointers\n", __func__
);
1613 * tty_release - vfs callback for close
1614 * @inode: inode of tty
1615 * @filp: file pointer for handle to tty
1617 * Called the last time each file handle is closed that references
1618 * this tty. There may however be several such references.
1621 * Takes bkl. See tty_release_dev
1623 * Even releasing the tty structures is a tricky business.. We have
1624 * to be very careful that the structures are all released at the
1625 * same time, as interrupts might otherwise get the wrong pointers.
1627 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1628 * lead to double frees or releasing memory still in use.
1631 int tty_release(struct inode
*inode
, struct file
*filp
)
1633 struct tty_struct
*tty
= file_tty(filp
);
1634 struct tty_struct
*o_tty
;
1635 int pty_master
, tty_closing
, o_tty_closing
, do_sleep
;
1640 if (tty_paranoia_check(tty
, inode
, __func__
))
1644 check_tty_count(tty
, __func__
);
1646 __tty_fasync(-1, filp
, 0);
1649 pty_master
= (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
1650 tty
->driver
->subtype
== PTY_TYPE_MASTER
);
1651 devpts
= (tty
->driver
->flags
& TTY_DRIVER_DEVPTS_MEM
) != 0;
1654 if (tty_release_checks(tty
, o_tty
, idx
)) {
1659 #ifdef TTY_DEBUG_HANGUP
1660 printk(KERN_DEBUG
"%s: %s (tty count=%d)...\n", __func__
,
1661 tty_name(tty
, buf
), tty
->count
);
1664 if (tty
->ops
->close
)
1665 tty
->ops
->close(tty
, filp
);
1669 * Sanity check: if tty->count is going to zero, there shouldn't be
1670 * any waiters on tty->read_wait or tty->write_wait. We test the
1671 * wait queues and kick everyone out _before_ actually starting to
1672 * close. This ensures that we won't block while releasing the tty
1675 * The test for the o_tty closing is necessary, since the master and
1676 * slave sides may close in any order. If the slave side closes out
1677 * first, its count will be one, since the master side holds an open.
1678 * Thus this test wouldn't be triggered at the time the slave closes,
1681 * Note that it's possible for the tty to be opened again while we're
1682 * flushing out waiters. By recalculating the closing flags before
1683 * each iteration we avoid any problems.
1686 /* Guard against races with tty->count changes elsewhere and
1687 opens on /dev/tty */
1689 mutex_lock(&tty_mutex
);
1691 tty_closing
= tty
->count
<= 1;
1692 o_tty_closing
= o_tty
&&
1693 (o_tty
->count
<= (pty_master
? 1 : 0));
1697 if (waitqueue_active(&tty
->read_wait
)) {
1698 wake_up_poll(&tty
->read_wait
, POLLIN
);
1701 if (waitqueue_active(&tty
->write_wait
)) {
1702 wake_up_poll(&tty
->write_wait
, POLLOUT
);
1706 if (o_tty_closing
) {
1707 if (waitqueue_active(&o_tty
->read_wait
)) {
1708 wake_up_poll(&o_tty
->read_wait
, POLLIN
);
1711 if (waitqueue_active(&o_tty
->write_wait
)) {
1712 wake_up_poll(&o_tty
->write_wait
, POLLOUT
);
1719 printk(KERN_WARNING
"%s: %s: read/write wait queue active!\n",
1720 __func__
, tty_name(tty
, buf
));
1722 mutex_unlock(&tty_mutex
);
1727 * The closing flags are now consistent with the open counts on
1728 * both sides, and we've completed the last operation that could
1729 * block, so it's safe to proceed with closing.
1732 if (--o_tty
->count
< 0) {
1733 printk(KERN_WARNING
"%s: bad pty slave count (%d) for %s\n",
1734 __func__
, o_tty
->count
, tty_name(o_tty
, buf
));
1738 if (--tty
->count
< 0) {
1739 printk(KERN_WARNING
"%s: bad tty->count (%d) for %s\n",
1740 __func__
, tty
->count
, tty_name(tty
, buf
));
1745 * We've decremented tty->count, so we need to remove this file
1746 * descriptor off the tty->tty_files list; this serves two
1748 * - check_tty_count sees the correct number of file descriptors
1749 * associated with this tty.
1750 * - do_tty_hangup no longer sees this file descriptor as
1751 * something that needs to be handled for hangups.
1756 * Perform some housekeeping before deciding whether to return.
1758 * Set the TTY_CLOSING flag if this was the last open. In the
1759 * case of a pty we may have to wait around for the other side
1760 * to close, and TTY_CLOSING makes sure we can't be reopened.
1763 set_bit(TTY_CLOSING
, &tty
->flags
);
1765 set_bit(TTY_CLOSING
, &o_tty
->flags
);
1768 * If _either_ side is closing, make sure there aren't any
1769 * processes that still think tty or o_tty is their controlling
1772 if (tty_closing
|| o_tty_closing
) {
1773 read_lock(&tasklist_lock
);
1774 session_clear_tty(tty
->session
);
1776 session_clear_tty(o_tty
->session
);
1777 read_unlock(&tasklist_lock
);
1780 mutex_unlock(&tty_mutex
);
1782 /* check whether both sides are closing ... */
1783 if (!tty_closing
|| (o_tty
&& !o_tty_closing
)) {
1788 #ifdef TTY_DEBUG_HANGUP
1789 printk(KERN_DEBUG
"%s: freeing tty structure...\n", __func__
);
1792 * Ask the line discipline code to release its structures
1794 tty_ldisc_release(tty
, o_tty
);
1796 * The release_tty function takes care of the details of clearing
1797 * the slots and preserving the termios structure.
1799 release_tty(tty
, idx
);
1801 /* Make this pty number available for reallocation */
1803 devpts_kill_index(inode
, idx
);
1809 * tty_open_current_tty - get tty of current task for open
1810 * @device: device number
1811 * @filp: file pointer to tty
1812 * @return: tty of the current task iff @device is /dev/tty
1814 * We cannot return driver and index like for the other nodes because
1815 * devpts will not work then. It expects inodes to be from devpts FS.
1817 static struct tty_struct
*tty_open_current_tty(dev_t device
, struct file
*filp
)
1819 struct tty_struct
*tty
;
1821 if (device
!= MKDEV(TTYAUX_MAJOR
, 0))
1824 tty
= get_current_tty();
1826 return ERR_PTR(-ENXIO
);
1828 filp
->f_flags
|= O_NONBLOCK
; /* Don't let /dev/tty block */
1831 /* FIXME: we put a reference and return a TTY! */
1836 * tty_lookup_driver - lookup a tty driver for a given device file
1837 * @device: device number
1838 * @filp: file pointer to tty
1839 * @noctty: set if the device should not become a controlling tty
1840 * @index: index for the device in the @return driver
1841 * @return: driver for this inode (with increased refcount)
1843 * If @return is not erroneous, the caller is responsible to decrement the
1844 * refcount by tty_driver_kref_put.
1846 * Locking: tty_mutex protects get_tty_driver
1848 static struct tty_driver
*tty_lookup_driver(dev_t device
, struct file
*filp
,
1849 int *noctty
, int *index
)
1851 struct tty_driver
*driver
;
1855 case MKDEV(TTY_MAJOR
, 0): {
1856 extern struct tty_driver
*console_driver
;
1857 driver
= tty_driver_kref_get(console_driver
);
1858 *index
= fg_console
;
1863 case MKDEV(TTYAUX_MAJOR
, 1): {
1864 struct tty_driver
*console_driver
= console_device(index
);
1865 if (console_driver
) {
1866 driver
= tty_driver_kref_get(console_driver
);
1868 /* Don't let /dev/console block */
1869 filp
->f_flags
|= O_NONBLOCK
;
1874 return ERR_PTR(-ENODEV
);
1877 driver
= get_tty_driver(device
, index
);
1879 return ERR_PTR(-ENODEV
);
1886 * tty_open - open a tty device
1887 * @inode: inode of device file
1888 * @filp: file pointer to tty
1890 * tty_open and tty_release keep up the tty count that contains the
1891 * number of opens done on a tty. We cannot use the inode-count, as
1892 * different inodes might point to the same tty.
1894 * Open-counting is needed for pty masters, as well as for keeping
1895 * track of serial lines: DTR is dropped when the last close happens.
1896 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1898 * The termios state of a pty is reset on first open so that
1899 * settings don't persist across reuse.
1901 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1902 * tty->count should protect the rest.
1903 * ->siglock protects ->signal/->sighand
1906 static int tty_open(struct inode
*inode
, struct file
*filp
)
1908 struct tty_struct
*tty
;
1910 struct tty_driver
*driver
= NULL
;
1912 dev_t device
= inode
->i_rdev
;
1913 unsigned saved_flags
= filp
->f_flags
;
1915 nonseekable_open(inode
, filp
);
1918 retval
= tty_alloc_file(filp
);
1922 noctty
= filp
->f_flags
& O_NOCTTY
;
1926 mutex_lock(&tty_mutex
);
1929 tty
= tty_open_current_tty(device
, filp
);
1931 retval
= PTR_ERR(tty
);
1934 driver
= tty_lookup_driver(device
, filp
, &noctty
, &index
);
1935 if (IS_ERR(driver
)) {
1936 retval
= PTR_ERR(driver
);
1940 /* check whether we're reopening an existing tty */
1941 tty
= tty_driver_lookup_tty(driver
, inode
, index
);
1943 retval
= PTR_ERR(tty
);
1949 retval
= tty_reopen(tty
);
1951 tty
= ERR_PTR(retval
);
1953 tty
= tty_init_dev(driver
, index
, 0);
1955 mutex_unlock(&tty_mutex
);
1957 tty_driver_kref_put(driver
);
1960 retval
= PTR_ERR(tty
);
1964 tty_add_file(tty
, filp
);
1966 check_tty_count(tty
, __func__
);
1967 if (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
1968 tty
->driver
->subtype
== PTY_TYPE_MASTER
)
1970 #ifdef TTY_DEBUG_HANGUP
1971 printk(KERN_DEBUG
"%s: opening %s...\n", __func__
, tty
->name
);
1974 retval
= tty
->ops
->open(tty
, filp
);
1977 filp
->f_flags
= saved_flags
;
1979 if (!retval
&& test_bit(TTY_EXCLUSIVE
, &tty
->flags
) &&
1980 !capable(CAP_SYS_ADMIN
))
1984 #ifdef TTY_DEBUG_HANGUP
1985 printk(KERN_DEBUG
"%s: error %d in opening %s...\n", __func__
,
1988 tty_unlock(); /* need to call tty_release without BTM */
1989 tty_release(inode
, filp
);
1990 if (retval
!= -ERESTARTSYS
)
1993 if (signal_pending(current
))
1998 * Need to reset f_op in case a hangup happened.
2001 if (filp
->f_op
== &hung_up_tty_fops
)
2002 filp
->f_op
= &tty_fops
;
2009 mutex_lock(&tty_mutex
);
2011 spin_lock_irq(¤t
->sighand
->siglock
);
2013 current
->signal
->leader
&&
2014 !current
->signal
->tty
&&
2015 tty
->session
== NULL
)
2016 __proc_set_tty(current
, tty
);
2017 spin_unlock_irq(¤t
->sighand
->siglock
);
2019 mutex_unlock(&tty_mutex
);
2023 mutex_unlock(&tty_mutex
);
2024 /* after locks to avoid deadlock */
2025 if (!IS_ERR_OR_NULL(driver
))
2026 tty_driver_kref_put(driver
);
2028 tty_free_file(filp
);
2035 * tty_poll - check tty status
2036 * @filp: file being polled
2037 * @wait: poll wait structures to update
2039 * Call the line discipline polling method to obtain the poll
2040 * status of the device.
2042 * Locking: locks called line discipline but ldisc poll method
2043 * may be re-entered freely by other callers.
2046 static unsigned int tty_poll(struct file
*filp
, poll_table
*wait
)
2048 struct tty_struct
*tty
= file_tty(filp
);
2049 struct tty_ldisc
*ld
;
2052 if (tty_paranoia_check(tty
, filp
->f_path
.dentry
->d_inode
, "tty_poll"))
2055 ld
= tty_ldisc_ref_wait(tty
);
2057 ret
= (ld
->ops
->poll
)(tty
, filp
, wait
);
2058 tty_ldisc_deref(ld
);
2062 static int __tty_fasync(int fd
, struct file
*filp
, int on
)
2064 struct tty_struct
*tty
= file_tty(filp
);
2065 unsigned long flags
;
2068 if (tty_paranoia_check(tty
, filp
->f_path
.dentry
->d_inode
, "tty_fasync"))
2071 retval
= fasync_helper(fd
, filp
, on
, &tty
->fasync
);
2078 if (!waitqueue_active(&tty
->read_wait
))
2079 tty
->minimum_to_wake
= 1;
2080 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
2083 type
= PIDTYPE_PGID
;
2085 pid
= task_pid(current
);
2089 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
2090 retval
= __f_setown(filp
, pid
, type
, 0);
2095 if (!tty
->fasync
&& !waitqueue_active(&tty
->read_wait
))
2096 tty
->minimum_to_wake
= N_TTY_BUF_SIZE
;
2103 static int tty_fasync(int fd
, struct file
*filp
, int on
)
2107 retval
= __tty_fasync(fd
, filp
, on
);
2113 * tiocsti - fake input character
2114 * @tty: tty to fake input into
2115 * @p: pointer to character
2117 * Fake input to a tty device. Does the necessary locking and
2120 * FIXME: does not honour flow control ??
2123 * Called functions take tty_ldisc_lock
2124 * current->signal->tty check is safe without locks
2126 * FIXME: may race normal receive processing
2129 static int tiocsti(struct tty_struct
*tty
, char __user
*p
)
2132 struct tty_ldisc
*ld
;
2134 if ((current
->signal
->tty
!= tty
) && !capable(CAP_SYS_ADMIN
))
2136 if (get_user(ch
, p
))
2138 tty_audit_tiocsti(tty
, ch
);
2139 ld
= tty_ldisc_ref_wait(tty
);
2140 ld
->ops
->receive_buf(tty
, &ch
, &mbz
, 1);
2141 tty_ldisc_deref(ld
);
2146 * tiocgwinsz - implement window query ioctl
2148 * @arg: user buffer for result
2150 * Copies the kernel idea of the window size into the user buffer.
2152 * Locking: tty->termios_mutex is taken to ensure the winsize data
2156 static int tiocgwinsz(struct tty_struct
*tty
, struct winsize __user
*arg
)
2160 mutex_lock(&tty
->termios_mutex
);
2161 err
= copy_to_user(arg
, &tty
->winsize
, sizeof(*arg
));
2162 mutex_unlock(&tty
->termios_mutex
);
2164 return err
? -EFAULT
: 0;
2168 * tty_do_resize - resize event
2169 * @tty: tty being resized
2170 * @rows: rows (character)
2171 * @cols: cols (character)
2173 * Update the termios variables and send the necessary signals to
2174 * peform a terminal resize correctly
2177 int tty_do_resize(struct tty_struct
*tty
, struct winsize
*ws
)
2180 unsigned long flags
;
2183 mutex_lock(&tty
->termios_mutex
);
2184 if (!memcmp(ws
, &tty
->winsize
, sizeof(*ws
)))
2186 /* Get the PID values and reference them so we can
2187 avoid holding the tty ctrl lock while sending signals */
2188 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
2189 pgrp
= get_pid(tty
->pgrp
);
2190 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
2193 kill_pgrp(pgrp
, SIGWINCH
, 1);
2198 mutex_unlock(&tty
->termios_mutex
);
2203 * tiocswinsz - implement window size set ioctl
2204 * @tty; tty side of tty
2205 * @arg: user buffer for result
2207 * Copies the user idea of the window size to the kernel. Traditionally
2208 * this is just advisory information but for the Linux console it
2209 * actually has driver level meaning and triggers a VC resize.
2212 * Driver dependent. The default do_resize method takes the
2213 * tty termios mutex and ctrl_lock. The console takes its own lock
2214 * then calls into the default method.
2217 static int tiocswinsz(struct tty_struct
*tty
, struct winsize __user
*arg
)
2219 struct winsize tmp_ws
;
2220 if (copy_from_user(&tmp_ws
, arg
, sizeof(*arg
)))
2223 if (tty
->ops
->resize
)
2224 return tty
->ops
->resize(tty
, &tmp_ws
);
2226 return tty_do_resize(tty
, &tmp_ws
);
2230 * tioccons - allow admin to move logical console
2231 * @file: the file to become console
2233 * Allow the administrator to move the redirected console device
2235 * Locking: uses redirect_lock to guard the redirect information
2238 static int tioccons(struct file
*file
)
2240 if (!capable(CAP_SYS_ADMIN
))
2242 if (file
->f_op
->write
== redirected_tty_write
) {
2244 spin_lock(&redirect_lock
);
2247 spin_unlock(&redirect_lock
);
2252 spin_lock(&redirect_lock
);
2254 spin_unlock(&redirect_lock
);
2259 spin_unlock(&redirect_lock
);
2264 * fionbio - non blocking ioctl
2265 * @file: file to set blocking value
2266 * @p: user parameter
2268 * Historical tty interfaces had a blocking control ioctl before
2269 * the generic functionality existed. This piece of history is preserved
2270 * in the expected tty API of posix OS's.
2272 * Locking: none, the open file handle ensures it won't go away.
2275 static int fionbio(struct file
*file
, int __user
*p
)
2279 if (get_user(nonblock
, p
))
2282 spin_lock(&file
->f_lock
);
2284 file
->f_flags
|= O_NONBLOCK
;
2286 file
->f_flags
&= ~O_NONBLOCK
;
2287 spin_unlock(&file
->f_lock
);
2292 * tiocsctty - set controlling tty
2293 * @tty: tty structure
2294 * @arg: user argument
2296 * This ioctl is used to manage job control. It permits a session
2297 * leader to set this tty as the controlling tty for the session.
2300 * Takes tty_mutex() to protect tty instance
2301 * Takes tasklist_lock internally to walk sessions
2302 * Takes ->siglock() when updating signal->tty
2305 static int tiocsctty(struct tty_struct
*tty
, int arg
)
2308 if (current
->signal
->leader
&& (task_session(current
) == tty
->session
))
2311 mutex_lock(&tty_mutex
);
2313 * The process must be a session leader and
2314 * not have a controlling tty already.
2316 if (!current
->signal
->leader
|| current
->signal
->tty
) {
2323 * This tty is already the controlling
2324 * tty for another session group!
2326 if (arg
== 1 && capable(CAP_SYS_ADMIN
)) {
2330 read_lock(&tasklist_lock
);
2331 session_clear_tty(tty
->session
);
2332 read_unlock(&tasklist_lock
);
2338 proc_set_tty(current
, tty
);
2340 mutex_unlock(&tty_mutex
);
2345 * tty_get_pgrp - return a ref counted pgrp pid
2348 * Returns a refcounted instance of the pid struct for the process
2349 * group controlling the tty.
2352 struct pid
*tty_get_pgrp(struct tty_struct
*tty
)
2354 unsigned long flags
;
2357 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
2358 pgrp
= get_pid(tty
->pgrp
);
2359 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
2363 EXPORT_SYMBOL_GPL(tty_get_pgrp
);
2366 * tiocgpgrp - get process group
2367 * @tty: tty passed by user
2368 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2371 * Obtain the process group of the tty. If there is no process group
2374 * Locking: none. Reference to current->signal->tty is safe.
2377 static int tiocgpgrp(struct tty_struct
*tty
, struct tty_struct
*real_tty
, pid_t __user
*p
)
2382 * (tty == real_tty) is a cheap way of
2383 * testing if the tty is NOT a master pty.
2385 if (tty
== real_tty
&& current
->signal
->tty
!= real_tty
)
2387 pid
= tty_get_pgrp(real_tty
);
2388 ret
= put_user(pid_vnr(pid
), p
);
2394 * tiocspgrp - attempt to set process group
2395 * @tty: tty passed by user
2396 * @real_tty: tty side device matching tty passed by user
2399 * Set the process group of the tty to the session passed. Only
2400 * permitted where the tty session is our session.
2402 * Locking: RCU, ctrl lock
2405 static int tiocspgrp(struct tty_struct
*tty
, struct tty_struct
*real_tty
, pid_t __user
*p
)
2409 int retval
= tty_check_change(real_tty
);
2410 unsigned long flags
;
2416 if (!current
->signal
->tty
||
2417 (current
->signal
->tty
!= real_tty
) ||
2418 (real_tty
->session
!= task_session(current
)))
2420 if (get_user(pgrp_nr
, p
))
2425 pgrp
= find_vpid(pgrp_nr
);
2430 if (session_of_pgrp(pgrp
) != task_session(current
))
2433 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
2434 put_pid(real_tty
->pgrp
);
2435 real_tty
->pgrp
= get_pid(pgrp
);
2436 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
2443 * tiocgsid - get session id
2444 * @tty: tty passed by user
2445 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2446 * @p: pointer to returned session id
2448 * Obtain the session id of the tty. If there is no session
2451 * Locking: none. Reference to current->signal->tty is safe.
2454 static int tiocgsid(struct tty_struct
*tty
, struct tty_struct
*real_tty
, pid_t __user
*p
)
2457 * (tty == real_tty) is a cheap way of
2458 * testing if the tty is NOT a master pty.
2460 if (tty
== real_tty
&& current
->signal
->tty
!= real_tty
)
2462 if (!real_tty
->session
)
2464 return put_user(pid_vnr(real_tty
->session
), p
);
2468 * tiocsetd - set line discipline
2470 * @p: pointer to user data
2472 * Set the line discipline according to user request.
2474 * Locking: see tty_set_ldisc, this function is just a helper
2477 static int tiocsetd(struct tty_struct
*tty
, int __user
*p
)
2482 if (get_user(ldisc
, p
))
2485 ret
= tty_set_ldisc(tty
, ldisc
);
2491 * send_break - performed time break
2492 * @tty: device to break on
2493 * @duration: timeout in mS
2495 * Perform a timed break on hardware that lacks its own driver level
2496 * timed break functionality.
2499 * atomic_write_lock serializes
2503 static int send_break(struct tty_struct
*tty
, unsigned int duration
)
2507 if (tty
->ops
->break_ctl
== NULL
)
2510 if (tty
->driver
->flags
& TTY_DRIVER_HARDWARE_BREAK
)
2511 retval
= tty
->ops
->break_ctl(tty
, duration
);
2513 /* Do the work ourselves */
2514 if (tty_write_lock(tty
, 0) < 0)
2516 retval
= tty
->ops
->break_ctl(tty
, -1);
2519 if (!signal_pending(current
))
2520 msleep_interruptible(duration
);
2521 retval
= tty
->ops
->break_ctl(tty
, 0);
2523 tty_write_unlock(tty
);
2524 if (signal_pending(current
))
2531 * tty_tiocmget - get modem status
2533 * @file: user file pointer
2534 * @p: pointer to result
2536 * Obtain the modem status bits from the tty driver if the feature
2537 * is supported. Return -EINVAL if it is not available.
2539 * Locking: none (up to the driver)
2542 static int tty_tiocmget(struct tty_struct
*tty
, int __user
*p
)
2544 int retval
= -EINVAL
;
2546 if (tty
->ops
->tiocmget
) {
2547 retval
= tty
->ops
->tiocmget(tty
);
2550 retval
= put_user(retval
, p
);
2556 * tty_tiocmset - set modem status
2558 * @cmd: command - clear bits, set bits or set all
2559 * @p: pointer to desired bits
2561 * Set the modem status bits from the tty driver if the feature
2562 * is supported. Return -EINVAL if it is not available.
2564 * Locking: none (up to the driver)
2567 static int tty_tiocmset(struct tty_struct
*tty
, unsigned int cmd
,
2571 unsigned int set
, clear
, val
;
2573 if (tty
->ops
->tiocmset
== NULL
)
2576 retval
= get_user(val
, p
);
2592 set
&= TIOCM_DTR
|TIOCM_RTS
|TIOCM_OUT1
|TIOCM_OUT2
|TIOCM_LOOP
;
2593 clear
&= TIOCM_DTR
|TIOCM_RTS
|TIOCM_OUT1
|TIOCM_OUT2
|TIOCM_LOOP
;
2594 return tty
->ops
->tiocmset(tty
, set
, clear
);
2597 static int tty_tiocgicount(struct tty_struct
*tty
, void __user
*arg
)
2599 int retval
= -EINVAL
;
2600 struct serial_icounter_struct icount
;
2601 memset(&icount
, 0, sizeof(icount
));
2602 if (tty
->ops
->get_icount
)
2603 retval
= tty
->ops
->get_icount(tty
, &icount
);
2606 if (copy_to_user(arg
, &icount
, sizeof(icount
)))
2611 struct tty_struct
*tty_pair_get_tty(struct tty_struct
*tty
)
2613 if (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
2614 tty
->driver
->subtype
== PTY_TYPE_MASTER
)
2618 EXPORT_SYMBOL(tty_pair_get_tty
);
2620 struct tty_struct
*tty_pair_get_pty(struct tty_struct
*tty
)
2622 if (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
2623 tty
->driver
->subtype
== PTY_TYPE_MASTER
)
2627 EXPORT_SYMBOL(tty_pair_get_pty
);
2630 * Split this up, as gcc can choke on it otherwise..
2632 long tty_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2634 struct tty_struct
*tty
= file_tty(file
);
2635 struct tty_struct
*real_tty
;
2636 void __user
*p
= (void __user
*)arg
;
2638 struct tty_ldisc
*ld
;
2639 struct inode
*inode
= file
->f_dentry
->d_inode
;
2641 if (tty_paranoia_check(tty
, inode
, "tty_ioctl"))
2644 real_tty
= tty_pair_get_tty(tty
);
2647 * Factor out some common prep work
2655 retval
= tty_check_change(tty
);
2658 if (cmd
!= TIOCCBRK
) {
2659 tty_wait_until_sent(tty
, 0);
2660 if (signal_pending(current
))
2671 return tiocsti(tty
, p
);
2673 return tiocgwinsz(real_tty
, p
);
2675 return tiocswinsz(real_tty
, p
);
2677 return real_tty
!= tty
? -EINVAL
: tioccons(file
);
2679 return fionbio(file
, p
);
2681 set_bit(TTY_EXCLUSIVE
, &tty
->flags
);
2684 clear_bit(TTY_EXCLUSIVE
, &tty
->flags
);
2687 if (current
->signal
->tty
!= tty
)
2692 return tiocsctty(tty
, arg
);
2694 return tiocgpgrp(tty
, real_tty
, p
);
2696 return tiocspgrp(tty
, real_tty
, p
);
2698 return tiocgsid(tty
, real_tty
, p
);
2700 return put_user(tty
->ldisc
->ops
->num
, (int __user
*)p
);
2702 return tiocsetd(tty
, p
);
2704 if (!capable(CAP_SYS_ADMIN
))
2710 unsigned int ret
= new_encode_dev(tty_devnum(real_tty
));
2711 return put_user(ret
, (unsigned int __user
*)p
);
2716 case TIOCSBRK
: /* Turn break on, unconditionally */
2717 if (tty
->ops
->break_ctl
)
2718 return tty
->ops
->break_ctl(tty
, -1);
2720 case TIOCCBRK
: /* Turn break off, unconditionally */
2721 if (tty
->ops
->break_ctl
)
2722 return tty
->ops
->break_ctl(tty
, 0);
2724 case TCSBRK
: /* SVID version: non-zero arg --> no break */
2725 /* non-zero arg means wait for all output data
2726 * to be sent (performed above) but don't send break.
2727 * This is used by the tcdrain() termios function.
2730 return send_break(tty
, 250);
2732 case TCSBRKP
: /* support for POSIX tcsendbreak() */
2733 return send_break(tty
, arg
? arg
*100 : 250);
2736 return tty_tiocmget(tty
, p
);
2740 return tty_tiocmset(tty
, cmd
, p
);
2742 retval
= tty_tiocgicount(tty
, p
);
2743 /* For the moment allow fall through to the old method */
2744 if (retval
!= -EINVAL
)
2751 /* flush tty buffer and allow ldisc to process ioctl */
2752 tty_buffer_flush(tty
);
2757 if (tty
->ops
->ioctl
) {
2758 retval
= (tty
->ops
->ioctl
)(tty
, cmd
, arg
);
2759 if (retval
!= -ENOIOCTLCMD
)
2762 ld
= tty_ldisc_ref_wait(tty
);
2764 if (ld
->ops
->ioctl
) {
2765 retval
= ld
->ops
->ioctl(tty
, file
, cmd
, arg
);
2766 if (retval
== -ENOIOCTLCMD
)
2769 tty_ldisc_deref(ld
);
2773 #ifdef CONFIG_COMPAT
2774 static long tty_compat_ioctl(struct file
*file
, unsigned int cmd
,
2777 struct inode
*inode
= file
->f_dentry
->d_inode
;
2778 struct tty_struct
*tty
= file_tty(file
);
2779 struct tty_ldisc
*ld
;
2780 int retval
= -ENOIOCTLCMD
;
2782 if (tty_paranoia_check(tty
, inode
, "tty_ioctl"))
2785 if (tty
->ops
->compat_ioctl
) {
2786 retval
= (tty
->ops
->compat_ioctl
)(tty
, cmd
, arg
);
2787 if (retval
!= -ENOIOCTLCMD
)
2791 ld
= tty_ldisc_ref_wait(tty
);
2792 if (ld
->ops
->compat_ioctl
)
2793 retval
= ld
->ops
->compat_ioctl(tty
, file
, cmd
, arg
);
2795 retval
= n_tty_compat_ioctl_helper(tty
, file
, cmd
, arg
);
2796 tty_ldisc_deref(ld
);
2803 * This implements the "Secure Attention Key" --- the idea is to
2804 * prevent trojan horses by killing all processes associated with this
2805 * tty when the user hits the "Secure Attention Key". Required for
2806 * super-paranoid applications --- see the Orange Book for more details.
2808 * This code could be nicer; ideally it should send a HUP, wait a few
2809 * seconds, then send a INT, and then a KILL signal. But you then
2810 * have to coordinate with the init process, since all processes associated
2811 * with the current tty must be dead before the new getty is allowed
2814 * Now, if it would be correct ;-/ The current code has a nasty hole -
2815 * it doesn't catch files in flight. We may send the descriptor to ourselves
2816 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2818 * Nasty bug: do_SAK is being called in interrupt context. This can
2819 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2821 void __do_SAK(struct tty_struct
*tty
)
2826 struct task_struct
*g
, *p
;
2827 struct pid
*session
;
2830 struct fdtable
*fdt
;
2834 session
= tty
->session
;
2836 tty_ldisc_flush(tty
);
2838 tty_driver_flush_buffer(tty
);
2840 read_lock(&tasklist_lock
);
2841 /* Kill the entire session */
2842 do_each_pid_task(session
, PIDTYPE_SID
, p
) {
2843 printk(KERN_NOTICE
"SAK: killed process %d"
2844 " (%s): task_session(p)==tty->session\n",
2845 task_pid_nr(p
), p
->comm
);
2846 send_sig(SIGKILL
, p
, 1);
2847 } while_each_pid_task(session
, PIDTYPE_SID
, p
);
2848 /* Now kill any processes that happen to have the
2851 do_each_thread(g
, p
) {
2852 if (p
->signal
->tty
== tty
) {
2853 printk(KERN_NOTICE
"SAK: killed process %d"
2854 " (%s): task_session(p)==tty->session\n",
2855 task_pid_nr(p
), p
->comm
);
2856 send_sig(SIGKILL
, p
, 1);
2862 * We don't take a ref to the file, so we must
2863 * hold ->file_lock instead.
2865 spin_lock(&p
->files
->file_lock
);
2866 fdt
= files_fdtable(p
->files
);
2867 for (i
= 0; i
< fdt
->max_fds
; i
++) {
2868 filp
= fcheck_files(p
->files
, i
);
2871 if (filp
->f_op
->read
== tty_read
&&
2872 file_tty(filp
) == tty
) {
2873 printk(KERN_NOTICE
"SAK: killed process %d"
2874 " (%s): fd#%d opened to the tty\n",
2875 task_pid_nr(p
), p
->comm
, i
);
2876 force_sig(SIGKILL
, p
);
2880 spin_unlock(&p
->files
->file_lock
);
2883 } while_each_thread(g
, p
);
2884 read_unlock(&tasklist_lock
);
2888 static void do_SAK_work(struct work_struct
*work
)
2890 struct tty_struct
*tty
=
2891 container_of(work
, struct tty_struct
, SAK_work
);
2896 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2897 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2898 * the values which we write to it will be identical to the values which it
2899 * already has. --akpm
2901 void do_SAK(struct tty_struct
*tty
)
2905 schedule_work(&tty
->SAK_work
);
2908 EXPORT_SYMBOL(do_SAK
);
2910 static int dev_match_devt(struct device
*dev
, void *data
)
2913 return dev
->devt
== *devt
;
2916 /* Must put_device() after it's unused! */
2917 static struct device
*tty_get_device(struct tty_struct
*tty
)
2919 dev_t devt
= tty_devnum(tty
);
2920 return class_find_device(tty_class
, NULL
, &devt
, dev_match_devt
);
2925 * initialize_tty_struct
2926 * @tty: tty to initialize
2928 * This subroutine initializes a tty structure that has been newly
2931 * Locking: none - tty in question must not be exposed at this point
2934 void initialize_tty_struct(struct tty_struct
*tty
,
2935 struct tty_driver
*driver
, int idx
)
2937 memset(tty
, 0, sizeof(struct tty_struct
));
2938 kref_init(&tty
->kref
);
2939 tty
->magic
= TTY_MAGIC
;
2940 tty_ldisc_init(tty
);
2941 tty
->session
= NULL
;
2943 tty
->overrun_time
= jiffies
;
2944 tty
->buf
.head
= tty
->buf
.tail
= NULL
;
2945 tty_buffer_init(tty
);
2946 mutex_init(&tty
->termios_mutex
);
2947 mutex_init(&tty
->ldisc_mutex
);
2948 init_waitqueue_head(&tty
->write_wait
);
2949 init_waitqueue_head(&tty
->read_wait
);
2950 INIT_WORK(&tty
->hangup_work
, do_tty_hangup
);
2951 mutex_init(&tty
->atomic_read_lock
);
2952 mutex_init(&tty
->atomic_write_lock
);
2953 mutex_init(&tty
->output_lock
);
2954 mutex_init(&tty
->echo_lock
);
2955 spin_lock_init(&tty
->read_lock
);
2956 spin_lock_init(&tty
->ctrl_lock
);
2957 INIT_LIST_HEAD(&tty
->tty_files
);
2958 INIT_WORK(&tty
->SAK_work
, do_SAK_work
);
2960 tty
->driver
= driver
;
2961 tty
->ops
= driver
->ops
;
2963 tty_line_name(driver
, idx
, tty
->name
);
2964 tty
->dev
= tty_get_device(tty
);
2968 * deinitialize_tty_struct
2969 * @tty: tty to deinitialize
2971 * This subroutine deinitializes a tty structure that has been newly
2972 * allocated but tty_release cannot be called on that yet.
2974 * Locking: none - tty in question must not be exposed at this point
2976 void deinitialize_tty_struct(struct tty_struct
*tty
)
2978 tty_ldisc_deinit(tty
);
2982 * tty_put_char - write one character to a tty
2986 * Write one byte to the tty using the provided put_char method
2987 * if present. Returns the number of characters successfully output.
2989 * Note: the specific put_char operation in the driver layer may go
2990 * away soon. Don't call it directly, use this method
2993 int tty_put_char(struct tty_struct
*tty
, unsigned char ch
)
2995 if (tty
->ops
->put_char
)
2996 return tty
->ops
->put_char(tty
, ch
);
2997 return tty
->ops
->write(tty
, &ch
, 1);
2999 EXPORT_SYMBOL_GPL(tty_put_char
);
3001 struct class *tty_class
;
3004 * tty_register_device - register a tty device
3005 * @driver: the tty driver that describes the tty device
3006 * @index: the index in the tty driver for this tty device
3007 * @device: a struct device that is associated with this tty device.
3008 * This field is optional, if there is no known struct device
3009 * for this tty device it can be set to NULL safely.
3011 * Returns a pointer to the struct device for this tty device
3012 * (or ERR_PTR(-EFOO) on error).
3014 * This call is required to be made to register an individual tty device
3015 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3016 * that bit is not set, this function should not be called by a tty
3022 struct device
*tty_register_device(struct tty_driver
*driver
, unsigned index
,
3023 struct device
*device
)
3026 dev_t dev
= MKDEV(driver
->major
, driver
->minor_start
) + index
;
3028 if (index
>= driver
->num
) {
3029 printk(KERN_ERR
"Attempt to register invalid tty line number "
3031 return ERR_PTR(-EINVAL
);
3034 if (driver
->type
== TTY_DRIVER_TYPE_PTY
)
3035 pty_line_name(driver
, index
, name
);
3037 tty_line_name(driver
, index
, name
);
3039 return device_create(tty_class
, device
, dev
, NULL
, name
);
3041 EXPORT_SYMBOL(tty_register_device
);
3044 * tty_unregister_device - unregister a tty device
3045 * @driver: the tty driver that describes the tty device
3046 * @index: the index in the tty driver for this tty device
3048 * If a tty device is registered with a call to tty_register_device() then
3049 * this function must be called when the tty device is gone.
3054 void tty_unregister_device(struct tty_driver
*driver
, unsigned index
)
3056 device_destroy(tty_class
,
3057 MKDEV(driver
->major
, driver
->minor_start
) + index
);
3059 EXPORT_SYMBOL(tty_unregister_device
);
3061 struct tty_driver
*alloc_tty_driver(int lines
)
3063 struct tty_driver
*driver
;
3065 driver
= kzalloc(sizeof(struct tty_driver
), GFP_KERNEL
);
3067 kref_init(&driver
->kref
);
3068 driver
->magic
= TTY_DRIVER_MAGIC
;
3069 driver
->num
= lines
;
3070 /* later we'll move allocation of tables here */
3074 EXPORT_SYMBOL(alloc_tty_driver
);
3076 static void destruct_tty_driver(struct kref
*kref
)
3078 struct tty_driver
*driver
= container_of(kref
, struct tty_driver
, kref
);
3080 struct ktermios
*tp
;
3083 if (driver
->flags
& TTY_DRIVER_INSTALLED
) {
3085 * Free the termios and termios_locked structures because
3086 * we don't want to get memory leaks when modular tty
3087 * drivers are removed from the kernel.
3089 for (i
= 0; i
< driver
->num
; i
++) {
3090 tp
= driver
->termios
[i
];
3092 driver
->termios
[i
] = NULL
;
3095 if (!(driver
->flags
& TTY_DRIVER_DYNAMIC_DEV
))
3096 tty_unregister_device(driver
, i
);
3099 proc_tty_unregister_driver(driver
);
3100 driver
->ttys
= NULL
;
3101 driver
->termios
= NULL
;
3103 cdev_del(&driver
->cdev
);
3108 void tty_driver_kref_put(struct tty_driver
*driver
)
3110 kref_put(&driver
->kref
, destruct_tty_driver
);
3112 EXPORT_SYMBOL(tty_driver_kref_put
);
3114 void tty_set_operations(struct tty_driver
*driver
,
3115 const struct tty_operations
*op
)
3119 EXPORT_SYMBOL(tty_set_operations
);
3121 void put_tty_driver(struct tty_driver
*d
)
3123 tty_driver_kref_put(d
);
3125 EXPORT_SYMBOL(put_tty_driver
);
3128 * Called by a tty driver to register itself.
3130 int tty_register_driver(struct tty_driver
*driver
)
3138 if (!(driver
->flags
& TTY_DRIVER_DEVPTS_MEM
) && driver
->num
) {
3139 p
= kzalloc(driver
->num
* 2 * sizeof(void *), GFP_KERNEL
);
3144 if (!driver
->major
) {
3145 error
= alloc_chrdev_region(&dev
, driver
->minor_start
,
3146 driver
->num
, driver
->name
);
3148 driver
->major
= MAJOR(dev
);
3149 driver
->minor_start
= MINOR(dev
);
3152 dev
= MKDEV(driver
->major
, driver
->minor_start
);
3153 error
= register_chrdev_region(dev
, driver
->num
, driver
->name
);
3161 driver
->ttys
= (struct tty_struct
**)p
;
3162 driver
->termios
= (struct ktermios
**)(p
+ driver
->num
);
3164 driver
->ttys
= NULL
;
3165 driver
->termios
= NULL
;
3168 cdev_init(&driver
->cdev
, &tty_fops
);
3169 driver
->cdev
.owner
= driver
->owner
;
3170 error
= cdev_add(&driver
->cdev
, dev
, driver
->num
);
3172 unregister_chrdev_region(dev
, driver
->num
);
3173 driver
->ttys
= NULL
;
3174 driver
->termios
= NULL
;
3179 mutex_lock(&tty_mutex
);
3180 list_add(&driver
->tty_drivers
, &tty_drivers
);
3181 mutex_unlock(&tty_mutex
);
3183 if (!(driver
->flags
& TTY_DRIVER_DYNAMIC_DEV
)) {
3184 for (i
= 0; i
< driver
->num
; i
++) {
3185 d
= tty_register_device(driver
, i
, NULL
);
3192 proc_tty_register_driver(driver
);
3193 driver
->flags
|= TTY_DRIVER_INSTALLED
;
3197 for (i
--; i
>= 0; i
--)
3198 tty_unregister_device(driver
, i
);
3200 mutex_lock(&tty_mutex
);
3201 list_del(&driver
->tty_drivers
);
3202 mutex_unlock(&tty_mutex
);
3204 unregister_chrdev_region(dev
, driver
->num
);
3205 driver
->ttys
= NULL
;
3206 driver
->termios
= NULL
;
3211 EXPORT_SYMBOL(tty_register_driver
);
3214 * Called by a tty driver to unregister itself.
3216 int tty_unregister_driver(struct tty_driver
*driver
)
3220 if (driver
->refcount
)
3223 unregister_chrdev_region(MKDEV(driver
->major
, driver
->minor_start
),
3225 mutex_lock(&tty_mutex
);
3226 list_del(&driver
->tty_drivers
);
3227 mutex_unlock(&tty_mutex
);
3231 EXPORT_SYMBOL(tty_unregister_driver
);
3233 dev_t
tty_devnum(struct tty_struct
*tty
)
3235 return MKDEV(tty
->driver
->major
, tty
->driver
->minor_start
) + tty
->index
;
3237 EXPORT_SYMBOL(tty_devnum
);
3239 void proc_clear_tty(struct task_struct
*p
)
3241 unsigned long flags
;
3242 struct tty_struct
*tty
;
3243 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
3244 tty
= p
->signal
->tty
;
3245 p
->signal
->tty
= NULL
;
3246 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
3250 /* Called under the sighand lock */
3252 static void __proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
)
3255 unsigned long flags
;
3256 /* We should not have a session or pgrp to put here but.... */
3257 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
3258 put_pid(tty
->session
);
3260 tty
->pgrp
= get_pid(task_pgrp(tsk
));
3261 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
3262 tty
->session
= get_pid(task_session(tsk
));
3263 if (tsk
->signal
->tty
) {
3264 printk(KERN_DEBUG
"tty not NULL!!\n");
3265 tty_kref_put(tsk
->signal
->tty
);
3268 put_pid(tsk
->signal
->tty_old_pgrp
);
3269 tsk
->signal
->tty
= tty_kref_get(tty
);
3270 tsk
->signal
->tty_old_pgrp
= NULL
;
3273 static void proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
)
3275 spin_lock_irq(&tsk
->sighand
->siglock
);
3276 __proc_set_tty(tsk
, tty
);
3277 spin_unlock_irq(&tsk
->sighand
->siglock
);
3280 struct tty_struct
*get_current_tty(void)
3282 struct tty_struct
*tty
;
3283 unsigned long flags
;
3285 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
3286 tty
= tty_kref_get(current
->signal
->tty
);
3287 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
3290 EXPORT_SYMBOL_GPL(get_current_tty
);
3292 void tty_default_fops(struct file_operations
*fops
)
3298 * Initialize the console device. This is called *early*, so
3299 * we can't necessarily depend on lots of kernel help here.
3300 * Just do some early initializations, and do the complex setup
3303 void __init
console_init(void)
3307 /* Setup the default TTY line discipline. */
3311 * set up the console device so that later boot sequences can
3312 * inform about problems etc..
3314 call
= __con_initcall_start
;
3315 while (call
< __con_initcall_end
) {
3321 static char *tty_devnode(struct device
*dev
, umode_t
*mode
)
3325 if (dev
->devt
== MKDEV(TTYAUX_MAJOR
, 0) ||
3326 dev
->devt
== MKDEV(TTYAUX_MAJOR
, 2))
3331 static int __init
tty_class_init(void)
3333 tty_class
= class_create(THIS_MODULE
, "tty");
3334 if (IS_ERR(tty_class
))
3335 return PTR_ERR(tty_class
);
3336 tty_class
->devnode
= tty_devnode
;
3340 postcore_initcall(tty_class_init
);
3342 /* 3/2004 jmc: why do these devices exist? */
3343 static struct cdev tty_cdev
, console_cdev
;
3345 static ssize_t
show_cons_active(struct device
*dev
,
3346 struct device_attribute
*attr
, char *buf
)
3348 struct console
*cs
[16];
3354 for_each_console(c
) {
3359 if ((c
->flags
& CON_ENABLED
) == 0)
3362 if (i
>= ARRAY_SIZE(cs
))
3366 count
+= sprintf(buf
+ count
, "%s%d%c",
3367 cs
[i
]->name
, cs
[i
]->index
, i
? ' ':'\n');
3372 static DEVICE_ATTR(active
, S_IRUGO
, show_cons_active
, NULL
);
3374 static struct device
*consdev
;
3376 void console_sysfs_notify(void)
3379 sysfs_notify(&consdev
->kobj
, NULL
, "active");
3383 * Ok, now we can initialize the rest of the tty devices and can count
3384 * on memory allocations, interrupts etc..
3386 int __init
tty_init(void)
3388 cdev_init(&tty_cdev
, &tty_fops
);
3389 if (cdev_add(&tty_cdev
, MKDEV(TTYAUX_MAJOR
, 0), 1) ||
3390 register_chrdev_region(MKDEV(TTYAUX_MAJOR
, 0), 1, "/dev/tty") < 0)
3391 panic("Couldn't register /dev/tty driver\n");
3392 device_create(tty_class
, NULL
, MKDEV(TTYAUX_MAJOR
, 0), NULL
, "tty");
3394 cdev_init(&console_cdev
, &console_fops
);
3395 if (cdev_add(&console_cdev
, MKDEV(TTYAUX_MAJOR
, 1), 1) ||
3396 register_chrdev_region(MKDEV(TTYAUX_MAJOR
, 1), 1, "/dev/console") < 0)
3397 panic("Couldn't register /dev/console driver\n");
3398 consdev
= device_create(tty_class
, NULL
, MKDEV(TTYAUX_MAJOR
, 1), NULL
,
3400 if (IS_ERR(consdev
))
3403 WARN_ON(device_create_file(consdev
, &dev_attr_active
) < 0);
3406 vty_init(&console_fops
);