drivers/message/i2o/i2o_config.c: use memdup_user
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / nommu.c
blobb76f3ee0abe015a85f36ff4b2599cff21d3c3efd
1 /*
2 * linux/mm/nommu.c
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
39 static inline __attribute__((format(printf, 1, 2)))
40 void no_printk(const char *fmt, ...)
44 #if 0
45 #define kenter(FMT, ...) \
46 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
47 #define kleave(FMT, ...) \
48 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
49 #define kdebug(FMT, ...) \
50 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
51 #else
52 #define kenter(FMT, ...) \
53 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
54 #define kleave(FMT, ...) \
55 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
56 #define kdebug(FMT, ...) \
57 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
58 #endif
60 void *high_memory;
61 struct page *mem_map;
62 unsigned long max_mapnr;
63 unsigned long num_physpages;
64 unsigned long highest_memmap_pfn;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70 int heap_stack_gap = 0;
72 atomic_long_t mmap_pages_allocated;
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
82 const struct vm_operations_struct generic_file_vm_ops = {
86 * Return the total memory allocated for this pointer, not
87 * just what the caller asked for.
89 * Doesn't have to be accurate, i.e. may have races.
91 unsigned int kobjsize(const void *objp)
93 struct page *page;
96 * If the object we have should not have ksize performed on it,
97 * return size of 0
99 if (!objp || !virt_addr_valid(objp))
100 return 0;
102 page = virt_to_head_page(objp);
105 * If the allocator sets PageSlab, we know the pointer came from
106 * kmalloc().
108 if (PageSlab(page))
109 return ksize(objp);
112 * If it's not a compound page, see if we have a matching VMA
113 * region. This test is intentionally done in reverse order,
114 * so if there's no VMA, we still fall through and hand back
115 * PAGE_SIZE for 0-order pages.
117 if (!PageCompound(page)) {
118 struct vm_area_struct *vma;
120 vma = find_vma(current->mm, (unsigned long)objp);
121 if (vma)
122 return vma->vm_end - vma->vm_start;
126 * The ksize() function is only guaranteed to work for pointers
127 * returned by kmalloc(). So handle arbitrary pointers here.
129 return PAGE_SIZE << compound_order(page);
132 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
133 unsigned long start, int nr_pages, unsigned int foll_flags,
134 struct page **pages, struct vm_area_struct **vmas)
136 struct vm_area_struct *vma;
137 unsigned long vm_flags;
138 int i;
140 /* calculate required read or write permissions.
141 * If FOLL_FORCE is set, we only require the "MAY" flags.
143 vm_flags = (foll_flags & FOLL_WRITE) ?
144 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
145 vm_flags &= (foll_flags & FOLL_FORCE) ?
146 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
148 for (i = 0; i < nr_pages; i++) {
149 vma = find_vma(mm, start);
150 if (!vma)
151 goto finish_or_fault;
153 /* protect what we can, including chardevs */
154 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
155 !(vm_flags & vma->vm_flags))
156 goto finish_or_fault;
158 if (pages) {
159 pages[i] = virt_to_page(start);
160 if (pages[i])
161 page_cache_get(pages[i]);
163 if (vmas)
164 vmas[i] = vma;
165 start = (start + PAGE_SIZE) & PAGE_MASK;
168 return i;
170 finish_or_fault:
171 return i ? : -EFAULT;
175 * get a list of pages in an address range belonging to the specified process
176 * and indicate the VMA that covers each page
177 * - this is potentially dodgy as we may end incrementing the page count of a
178 * slab page or a secondary page from a compound page
179 * - don't permit access to VMAs that don't support it, such as I/O mappings
181 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
182 unsigned long start, int nr_pages, int write, int force,
183 struct page **pages, struct vm_area_struct **vmas)
185 int flags = 0;
187 if (write)
188 flags |= FOLL_WRITE;
189 if (force)
190 flags |= FOLL_FORCE;
192 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
194 EXPORT_SYMBOL(get_user_pages);
197 * follow_pfn - look up PFN at a user virtual address
198 * @vma: memory mapping
199 * @address: user virtual address
200 * @pfn: location to store found PFN
202 * Only IO mappings and raw PFN mappings are allowed.
204 * Returns zero and the pfn at @pfn on success, -ve otherwise.
206 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
207 unsigned long *pfn)
209 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
210 return -EINVAL;
212 *pfn = address >> PAGE_SHIFT;
213 return 0;
215 EXPORT_SYMBOL(follow_pfn);
217 DEFINE_RWLOCK(vmlist_lock);
218 struct vm_struct *vmlist;
220 void vfree(const void *addr)
222 kfree(addr);
224 EXPORT_SYMBOL(vfree);
226 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
229 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
230 * returns only a logical address.
232 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
234 EXPORT_SYMBOL(__vmalloc);
236 void *vmalloc_user(unsigned long size)
238 void *ret;
240 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
241 PAGE_KERNEL);
242 if (ret) {
243 struct vm_area_struct *vma;
245 down_write(&current->mm->mmap_sem);
246 vma = find_vma(current->mm, (unsigned long)ret);
247 if (vma)
248 vma->vm_flags |= VM_USERMAP;
249 up_write(&current->mm->mmap_sem);
252 return ret;
254 EXPORT_SYMBOL(vmalloc_user);
256 struct page *vmalloc_to_page(const void *addr)
258 return virt_to_page(addr);
260 EXPORT_SYMBOL(vmalloc_to_page);
262 unsigned long vmalloc_to_pfn(const void *addr)
264 return page_to_pfn(virt_to_page(addr));
266 EXPORT_SYMBOL(vmalloc_to_pfn);
268 long vread(char *buf, char *addr, unsigned long count)
270 memcpy(buf, addr, count);
271 return count;
274 long vwrite(char *buf, char *addr, unsigned long count)
276 /* Don't allow overflow */
277 if ((unsigned long) addr + count < count)
278 count = -(unsigned long) addr;
280 memcpy(addr, buf, count);
281 return(count);
285 * vmalloc - allocate virtually continguos memory
287 * @size: allocation size
289 * Allocate enough pages to cover @size from the page level
290 * allocator and map them into continguos kernel virtual space.
292 * For tight control over page level allocator and protection flags
293 * use __vmalloc() instead.
295 void *vmalloc(unsigned long size)
297 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
299 EXPORT_SYMBOL(vmalloc);
301 void *vmalloc_node(unsigned long size, int node)
303 return vmalloc(size);
305 EXPORT_SYMBOL(vmalloc_node);
307 #ifndef PAGE_KERNEL_EXEC
308 # define PAGE_KERNEL_EXEC PAGE_KERNEL
309 #endif
312 * vmalloc_exec - allocate virtually contiguous, executable memory
313 * @size: allocation size
315 * Kernel-internal function to allocate enough pages to cover @size
316 * the page level allocator and map them into contiguous and
317 * executable kernel virtual space.
319 * For tight control over page level allocator and protection flags
320 * use __vmalloc() instead.
323 void *vmalloc_exec(unsigned long size)
325 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
329 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
330 * @size: allocation size
332 * Allocate enough 32bit PA addressable pages to cover @size from the
333 * page level allocator and map them into continguos kernel virtual space.
335 void *vmalloc_32(unsigned long size)
337 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
339 EXPORT_SYMBOL(vmalloc_32);
342 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
343 * @size: allocation size
345 * The resulting memory area is 32bit addressable and zeroed so it can be
346 * mapped to userspace without leaking data.
348 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
349 * remap_vmalloc_range() are permissible.
351 void *vmalloc_32_user(unsigned long size)
354 * We'll have to sort out the ZONE_DMA bits for 64-bit,
355 * but for now this can simply use vmalloc_user() directly.
357 return vmalloc_user(size);
359 EXPORT_SYMBOL(vmalloc_32_user);
361 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
363 BUG();
364 return NULL;
366 EXPORT_SYMBOL(vmap);
368 void vunmap(const void *addr)
370 BUG();
372 EXPORT_SYMBOL(vunmap);
374 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
376 BUG();
377 return NULL;
379 EXPORT_SYMBOL(vm_map_ram);
381 void vm_unmap_ram(const void *mem, unsigned int count)
383 BUG();
385 EXPORT_SYMBOL(vm_unmap_ram);
387 void vm_unmap_aliases(void)
390 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
393 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
394 * have one.
396 void __attribute__((weak)) vmalloc_sync_all(void)
400 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
401 struct page *page)
403 return -EINVAL;
405 EXPORT_SYMBOL(vm_insert_page);
408 * sys_brk() for the most part doesn't need the global kernel
409 * lock, except when an application is doing something nasty
410 * like trying to un-brk an area that has already been mapped
411 * to a regular file. in this case, the unmapping will need
412 * to invoke file system routines that need the global lock.
414 SYSCALL_DEFINE1(brk, unsigned long, brk)
416 struct mm_struct *mm = current->mm;
418 if (brk < mm->start_brk || brk > mm->context.end_brk)
419 return mm->brk;
421 if (mm->brk == brk)
422 return mm->brk;
425 * Always allow shrinking brk
427 if (brk <= mm->brk) {
428 mm->brk = brk;
429 return brk;
433 * Ok, looks good - let it rip.
435 flush_icache_range(mm->brk, brk);
436 return mm->brk = brk;
440 * initialise the VMA and region record slabs
442 void __init mmap_init(void)
444 int ret;
446 ret = percpu_counter_init(&vm_committed_as, 0);
447 VM_BUG_ON(ret);
448 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
452 * validate the region tree
453 * - the caller must hold the region lock
455 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
456 static noinline void validate_nommu_regions(void)
458 struct vm_region *region, *last;
459 struct rb_node *p, *lastp;
461 lastp = rb_first(&nommu_region_tree);
462 if (!lastp)
463 return;
465 last = rb_entry(lastp, struct vm_region, vm_rb);
466 BUG_ON(unlikely(last->vm_end <= last->vm_start));
467 BUG_ON(unlikely(last->vm_top < last->vm_end));
469 while ((p = rb_next(lastp))) {
470 region = rb_entry(p, struct vm_region, vm_rb);
471 last = rb_entry(lastp, struct vm_region, vm_rb);
473 BUG_ON(unlikely(region->vm_end <= region->vm_start));
474 BUG_ON(unlikely(region->vm_top < region->vm_end));
475 BUG_ON(unlikely(region->vm_start < last->vm_top));
477 lastp = p;
480 #else
481 static void validate_nommu_regions(void)
484 #endif
487 * add a region into the global tree
489 static void add_nommu_region(struct vm_region *region)
491 struct vm_region *pregion;
492 struct rb_node **p, *parent;
494 validate_nommu_regions();
496 parent = NULL;
497 p = &nommu_region_tree.rb_node;
498 while (*p) {
499 parent = *p;
500 pregion = rb_entry(parent, struct vm_region, vm_rb);
501 if (region->vm_start < pregion->vm_start)
502 p = &(*p)->rb_left;
503 else if (region->vm_start > pregion->vm_start)
504 p = &(*p)->rb_right;
505 else if (pregion == region)
506 return;
507 else
508 BUG();
511 rb_link_node(&region->vm_rb, parent, p);
512 rb_insert_color(&region->vm_rb, &nommu_region_tree);
514 validate_nommu_regions();
518 * delete a region from the global tree
520 static void delete_nommu_region(struct vm_region *region)
522 BUG_ON(!nommu_region_tree.rb_node);
524 validate_nommu_regions();
525 rb_erase(&region->vm_rb, &nommu_region_tree);
526 validate_nommu_regions();
530 * free a contiguous series of pages
532 static void free_page_series(unsigned long from, unsigned long to)
534 for (; from < to; from += PAGE_SIZE) {
535 struct page *page = virt_to_page(from);
537 kdebug("- free %lx", from);
538 atomic_long_dec(&mmap_pages_allocated);
539 if (page_count(page) != 1)
540 kdebug("free page %p: refcount not one: %d",
541 page, page_count(page));
542 put_page(page);
547 * release a reference to a region
548 * - the caller must hold the region semaphore for writing, which this releases
549 * - the region may not have been added to the tree yet, in which case vm_top
550 * will equal vm_start
552 static void __put_nommu_region(struct vm_region *region)
553 __releases(nommu_region_sem)
555 kenter("%p{%d}", region, region->vm_usage);
557 BUG_ON(!nommu_region_tree.rb_node);
559 if (--region->vm_usage == 0) {
560 if (region->vm_top > region->vm_start)
561 delete_nommu_region(region);
562 up_write(&nommu_region_sem);
564 if (region->vm_file)
565 fput(region->vm_file);
567 /* IO memory and memory shared directly out of the pagecache
568 * from ramfs/tmpfs mustn't be released here */
569 if (region->vm_flags & VM_MAPPED_COPY) {
570 kdebug("free series");
571 free_page_series(region->vm_start, region->vm_top);
573 kmem_cache_free(vm_region_jar, region);
574 } else {
575 up_write(&nommu_region_sem);
580 * release a reference to a region
582 static void put_nommu_region(struct vm_region *region)
584 down_write(&nommu_region_sem);
585 __put_nommu_region(region);
589 * update protection on a vma
591 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
593 #ifdef CONFIG_MPU
594 struct mm_struct *mm = vma->vm_mm;
595 long start = vma->vm_start & PAGE_MASK;
596 while (start < vma->vm_end) {
597 protect_page(mm, start, flags);
598 start += PAGE_SIZE;
600 update_protections(mm);
601 #endif
605 * add a VMA into a process's mm_struct in the appropriate place in the list
606 * and tree and add to the address space's page tree also if not an anonymous
607 * page
608 * - should be called with mm->mmap_sem held writelocked
610 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
612 struct vm_area_struct *pvma, **pp;
613 struct address_space *mapping;
614 struct rb_node **p, *parent;
616 kenter(",%p", vma);
618 BUG_ON(!vma->vm_region);
620 mm->map_count++;
621 vma->vm_mm = mm;
623 protect_vma(vma, vma->vm_flags);
625 /* add the VMA to the mapping */
626 if (vma->vm_file) {
627 mapping = vma->vm_file->f_mapping;
629 flush_dcache_mmap_lock(mapping);
630 vma_prio_tree_insert(vma, &mapping->i_mmap);
631 flush_dcache_mmap_unlock(mapping);
634 /* add the VMA to the tree */
635 parent = NULL;
636 p = &mm->mm_rb.rb_node;
637 while (*p) {
638 parent = *p;
639 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
641 /* sort by: start addr, end addr, VMA struct addr in that order
642 * (the latter is necessary as we may get identical VMAs) */
643 if (vma->vm_start < pvma->vm_start)
644 p = &(*p)->rb_left;
645 else if (vma->vm_start > pvma->vm_start)
646 p = &(*p)->rb_right;
647 else if (vma->vm_end < pvma->vm_end)
648 p = &(*p)->rb_left;
649 else if (vma->vm_end > pvma->vm_end)
650 p = &(*p)->rb_right;
651 else if (vma < pvma)
652 p = &(*p)->rb_left;
653 else if (vma > pvma)
654 p = &(*p)->rb_right;
655 else
656 BUG();
659 rb_link_node(&vma->vm_rb, parent, p);
660 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
662 /* add VMA to the VMA list also */
663 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
664 if (pvma->vm_start > vma->vm_start)
665 break;
666 if (pvma->vm_start < vma->vm_start)
667 continue;
668 if (pvma->vm_end < vma->vm_end)
669 break;
672 vma->vm_next = *pp;
673 *pp = vma;
677 * delete a VMA from its owning mm_struct and address space
679 static void delete_vma_from_mm(struct vm_area_struct *vma)
681 struct vm_area_struct **pp;
682 struct address_space *mapping;
683 struct mm_struct *mm = vma->vm_mm;
685 kenter("%p", vma);
687 protect_vma(vma, 0);
689 mm->map_count--;
690 if (mm->mmap_cache == vma)
691 mm->mmap_cache = NULL;
693 /* remove the VMA from the mapping */
694 if (vma->vm_file) {
695 mapping = vma->vm_file->f_mapping;
697 flush_dcache_mmap_lock(mapping);
698 vma_prio_tree_remove(vma, &mapping->i_mmap);
699 flush_dcache_mmap_unlock(mapping);
702 /* remove from the MM's tree and list */
703 rb_erase(&vma->vm_rb, &mm->mm_rb);
704 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
705 if (*pp == vma) {
706 *pp = vma->vm_next;
707 break;
711 vma->vm_mm = NULL;
715 * destroy a VMA record
717 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
719 kenter("%p", vma);
720 if (vma->vm_ops && vma->vm_ops->close)
721 vma->vm_ops->close(vma);
722 if (vma->vm_file) {
723 fput(vma->vm_file);
724 if (vma->vm_flags & VM_EXECUTABLE)
725 removed_exe_file_vma(mm);
727 put_nommu_region(vma->vm_region);
728 kmem_cache_free(vm_area_cachep, vma);
732 * look up the first VMA in which addr resides, NULL if none
733 * - should be called with mm->mmap_sem at least held readlocked
735 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
737 struct vm_area_struct *vma;
738 struct rb_node *n = mm->mm_rb.rb_node;
740 /* check the cache first */
741 vma = mm->mmap_cache;
742 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
743 return vma;
745 /* trawl the tree (there may be multiple mappings in which addr
746 * resides) */
747 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
748 vma = rb_entry(n, struct vm_area_struct, vm_rb);
749 if (vma->vm_start > addr)
750 return NULL;
751 if (vma->vm_end > addr) {
752 mm->mmap_cache = vma;
753 return vma;
757 return NULL;
759 EXPORT_SYMBOL(find_vma);
762 * find a VMA
763 * - we don't extend stack VMAs under NOMMU conditions
765 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
767 return find_vma(mm, addr);
771 * expand a stack to a given address
772 * - not supported under NOMMU conditions
774 int expand_stack(struct vm_area_struct *vma, unsigned long address)
776 return -ENOMEM;
780 * look up the first VMA exactly that exactly matches addr
781 * - should be called with mm->mmap_sem at least held readlocked
783 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
784 unsigned long addr,
785 unsigned long len)
787 struct vm_area_struct *vma;
788 struct rb_node *n = mm->mm_rb.rb_node;
789 unsigned long end = addr + len;
791 /* check the cache first */
792 vma = mm->mmap_cache;
793 if (vma && vma->vm_start == addr && vma->vm_end == end)
794 return vma;
796 /* trawl the tree (there may be multiple mappings in which addr
797 * resides) */
798 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
799 vma = rb_entry(n, struct vm_area_struct, vm_rb);
800 if (vma->vm_start < addr)
801 continue;
802 if (vma->vm_start > addr)
803 return NULL;
804 if (vma->vm_end == end) {
805 mm->mmap_cache = vma;
806 return vma;
810 return NULL;
814 * determine whether a mapping should be permitted and, if so, what sort of
815 * mapping we're capable of supporting
817 static int validate_mmap_request(struct file *file,
818 unsigned long addr,
819 unsigned long len,
820 unsigned long prot,
821 unsigned long flags,
822 unsigned long pgoff,
823 unsigned long *_capabilities)
825 unsigned long capabilities, rlen;
826 unsigned long reqprot = prot;
827 int ret;
829 /* do the simple checks first */
830 if (flags & MAP_FIXED) {
831 printk(KERN_DEBUG
832 "%d: Can't do fixed-address/overlay mmap of RAM\n",
833 current->pid);
834 return -EINVAL;
837 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
838 (flags & MAP_TYPE) != MAP_SHARED)
839 return -EINVAL;
841 if (!len)
842 return -EINVAL;
844 /* Careful about overflows.. */
845 rlen = PAGE_ALIGN(len);
846 if (!rlen || rlen > TASK_SIZE)
847 return -ENOMEM;
849 /* offset overflow? */
850 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
851 return -EOVERFLOW;
853 if (file) {
854 /* validate file mapping requests */
855 struct address_space *mapping;
857 /* files must support mmap */
858 if (!file->f_op || !file->f_op->mmap)
859 return -ENODEV;
861 /* work out if what we've got could possibly be shared
862 * - we support chardevs that provide their own "memory"
863 * - we support files/blockdevs that are memory backed
865 mapping = file->f_mapping;
866 if (!mapping)
867 mapping = file->f_path.dentry->d_inode->i_mapping;
869 capabilities = 0;
870 if (mapping && mapping->backing_dev_info)
871 capabilities = mapping->backing_dev_info->capabilities;
873 if (!capabilities) {
874 /* no explicit capabilities set, so assume some
875 * defaults */
876 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
877 case S_IFREG:
878 case S_IFBLK:
879 capabilities = BDI_CAP_MAP_COPY;
880 break;
882 case S_IFCHR:
883 capabilities =
884 BDI_CAP_MAP_DIRECT |
885 BDI_CAP_READ_MAP |
886 BDI_CAP_WRITE_MAP;
887 break;
889 default:
890 return -EINVAL;
894 /* eliminate any capabilities that we can't support on this
895 * device */
896 if (!file->f_op->get_unmapped_area)
897 capabilities &= ~BDI_CAP_MAP_DIRECT;
898 if (!file->f_op->read)
899 capabilities &= ~BDI_CAP_MAP_COPY;
901 /* The file shall have been opened with read permission. */
902 if (!(file->f_mode & FMODE_READ))
903 return -EACCES;
905 if (flags & MAP_SHARED) {
906 /* do checks for writing, appending and locking */
907 if ((prot & PROT_WRITE) &&
908 !(file->f_mode & FMODE_WRITE))
909 return -EACCES;
911 if (IS_APPEND(file->f_path.dentry->d_inode) &&
912 (file->f_mode & FMODE_WRITE))
913 return -EACCES;
915 if (locks_verify_locked(file->f_path.dentry->d_inode))
916 return -EAGAIN;
918 if (!(capabilities & BDI_CAP_MAP_DIRECT))
919 return -ENODEV;
921 /* we mustn't privatise shared mappings */
922 capabilities &= ~BDI_CAP_MAP_COPY;
924 else {
925 /* we're going to read the file into private memory we
926 * allocate */
927 if (!(capabilities & BDI_CAP_MAP_COPY))
928 return -ENODEV;
930 /* we don't permit a private writable mapping to be
931 * shared with the backing device */
932 if (prot & PROT_WRITE)
933 capabilities &= ~BDI_CAP_MAP_DIRECT;
936 if (capabilities & BDI_CAP_MAP_DIRECT) {
937 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
938 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
939 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
941 capabilities &= ~BDI_CAP_MAP_DIRECT;
942 if (flags & MAP_SHARED) {
943 printk(KERN_WARNING
944 "MAP_SHARED not completely supported on !MMU\n");
945 return -EINVAL;
950 /* handle executable mappings and implied executable
951 * mappings */
952 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
953 if (prot & PROT_EXEC)
954 return -EPERM;
956 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
957 /* handle implication of PROT_EXEC by PROT_READ */
958 if (current->personality & READ_IMPLIES_EXEC) {
959 if (capabilities & BDI_CAP_EXEC_MAP)
960 prot |= PROT_EXEC;
963 else if ((prot & PROT_READ) &&
964 (prot & PROT_EXEC) &&
965 !(capabilities & BDI_CAP_EXEC_MAP)
967 /* backing file is not executable, try to copy */
968 capabilities &= ~BDI_CAP_MAP_DIRECT;
971 else {
972 /* anonymous mappings are always memory backed and can be
973 * privately mapped
975 capabilities = BDI_CAP_MAP_COPY;
977 /* handle PROT_EXEC implication by PROT_READ */
978 if ((prot & PROT_READ) &&
979 (current->personality & READ_IMPLIES_EXEC))
980 prot |= PROT_EXEC;
983 /* allow the security API to have its say */
984 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
985 if (ret < 0)
986 return ret;
988 /* looks okay */
989 *_capabilities = capabilities;
990 return 0;
994 * we've determined that we can make the mapping, now translate what we
995 * now know into VMA flags
997 static unsigned long determine_vm_flags(struct file *file,
998 unsigned long prot,
999 unsigned long flags,
1000 unsigned long capabilities)
1002 unsigned long vm_flags;
1004 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1005 /* vm_flags |= mm->def_flags; */
1007 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1008 /* attempt to share read-only copies of mapped file chunks */
1009 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1010 if (file && !(prot & PROT_WRITE))
1011 vm_flags |= VM_MAYSHARE;
1012 } else {
1013 /* overlay a shareable mapping on the backing device or inode
1014 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1015 * romfs/cramfs */
1016 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1017 if (flags & MAP_SHARED)
1018 vm_flags |= VM_SHARED;
1021 /* refuse to let anyone share private mappings with this process if
1022 * it's being traced - otherwise breakpoints set in it may interfere
1023 * with another untraced process
1025 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1026 vm_flags &= ~VM_MAYSHARE;
1028 return vm_flags;
1032 * set up a shared mapping on a file (the driver or filesystem provides and
1033 * pins the storage)
1035 static int do_mmap_shared_file(struct vm_area_struct *vma)
1037 int ret;
1039 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1040 if (ret == 0) {
1041 vma->vm_region->vm_top = vma->vm_region->vm_end;
1042 return 0;
1044 if (ret != -ENOSYS)
1045 return ret;
1047 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1048 * opposed to tried but failed) so we can only give a suitable error as
1049 * it's not possible to make a private copy if MAP_SHARED was given */
1050 return -ENODEV;
1054 * set up a private mapping or an anonymous shared mapping
1056 static int do_mmap_private(struct vm_area_struct *vma,
1057 struct vm_region *region,
1058 unsigned long len,
1059 unsigned long capabilities)
1061 struct page *pages;
1062 unsigned long total, point, n, rlen;
1063 void *base;
1064 int ret, order;
1066 /* invoke the file's mapping function so that it can keep track of
1067 * shared mappings on devices or memory
1068 * - VM_MAYSHARE will be set if it may attempt to share
1070 if (capabilities & BDI_CAP_MAP_DIRECT) {
1071 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1072 if (ret == 0) {
1073 /* shouldn't return success if we're not sharing */
1074 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1075 vma->vm_region->vm_top = vma->vm_region->vm_end;
1076 return 0;
1078 if (ret != -ENOSYS)
1079 return ret;
1081 /* getting an ENOSYS error indicates that direct mmap isn't
1082 * possible (as opposed to tried but failed) so we'll try to
1083 * make a private copy of the data and map that instead */
1086 rlen = PAGE_ALIGN(len);
1088 /* allocate some memory to hold the mapping
1089 * - note that this may not return a page-aligned address if the object
1090 * we're allocating is smaller than a page
1092 order = get_order(rlen);
1093 kdebug("alloc order %d for %lx", order, len);
1095 pages = alloc_pages(GFP_KERNEL, order);
1096 if (!pages)
1097 goto enomem;
1099 total = 1 << order;
1100 atomic_long_add(total, &mmap_pages_allocated);
1102 point = rlen >> PAGE_SHIFT;
1104 /* we allocated a power-of-2 sized page set, so we may want to trim off
1105 * the excess */
1106 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1107 while (total > point) {
1108 order = ilog2(total - point);
1109 n = 1 << order;
1110 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1111 atomic_long_sub(n, &mmap_pages_allocated);
1112 total -= n;
1113 set_page_refcounted(pages + total);
1114 __free_pages(pages + total, order);
1118 for (point = 1; point < total; point++)
1119 set_page_refcounted(&pages[point]);
1121 base = page_address(pages);
1122 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1123 region->vm_start = (unsigned long) base;
1124 region->vm_end = region->vm_start + rlen;
1125 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1127 vma->vm_start = region->vm_start;
1128 vma->vm_end = region->vm_start + len;
1130 if (vma->vm_file) {
1131 /* read the contents of a file into the copy */
1132 mm_segment_t old_fs;
1133 loff_t fpos;
1135 fpos = vma->vm_pgoff;
1136 fpos <<= PAGE_SHIFT;
1138 old_fs = get_fs();
1139 set_fs(KERNEL_DS);
1140 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1141 set_fs(old_fs);
1143 if (ret < 0)
1144 goto error_free;
1146 /* clear the last little bit */
1147 if (ret < rlen)
1148 memset(base + ret, 0, rlen - ret);
1152 return 0;
1154 error_free:
1155 free_page_series(region->vm_start, region->vm_end);
1156 region->vm_start = vma->vm_start = 0;
1157 region->vm_end = vma->vm_end = 0;
1158 region->vm_top = 0;
1159 return ret;
1161 enomem:
1162 printk("Allocation of length %lu from process %d (%s) failed\n",
1163 len, current->pid, current->comm);
1164 show_free_areas();
1165 return -ENOMEM;
1169 * handle mapping creation for uClinux
1171 unsigned long do_mmap_pgoff(struct file *file,
1172 unsigned long addr,
1173 unsigned long len,
1174 unsigned long prot,
1175 unsigned long flags,
1176 unsigned long pgoff)
1178 struct vm_area_struct *vma;
1179 struct vm_region *region;
1180 struct rb_node *rb;
1181 unsigned long capabilities, vm_flags, result;
1182 int ret;
1184 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1186 /* decide whether we should attempt the mapping, and if so what sort of
1187 * mapping */
1188 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1189 &capabilities);
1190 if (ret < 0) {
1191 kleave(" = %d [val]", ret);
1192 return ret;
1195 /* we ignore the address hint */
1196 addr = 0;
1198 /* we've determined that we can make the mapping, now translate what we
1199 * now know into VMA flags */
1200 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1202 /* we're going to need to record the mapping */
1203 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1204 if (!region)
1205 goto error_getting_region;
1207 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1208 if (!vma)
1209 goto error_getting_vma;
1211 region->vm_usage = 1;
1212 region->vm_flags = vm_flags;
1213 region->vm_pgoff = pgoff;
1215 INIT_LIST_HEAD(&vma->anon_vma_chain);
1216 vma->vm_flags = vm_flags;
1217 vma->vm_pgoff = pgoff;
1219 if (file) {
1220 region->vm_file = file;
1221 get_file(file);
1222 vma->vm_file = file;
1223 get_file(file);
1224 if (vm_flags & VM_EXECUTABLE) {
1225 added_exe_file_vma(current->mm);
1226 vma->vm_mm = current->mm;
1230 down_write(&nommu_region_sem);
1232 /* if we want to share, we need to check for regions created by other
1233 * mmap() calls that overlap with our proposed mapping
1234 * - we can only share with a superset match on most regular files
1235 * - shared mappings on character devices and memory backed files are
1236 * permitted to overlap inexactly as far as we are concerned for in
1237 * these cases, sharing is handled in the driver or filesystem rather
1238 * than here
1240 if (vm_flags & VM_MAYSHARE) {
1241 struct vm_region *pregion;
1242 unsigned long pglen, rpglen, pgend, rpgend, start;
1244 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1245 pgend = pgoff + pglen;
1247 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1248 pregion = rb_entry(rb, struct vm_region, vm_rb);
1250 if (!(pregion->vm_flags & VM_MAYSHARE))
1251 continue;
1253 /* search for overlapping mappings on the same file */
1254 if (pregion->vm_file->f_path.dentry->d_inode !=
1255 file->f_path.dentry->d_inode)
1256 continue;
1258 if (pregion->vm_pgoff >= pgend)
1259 continue;
1261 rpglen = pregion->vm_end - pregion->vm_start;
1262 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1263 rpgend = pregion->vm_pgoff + rpglen;
1264 if (pgoff >= rpgend)
1265 continue;
1267 /* handle inexactly overlapping matches between
1268 * mappings */
1269 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1270 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1271 /* new mapping is not a subset of the region */
1272 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1273 goto sharing_violation;
1274 continue;
1277 /* we've found a region we can share */
1278 pregion->vm_usage++;
1279 vma->vm_region = pregion;
1280 start = pregion->vm_start;
1281 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1282 vma->vm_start = start;
1283 vma->vm_end = start + len;
1285 if (pregion->vm_flags & VM_MAPPED_COPY) {
1286 kdebug("share copy");
1287 vma->vm_flags |= VM_MAPPED_COPY;
1288 } else {
1289 kdebug("share mmap");
1290 ret = do_mmap_shared_file(vma);
1291 if (ret < 0) {
1292 vma->vm_region = NULL;
1293 vma->vm_start = 0;
1294 vma->vm_end = 0;
1295 pregion->vm_usage--;
1296 pregion = NULL;
1297 goto error_just_free;
1300 fput(region->vm_file);
1301 kmem_cache_free(vm_region_jar, region);
1302 region = pregion;
1303 result = start;
1304 goto share;
1307 /* obtain the address at which to make a shared mapping
1308 * - this is the hook for quasi-memory character devices to
1309 * tell us the location of a shared mapping
1311 if (capabilities & BDI_CAP_MAP_DIRECT) {
1312 addr = file->f_op->get_unmapped_area(file, addr, len,
1313 pgoff, flags);
1314 if (IS_ERR((void *) addr)) {
1315 ret = addr;
1316 if (ret != (unsigned long) -ENOSYS)
1317 goto error_just_free;
1319 /* the driver refused to tell us where to site
1320 * the mapping so we'll have to attempt to copy
1321 * it */
1322 ret = (unsigned long) -ENODEV;
1323 if (!(capabilities & BDI_CAP_MAP_COPY))
1324 goto error_just_free;
1326 capabilities &= ~BDI_CAP_MAP_DIRECT;
1327 } else {
1328 vma->vm_start = region->vm_start = addr;
1329 vma->vm_end = region->vm_end = addr + len;
1334 vma->vm_region = region;
1336 /* set up the mapping
1337 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1339 if (file && vma->vm_flags & VM_SHARED)
1340 ret = do_mmap_shared_file(vma);
1341 else
1342 ret = do_mmap_private(vma, region, len, capabilities);
1343 if (ret < 0)
1344 goto error_just_free;
1345 add_nommu_region(region);
1347 /* clear anonymous mappings that don't ask for uninitialized data */
1348 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1349 memset((void *)region->vm_start, 0,
1350 region->vm_end - region->vm_start);
1352 /* okay... we have a mapping; now we have to register it */
1353 result = vma->vm_start;
1355 current->mm->total_vm += len >> PAGE_SHIFT;
1357 share:
1358 add_vma_to_mm(current->mm, vma);
1360 /* we flush the region from the icache only when the first executable
1361 * mapping of it is made */
1362 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1363 flush_icache_range(region->vm_start, region->vm_end);
1364 region->vm_icache_flushed = true;
1367 up_write(&nommu_region_sem);
1369 kleave(" = %lx", result);
1370 return result;
1372 error_just_free:
1373 up_write(&nommu_region_sem);
1374 error:
1375 if (region->vm_file)
1376 fput(region->vm_file);
1377 kmem_cache_free(vm_region_jar, region);
1378 if (vma->vm_file)
1379 fput(vma->vm_file);
1380 if (vma->vm_flags & VM_EXECUTABLE)
1381 removed_exe_file_vma(vma->vm_mm);
1382 kmem_cache_free(vm_area_cachep, vma);
1383 kleave(" = %d", ret);
1384 return ret;
1386 sharing_violation:
1387 up_write(&nommu_region_sem);
1388 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1389 ret = -EINVAL;
1390 goto error;
1392 error_getting_vma:
1393 kmem_cache_free(vm_region_jar, region);
1394 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1395 " from process %d failed\n",
1396 len, current->pid);
1397 show_free_areas();
1398 return -ENOMEM;
1400 error_getting_region:
1401 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1402 " from process %d failed\n",
1403 len, current->pid);
1404 show_free_areas();
1405 return -ENOMEM;
1407 EXPORT_SYMBOL(do_mmap_pgoff);
1409 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1410 unsigned long, prot, unsigned long, flags,
1411 unsigned long, fd, unsigned long, pgoff)
1413 struct file *file = NULL;
1414 unsigned long retval = -EBADF;
1416 if (!(flags & MAP_ANONYMOUS)) {
1417 file = fget(fd);
1418 if (!file)
1419 goto out;
1422 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1424 down_write(&current->mm->mmap_sem);
1425 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1426 up_write(&current->mm->mmap_sem);
1428 if (file)
1429 fput(file);
1430 out:
1431 return retval;
1434 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1435 struct mmap_arg_struct {
1436 unsigned long addr;
1437 unsigned long len;
1438 unsigned long prot;
1439 unsigned long flags;
1440 unsigned long fd;
1441 unsigned long offset;
1444 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1446 struct mmap_arg_struct a;
1448 if (copy_from_user(&a, arg, sizeof(a)))
1449 return -EFAULT;
1450 if (a.offset & ~PAGE_MASK)
1451 return -EINVAL;
1453 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1454 a.offset >> PAGE_SHIFT);
1456 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1459 * split a vma into two pieces at address 'addr', a new vma is allocated either
1460 * for the first part or the tail.
1462 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1463 unsigned long addr, int new_below)
1465 struct vm_area_struct *new;
1466 struct vm_region *region;
1467 unsigned long npages;
1469 kenter("");
1471 /* we're only permitted to split anonymous regions (these should have
1472 * only a single usage on the region) */
1473 if (vma->vm_file)
1474 return -ENOMEM;
1476 if (mm->map_count >= sysctl_max_map_count)
1477 return -ENOMEM;
1479 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1480 if (!region)
1481 return -ENOMEM;
1483 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1484 if (!new) {
1485 kmem_cache_free(vm_region_jar, region);
1486 return -ENOMEM;
1489 /* most fields are the same, copy all, and then fixup */
1490 *new = *vma;
1491 *region = *vma->vm_region;
1492 new->vm_region = region;
1494 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1496 if (new_below) {
1497 region->vm_top = region->vm_end = new->vm_end = addr;
1498 } else {
1499 region->vm_start = new->vm_start = addr;
1500 region->vm_pgoff = new->vm_pgoff += npages;
1503 if (new->vm_ops && new->vm_ops->open)
1504 new->vm_ops->open(new);
1506 delete_vma_from_mm(vma);
1507 down_write(&nommu_region_sem);
1508 delete_nommu_region(vma->vm_region);
1509 if (new_below) {
1510 vma->vm_region->vm_start = vma->vm_start = addr;
1511 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1512 } else {
1513 vma->vm_region->vm_end = vma->vm_end = addr;
1514 vma->vm_region->vm_top = addr;
1516 add_nommu_region(vma->vm_region);
1517 add_nommu_region(new->vm_region);
1518 up_write(&nommu_region_sem);
1519 add_vma_to_mm(mm, vma);
1520 add_vma_to_mm(mm, new);
1521 return 0;
1525 * shrink a VMA by removing the specified chunk from either the beginning or
1526 * the end
1528 static int shrink_vma(struct mm_struct *mm,
1529 struct vm_area_struct *vma,
1530 unsigned long from, unsigned long to)
1532 struct vm_region *region;
1534 kenter("");
1536 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1537 * and list */
1538 delete_vma_from_mm(vma);
1539 if (from > vma->vm_start)
1540 vma->vm_end = from;
1541 else
1542 vma->vm_start = to;
1543 add_vma_to_mm(mm, vma);
1545 /* cut the backing region down to size */
1546 region = vma->vm_region;
1547 BUG_ON(region->vm_usage != 1);
1549 down_write(&nommu_region_sem);
1550 delete_nommu_region(region);
1551 if (from > region->vm_start) {
1552 to = region->vm_top;
1553 region->vm_top = region->vm_end = from;
1554 } else {
1555 region->vm_start = to;
1557 add_nommu_region(region);
1558 up_write(&nommu_region_sem);
1560 free_page_series(from, to);
1561 return 0;
1565 * release a mapping
1566 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1567 * VMA, though it need not cover the whole VMA
1569 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1571 struct vm_area_struct *vma;
1572 struct rb_node *rb;
1573 unsigned long end = start + len;
1574 int ret;
1576 kenter(",%lx,%zx", start, len);
1578 if (len == 0)
1579 return -EINVAL;
1581 /* find the first potentially overlapping VMA */
1582 vma = find_vma(mm, start);
1583 if (!vma) {
1584 static int limit = 0;
1585 if (limit < 5) {
1586 printk(KERN_WARNING
1587 "munmap of memory not mmapped by process %d"
1588 " (%s): 0x%lx-0x%lx\n",
1589 current->pid, current->comm,
1590 start, start + len - 1);
1591 limit++;
1593 return -EINVAL;
1596 /* we're allowed to split an anonymous VMA but not a file-backed one */
1597 if (vma->vm_file) {
1598 do {
1599 if (start > vma->vm_start) {
1600 kleave(" = -EINVAL [miss]");
1601 return -EINVAL;
1603 if (end == vma->vm_end)
1604 goto erase_whole_vma;
1605 rb = rb_next(&vma->vm_rb);
1606 vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1607 } while (rb);
1608 kleave(" = -EINVAL [split file]");
1609 return -EINVAL;
1610 } else {
1611 /* the chunk must be a subset of the VMA found */
1612 if (start == vma->vm_start && end == vma->vm_end)
1613 goto erase_whole_vma;
1614 if (start < vma->vm_start || end > vma->vm_end) {
1615 kleave(" = -EINVAL [superset]");
1616 return -EINVAL;
1618 if (start & ~PAGE_MASK) {
1619 kleave(" = -EINVAL [unaligned start]");
1620 return -EINVAL;
1622 if (end != vma->vm_end && end & ~PAGE_MASK) {
1623 kleave(" = -EINVAL [unaligned split]");
1624 return -EINVAL;
1626 if (start != vma->vm_start && end != vma->vm_end) {
1627 ret = split_vma(mm, vma, start, 1);
1628 if (ret < 0) {
1629 kleave(" = %d [split]", ret);
1630 return ret;
1633 return shrink_vma(mm, vma, start, end);
1636 erase_whole_vma:
1637 delete_vma_from_mm(vma);
1638 delete_vma(mm, vma);
1639 kleave(" = 0");
1640 return 0;
1642 EXPORT_SYMBOL(do_munmap);
1644 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1646 int ret;
1647 struct mm_struct *mm = current->mm;
1649 down_write(&mm->mmap_sem);
1650 ret = do_munmap(mm, addr, len);
1651 up_write(&mm->mmap_sem);
1652 return ret;
1656 * release all the mappings made in a process's VM space
1658 void exit_mmap(struct mm_struct *mm)
1660 struct vm_area_struct *vma;
1662 if (!mm)
1663 return;
1665 kenter("");
1667 mm->total_vm = 0;
1669 while ((vma = mm->mmap)) {
1670 mm->mmap = vma->vm_next;
1671 delete_vma_from_mm(vma);
1672 delete_vma(mm, vma);
1675 kleave("");
1678 unsigned long do_brk(unsigned long addr, unsigned long len)
1680 return -ENOMEM;
1684 * expand (or shrink) an existing mapping, potentially moving it at the same
1685 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1687 * under NOMMU conditions, we only permit changing a mapping's size, and only
1688 * as long as it stays within the region allocated by do_mmap_private() and the
1689 * block is not shareable
1691 * MREMAP_FIXED is not supported under NOMMU conditions
1693 unsigned long do_mremap(unsigned long addr,
1694 unsigned long old_len, unsigned long new_len,
1695 unsigned long flags, unsigned long new_addr)
1697 struct vm_area_struct *vma;
1699 /* insanity checks first */
1700 if (old_len == 0 || new_len == 0)
1701 return (unsigned long) -EINVAL;
1703 if (addr & ~PAGE_MASK)
1704 return -EINVAL;
1706 if (flags & MREMAP_FIXED && new_addr != addr)
1707 return (unsigned long) -EINVAL;
1709 vma = find_vma_exact(current->mm, addr, old_len);
1710 if (!vma)
1711 return (unsigned long) -EINVAL;
1713 if (vma->vm_end != vma->vm_start + old_len)
1714 return (unsigned long) -EFAULT;
1716 if (vma->vm_flags & VM_MAYSHARE)
1717 return (unsigned long) -EPERM;
1719 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1720 return (unsigned long) -ENOMEM;
1722 /* all checks complete - do it */
1723 vma->vm_end = vma->vm_start + new_len;
1724 return vma->vm_start;
1726 EXPORT_SYMBOL(do_mremap);
1728 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1729 unsigned long, new_len, unsigned long, flags,
1730 unsigned long, new_addr)
1732 unsigned long ret;
1734 down_write(&current->mm->mmap_sem);
1735 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1736 up_write(&current->mm->mmap_sem);
1737 return ret;
1740 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1741 unsigned int foll_flags)
1743 return NULL;
1746 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1747 unsigned long to, unsigned long size, pgprot_t prot)
1749 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1750 return 0;
1752 EXPORT_SYMBOL(remap_pfn_range);
1754 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1755 unsigned long pgoff)
1757 unsigned int size = vma->vm_end - vma->vm_start;
1759 if (!(vma->vm_flags & VM_USERMAP))
1760 return -EINVAL;
1762 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1763 vma->vm_end = vma->vm_start + size;
1765 return 0;
1767 EXPORT_SYMBOL(remap_vmalloc_range);
1769 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1773 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1774 unsigned long len, unsigned long pgoff, unsigned long flags)
1776 return -ENOMEM;
1779 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1783 void unmap_mapping_range(struct address_space *mapping,
1784 loff_t const holebegin, loff_t const holelen,
1785 int even_cows)
1788 EXPORT_SYMBOL(unmap_mapping_range);
1791 * Check that a process has enough memory to allocate a new virtual
1792 * mapping. 0 means there is enough memory for the allocation to
1793 * succeed and -ENOMEM implies there is not.
1795 * We currently support three overcommit policies, which are set via the
1796 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1798 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1799 * Additional code 2002 Jul 20 by Robert Love.
1801 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1803 * Note this is a helper function intended to be used by LSMs which
1804 * wish to use this logic.
1806 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1808 unsigned long free, allowed;
1810 vm_acct_memory(pages);
1813 * Sometimes we want to use more memory than we have
1815 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1816 return 0;
1818 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1819 unsigned long n;
1821 free = global_page_state(NR_FILE_PAGES);
1822 free += nr_swap_pages;
1825 * Any slabs which are created with the
1826 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1827 * which are reclaimable, under pressure. The dentry
1828 * cache and most inode caches should fall into this
1830 free += global_page_state(NR_SLAB_RECLAIMABLE);
1833 * Leave the last 3% for root
1835 if (!cap_sys_admin)
1836 free -= free / 32;
1838 if (free > pages)
1839 return 0;
1842 * nr_free_pages() is very expensive on large systems,
1843 * only call if we're about to fail.
1845 n = nr_free_pages();
1848 * Leave reserved pages. The pages are not for anonymous pages.
1850 if (n <= totalreserve_pages)
1851 goto error;
1852 else
1853 n -= totalreserve_pages;
1856 * Leave the last 3% for root
1858 if (!cap_sys_admin)
1859 n -= n / 32;
1860 free += n;
1862 if (free > pages)
1863 return 0;
1865 goto error;
1868 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1870 * Leave the last 3% for root
1872 if (!cap_sys_admin)
1873 allowed -= allowed / 32;
1874 allowed += total_swap_pages;
1876 /* Don't let a single process grow too big:
1877 leave 3% of the size of this process for other processes */
1878 if (mm)
1879 allowed -= mm->total_vm / 32;
1881 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1882 return 0;
1884 error:
1885 vm_unacct_memory(pages);
1887 return -ENOMEM;
1890 int in_gate_area_no_task(unsigned long addr)
1892 return 0;
1895 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1897 BUG();
1898 return 0;
1900 EXPORT_SYMBOL(filemap_fault);
1903 * Access another process' address space.
1904 * - source/target buffer must be kernel space
1906 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1908 struct vm_area_struct *vma;
1909 struct mm_struct *mm;
1911 if (addr + len < addr)
1912 return 0;
1914 mm = get_task_mm(tsk);
1915 if (!mm)
1916 return 0;
1918 down_read(&mm->mmap_sem);
1920 /* the access must start within one of the target process's mappings */
1921 vma = find_vma(mm, addr);
1922 if (vma) {
1923 /* don't overrun this mapping */
1924 if (addr + len >= vma->vm_end)
1925 len = vma->vm_end - addr;
1927 /* only read or write mappings where it is permitted */
1928 if (write && vma->vm_flags & VM_MAYWRITE)
1929 copy_to_user_page(vma, NULL, addr,
1930 (void *) addr, buf, len);
1931 else if (!write && vma->vm_flags & VM_MAYREAD)
1932 copy_from_user_page(vma, NULL, addr,
1933 buf, (void *) addr, len);
1934 else
1935 len = 0;
1936 } else {
1937 len = 0;
1940 up_read(&mm->mmap_sem);
1941 mmput(mm);
1942 return len;
1946 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1947 * @inode: The inode to check
1948 * @size: The current filesize of the inode
1949 * @newsize: The proposed filesize of the inode
1951 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1952 * make sure that that any outstanding VMAs aren't broken and then shrink the
1953 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1954 * automatically grant mappings that are too large.
1956 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1957 size_t newsize)
1959 struct vm_area_struct *vma;
1960 struct prio_tree_iter iter;
1961 struct vm_region *region;
1962 pgoff_t low, high;
1963 size_t r_size, r_top;
1965 low = newsize >> PAGE_SHIFT;
1966 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1968 down_write(&nommu_region_sem);
1970 /* search for VMAs that fall within the dead zone */
1971 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
1972 low, high) {
1973 /* found one - only interested if it's shared out of the page
1974 * cache */
1975 if (vma->vm_flags & VM_SHARED) {
1976 up_write(&nommu_region_sem);
1977 return -ETXTBSY; /* not quite true, but near enough */
1981 /* reduce any regions that overlap the dead zone - if in existence,
1982 * these will be pointed to by VMAs that don't overlap the dead zone
1984 * we don't check for any regions that start beyond the EOF as there
1985 * shouldn't be any
1987 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
1988 0, ULONG_MAX) {
1989 if (!(vma->vm_flags & VM_SHARED))
1990 continue;
1992 region = vma->vm_region;
1993 r_size = region->vm_top - region->vm_start;
1994 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1996 if (r_top > newsize) {
1997 region->vm_top -= r_top - newsize;
1998 if (region->vm_end > region->vm_top)
1999 region->vm_end = region->vm_top;
2003 up_write(&nommu_region_sem);
2004 return 0;