ocfs2: Use buffer IO if we are appending a file.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / pid.c
blob5fa1db48d8b70c686462fc7315b833efe503d101
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/kmemleak.h>
41 #define pid_hashfn(nr, ns) \
42 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
43 static struct hlist_head *pid_hash;
44 static int pidhash_shift;
45 struct pid init_struct_pid = INIT_STRUCT_PID;
47 int pid_max = PID_MAX_DEFAULT;
49 #define RESERVED_PIDS 300
51 int pid_max_min = RESERVED_PIDS + 1;
52 int pid_max_max = PID_MAX_LIMIT;
54 #define BITS_PER_PAGE (PAGE_SIZE*8)
55 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
57 static inline int mk_pid(struct pid_namespace *pid_ns,
58 struct pidmap *map, int off)
60 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
63 #define find_next_offset(map, off) \
64 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
67 * PID-map pages start out as NULL, they get allocated upon
68 * first use and are never deallocated. This way a low pid_max
69 * value does not cause lots of bitmaps to be allocated, but
70 * the scheme scales to up to 4 million PIDs, runtime.
72 struct pid_namespace init_pid_ns = {
73 .kref = {
74 .refcount = ATOMIC_INIT(2),
76 .pidmap = {
77 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
79 .last_pid = 0,
80 .level = 0,
81 .child_reaper = &init_task,
83 EXPORT_SYMBOL_GPL(init_pid_ns);
85 int is_container_init(struct task_struct *tsk)
87 int ret = 0;
88 struct pid *pid;
90 rcu_read_lock();
91 pid = task_pid(tsk);
92 if (pid != NULL && pid->numbers[pid->level].nr == 1)
93 ret = 1;
94 rcu_read_unlock();
96 return ret;
98 EXPORT_SYMBOL(is_container_init);
101 * Note: disable interrupts while the pidmap_lock is held as an
102 * interrupt might come in and do read_lock(&tasklist_lock).
104 * If we don't disable interrupts there is a nasty deadlock between
105 * detach_pid()->free_pid() and another cpu that does
106 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
107 * read_lock(&tasklist_lock);
109 * After we clean up the tasklist_lock and know there are no
110 * irq handlers that take it we can leave the interrupts enabled.
111 * For now it is easier to be safe than to prove it can't happen.
114 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
116 static void free_pidmap(struct upid *upid)
118 int nr = upid->nr;
119 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
120 int offset = nr & BITS_PER_PAGE_MASK;
122 clear_bit(offset, map->page);
123 atomic_inc(&map->nr_free);
126 static int alloc_pidmap(struct pid_namespace *pid_ns)
128 int i, offset, max_scan, pid, last = pid_ns->last_pid;
129 struct pidmap *map;
131 pid = last + 1;
132 if (pid >= pid_max)
133 pid = RESERVED_PIDS;
134 offset = pid & BITS_PER_PAGE_MASK;
135 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
136 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
137 for (i = 0; i <= max_scan; ++i) {
138 if (unlikely(!map->page)) {
139 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
141 * Free the page if someone raced with us
142 * installing it:
144 spin_lock_irq(&pidmap_lock);
145 if (map->page)
146 kfree(page);
147 else
148 map->page = page;
149 spin_unlock_irq(&pidmap_lock);
150 if (unlikely(!map->page))
151 break;
153 if (likely(atomic_read(&map->nr_free))) {
154 do {
155 if (!test_and_set_bit(offset, map->page)) {
156 atomic_dec(&map->nr_free);
157 pid_ns->last_pid = pid;
158 return pid;
160 offset = find_next_offset(map, offset);
161 pid = mk_pid(pid_ns, map, offset);
163 * find_next_offset() found a bit, the pid from it
164 * is in-bounds, and if we fell back to the last
165 * bitmap block and the final block was the same
166 * as the starting point, pid is before last_pid.
168 } while (offset < BITS_PER_PAGE && pid < pid_max &&
169 (i != max_scan || pid < last ||
170 !((last+1) & BITS_PER_PAGE_MASK)));
172 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
173 ++map;
174 offset = 0;
175 } else {
176 map = &pid_ns->pidmap[0];
177 offset = RESERVED_PIDS;
178 if (unlikely(last == offset))
179 break;
181 pid = mk_pid(pid_ns, map, offset);
183 return -1;
186 int next_pidmap(struct pid_namespace *pid_ns, int last)
188 int offset;
189 struct pidmap *map, *end;
191 offset = (last + 1) & BITS_PER_PAGE_MASK;
192 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
193 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
194 for (; map < end; map++, offset = 0) {
195 if (unlikely(!map->page))
196 continue;
197 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
198 if (offset < BITS_PER_PAGE)
199 return mk_pid(pid_ns, map, offset);
201 return -1;
204 void put_pid(struct pid *pid)
206 struct pid_namespace *ns;
208 if (!pid)
209 return;
211 ns = pid->numbers[pid->level].ns;
212 if ((atomic_read(&pid->count) == 1) ||
213 atomic_dec_and_test(&pid->count)) {
214 kmem_cache_free(ns->pid_cachep, pid);
215 put_pid_ns(ns);
218 EXPORT_SYMBOL_GPL(put_pid);
220 static void delayed_put_pid(struct rcu_head *rhp)
222 struct pid *pid = container_of(rhp, struct pid, rcu);
223 put_pid(pid);
226 void free_pid(struct pid *pid)
228 /* We can be called with write_lock_irq(&tasklist_lock) held */
229 int i;
230 unsigned long flags;
232 spin_lock_irqsave(&pidmap_lock, flags);
233 for (i = 0; i <= pid->level; i++)
234 hlist_del_rcu(&pid->numbers[i].pid_chain);
235 spin_unlock_irqrestore(&pidmap_lock, flags);
237 for (i = 0; i <= pid->level; i++)
238 free_pidmap(pid->numbers + i);
240 call_rcu(&pid->rcu, delayed_put_pid);
243 struct pid *alloc_pid(struct pid_namespace *ns)
245 struct pid *pid;
246 enum pid_type type;
247 int i, nr;
248 struct pid_namespace *tmp;
249 struct upid *upid;
251 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
252 if (!pid)
253 goto out;
255 tmp = ns;
256 for (i = ns->level; i >= 0; i--) {
257 nr = alloc_pidmap(tmp);
258 if (nr < 0)
259 goto out_free;
261 pid->numbers[i].nr = nr;
262 pid->numbers[i].ns = tmp;
263 tmp = tmp->parent;
266 get_pid_ns(ns);
267 pid->level = ns->level;
268 atomic_set(&pid->count, 1);
269 for (type = 0; type < PIDTYPE_MAX; ++type)
270 INIT_HLIST_HEAD(&pid->tasks[type]);
272 spin_lock_irq(&pidmap_lock);
273 for (i = ns->level; i >= 0; i--) {
274 upid = &pid->numbers[i];
275 hlist_add_head_rcu(&upid->pid_chain,
276 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
278 spin_unlock_irq(&pidmap_lock);
280 out:
281 return pid;
283 out_free:
284 while (++i <= ns->level)
285 free_pidmap(pid->numbers + i);
287 kmem_cache_free(ns->pid_cachep, pid);
288 pid = NULL;
289 goto out;
292 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
294 struct hlist_node *elem;
295 struct upid *pnr;
297 hlist_for_each_entry_rcu(pnr, elem,
298 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
299 if (pnr->nr == nr && pnr->ns == ns)
300 return container_of(pnr, struct pid,
301 numbers[ns->level]);
303 return NULL;
305 EXPORT_SYMBOL_GPL(find_pid_ns);
307 struct pid *find_vpid(int nr)
309 return find_pid_ns(nr, current->nsproxy->pid_ns);
311 EXPORT_SYMBOL_GPL(find_vpid);
314 * attach_pid() must be called with the tasklist_lock write-held.
316 void attach_pid(struct task_struct *task, enum pid_type type,
317 struct pid *pid)
319 struct pid_link *link;
321 link = &task->pids[type];
322 link->pid = pid;
323 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
326 static void __change_pid(struct task_struct *task, enum pid_type type,
327 struct pid *new)
329 struct pid_link *link;
330 struct pid *pid;
331 int tmp;
333 link = &task->pids[type];
334 pid = link->pid;
336 hlist_del_rcu(&link->node);
337 link->pid = new;
339 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
340 if (!hlist_empty(&pid->tasks[tmp]))
341 return;
343 free_pid(pid);
346 void detach_pid(struct task_struct *task, enum pid_type type)
348 __change_pid(task, type, NULL);
351 void change_pid(struct task_struct *task, enum pid_type type,
352 struct pid *pid)
354 __change_pid(task, type, pid);
355 attach_pid(task, type, pid);
358 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
359 void transfer_pid(struct task_struct *old, struct task_struct *new,
360 enum pid_type type)
362 new->pids[type].pid = old->pids[type].pid;
363 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
366 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
368 struct task_struct *result = NULL;
369 if (pid) {
370 struct hlist_node *first;
371 first = rcu_dereference(pid->tasks[type].first);
372 if (first)
373 result = hlist_entry(first, struct task_struct, pids[(type)].node);
375 return result;
377 EXPORT_SYMBOL(pid_task);
380 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
382 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
384 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
387 struct task_struct *find_task_by_vpid(pid_t vnr)
389 return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
392 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
394 struct pid *pid;
395 rcu_read_lock();
396 if (type != PIDTYPE_PID)
397 task = task->group_leader;
398 pid = get_pid(task->pids[type].pid);
399 rcu_read_unlock();
400 return pid;
403 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
405 struct task_struct *result;
406 rcu_read_lock();
407 result = pid_task(pid, type);
408 if (result)
409 get_task_struct(result);
410 rcu_read_unlock();
411 return result;
414 struct pid *find_get_pid(pid_t nr)
416 struct pid *pid;
418 rcu_read_lock();
419 pid = get_pid(find_vpid(nr));
420 rcu_read_unlock();
422 return pid;
424 EXPORT_SYMBOL_GPL(find_get_pid);
426 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
428 struct upid *upid;
429 pid_t nr = 0;
431 if (pid && ns->level <= pid->level) {
432 upid = &pid->numbers[ns->level];
433 if (upid->ns == ns)
434 nr = upid->nr;
436 return nr;
439 pid_t pid_vnr(struct pid *pid)
441 return pid_nr_ns(pid, current->nsproxy->pid_ns);
443 EXPORT_SYMBOL_GPL(pid_vnr);
445 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
446 struct pid_namespace *ns)
448 pid_t nr = 0;
450 rcu_read_lock();
451 if (!ns)
452 ns = current->nsproxy->pid_ns;
453 if (likely(pid_alive(task))) {
454 if (type != PIDTYPE_PID)
455 task = task->group_leader;
456 nr = pid_nr_ns(task->pids[type].pid, ns);
458 rcu_read_unlock();
460 return nr;
462 EXPORT_SYMBOL(__task_pid_nr_ns);
464 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
466 return pid_nr_ns(task_tgid(tsk), ns);
468 EXPORT_SYMBOL(task_tgid_nr_ns);
470 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
472 return ns_of_pid(task_pid(tsk));
474 EXPORT_SYMBOL_GPL(task_active_pid_ns);
477 * Used by proc to find the first pid that is greater than or equal to nr.
479 * If there is a pid at nr this function is exactly the same as find_pid_ns.
481 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
483 struct pid *pid;
485 do {
486 pid = find_pid_ns(nr, ns);
487 if (pid)
488 break;
489 nr = next_pidmap(ns, nr);
490 } while (nr > 0);
492 return pid;
496 * The pid hash table is scaled according to the amount of memory in the
497 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
498 * more.
500 void __init pidhash_init(void)
502 int i, pidhash_size;
503 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
505 pidhash_shift = max(4, fls(megabytes * 4));
506 pidhash_shift = min(12, pidhash_shift);
507 pidhash_size = 1 << pidhash_shift;
509 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
510 pidhash_size, pidhash_shift,
511 pidhash_size * sizeof(struct hlist_head));
513 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
514 if (!pid_hash)
515 panic("Could not alloc pidhash!\n");
517 * pid_hash contains references to allocated struct pid objects and it
518 * must be scanned by kmemleak to avoid false positives.
520 kmemleak_alloc(pid_hash, pidhash_size * sizeof(*(pid_hash)), 0,
521 GFP_KERNEL);
522 for (i = 0; i < pidhash_size; i++)
523 INIT_HLIST_HEAD(&pid_hash[i]);
526 void __init pidmap_init(void)
528 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
529 /* Reserve PID 0. We never call free_pidmap(0) */
530 set_bit(0, init_pid_ns.pidmap[0].page);
531 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
533 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
534 SLAB_HWCACHE_ALIGN | SLAB_PANIC);