PM/PCI: Update PCI power management documentation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memcontrol.c
blob0f711c213d2eb587d4fd5f152f86c27abf61e29f
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include "internal.h"
52 #include <asm/uaccess.h>
54 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
55 #define MEM_CGROUP_RECLAIM_RETRIES 5
56 struct mem_cgroup *root_mem_cgroup __read_mostly;
58 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
59 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 int do_swap_account __read_mostly;
61 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
62 #else
63 #define do_swap_account (0)
64 #endif
67 * Per memcg event counter is incremented at every pagein/pageout. This counter
68 * is used for trigger some periodic events. This is straightforward and better
69 * than using jiffies etc. to handle periodic memcg event.
71 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
73 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
74 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
77 * Statistics for memory cgroup.
79 enum mem_cgroup_stat_index {
81 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
84 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
85 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
86 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
87 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89 MEM_CGROUP_EVENTS, /* incremented at every pagein/pageout */
91 MEM_CGROUP_STAT_NSTATS,
94 struct mem_cgroup_stat_cpu {
95 s64 count[MEM_CGROUP_STAT_NSTATS];
99 * per-zone information in memory controller.
101 struct mem_cgroup_per_zone {
103 * spin_lock to protect the per cgroup LRU
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
108 struct zone_reclaim_stat reclaim_stat;
109 struct rb_node tree_node; /* RB tree node */
110 unsigned long long usage_in_excess;/* Set to the value by which */
111 /* the soft limit is exceeded*/
112 bool on_tree;
113 struct mem_cgroup *mem; /* Back pointer, we cannot */
114 /* use container_of */
116 /* Macro for accessing counter */
117 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
119 struct mem_cgroup_per_node {
120 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
123 struct mem_cgroup_lru_info {
124 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
128 * Cgroups above their limits are maintained in a RB-Tree, independent of
129 * their hierarchy representation
132 struct mem_cgroup_tree_per_zone {
133 struct rb_root rb_root;
134 spinlock_t lock;
137 struct mem_cgroup_tree_per_node {
138 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
141 struct mem_cgroup_tree {
142 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
145 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147 struct mem_cgroup_threshold {
148 struct eventfd_ctx *eventfd;
149 u64 threshold;
152 struct mem_cgroup_threshold_ary {
153 /* An array index points to threshold just below usage. */
154 atomic_t current_threshold;
155 /* Size of entries[] */
156 unsigned int size;
157 /* Array of thresholds */
158 struct mem_cgroup_threshold entries[0];
161 static void mem_cgroup_threshold(struct mem_cgroup *mem);
164 * The memory controller data structure. The memory controller controls both
165 * page cache and RSS per cgroup. We would eventually like to provide
166 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
167 * to help the administrator determine what knobs to tune.
169 * TODO: Add a water mark for the memory controller. Reclaim will begin when
170 * we hit the water mark. May be even add a low water mark, such that
171 * no reclaim occurs from a cgroup at it's low water mark, this is
172 * a feature that will be implemented much later in the future.
174 struct mem_cgroup {
175 struct cgroup_subsys_state css;
177 * the counter to account for memory usage
179 struct res_counter res;
181 * the counter to account for mem+swap usage.
183 struct res_counter memsw;
185 * Per cgroup active and inactive list, similar to the
186 * per zone LRU lists.
188 struct mem_cgroup_lru_info info;
191 protect against reclaim related member.
193 spinlock_t reclaim_param_lock;
195 int prev_priority; /* for recording reclaim priority */
198 * While reclaiming in a hierarchy, we cache the last child we
199 * reclaimed from.
201 int last_scanned_child;
203 * Should the accounting and control be hierarchical, per subtree?
205 bool use_hierarchy;
206 atomic_t oom_lock;
207 atomic_t refcnt;
209 unsigned int swappiness;
211 /* set when res.limit == memsw.limit */
212 bool memsw_is_minimum;
214 /* protect arrays of thresholds */
215 struct mutex thresholds_lock;
217 /* thresholds for memory usage. RCU-protected */
218 struct mem_cgroup_threshold_ary *thresholds;
220 /* thresholds for mem+swap usage. RCU-protected */
221 struct mem_cgroup_threshold_ary *memsw_thresholds;
224 * Should we move charges of a task when a task is moved into this
225 * mem_cgroup ? And what type of charges should we move ?
227 unsigned long move_charge_at_immigrate;
230 * percpu counter.
232 struct mem_cgroup_stat_cpu *stat;
235 /* Stuffs for move charges at task migration. */
237 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
238 * left-shifted bitmap of these types.
240 enum move_type {
241 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
242 NR_MOVE_TYPE,
245 /* "mc" and its members are protected by cgroup_mutex */
246 static struct move_charge_struct {
247 struct mem_cgroup *from;
248 struct mem_cgroup *to;
249 unsigned long precharge;
250 unsigned long moved_charge;
251 unsigned long moved_swap;
252 struct task_struct *moving_task; /* a task moving charges */
253 wait_queue_head_t waitq; /* a waitq for other context */
254 } mc = {
255 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
259 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
260 * limit reclaim to prevent infinite loops, if they ever occur.
262 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
263 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
265 enum charge_type {
266 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
267 MEM_CGROUP_CHARGE_TYPE_MAPPED,
268 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
269 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
270 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
271 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
272 NR_CHARGE_TYPE,
275 /* only for here (for easy reading.) */
276 #define PCGF_CACHE (1UL << PCG_CACHE)
277 #define PCGF_USED (1UL << PCG_USED)
278 #define PCGF_LOCK (1UL << PCG_LOCK)
279 /* Not used, but added here for completeness */
280 #define PCGF_ACCT (1UL << PCG_ACCT)
282 /* for encoding cft->private value on file */
283 #define _MEM (0)
284 #define _MEMSWAP (1)
285 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
286 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
287 #define MEMFILE_ATTR(val) ((val) & 0xffff)
290 * Reclaim flags for mem_cgroup_hierarchical_reclaim
292 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
293 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
294 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
295 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
296 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
297 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
299 static void mem_cgroup_get(struct mem_cgroup *mem);
300 static void mem_cgroup_put(struct mem_cgroup *mem);
301 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
302 static void drain_all_stock_async(void);
304 static struct mem_cgroup_per_zone *
305 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
307 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
310 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
312 return &mem->css;
315 static struct mem_cgroup_per_zone *
316 page_cgroup_zoneinfo(struct page_cgroup *pc)
318 struct mem_cgroup *mem = pc->mem_cgroup;
319 int nid = page_cgroup_nid(pc);
320 int zid = page_cgroup_zid(pc);
322 if (!mem)
323 return NULL;
325 return mem_cgroup_zoneinfo(mem, nid, zid);
328 static struct mem_cgroup_tree_per_zone *
329 soft_limit_tree_node_zone(int nid, int zid)
331 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
334 static struct mem_cgroup_tree_per_zone *
335 soft_limit_tree_from_page(struct page *page)
337 int nid = page_to_nid(page);
338 int zid = page_zonenum(page);
340 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
343 static void
344 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
345 struct mem_cgroup_per_zone *mz,
346 struct mem_cgroup_tree_per_zone *mctz,
347 unsigned long long new_usage_in_excess)
349 struct rb_node **p = &mctz->rb_root.rb_node;
350 struct rb_node *parent = NULL;
351 struct mem_cgroup_per_zone *mz_node;
353 if (mz->on_tree)
354 return;
356 mz->usage_in_excess = new_usage_in_excess;
357 if (!mz->usage_in_excess)
358 return;
359 while (*p) {
360 parent = *p;
361 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
362 tree_node);
363 if (mz->usage_in_excess < mz_node->usage_in_excess)
364 p = &(*p)->rb_left;
366 * We can't avoid mem cgroups that are over their soft
367 * limit by the same amount
369 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
370 p = &(*p)->rb_right;
372 rb_link_node(&mz->tree_node, parent, p);
373 rb_insert_color(&mz->tree_node, &mctz->rb_root);
374 mz->on_tree = true;
377 static void
378 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
379 struct mem_cgroup_per_zone *mz,
380 struct mem_cgroup_tree_per_zone *mctz)
382 if (!mz->on_tree)
383 return;
384 rb_erase(&mz->tree_node, &mctz->rb_root);
385 mz->on_tree = false;
388 static void
389 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
390 struct mem_cgroup_per_zone *mz,
391 struct mem_cgroup_tree_per_zone *mctz)
393 spin_lock(&mctz->lock);
394 __mem_cgroup_remove_exceeded(mem, mz, mctz);
395 spin_unlock(&mctz->lock);
399 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
401 unsigned long long excess;
402 struct mem_cgroup_per_zone *mz;
403 struct mem_cgroup_tree_per_zone *mctz;
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406 mctz = soft_limit_tree_from_page(page);
409 * Necessary to update all ancestors when hierarchy is used.
410 * because their event counter is not touched.
412 for (; mem; mem = parent_mem_cgroup(mem)) {
413 mz = mem_cgroup_zoneinfo(mem, nid, zid);
414 excess = res_counter_soft_limit_excess(&mem->res);
416 * We have to update the tree if mz is on RB-tree or
417 * mem is over its softlimit.
419 if (excess || mz->on_tree) {
420 spin_lock(&mctz->lock);
421 /* if on-tree, remove it */
422 if (mz->on_tree)
423 __mem_cgroup_remove_exceeded(mem, mz, mctz);
425 * Insert again. mz->usage_in_excess will be updated.
426 * If excess is 0, no tree ops.
428 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
429 spin_unlock(&mctz->lock);
434 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
436 int node, zone;
437 struct mem_cgroup_per_zone *mz;
438 struct mem_cgroup_tree_per_zone *mctz;
440 for_each_node_state(node, N_POSSIBLE) {
441 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
442 mz = mem_cgroup_zoneinfo(mem, node, zone);
443 mctz = soft_limit_tree_node_zone(node, zone);
444 mem_cgroup_remove_exceeded(mem, mz, mctz);
449 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
451 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
454 static struct mem_cgroup_per_zone *
455 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
457 struct rb_node *rightmost = NULL;
458 struct mem_cgroup_per_zone *mz;
460 retry:
461 mz = NULL;
462 rightmost = rb_last(&mctz->rb_root);
463 if (!rightmost)
464 goto done; /* Nothing to reclaim from */
466 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
468 * Remove the node now but someone else can add it back,
469 * we will to add it back at the end of reclaim to its correct
470 * position in the tree.
472 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
473 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
474 !css_tryget(&mz->mem->css))
475 goto retry;
476 done:
477 return mz;
480 static struct mem_cgroup_per_zone *
481 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
483 struct mem_cgroup_per_zone *mz;
485 spin_lock(&mctz->lock);
486 mz = __mem_cgroup_largest_soft_limit_node(mctz);
487 spin_unlock(&mctz->lock);
488 return mz;
491 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
492 enum mem_cgroup_stat_index idx)
494 int cpu;
495 s64 val = 0;
497 for_each_possible_cpu(cpu)
498 val += per_cpu(mem->stat->count[idx], cpu);
499 return val;
502 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
504 s64 ret;
506 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
507 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
508 return ret;
511 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
512 bool charge)
514 int val = (charge) ? 1 : -1;
515 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
518 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
519 struct page_cgroup *pc,
520 bool charge)
522 int val = (charge) ? 1 : -1;
524 preempt_disable();
526 if (PageCgroupCache(pc))
527 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
528 else
529 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
531 if (charge)
532 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
533 else
534 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
535 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
537 preempt_enable();
540 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
541 enum lru_list idx)
543 int nid, zid;
544 struct mem_cgroup_per_zone *mz;
545 u64 total = 0;
547 for_each_online_node(nid)
548 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
549 mz = mem_cgroup_zoneinfo(mem, nid, zid);
550 total += MEM_CGROUP_ZSTAT(mz, idx);
552 return total;
555 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
557 s64 val;
559 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
561 return !(val & ((1 << event_mask_shift) - 1));
565 * Check events in order.
568 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
570 /* threshold event is triggered in finer grain than soft limit */
571 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
572 mem_cgroup_threshold(mem);
573 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
574 mem_cgroup_update_tree(mem, page);
578 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
580 return container_of(cgroup_subsys_state(cont,
581 mem_cgroup_subsys_id), struct mem_cgroup,
582 css);
585 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
588 * mm_update_next_owner() may clear mm->owner to NULL
589 * if it races with swapoff, page migration, etc.
590 * So this can be called with p == NULL.
592 if (unlikely(!p))
593 return NULL;
595 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
596 struct mem_cgroup, css);
599 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
601 struct mem_cgroup *mem = NULL;
603 if (!mm)
604 return NULL;
606 * Because we have no locks, mm->owner's may be being moved to other
607 * cgroup. We use css_tryget() here even if this looks
608 * pessimistic (rather than adding locks here).
610 rcu_read_lock();
611 do {
612 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
613 if (unlikely(!mem))
614 break;
615 } while (!css_tryget(&mem->css));
616 rcu_read_unlock();
617 return mem;
621 * Call callback function against all cgroup under hierarchy tree.
623 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
624 int (*func)(struct mem_cgroup *, void *))
626 int found, ret, nextid;
627 struct cgroup_subsys_state *css;
628 struct mem_cgroup *mem;
630 if (!root->use_hierarchy)
631 return (*func)(root, data);
633 nextid = 1;
634 do {
635 ret = 0;
636 mem = NULL;
638 rcu_read_lock();
639 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
640 &found);
641 if (css && css_tryget(css))
642 mem = container_of(css, struct mem_cgroup, css);
643 rcu_read_unlock();
645 if (mem) {
646 ret = (*func)(mem, data);
647 css_put(&mem->css);
649 nextid = found + 1;
650 } while (!ret && css);
652 return ret;
655 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
657 return (mem == root_mem_cgroup);
661 * Following LRU functions are allowed to be used without PCG_LOCK.
662 * Operations are called by routine of global LRU independently from memcg.
663 * What we have to take care of here is validness of pc->mem_cgroup.
665 * Changes to pc->mem_cgroup happens when
666 * 1. charge
667 * 2. moving account
668 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
669 * It is added to LRU before charge.
670 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
671 * When moving account, the page is not on LRU. It's isolated.
674 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
676 struct page_cgroup *pc;
677 struct mem_cgroup_per_zone *mz;
679 if (mem_cgroup_disabled())
680 return;
681 pc = lookup_page_cgroup(page);
682 /* can happen while we handle swapcache. */
683 if (!TestClearPageCgroupAcctLRU(pc))
684 return;
685 VM_BUG_ON(!pc->mem_cgroup);
687 * We don't check PCG_USED bit. It's cleared when the "page" is finally
688 * removed from global LRU.
690 mz = page_cgroup_zoneinfo(pc);
691 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
692 if (mem_cgroup_is_root(pc->mem_cgroup))
693 return;
694 VM_BUG_ON(list_empty(&pc->lru));
695 list_del_init(&pc->lru);
696 return;
699 void mem_cgroup_del_lru(struct page *page)
701 mem_cgroup_del_lru_list(page, page_lru(page));
704 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
706 struct mem_cgroup_per_zone *mz;
707 struct page_cgroup *pc;
709 if (mem_cgroup_disabled())
710 return;
712 pc = lookup_page_cgroup(page);
714 * Used bit is set without atomic ops but after smp_wmb().
715 * For making pc->mem_cgroup visible, insert smp_rmb() here.
717 smp_rmb();
718 /* unused or root page is not rotated. */
719 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
720 return;
721 mz = page_cgroup_zoneinfo(pc);
722 list_move(&pc->lru, &mz->lists[lru]);
725 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
727 struct page_cgroup *pc;
728 struct mem_cgroup_per_zone *mz;
730 if (mem_cgroup_disabled())
731 return;
732 pc = lookup_page_cgroup(page);
733 VM_BUG_ON(PageCgroupAcctLRU(pc));
735 * Used bit is set without atomic ops but after smp_wmb().
736 * For making pc->mem_cgroup visible, insert smp_rmb() here.
738 smp_rmb();
739 if (!PageCgroupUsed(pc))
740 return;
742 mz = page_cgroup_zoneinfo(pc);
743 MEM_CGROUP_ZSTAT(mz, lru) += 1;
744 SetPageCgroupAcctLRU(pc);
745 if (mem_cgroup_is_root(pc->mem_cgroup))
746 return;
747 list_add(&pc->lru, &mz->lists[lru]);
751 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
752 * lru because the page may.be reused after it's fully uncharged (because of
753 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
754 * it again. This function is only used to charge SwapCache. It's done under
755 * lock_page and expected that zone->lru_lock is never held.
757 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
759 unsigned long flags;
760 struct zone *zone = page_zone(page);
761 struct page_cgroup *pc = lookup_page_cgroup(page);
763 spin_lock_irqsave(&zone->lru_lock, flags);
765 * Forget old LRU when this page_cgroup is *not* used. This Used bit
766 * is guarded by lock_page() because the page is SwapCache.
768 if (!PageCgroupUsed(pc))
769 mem_cgroup_del_lru_list(page, page_lru(page));
770 spin_unlock_irqrestore(&zone->lru_lock, flags);
773 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
775 unsigned long flags;
776 struct zone *zone = page_zone(page);
777 struct page_cgroup *pc = lookup_page_cgroup(page);
779 spin_lock_irqsave(&zone->lru_lock, flags);
780 /* link when the page is linked to LRU but page_cgroup isn't */
781 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
782 mem_cgroup_add_lru_list(page, page_lru(page));
783 spin_unlock_irqrestore(&zone->lru_lock, flags);
787 void mem_cgroup_move_lists(struct page *page,
788 enum lru_list from, enum lru_list to)
790 if (mem_cgroup_disabled())
791 return;
792 mem_cgroup_del_lru_list(page, from);
793 mem_cgroup_add_lru_list(page, to);
796 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
798 int ret;
799 struct mem_cgroup *curr = NULL;
801 task_lock(task);
802 rcu_read_lock();
803 curr = try_get_mem_cgroup_from_mm(task->mm);
804 rcu_read_unlock();
805 task_unlock(task);
806 if (!curr)
807 return 0;
809 * We should check use_hierarchy of "mem" not "curr". Because checking
810 * use_hierarchy of "curr" here make this function true if hierarchy is
811 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
812 * hierarchy(even if use_hierarchy is disabled in "mem").
814 rcu_read_lock();
815 if (mem->use_hierarchy)
816 ret = css_is_ancestor(&curr->css, &mem->css);
817 else
818 ret = (curr == mem);
819 rcu_read_unlock();
820 css_put(&curr->css);
821 return ret;
825 * prev_priority control...this will be used in memory reclaim path.
827 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
829 int prev_priority;
831 spin_lock(&mem->reclaim_param_lock);
832 prev_priority = mem->prev_priority;
833 spin_unlock(&mem->reclaim_param_lock);
835 return prev_priority;
838 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
840 spin_lock(&mem->reclaim_param_lock);
841 if (priority < mem->prev_priority)
842 mem->prev_priority = priority;
843 spin_unlock(&mem->reclaim_param_lock);
846 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
848 spin_lock(&mem->reclaim_param_lock);
849 mem->prev_priority = priority;
850 spin_unlock(&mem->reclaim_param_lock);
853 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
855 unsigned long active;
856 unsigned long inactive;
857 unsigned long gb;
858 unsigned long inactive_ratio;
860 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
861 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
863 gb = (inactive + active) >> (30 - PAGE_SHIFT);
864 if (gb)
865 inactive_ratio = int_sqrt(10 * gb);
866 else
867 inactive_ratio = 1;
869 if (present_pages) {
870 present_pages[0] = inactive;
871 present_pages[1] = active;
874 return inactive_ratio;
877 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
879 unsigned long active;
880 unsigned long inactive;
881 unsigned long present_pages[2];
882 unsigned long inactive_ratio;
884 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
886 inactive = present_pages[0];
887 active = present_pages[1];
889 if (inactive * inactive_ratio < active)
890 return 1;
892 return 0;
895 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
897 unsigned long active;
898 unsigned long inactive;
900 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
901 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
903 return (active > inactive);
906 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
907 struct zone *zone,
908 enum lru_list lru)
910 int nid = zone->zone_pgdat->node_id;
911 int zid = zone_idx(zone);
912 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
914 return MEM_CGROUP_ZSTAT(mz, lru);
917 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
918 struct zone *zone)
920 int nid = zone->zone_pgdat->node_id;
921 int zid = zone_idx(zone);
922 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
924 return &mz->reclaim_stat;
927 struct zone_reclaim_stat *
928 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
930 struct page_cgroup *pc;
931 struct mem_cgroup_per_zone *mz;
933 if (mem_cgroup_disabled())
934 return NULL;
936 pc = lookup_page_cgroup(page);
938 * Used bit is set without atomic ops but after smp_wmb().
939 * For making pc->mem_cgroup visible, insert smp_rmb() here.
941 smp_rmb();
942 if (!PageCgroupUsed(pc))
943 return NULL;
945 mz = page_cgroup_zoneinfo(pc);
946 if (!mz)
947 return NULL;
949 return &mz->reclaim_stat;
952 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
953 struct list_head *dst,
954 unsigned long *scanned, int order,
955 int mode, struct zone *z,
956 struct mem_cgroup *mem_cont,
957 int active, int file)
959 unsigned long nr_taken = 0;
960 struct page *page;
961 unsigned long scan;
962 LIST_HEAD(pc_list);
963 struct list_head *src;
964 struct page_cgroup *pc, *tmp;
965 int nid = z->zone_pgdat->node_id;
966 int zid = zone_idx(z);
967 struct mem_cgroup_per_zone *mz;
968 int lru = LRU_FILE * file + active;
969 int ret;
971 BUG_ON(!mem_cont);
972 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
973 src = &mz->lists[lru];
975 scan = 0;
976 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
977 if (scan >= nr_to_scan)
978 break;
980 page = pc->page;
981 if (unlikely(!PageCgroupUsed(pc)))
982 continue;
983 if (unlikely(!PageLRU(page)))
984 continue;
986 scan++;
987 ret = __isolate_lru_page(page, mode, file);
988 switch (ret) {
989 case 0:
990 list_move(&page->lru, dst);
991 mem_cgroup_del_lru(page);
992 nr_taken++;
993 break;
994 case -EBUSY:
995 /* we don't affect global LRU but rotate in our LRU */
996 mem_cgroup_rotate_lru_list(page, page_lru(page));
997 break;
998 default:
999 break;
1003 *scanned = scan;
1004 return nr_taken;
1007 #define mem_cgroup_from_res_counter(counter, member) \
1008 container_of(counter, struct mem_cgroup, member)
1010 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1012 if (do_swap_account) {
1013 if (res_counter_check_under_limit(&mem->res) &&
1014 res_counter_check_under_limit(&mem->memsw))
1015 return true;
1016 } else
1017 if (res_counter_check_under_limit(&mem->res))
1018 return true;
1019 return false;
1022 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1024 struct cgroup *cgrp = memcg->css.cgroup;
1025 unsigned int swappiness;
1027 /* root ? */
1028 if (cgrp->parent == NULL)
1029 return vm_swappiness;
1031 spin_lock(&memcg->reclaim_param_lock);
1032 swappiness = memcg->swappiness;
1033 spin_unlock(&memcg->reclaim_param_lock);
1035 return swappiness;
1038 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1040 int *val = data;
1041 (*val)++;
1042 return 0;
1046 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1047 * @memcg: The memory cgroup that went over limit
1048 * @p: Task that is going to be killed
1050 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1051 * enabled
1053 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1055 struct cgroup *task_cgrp;
1056 struct cgroup *mem_cgrp;
1058 * Need a buffer in BSS, can't rely on allocations. The code relies
1059 * on the assumption that OOM is serialized for memory controller.
1060 * If this assumption is broken, revisit this code.
1062 static char memcg_name[PATH_MAX];
1063 int ret;
1065 if (!memcg || !p)
1066 return;
1069 rcu_read_lock();
1071 mem_cgrp = memcg->css.cgroup;
1072 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1074 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1075 if (ret < 0) {
1077 * Unfortunately, we are unable to convert to a useful name
1078 * But we'll still print out the usage information
1080 rcu_read_unlock();
1081 goto done;
1083 rcu_read_unlock();
1085 printk(KERN_INFO "Task in %s killed", memcg_name);
1087 rcu_read_lock();
1088 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1089 if (ret < 0) {
1090 rcu_read_unlock();
1091 goto done;
1093 rcu_read_unlock();
1096 * Continues from above, so we don't need an KERN_ level
1098 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1099 done:
1101 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1102 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1103 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1104 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1105 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1106 "failcnt %llu\n",
1107 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1108 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1109 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1113 * This function returns the number of memcg under hierarchy tree. Returns
1114 * 1(self count) if no children.
1116 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1118 int num = 0;
1119 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1120 return num;
1124 * Visit the first child (need not be the first child as per the ordering
1125 * of the cgroup list, since we track last_scanned_child) of @mem and use
1126 * that to reclaim free pages from.
1128 static struct mem_cgroup *
1129 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1131 struct mem_cgroup *ret = NULL;
1132 struct cgroup_subsys_state *css;
1133 int nextid, found;
1135 if (!root_mem->use_hierarchy) {
1136 css_get(&root_mem->css);
1137 ret = root_mem;
1140 while (!ret) {
1141 rcu_read_lock();
1142 nextid = root_mem->last_scanned_child + 1;
1143 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1144 &found);
1145 if (css && css_tryget(css))
1146 ret = container_of(css, struct mem_cgroup, css);
1148 rcu_read_unlock();
1149 /* Updates scanning parameter */
1150 spin_lock(&root_mem->reclaim_param_lock);
1151 if (!css) {
1152 /* this means start scan from ID:1 */
1153 root_mem->last_scanned_child = 0;
1154 } else
1155 root_mem->last_scanned_child = found;
1156 spin_unlock(&root_mem->reclaim_param_lock);
1159 return ret;
1163 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1164 * we reclaimed from, so that we don't end up penalizing one child extensively
1165 * based on its position in the children list.
1167 * root_mem is the original ancestor that we've been reclaim from.
1169 * We give up and return to the caller when we visit root_mem twice.
1170 * (other groups can be removed while we're walking....)
1172 * If shrink==true, for avoiding to free too much, this returns immedieately.
1174 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1175 struct zone *zone,
1176 gfp_t gfp_mask,
1177 unsigned long reclaim_options)
1179 struct mem_cgroup *victim;
1180 int ret, total = 0;
1181 int loop = 0;
1182 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1183 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1184 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1185 unsigned long excess = mem_cgroup_get_excess(root_mem);
1187 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1188 if (root_mem->memsw_is_minimum)
1189 noswap = true;
1191 while (1) {
1192 victim = mem_cgroup_select_victim(root_mem);
1193 if (victim == root_mem) {
1194 loop++;
1195 if (loop >= 1)
1196 drain_all_stock_async();
1197 if (loop >= 2) {
1199 * If we have not been able to reclaim
1200 * anything, it might because there are
1201 * no reclaimable pages under this hierarchy
1203 if (!check_soft || !total) {
1204 css_put(&victim->css);
1205 break;
1208 * We want to do more targetted reclaim.
1209 * excess >> 2 is not to excessive so as to
1210 * reclaim too much, nor too less that we keep
1211 * coming back to reclaim from this cgroup
1213 if (total >= (excess >> 2) ||
1214 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1215 css_put(&victim->css);
1216 break;
1220 if (!mem_cgroup_local_usage(victim)) {
1221 /* this cgroup's local usage == 0 */
1222 css_put(&victim->css);
1223 continue;
1225 /* we use swappiness of local cgroup */
1226 if (check_soft)
1227 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1228 noswap, get_swappiness(victim), zone,
1229 zone->zone_pgdat->node_id);
1230 else
1231 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1232 noswap, get_swappiness(victim));
1233 css_put(&victim->css);
1235 * At shrinking usage, we can't check we should stop here or
1236 * reclaim more. It's depends on callers. last_scanned_child
1237 * will work enough for keeping fairness under tree.
1239 if (shrink)
1240 return ret;
1241 total += ret;
1242 if (check_soft) {
1243 if (res_counter_check_under_soft_limit(&root_mem->res))
1244 return total;
1245 } else if (mem_cgroup_check_under_limit(root_mem))
1246 return 1 + total;
1248 return total;
1251 static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1253 int *val = (int *)data;
1254 int x;
1256 * Logically, we can stop scanning immediately when we find
1257 * a memcg is already locked. But condidering unlock ops and
1258 * creation/removal of memcg, scan-all is simple operation.
1260 x = atomic_inc_return(&mem->oom_lock);
1261 *val = max(x, *val);
1262 return 0;
1265 * Check OOM-Killer is already running under our hierarchy.
1266 * If someone is running, return false.
1268 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1270 int lock_count = 0;
1272 mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1274 if (lock_count == 1)
1275 return true;
1276 return false;
1279 static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1282 * When a new child is created while the hierarchy is under oom,
1283 * mem_cgroup_oom_lock() may not be called. We have to use
1284 * atomic_add_unless() here.
1286 atomic_add_unless(&mem->oom_lock, -1, 0);
1287 return 0;
1290 static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1292 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb);
1295 static DEFINE_MUTEX(memcg_oom_mutex);
1296 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1299 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1301 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1303 DEFINE_WAIT(wait);
1304 bool locked;
1306 /* At first, try to OOM lock hierarchy under mem.*/
1307 mutex_lock(&memcg_oom_mutex);
1308 locked = mem_cgroup_oom_lock(mem);
1310 * Even if signal_pending(), we can't quit charge() loop without
1311 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1312 * under OOM is always welcomed, use TASK_KILLABLE here.
1314 if (!locked)
1315 prepare_to_wait(&memcg_oom_waitq, &wait, TASK_KILLABLE);
1316 mutex_unlock(&memcg_oom_mutex);
1318 if (locked)
1319 mem_cgroup_out_of_memory(mem, mask);
1320 else {
1321 schedule();
1322 finish_wait(&memcg_oom_waitq, &wait);
1324 mutex_lock(&memcg_oom_mutex);
1325 mem_cgroup_oom_unlock(mem);
1327 * Here, we use global waitq .....more fine grained waitq ?
1328 * Assume following hierarchy.
1329 * A/
1330 * 01
1331 * 02
1332 * assume OOM happens both in A and 01 at the same time. Tthey are
1333 * mutually exclusive by lock. (kill in 01 helps A.)
1334 * When we use per memcg waitq, we have to wake up waiters on A and 02
1335 * in addtion to waiters on 01. We use global waitq for avoiding mess.
1336 * It will not be a big problem.
1337 * (And a task may be moved to other groups while it's waiting for OOM.)
1339 wake_up_all(&memcg_oom_waitq);
1340 mutex_unlock(&memcg_oom_mutex);
1342 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1343 return false;
1344 /* Give chance to dying process */
1345 schedule_timeout(1);
1346 return true;
1350 * Currently used to update mapped file statistics, but the routine can be
1351 * generalized to update other statistics as well.
1353 void mem_cgroup_update_file_mapped(struct page *page, int val)
1355 struct mem_cgroup *mem;
1356 struct page_cgroup *pc;
1358 pc = lookup_page_cgroup(page);
1359 if (unlikely(!pc))
1360 return;
1362 lock_page_cgroup(pc);
1363 mem = pc->mem_cgroup;
1364 if (!mem || !PageCgroupUsed(pc))
1365 goto done;
1368 * Preemption is already disabled. We can use __this_cpu_xxx
1370 if (val > 0) {
1371 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1372 SetPageCgroupFileMapped(pc);
1373 } else {
1374 __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1375 ClearPageCgroupFileMapped(pc);
1378 done:
1379 unlock_page_cgroup(pc);
1383 * size of first charge trial. "32" comes from vmscan.c's magic value.
1384 * TODO: maybe necessary to use big numbers in big irons.
1386 #define CHARGE_SIZE (32 * PAGE_SIZE)
1387 struct memcg_stock_pcp {
1388 struct mem_cgroup *cached; /* this never be root cgroup */
1389 int charge;
1390 struct work_struct work;
1392 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1393 static atomic_t memcg_drain_count;
1396 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1397 * from local stock and true is returned. If the stock is 0 or charges from a
1398 * cgroup which is not current target, returns false. This stock will be
1399 * refilled.
1401 static bool consume_stock(struct mem_cgroup *mem)
1403 struct memcg_stock_pcp *stock;
1404 bool ret = true;
1406 stock = &get_cpu_var(memcg_stock);
1407 if (mem == stock->cached && stock->charge)
1408 stock->charge -= PAGE_SIZE;
1409 else /* need to call res_counter_charge */
1410 ret = false;
1411 put_cpu_var(memcg_stock);
1412 return ret;
1416 * Returns stocks cached in percpu to res_counter and reset cached information.
1418 static void drain_stock(struct memcg_stock_pcp *stock)
1420 struct mem_cgroup *old = stock->cached;
1422 if (stock->charge) {
1423 res_counter_uncharge(&old->res, stock->charge);
1424 if (do_swap_account)
1425 res_counter_uncharge(&old->memsw, stock->charge);
1427 stock->cached = NULL;
1428 stock->charge = 0;
1432 * This must be called under preempt disabled or must be called by
1433 * a thread which is pinned to local cpu.
1435 static void drain_local_stock(struct work_struct *dummy)
1437 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1438 drain_stock(stock);
1442 * Cache charges(val) which is from res_counter, to local per_cpu area.
1443 * This will be consumed by consumt_stock() function, later.
1445 static void refill_stock(struct mem_cgroup *mem, int val)
1447 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1449 if (stock->cached != mem) { /* reset if necessary */
1450 drain_stock(stock);
1451 stock->cached = mem;
1453 stock->charge += val;
1454 put_cpu_var(memcg_stock);
1458 * Tries to drain stocked charges in other cpus. This function is asynchronous
1459 * and just put a work per cpu for draining localy on each cpu. Caller can
1460 * expects some charges will be back to res_counter later but cannot wait for
1461 * it.
1463 static void drain_all_stock_async(void)
1465 int cpu;
1466 /* This function is for scheduling "drain" in asynchronous way.
1467 * The result of "drain" is not directly handled by callers. Then,
1468 * if someone is calling drain, we don't have to call drain more.
1469 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1470 * there is a race. We just do loose check here.
1472 if (atomic_read(&memcg_drain_count))
1473 return;
1474 /* Notify other cpus that system-wide "drain" is running */
1475 atomic_inc(&memcg_drain_count);
1476 get_online_cpus();
1477 for_each_online_cpu(cpu) {
1478 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1479 schedule_work_on(cpu, &stock->work);
1481 put_online_cpus();
1482 atomic_dec(&memcg_drain_count);
1483 /* We don't wait for flush_work */
1486 /* This is a synchronous drain interface. */
1487 static void drain_all_stock_sync(void)
1489 /* called when force_empty is called */
1490 atomic_inc(&memcg_drain_count);
1491 schedule_on_each_cpu(drain_local_stock);
1492 atomic_dec(&memcg_drain_count);
1495 static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1496 unsigned long action,
1497 void *hcpu)
1499 int cpu = (unsigned long)hcpu;
1500 struct memcg_stock_pcp *stock;
1502 if (action != CPU_DEAD)
1503 return NOTIFY_OK;
1504 stock = &per_cpu(memcg_stock, cpu);
1505 drain_stock(stock);
1506 return NOTIFY_OK;
1510 * Unlike exported interface, "oom" parameter is added. if oom==true,
1511 * oom-killer can be invoked.
1513 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1514 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1516 struct mem_cgroup *mem, *mem_over_limit;
1517 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1518 struct res_counter *fail_res;
1519 int csize = CHARGE_SIZE;
1522 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1523 * in system level. So, allow to go ahead dying process in addition to
1524 * MEMDIE process.
1526 if (unlikely(test_thread_flag(TIF_MEMDIE)
1527 || fatal_signal_pending(current)))
1528 goto bypass;
1531 * We always charge the cgroup the mm_struct belongs to.
1532 * The mm_struct's mem_cgroup changes on task migration if the
1533 * thread group leader migrates. It's possible that mm is not
1534 * set, if so charge the init_mm (happens for pagecache usage).
1536 mem = *memcg;
1537 if (likely(!mem)) {
1538 mem = try_get_mem_cgroup_from_mm(mm);
1539 *memcg = mem;
1540 } else {
1541 css_get(&mem->css);
1543 if (unlikely(!mem))
1544 return 0;
1546 VM_BUG_ON(css_is_removed(&mem->css));
1547 if (mem_cgroup_is_root(mem))
1548 goto done;
1550 while (1) {
1551 int ret = 0;
1552 unsigned long flags = 0;
1554 if (consume_stock(mem))
1555 goto done;
1557 ret = res_counter_charge(&mem->res, csize, &fail_res);
1558 if (likely(!ret)) {
1559 if (!do_swap_account)
1560 break;
1561 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1562 if (likely(!ret))
1563 break;
1564 /* mem+swap counter fails */
1565 res_counter_uncharge(&mem->res, csize);
1566 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1567 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1568 memsw);
1569 } else
1570 /* mem counter fails */
1571 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1572 res);
1574 /* reduce request size and retry */
1575 if (csize > PAGE_SIZE) {
1576 csize = PAGE_SIZE;
1577 continue;
1579 if (!(gfp_mask & __GFP_WAIT))
1580 goto nomem;
1582 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1583 gfp_mask, flags);
1584 if (ret)
1585 continue;
1588 * try_to_free_mem_cgroup_pages() might not give us a full
1589 * picture of reclaim. Some pages are reclaimed and might be
1590 * moved to swap cache or just unmapped from the cgroup.
1591 * Check the limit again to see if the reclaim reduced the
1592 * current usage of the cgroup before giving up
1595 if (mem_cgroup_check_under_limit(mem_over_limit))
1596 continue;
1598 /* try to avoid oom while someone is moving charge */
1599 if (mc.moving_task && current != mc.moving_task) {
1600 struct mem_cgroup *from, *to;
1601 bool do_continue = false;
1603 * There is a small race that "from" or "to" can be
1604 * freed by rmdir, so we use css_tryget().
1606 rcu_read_lock();
1607 from = mc.from;
1608 to = mc.to;
1609 if (from && css_tryget(&from->css)) {
1610 if (mem_over_limit->use_hierarchy)
1611 do_continue = css_is_ancestor(
1612 &from->css,
1613 &mem_over_limit->css);
1614 else
1615 do_continue = (from == mem_over_limit);
1616 css_put(&from->css);
1618 if (!do_continue && to && css_tryget(&to->css)) {
1619 if (mem_over_limit->use_hierarchy)
1620 do_continue = css_is_ancestor(
1621 &to->css,
1622 &mem_over_limit->css);
1623 else
1624 do_continue = (to == mem_over_limit);
1625 css_put(&to->css);
1627 rcu_read_unlock();
1628 if (do_continue) {
1629 DEFINE_WAIT(wait);
1630 prepare_to_wait(&mc.waitq, &wait,
1631 TASK_INTERRUPTIBLE);
1632 /* moving charge context might have finished. */
1633 if (mc.moving_task)
1634 schedule();
1635 finish_wait(&mc.waitq, &wait);
1636 continue;
1640 if (!nr_retries--) {
1641 if (!oom)
1642 goto nomem;
1643 if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
1644 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1645 continue;
1647 /* When we reach here, current task is dying .*/
1648 css_put(&mem->css);
1649 goto bypass;
1652 if (csize > PAGE_SIZE)
1653 refill_stock(mem, csize - PAGE_SIZE);
1654 done:
1655 return 0;
1656 nomem:
1657 css_put(&mem->css);
1658 return -ENOMEM;
1659 bypass:
1660 *memcg = NULL;
1661 return 0;
1665 * Somemtimes we have to undo a charge we got by try_charge().
1666 * This function is for that and do uncharge, put css's refcnt.
1667 * gotten by try_charge().
1669 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1670 unsigned long count)
1672 if (!mem_cgroup_is_root(mem)) {
1673 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1674 if (do_swap_account)
1675 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1676 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1677 WARN_ON_ONCE(count > INT_MAX);
1678 __css_put(&mem->css, (int)count);
1680 /* we don't need css_put for root */
1683 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1685 __mem_cgroup_cancel_charge(mem, 1);
1689 * A helper function to get mem_cgroup from ID. must be called under
1690 * rcu_read_lock(). The caller must check css_is_removed() or some if
1691 * it's concern. (dropping refcnt from swap can be called against removed
1692 * memcg.)
1694 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1696 struct cgroup_subsys_state *css;
1698 /* ID 0 is unused ID */
1699 if (!id)
1700 return NULL;
1701 css = css_lookup(&mem_cgroup_subsys, id);
1702 if (!css)
1703 return NULL;
1704 return container_of(css, struct mem_cgroup, css);
1707 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1709 struct mem_cgroup *mem = NULL;
1710 struct page_cgroup *pc;
1711 unsigned short id;
1712 swp_entry_t ent;
1714 VM_BUG_ON(!PageLocked(page));
1716 pc = lookup_page_cgroup(page);
1717 lock_page_cgroup(pc);
1718 if (PageCgroupUsed(pc)) {
1719 mem = pc->mem_cgroup;
1720 if (mem && !css_tryget(&mem->css))
1721 mem = NULL;
1722 } else if (PageSwapCache(page)) {
1723 ent.val = page_private(page);
1724 id = lookup_swap_cgroup(ent);
1725 rcu_read_lock();
1726 mem = mem_cgroup_lookup(id);
1727 if (mem && !css_tryget(&mem->css))
1728 mem = NULL;
1729 rcu_read_unlock();
1731 unlock_page_cgroup(pc);
1732 return mem;
1736 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1737 * USED state. If already USED, uncharge and return.
1740 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1741 struct page_cgroup *pc,
1742 enum charge_type ctype)
1744 /* try_charge() can return NULL to *memcg, taking care of it. */
1745 if (!mem)
1746 return;
1748 lock_page_cgroup(pc);
1749 if (unlikely(PageCgroupUsed(pc))) {
1750 unlock_page_cgroup(pc);
1751 mem_cgroup_cancel_charge(mem);
1752 return;
1755 pc->mem_cgroup = mem;
1757 * We access a page_cgroup asynchronously without lock_page_cgroup().
1758 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1759 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1760 * before USED bit, we need memory barrier here.
1761 * See mem_cgroup_add_lru_list(), etc.
1763 smp_wmb();
1764 switch (ctype) {
1765 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1766 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1767 SetPageCgroupCache(pc);
1768 SetPageCgroupUsed(pc);
1769 break;
1770 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1771 ClearPageCgroupCache(pc);
1772 SetPageCgroupUsed(pc);
1773 break;
1774 default:
1775 break;
1778 mem_cgroup_charge_statistics(mem, pc, true);
1780 unlock_page_cgroup(pc);
1782 * "charge_statistics" updated event counter. Then, check it.
1783 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1784 * if they exceeds softlimit.
1786 memcg_check_events(mem, pc->page);
1790 * __mem_cgroup_move_account - move account of the page
1791 * @pc: page_cgroup of the page.
1792 * @from: mem_cgroup which the page is moved from.
1793 * @to: mem_cgroup which the page is moved to. @from != @to.
1794 * @uncharge: whether we should call uncharge and css_put against @from.
1796 * The caller must confirm following.
1797 * - page is not on LRU (isolate_page() is useful.)
1798 * - the pc is locked, used, and ->mem_cgroup points to @from.
1800 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1801 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1802 * true, this function does "uncharge" from old cgroup, but it doesn't if
1803 * @uncharge is false, so a caller should do "uncharge".
1806 static void __mem_cgroup_move_account(struct page_cgroup *pc,
1807 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1809 VM_BUG_ON(from == to);
1810 VM_BUG_ON(PageLRU(pc->page));
1811 VM_BUG_ON(!PageCgroupLocked(pc));
1812 VM_BUG_ON(!PageCgroupUsed(pc));
1813 VM_BUG_ON(pc->mem_cgroup != from);
1815 if (PageCgroupFileMapped(pc)) {
1816 /* Update mapped_file data for mem_cgroup */
1817 preempt_disable();
1818 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1819 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1820 preempt_enable();
1822 mem_cgroup_charge_statistics(from, pc, false);
1823 if (uncharge)
1824 /* This is not "cancel", but cancel_charge does all we need. */
1825 mem_cgroup_cancel_charge(from);
1827 /* caller should have done css_get */
1828 pc->mem_cgroup = to;
1829 mem_cgroup_charge_statistics(to, pc, true);
1831 * We charges against "to" which may not have any tasks. Then, "to"
1832 * can be under rmdir(). But in current implementation, caller of
1833 * this function is just force_empty() and move charge, so it's
1834 * garanteed that "to" is never removed. So, we don't check rmdir
1835 * status here.
1840 * check whether the @pc is valid for moving account and call
1841 * __mem_cgroup_move_account()
1843 static int mem_cgroup_move_account(struct page_cgroup *pc,
1844 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1846 int ret = -EINVAL;
1847 lock_page_cgroup(pc);
1848 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1849 __mem_cgroup_move_account(pc, from, to, uncharge);
1850 ret = 0;
1852 unlock_page_cgroup(pc);
1854 * check events
1856 memcg_check_events(to, pc->page);
1857 memcg_check_events(from, pc->page);
1858 return ret;
1862 * move charges to its parent.
1865 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1866 struct mem_cgroup *child,
1867 gfp_t gfp_mask)
1869 struct page *page = pc->page;
1870 struct cgroup *cg = child->css.cgroup;
1871 struct cgroup *pcg = cg->parent;
1872 struct mem_cgroup *parent;
1873 int ret;
1875 /* Is ROOT ? */
1876 if (!pcg)
1877 return -EINVAL;
1879 ret = -EBUSY;
1880 if (!get_page_unless_zero(page))
1881 goto out;
1882 if (isolate_lru_page(page))
1883 goto put;
1885 parent = mem_cgroup_from_cont(pcg);
1886 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1887 if (ret || !parent)
1888 goto put_back;
1890 ret = mem_cgroup_move_account(pc, child, parent, true);
1891 if (ret)
1892 mem_cgroup_cancel_charge(parent);
1893 put_back:
1894 putback_lru_page(page);
1895 put:
1896 put_page(page);
1897 out:
1898 return ret;
1902 * Charge the memory controller for page usage.
1903 * Return
1904 * 0 if the charge was successful
1905 * < 0 if the cgroup is over its limit
1907 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1908 gfp_t gfp_mask, enum charge_type ctype,
1909 struct mem_cgroup *memcg)
1911 struct mem_cgroup *mem;
1912 struct page_cgroup *pc;
1913 int ret;
1915 pc = lookup_page_cgroup(page);
1916 /* can happen at boot */
1917 if (unlikely(!pc))
1918 return 0;
1919 prefetchw(pc);
1921 mem = memcg;
1922 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1923 if (ret || !mem)
1924 return ret;
1926 __mem_cgroup_commit_charge(mem, pc, ctype);
1927 return 0;
1930 int mem_cgroup_newpage_charge(struct page *page,
1931 struct mm_struct *mm, gfp_t gfp_mask)
1933 if (mem_cgroup_disabled())
1934 return 0;
1935 if (PageCompound(page))
1936 return 0;
1938 * If already mapped, we don't have to account.
1939 * If page cache, page->mapping has address_space.
1940 * But page->mapping may have out-of-use anon_vma pointer,
1941 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1942 * is NULL.
1944 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1945 return 0;
1946 if (unlikely(!mm))
1947 mm = &init_mm;
1948 return mem_cgroup_charge_common(page, mm, gfp_mask,
1949 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1952 static void
1953 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1954 enum charge_type ctype);
1956 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1957 gfp_t gfp_mask)
1959 struct mem_cgroup *mem = NULL;
1960 int ret;
1962 if (mem_cgroup_disabled())
1963 return 0;
1964 if (PageCompound(page))
1965 return 0;
1967 * Corner case handling. This is called from add_to_page_cache()
1968 * in usual. But some FS (shmem) precharges this page before calling it
1969 * and call add_to_page_cache() with GFP_NOWAIT.
1971 * For GFP_NOWAIT case, the page may be pre-charged before calling
1972 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1973 * charge twice. (It works but has to pay a bit larger cost.)
1974 * And when the page is SwapCache, it should take swap information
1975 * into account. This is under lock_page() now.
1977 if (!(gfp_mask & __GFP_WAIT)) {
1978 struct page_cgroup *pc;
1981 pc = lookup_page_cgroup(page);
1982 if (!pc)
1983 return 0;
1984 lock_page_cgroup(pc);
1985 if (PageCgroupUsed(pc)) {
1986 unlock_page_cgroup(pc);
1987 return 0;
1989 unlock_page_cgroup(pc);
1992 if (unlikely(!mm && !mem))
1993 mm = &init_mm;
1995 if (page_is_file_cache(page))
1996 return mem_cgroup_charge_common(page, mm, gfp_mask,
1997 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1999 /* shmem */
2000 if (PageSwapCache(page)) {
2001 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2002 if (!ret)
2003 __mem_cgroup_commit_charge_swapin(page, mem,
2004 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2005 } else
2006 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2007 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2009 return ret;
2013 * While swap-in, try_charge -> commit or cancel, the page is locked.
2014 * And when try_charge() successfully returns, one refcnt to memcg without
2015 * struct page_cgroup is acquired. This refcnt will be consumed by
2016 * "commit()" or removed by "cancel()"
2018 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2019 struct page *page,
2020 gfp_t mask, struct mem_cgroup **ptr)
2022 struct mem_cgroup *mem;
2023 int ret;
2025 if (mem_cgroup_disabled())
2026 return 0;
2028 if (!do_swap_account)
2029 goto charge_cur_mm;
2031 * A racing thread's fault, or swapoff, may have already updated
2032 * the pte, and even removed page from swap cache: in those cases
2033 * do_swap_page()'s pte_same() test will fail; but there's also a
2034 * KSM case which does need to charge the page.
2036 if (!PageSwapCache(page))
2037 goto charge_cur_mm;
2038 mem = try_get_mem_cgroup_from_page(page);
2039 if (!mem)
2040 goto charge_cur_mm;
2041 *ptr = mem;
2042 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2043 /* drop extra refcnt from tryget */
2044 css_put(&mem->css);
2045 return ret;
2046 charge_cur_mm:
2047 if (unlikely(!mm))
2048 mm = &init_mm;
2049 return __mem_cgroup_try_charge(mm, mask, ptr, true);
2052 static void
2053 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2054 enum charge_type ctype)
2056 struct page_cgroup *pc;
2058 if (mem_cgroup_disabled())
2059 return;
2060 if (!ptr)
2061 return;
2062 cgroup_exclude_rmdir(&ptr->css);
2063 pc = lookup_page_cgroup(page);
2064 mem_cgroup_lru_del_before_commit_swapcache(page);
2065 __mem_cgroup_commit_charge(ptr, pc, ctype);
2066 mem_cgroup_lru_add_after_commit_swapcache(page);
2068 * Now swap is on-memory. This means this page may be
2069 * counted both as mem and swap....double count.
2070 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2071 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2072 * may call delete_from_swap_cache() before reach here.
2074 if (do_swap_account && PageSwapCache(page)) {
2075 swp_entry_t ent = {.val = page_private(page)};
2076 unsigned short id;
2077 struct mem_cgroup *memcg;
2079 id = swap_cgroup_record(ent, 0);
2080 rcu_read_lock();
2081 memcg = mem_cgroup_lookup(id);
2082 if (memcg) {
2084 * This recorded memcg can be obsolete one. So, avoid
2085 * calling css_tryget
2087 if (!mem_cgroup_is_root(memcg))
2088 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2089 mem_cgroup_swap_statistics(memcg, false);
2090 mem_cgroup_put(memcg);
2092 rcu_read_unlock();
2095 * At swapin, we may charge account against cgroup which has no tasks.
2096 * So, rmdir()->pre_destroy() can be called while we do this charge.
2097 * In that case, we need to call pre_destroy() again. check it here.
2099 cgroup_release_and_wakeup_rmdir(&ptr->css);
2102 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2104 __mem_cgroup_commit_charge_swapin(page, ptr,
2105 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2108 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2110 if (mem_cgroup_disabled())
2111 return;
2112 if (!mem)
2113 return;
2114 mem_cgroup_cancel_charge(mem);
2117 static void
2118 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2120 struct memcg_batch_info *batch = NULL;
2121 bool uncharge_memsw = true;
2122 /* If swapout, usage of swap doesn't decrease */
2123 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2124 uncharge_memsw = false;
2126 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2127 * In those cases, all pages freed continously can be expected to be in
2128 * the same cgroup and we have chance to coalesce uncharges.
2129 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2130 * because we want to do uncharge as soon as possible.
2132 if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
2133 goto direct_uncharge;
2135 batch = &current->memcg_batch;
2137 * In usual, we do css_get() when we remember memcg pointer.
2138 * But in this case, we keep res->usage until end of a series of
2139 * uncharges. Then, it's ok to ignore memcg's refcnt.
2141 if (!batch->memcg)
2142 batch->memcg = mem;
2144 * In typical case, batch->memcg == mem. This means we can
2145 * merge a series of uncharges to an uncharge of res_counter.
2146 * If not, we uncharge res_counter ony by one.
2148 if (batch->memcg != mem)
2149 goto direct_uncharge;
2150 /* remember freed charge and uncharge it later */
2151 batch->bytes += PAGE_SIZE;
2152 if (uncharge_memsw)
2153 batch->memsw_bytes += PAGE_SIZE;
2154 return;
2155 direct_uncharge:
2156 res_counter_uncharge(&mem->res, PAGE_SIZE);
2157 if (uncharge_memsw)
2158 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2159 return;
2163 * uncharge if !page_mapped(page)
2165 static struct mem_cgroup *
2166 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2168 struct page_cgroup *pc;
2169 struct mem_cgroup *mem = NULL;
2170 struct mem_cgroup_per_zone *mz;
2172 if (mem_cgroup_disabled())
2173 return NULL;
2175 if (PageSwapCache(page))
2176 return NULL;
2179 * Check if our page_cgroup is valid
2181 pc = lookup_page_cgroup(page);
2182 if (unlikely(!pc || !PageCgroupUsed(pc)))
2183 return NULL;
2185 lock_page_cgroup(pc);
2187 mem = pc->mem_cgroup;
2189 if (!PageCgroupUsed(pc))
2190 goto unlock_out;
2192 switch (ctype) {
2193 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2194 case MEM_CGROUP_CHARGE_TYPE_DROP:
2195 if (page_mapped(page))
2196 goto unlock_out;
2197 break;
2198 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2199 if (!PageAnon(page)) { /* Shared memory */
2200 if (page->mapping && !page_is_file_cache(page))
2201 goto unlock_out;
2202 } else if (page_mapped(page)) /* Anon */
2203 goto unlock_out;
2204 break;
2205 default:
2206 break;
2209 if (!mem_cgroup_is_root(mem))
2210 __do_uncharge(mem, ctype);
2211 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2212 mem_cgroup_swap_statistics(mem, true);
2213 mem_cgroup_charge_statistics(mem, pc, false);
2215 ClearPageCgroupUsed(pc);
2217 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2218 * freed from LRU. This is safe because uncharged page is expected not
2219 * to be reused (freed soon). Exception is SwapCache, it's handled by
2220 * special functions.
2223 mz = page_cgroup_zoneinfo(pc);
2224 unlock_page_cgroup(pc);
2226 memcg_check_events(mem, page);
2227 /* at swapout, this memcg will be accessed to record to swap */
2228 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2229 css_put(&mem->css);
2231 return mem;
2233 unlock_out:
2234 unlock_page_cgroup(pc);
2235 return NULL;
2238 void mem_cgroup_uncharge_page(struct page *page)
2240 /* early check. */
2241 if (page_mapped(page))
2242 return;
2243 if (page->mapping && !PageAnon(page))
2244 return;
2245 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2248 void mem_cgroup_uncharge_cache_page(struct page *page)
2250 VM_BUG_ON(page_mapped(page));
2251 VM_BUG_ON(page->mapping);
2252 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2256 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2257 * In that cases, pages are freed continuously and we can expect pages
2258 * are in the same memcg. All these calls itself limits the number of
2259 * pages freed at once, then uncharge_start/end() is called properly.
2260 * This may be called prural(2) times in a context,
2263 void mem_cgroup_uncharge_start(void)
2265 current->memcg_batch.do_batch++;
2266 /* We can do nest. */
2267 if (current->memcg_batch.do_batch == 1) {
2268 current->memcg_batch.memcg = NULL;
2269 current->memcg_batch.bytes = 0;
2270 current->memcg_batch.memsw_bytes = 0;
2274 void mem_cgroup_uncharge_end(void)
2276 struct memcg_batch_info *batch = &current->memcg_batch;
2278 if (!batch->do_batch)
2279 return;
2281 batch->do_batch--;
2282 if (batch->do_batch) /* If stacked, do nothing. */
2283 return;
2285 if (!batch->memcg)
2286 return;
2288 * This "batch->memcg" is valid without any css_get/put etc...
2289 * bacause we hide charges behind us.
2291 if (batch->bytes)
2292 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2293 if (batch->memsw_bytes)
2294 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2295 /* forget this pointer (for sanity check) */
2296 batch->memcg = NULL;
2299 #ifdef CONFIG_SWAP
2301 * called after __delete_from_swap_cache() and drop "page" account.
2302 * memcg information is recorded to swap_cgroup of "ent"
2304 void
2305 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2307 struct mem_cgroup *memcg;
2308 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2310 if (!swapout) /* this was a swap cache but the swap is unused ! */
2311 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2313 memcg = __mem_cgroup_uncharge_common(page, ctype);
2315 /* record memcg information */
2316 if (do_swap_account && swapout && memcg) {
2317 rcu_read_lock();
2318 swap_cgroup_record(ent, css_id(&memcg->css));
2319 rcu_read_unlock();
2320 mem_cgroup_get(memcg);
2322 if (swapout && memcg)
2323 css_put(&memcg->css);
2325 #endif
2327 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2329 * called from swap_entry_free(). remove record in swap_cgroup and
2330 * uncharge "memsw" account.
2332 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2334 struct mem_cgroup *memcg;
2335 unsigned short id;
2337 if (!do_swap_account)
2338 return;
2340 id = swap_cgroup_record(ent, 0);
2341 rcu_read_lock();
2342 memcg = mem_cgroup_lookup(id);
2343 if (memcg) {
2345 * We uncharge this because swap is freed.
2346 * This memcg can be obsolete one. We avoid calling css_tryget
2348 if (!mem_cgroup_is_root(memcg))
2349 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2350 mem_cgroup_swap_statistics(memcg, false);
2351 mem_cgroup_put(memcg);
2353 rcu_read_unlock();
2357 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2358 * @entry: swap entry to be moved
2359 * @from: mem_cgroup which the entry is moved from
2360 * @to: mem_cgroup which the entry is moved to
2361 * @need_fixup: whether we should fixup res_counters and refcounts.
2363 * It succeeds only when the swap_cgroup's record for this entry is the same
2364 * as the mem_cgroup's id of @from.
2366 * Returns 0 on success, -EINVAL on failure.
2368 * The caller must have charged to @to, IOW, called res_counter_charge() about
2369 * both res and memsw, and called css_get().
2371 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2372 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2374 unsigned short old_id, new_id;
2376 rcu_read_lock();
2377 old_id = css_id(&from->css);
2378 new_id = css_id(&to->css);
2379 rcu_read_unlock();
2381 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2382 mem_cgroup_swap_statistics(from, false);
2383 mem_cgroup_swap_statistics(to, true);
2385 * This function is only called from task migration context now.
2386 * It postpones res_counter and refcount handling till the end
2387 * of task migration(mem_cgroup_clear_mc()) for performance
2388 * improvement. But we cannot postpone mem_cgroup_get(to)
2389 * because if the process that has been moved to @to does
2390 * swap-in, the refcount of @to might be decreased to 0.
2392 mem_cgroup_get(to);
2393 if (need_fixup) {
2394 if (!mem_cgroup_is_root(from))
2395 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2396 mem_cgroup_put(from);
2398 * we charged both to->res and to->memsw, so we should
2399 * uncharge to->res.
2401 if (!mem_cgroup_is_root(to))
2402 res_counter_uncharge(&to->res, PAGE_SIZE);
2403 css_put(&to->css);
2405 return 0;
2407 return -EINVAL;
2409 #else
2410 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2411 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2413 return -EINVAL;
2415 #endif
2418 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2419 * page belongs to.
2421 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2423 struct page_cgroup *pc;
2424 struct mem_cgroup *mem = NULL;
2425 int ret = 0;
2427 if (mem_cgroup_disabled())
2428 return 0;
2430 pc = lookup_page_cgroup(page);
2431 lock_page_cgroup(pc);
2432 if (PageCgroupUsed(pc)) {
2433 mem = pc->mem_cgroup;
2434 css_get(&mem->css);
2436 unlock_page_cgroup(pc);
2438 *ptr = mem;
2439 if (mem) {
2440 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2441 css_put(&mem->css);
2443 return ret;
2446 /* remove redundant charge if migration failed*/
2447 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2448 struct page *oldpage, struct page *newpage)
2450 struct page *target, *unused;
2451 struct page_cgroup *pc;
2452 enum charge_type ctype;
2454 if (!mem)
2455 return;
2456 cgroup_exclude_rmdir(&mem->css);
2457 /* at migration success, oldpage->mapping is NULL. */
2458 if (oldpage->mapping) {
2459 target = oldpage;
2460 unused = NULL;
2461 } else {
2462 target = newpage;
2463 unused = oldpage;
2466 if (PageAnon(target))
2467 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2468 else if (page_is_file_cache(target))
2469 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2470 else
2471 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2473 /* unused page is not on radix-tree now. */
2474 if (unused)
2475 __mem_cgroup_uncharge_common(unused, ctype);
2477 pc = lookup_page_cgroup(target);
2479 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2480 * So, double-counting is effectively avoided.
2482 __mem_cgroup_commit_charge(mem, pc, ctype);
2485 * Both of oldpage and newpage are still under lock_page().
2486 * Then, we don't have to care about race in radix-tree.
2487 * But we have to be careful that this page is unmapped or not.
2489 * There is a case for !page_mapped(). At the start of
2490 * migration, oldpage was mapped. But now, it's zapped.
2491 * But we know *target* page is not freed/reused under us.
2492 * mem_cgroup_uncharge_page() does all necessary checks.
2494 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2495 mem_cgroup_uncharge_page(target);
2497 * At migration, we may charge account against cgroup which has no tasks
2498 * So, rmdir()->pre_destroy() can be called while we do this charge.
2499 * In that case, we need to call pre_destroy() again. check it here.
2501 cgroup_release_and_wakeup_rmdir(&mem->css);
2505 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2506 * Calling hierarchical_reclaim is not enough because we should update
2507 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2508 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2509 * not from the memcg which this page would be charged to.
2510 * try_charge_swapin does all of these works properly.
2512 int mem_cgroup_shmem_charge_fallback(struct page *page,
2513 struct mm_struct *mm,
2514 gfp_t gfp_mask)
2516 struct mem_cgroup *mem = NULL;
2517 int ret;
2519 if (mem_cgroup_disabled())
2520 return 0;
2522 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2523 if (!ret)
2524 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2526 return ret;
2529 static DEFINE_MUTEX(set_limit_mutex);
2531 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2532 unsigned long long val)
2534 int retry_count;
2535 u64 memswlimit;
2536 int ret = 0;
2537 int children = mem_cgroup_count_children(memcg);
2538 u64 curusage, oldusage;
2541 * For keeping hierarchical_reclaim simple, how long we should retry
2542 * is depends on callers. We set our retry-count to be function
2543 * of # of children which we should visit in this loop.
2545 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2547 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2549 while (retry_count) {
2550 if (signal_pending(current)) {
2551 ret = -EINTR;
2552 break;
2555 * Rather than hide all in some function, I do this in
2556 * open coded manner. You see what this really does.
2557 * We have to guarantee mem->res.limit < mem->memsw.limit.
2559 mutex_lock(&set_limit_mutex);
2560 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2561 if (memswlimit < val) {
2562 ret = -EINVAL;
2563 mutex_unlock(&set_limit_mutex);
2564 break;
2566 ret = res_counter_set_limit(&memcg->res, val);
2567 if (!ret) {
2568 if (memswlimit == val)
2569 memcg->memsw_is_minimum = true;
2570 else
2571 memcg->memsw_is_minimum = false;
2573 mutex_unlock(&set_limit_mutex);
2575 if (!ret)
2576 break;
2578 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2579 MEM_CGROUP_RECLAIM_SHRINK);
2580 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2581 /* Usage is reduced ? */
2582 if (curusage >= oldusage)
2583 retry_count--;
2584 else
2585 oldusage = curusage;
2588 return ret;
2591 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2592 unsigned long long val)
2594 int retry_count;
2595 u64 memlimit, oldusage, curusage;
2596 int children = mem_cgroup_count_children(memcg);
2597 int ret = -EBUSY;
2599 /* see mem_cgroup_resize_res_limit */
2600 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2601 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2602 while (retry_count) {
2603 if (signal_pending(current)) {
2604 ret = -EINTR;
2605 break;
2608 * Rather than hide all in some function, I do this in
2609 * open coded manner. You see what this really does.
2610 * We have to guarantee mem->res.limit < mem->memsw.limit.
2612 mutex_lock(&set_limit_mutex);
2613 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2614 if (memlimit > val) {
2615 ret = -EINVAL;
2616 mutex_unlock(&set_limit_mutex);
2617 break;
2619 ret = res_counter_set_limit(&memcg->memsw, val);
2620 if (!ret) {
2621 if (memlimit == val)
2622 memcg->memsw_is_minimum = true;
2623 else
2624 memcg->memsw_is_minimum = false;
2626 mutex_unlock(&set_limit_mutex);
2628 if (!ret)
2629 break;
2631 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2632 MEM_CGROUP_RECLAIM_NOSWAP |
2633 MEM_CGROUP_RECLAIM_SHRINK);
2634 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2635 /* Usage is reduced ? */
2636 if (curusage >= oldusage)
2637 retry_count--;
2638 else
2639 oldusage = curusage;
2641 return ret;
2644 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2645 gfp_t gfp_mask, int nid,
2646 int zid)
2648 unsigned long nr_reclaimed = 0;
2649 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2650 unsigned long reclaimed;
2651 int loop = 0;
2652 struct mem_cgroup_tree_per_zone *mctz;
2653 unsigned long long excess;
2655 if (order > 0)
2656 return 0;
2658 mctz = soft_limit_tree_node_zone(nid, zid);
2660 * This loop can run a while, specially if mem_cgroup's continuously
2661 * keep exceeding their soft limit and putting the system under
2662 * pressure
2664 do {
2665 if (next_mz)
2666 mz = next_mz;
2667 else
2668 mz = mem_cgroup_largest_soft_limit_node(mctz);
2669 if (!mz)
2670 break;
2672 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2673 gfp_mask,
2674 MEM_CGROUP_RECLAIM_SOFT);
2675 nr_reclaimed += reclaimed;
2676 spin_lock(&mctz->lock);
2679 * If we failed to reclaim anything from this memory cgroup
2680 * it is time to move on to the next cgroup
2682 next_mz = NULL;
2683 if (!reclaimed) {
2684 do {
2686 * Loop until we find yet another one.
2688 * By the time we get the soft_limit lock
2689 * again, someone might have aded the
2690 * group back on the RB tree. Iterate to
2691 * make sure we get a different mem.
2692 * mem_cgroup_largest_soft_limit_node returns
2693 * NULL if no other cgroup is present on
2694 * the tree
2696 next_mz =
2697 __mem_cgroup_largest_soft_limit_node(mctz);
2698 if (next_mz == mz) {
2699 css_put(&next_mz->mem->css);
2700 next_mz = NULL;
2701 } else /* next_mz == NULL or other memcg */
2702 break;
2703 } while (1);
2705 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2706 excess = res_counter_soft_limit_excess(&mz->mem->res);
2708 * One school of thought says that we should not add
2709 * back the node to the tree if reclaim returns 0.
2710 * But our reclaim could return 0, simply because due
2711 * to priority we are exposing a smaller subset of
2712 * memory to reclaim from. Consider this as a longer
2713 * term TODO.
2715 /* If excess == 0, no tree ops */
2716 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2717 spin_unlock(&mctz->lock);
2718 css_put(&mz->mem->css);
2719 loop++;
2721 * Could not reclaim anything and there are no more
2722 * mem cgroups to try or we seem to be looping without
2723 * reclaiming anything.
2725 if (!nr_reclaimed &&
2726 (next_mz == NULL ||
2727 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2728 break;
2729 } while (!nr_reclaimed);
2730 if (next_mz)
2731 css_put(&next_mz->mem->css);
2732 return nr_reclaimed;
2736 * This routine traverse page_cgroup in given list and drop them all.
2737 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2739 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2740 int node, int zid, enum lru_list lru)
2742 struct zone *zone;
2743 struct mem_cgroup_per_zone *mz;
2744 struct page_cgroup *pc, *busy;
2745 unsigned long flags, loop;
2746 struct list_head *list;
2747 int ret = 0;
2749 zone = &NODE_DATA(node)->node_zones[zid];
2750 mz = mem_cgroup_zoneinfo(mem, node, zid);
2751 list = &mz->lists[lru];
2753 loop = MEM_CGROUP_ZSTAT(mz, lru);
2754 /* give some margin against EBUSY etc...*/
2755 loop += 256;
2756 busy = NULL;
2757 while (loop--) {
2758 ret = 0;
2759 spin_lock_irqsave(&zone->lru_lock, flags);
2760 if (list_empty(list)) {
2761 spin_unlock_irqrestore(&zone->lru_lock, flags);
2762 break;
2764 pc = list_entry(list->prev, struct page_cgroup, lru);
2765 if (busy == pc) {
2766 list_move(&pc->lru, list);
2767 busy = NULL;
2768 spin_unlock_irqrestore(&zone->lru_lock, flags);
2769 continue;
2771 spin_unlock_irqrestore(&zone->lru_lock, flags);
2773 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2774 if (ret == -ENOMEM)
2775 break;
2777 if (ret == -EBUSY || ret == -EINVAL) {
2778 /* found lock contention or "pc" is obsolete. */
2779 busy = pc;
2780 cond_resched();
2781 } else
2782 busy = NULL;
2785 if (!ret && !list_empty(list))
2786 return -EBUSY;
2787 return ret;
2791 * make mem_cgroup's charge to be 0 if there is no task.
2792 * This enables deleting this mem_cgroup.
2794 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2796 int ret;
2797 int node, zid, shrink;
2798 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2799 struct cgroup *cgrp = mem->css.cgroup;
2801 css_get(&mem->css);
2803 shrink = 0;
2804 /* should free all ? */
2805 if (free_all)
2806 goto try_to_free;
2807 move_account:
2808 do {
2809 ret = -EBUSY;
2810 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2811 goto out;
2812 ret = -EINTR;
2813 if (signal_pending(current))
2814 goto out;
2815 /* This is for making all *used* pages to be on LRU. */
2816 lru_add_drain_all();
2817 drain_all_stock_sync();
2818 ret = 0;
2819 for_each_node_state(node, N_HIGH_MEMORY) {
2820 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2821 enum lru_list l;
2822 for_each_lru(l) {
2823 ret = mem_cgroup_force_empty_list(mem,
2824 node, zid, l);
2825 if (ret)
2826 break;
2829 if (ret)
2830 break;
2832 /* it seems parent cgroup doesn't have enough mem */
2833 if (ret == -ENOMEM)
2834 goto try_to_free;
2835 cond_resched();
2836 /* "ret" should also be checked to ensure all lists are empty. */
2837 } while (mem->res.usage > 0 || ret);
2838 out:
2839 css_put(&mem->css);
2840 return ret;
2842 try_to_free:
2843 /* returns EBUSY if there is a task or if we come here twice. */
2844 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2845 ret = -EBUSY;
2846 goto out;
2848 /* we call try-to-free pages for make this cgroup empty */
2849 lru_add_drain_all();
2850 /* try to free all pages in this cgroup */
2851 shrink = 1;
2852 while (nr_retries && mem->res.usage > 0) {
2853 int progress;
2855 if (signal_pending(current)) {
2856 ret = -EINTR;
2857 goto out;
2859 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2860 false, get_swappiness(mem));
2861 if (!progress) {
2862 nr_retries--;
2863 /* maybe some writeback is necessary */
2864 congestion_wait(BLK_RW_ASYNC, HZ/10);
2868 lru_add_drain();
2869 /* try move_account...there may be some *locked* pages. */
2870 goto move_account;
2873 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2875 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2879 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2881 return mem_cgroup_from_cont(cont)->use_hierarchy;
2884 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2885 u64 val)
2887 int retval = 0;
2888 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2889 struct cgroup *parent = cont->parent;
2890 struct mem_cgroup *parent_mem = NULL;
2892 if (parent)
2893 parent_mem = mem_cgroup_from_cont(parent);
2895 cgroup_lock();
2897 * If parent's use_hierarchy is set, we can't make any modifications
2898 * in the child subtrees. If it is unset, then the change can
2899 * occur, provided the current cgroup has no children.
2901 * For the root cgroup, parent_mem is NULL, we allow value to be
2902 * set if there are no children.
2904 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2905 (val == 1 || val == 0)) {
2906 if (list_empty(&cont->children))
2907 mem->use_hierarchy = val;
2908 else
2909 retval = -EBUSY;
2910 } else
2911 retval = -EINVAL;
2912 cgroup_unlock();
2914 return retval;
2917 struct mem_cgroup_idx_data {
2918 s64 val;
2919 enum mem_cgroup_stat_index idx;
2922 static int
2923 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2925 struct mem_cgroup_idx_data *d = data;
2926 d->val += mem_cgroup_read_stat(mem, d->idx);
2927 return 0;
2930 static void
2931 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2932 enum mem_cgroup_stat_index idx, s64 *val)
2934 struct mem_cgroup_idx_data d;
2935 d.idx = idx;
2936 d.val = 0;
2937 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2938 *val = d.val;
2941 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
2943 u64 idx_val, val;
2945 if (!mem_cgroup_is_root(mem)) {
2946 if (!swap)
2947 return res_counter_read_u64(&mem->res, RES_USAGE);
2948 else
2949 return res_counter_read_u64(&mem->memsw, RES_USAGE);
2952 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
2953 val = idx_val;
2954 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
2955 val += idx_val;
2957 if (swap) {
2958 mem_cgroup_get_recursive_idx_stat(mem,
2959 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2960 val += idx_val;
2963 return val << PAGE_SHIFT;
2966 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2968 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2969 u64 val;
2970 int type, name;
2972 type = MEMFILE_TYPE(cft->private);
2973 name = MEMFILE_ATTR(cft->private);
2974 switch (type) {
2975 case _MEM:
2976 if (name == RES_USAGE)
2977 val = mem_cgroup_usage(mem, false);
2978 else
2979 val = res_counter_read_u64(&mem->res, name);
2980 break;
2981 case _MEMSWAP:
2982 if (name == RES_USAGE)
2983 val = mem_cgroup_usage(mem, true);
2984 else
2985 val = res_counter_read_u64(&mem->memsw, name);
2986 break;
2987 default:
2988 BUG();
2989 break;
2991 return val;
2994 * The user of this function is...
2995 * RES_LIMIT.
2997 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2998 const char *buffer)
3000 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3001 int type, name;
3002 unsigned long long val;
3003 int ret;
3005 type = MEMFILE_TYPE(cft->private);
3006 name = MEMFILE_ATTR(cft->private);
3007 switch (name) {
3008 case RES_LIMIT:
3009 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3010 ret = -EINVAL;
3011 break;
3013 /* This function does all necessary parse...reuse it */
3014 ret = res_counter_memparse_write_strategy(buffer, &val);
3015 if (ret)
3016 break;
3017 if (type == _MEM)
3018 ret = mem_cgroup_resize_limit(memcg, val);
3019 else
3020 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3021 break;
3022 case RES_SOFT_LIMIT:
3023 ret = res_counter_memparse_write_strategy(buffer, &val);
3024 if (ret)
3025 break;
3027 * For memsw, soft limits are hard to implement in terms
3028 * of semantics, for now, we support soft limits for
3029 * control without swap
3031 if (type == _MEM)
3032 ret = res_counter_set_soft_limit(&memcg->res, val);
3033 else
3034 ret = -EINVAL;
3035 break;
3036 default:
3037 ret = -EINVAL; /* should be BUG() ? */
3038 break;
3040 return ret;
3043 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3044 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3046 struct cgroup *cgroup;
3047 unsigned long long min_limit, min_memsw_limit, tmp;
3049 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3050 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3051 cgroup = memcg->css.cgroup;
3052 if (!memcg->use_hierarchy)
3053 goto out;
3055 while (cgroup->parent) {
3056 cgroup = cgroup->parent;
3057 memcg = mem_cgroup_from_cont(cgroup);
3058 if (!memcg->use_hierarchy)
3059 break;
3060 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3061 min_limit = min(min_limit, tmp);
3062 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3063 min_memsw_limit = min(min_memsw_limit, tmp);
3065 out:
3066 *mem_limit = min_limit;
3067 *memsw_limit = min_memsw_limit;
3068 return;
3071 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3073 struct mem_cgroup *mem;
3074 int type, name;
3076 mem = mem_cgroup_from_cont(cont);
3077 type = MEMFILE_TYPE(event);
3078 name = MEMFILE_ATTR(event);
3079 switch (name) {
3080 case RES_MAX_USAGE:
3081 if (type == _MEM)
3082 res_counter_reset_max(&mem->res);
3083 else
3084 res_counter_reset_max(&mem->memsw);
3085 break;
3086 case RES_FAILCNT:
3087 if (type == _MEM)
3088 res_counter_reset_failcnt(&mem->res);
3089 else
3090 res_counter_reset_failcnt(&mem->memsw);
3091 break;
3094 return 0;
3097 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3098 struct cftype *cft)
3100 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3103 #ifdef CONFIG_MMU
3104 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3105 struct cftype *cft, u64 val)
3107 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3109 if (val >= (1 << NR_MOVE_TYPE))
3110 return -EINVAL;
3112 * We check this value several times in both in can_attach() and
3113 * attach(), so we need cgroup lock to prevent this value from being
3114 * inconsistent.
3116 cgroup_lock();
3117 mem->move_charge_at_immigrate = val;
3118 cgroup_unlock();
3120 return 0;
3122 #else
3123 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3124 struct cftype *cft, u64 val)
3126 return -ENOSYS;
3128 #endif
3131 /* For read statistics */
3132 enum {
3133 MCS_CACHE,
3134 MCS_RSS,
3135 MCS_FILE_MAPPED,
3136 MCS_PGPGIN,
3137 MCS_PGPGOUT,
3138 MCS_SWAP,
3139 MCS_INACTIVE_ANON,
3140 MCS_ACTIVE_ANON,
3141 MCS_INACTIVE_FILE,
3142 MCS_ACTIVE_FILE,
3143 MCS_UNEVICTABLE,
3144 NR_MCS_STAT,
3147 struct mcs_total_stat {
3148 s64 stat[NR_MCS_STAT];
3151 struct {
3152 char *local_name;
3153 char *total_name;
3154 } memcg_stat_strings[NR_MCS_STAT] = {
3155 {"cache", "total_cache"},
3156 {"rss", "total_rss"},
3157 {"mapped_file", "total_mapped_file"},
3158 {"pgpgin", "total_pgpgin"},
3159 {"pgpgout", "total_pgpgout"},
3160 {"swap", "total_swap"},
3161 {"inactive_anon", "total_inactive_anon"},
3162 {"active_anon", "total_active_anon"},
3163 {"inactive_file", "total_inactive_file"},
3164 {"active_file", "total_active_file"},
3165 {"unevictable", "total_unevictable"}
3169 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3171 struct mcs_total_stat *s = data;
3172 s64 val;
3174 /* per cpu stat */
3175 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3176 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3177 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3178 s->stat[MCS_RSS] += val * PAGE_SIZE;
3179 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3180 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3181 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3182 s->stat[MCS_PGPGIN] += val;
3183 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3184 s->stat[MCS_PGPGOUT] += val;
3185 if (do_swap_account) {
3186 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3187 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3190 /* per zone stat */
3191 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3192 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3193 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3194 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3195 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3196 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3197 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3198 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3199 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3200 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3201 return 0;
3204 static void
3205 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3207 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3210 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3211 struct cgroup_map_cb *cb)
3213 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3214 struct mcs_total_stat mystat;
3215 int i;
3217 memset(&mystat, 0, sizeof(mystat));
3218 mem_cgroup_get_local_stat(mem_cont, &mystat);
3220 for (i = 0; i < NR_MCS_STAT; i++) {
3221 if (i == MCS_SWAP && !do_swap_account)
3222 continue;
3223 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3226 /* Hierarchical information */
3228 unsigned long long limit, memsw_limit;
3229 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3230 cb->fill(cb, "hierarchical_memory_limit", limit);
3231 if (do_swap_account)
3232 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3235 memset(&mystat, 0, sizeof(mystat));
3236 mem_cgroup_get_total_stat(mem_cont, &mystat);
3237 for (i = 0; i < NR_MCS_STAT; i++) {
3238 if (i == MCS_SWAP && !do_swap_account)
3239 continue;
3240 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3243 #ifdef CONFIG_DEBUG_VM
3244 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3247 int nid, zid;
3248 struct mem_cgroup_per_zone *mz;
3249 unsigned long recent_rotated[2] = {0, 0};
3250 unsigned long recent_scanned[2] = {0, 0};
3252 for_each_online_node(nid)
3253 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3254 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3256 recent_rotated[0] +=
3257 mz->reclaim_stat.recent_rotated[0];
3258 recent_rotated[1] +=
3259 mz->reclaim_stat.recent_rotated[1];
3260 recent_scanned[0] +=
3261 mz->reclaim_stat.recent_scanned[0];
3262 recent_scanned[1] +=
3263 mz->reclaim_stat.recent_scanned[1];
3265 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3266 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3267 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3268 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3270 #endif
3272 return 0;
3275 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3277 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3279 return get_swappiness(memcg);
3282 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3283 u64 val)
3285 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3286 struct mem_cgroup *parent;
3288 if (val > 100)
3289 return -EINVAL;
3291 if (cgrp->parent == NULL)
3292 return -EINVAL;
3294 parent = mem_cgroup_from_cont(cgrp->parent);
3296 cgroup_lock();
3298 /* If under hierarchy, only empty-root can set this value */
3299 if ((parent->use_hierarchy) ||
3300 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3301 cgroup_unlock();
3302 return -EINVAL;
3305 spin_lock(&memcg->reclaim_param_lock);
3306 memcg->swappiness = val;
3307 spin_unlock(&memcg->reclaim_param_lock);
3309 cgroup_unlock();
3311 return 0;
3314 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3316 struct mem_cgroup_threshold_ary *t;
3317 u64 usage;
3318 int i;
3320 rcu_read_lock();
3321 if (!swap)
3322 t = rcu_dereference(memcg->thresholds);
3323 else
3324 t = rcu_dereference(memcg->memsw_thresholds);
3326 if (!t)
3327 goto unlock;
3329 usage = mem_cgroup_usage(memcg, swap);
3332 * current_threshold points to threshold just below usage.
3333 * If it's not true, a threshold was crossed after last
3334 * call of __mem_cgroup_threshold().
3336 i = atomic_read(&t->current_threshold);
3339 * Iterate backward over array of thresholds starting from
3340 * current_threshold and check if a threshold is crossed.
3341 * If none of thresholds below usage is crossed, we read
3342 * only one element of the array here.
3344 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3345 eventfd_signal(t->entries[i].eventfd, 1);
3347 /* i = current_threshold + 1 */
3348 i++;
3351 * Iterate forward over array of thresholds starting from
3352 * current_threshold+1 and check if a threshold is crossed.
3353 * If none of thresholds above usage is crossed, we read
3354 * only one element of the array here.
3356 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3357 eventfd_signal(t->entries[i].eventfd, 1);
3359 /* Update current_threshold */
3360 atomic_set(&t->current_threshold, i - 1);
3361 unlock:
3362 rcu_read_unlock();
3365 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3367 __mem_cgroup_threshold(memcg, false);
3368 if (do_swap_account)
3369 __mem_cgroup_threshold(memcg, true);
3372 static int compare_thresholds(const void *a, const void *b)
3374 const struct mem_cgroup_threshold *_a = a;
3375 const struct mem_cgroup_threshold *_b = b;
3377 return _a->threshold - _b->threshold;
3380 static int mem_cgroup_register_event(struct cgroup *cgrp, struct cftype *cft,
3381 struct eventfd_ctx *eventfd, const char *args)
3383 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3384 struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3385 int type = MEMFILE_TYPE(cft->private);
3386 u64 threshold, usage;
3387 int size;
3388 int i, ret;
3390 ret = res_counter_memparse_write_strategy(args, &threshold);
3391 if (ret)
3392 return ret;
3394 mutex_lock(&memcg->thresholds_lock);
3395 if (type == _MEM)
3396 thresholds = memcg->thresholds;
3397 else if (type == _MEMSWAP)
3398 thresholds = memcg->memsw_thresholds;
3399 else
3400 BUG();
3402 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3404 /* Check if a threshold crossed before adding a new one */
3405 if (thresholds)
3406 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3408 if (thresholds)
3409 size = thresholds->size + 1;
3410 else
3411 size = 1;
3413 /* Allocate memory for new array of thresholds */
3414 thresholds_new = kmalloc(sizeof(*thresholds_new) +
3415 size * sizeof(struct mem_cgroup_threshold),
3416 GFP_KERNEL);
3417 if (!thresholds_new) {
3418 ret = -ENOMEM;
3419 goto unlock;
3421 thresholds_new->size = size;
3423 /* Copy thresholds (if any) to new array */
3424 if (thresholds)
3425 memcpy(thresholds_new->entries, thresholds->entries,
3426 thresholds->size *
3427 sizeof(struct mem_cgroup_threshold));
3428 /* Add new threshold */
3429 thresholds_new->entries[size - 1].eventfd = eventfd;
3430 thresholds_new->entries[size - 1].threshold = threshold;
3432 /* Sort thresholds. Registering of new threshold isn't time-critical */
3433 sort(thresholds_new->entries, size,
3434 sizeof(struct mem_cgroup_threshold),
3435 compare_thresholds, NULL);
3437 /* Find current threshold */
3438 atomic_set(&thresholds_new->current_threshold, -1);
3439 for (i = 0; i < size; i++) {
3440 if (thresholds_new->entries[i].threshold < usage) {
3442 * thresholds_new->current_threshold will not be used
3443 * until rcu_assign_pointer(), so it's safe to increment
3444 * it here.
3446 atomic_inc(&thresholds_new->current_threshold);
3450 if (type == _MEM)
3451 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3452 else
3453 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3455 /* To be sure that nobody uses thresholds before freeing it */
3456 synchronize_rcu();
3458 kfree(thresholds);
3459 unlock:
3460 mutex_unlock(&memcg->thresholds_lock);
3462 return ret;
3465 static int mem_cgroup_unregister_event(struct cgroup *cgrp, struct cftype *cft,
3466 struct eventfd_ctx *eventfd)
3468 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3469 struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3470 int type = MEMFILE_TYPE(cft->private);
3471 u64 usage;
3472 int size = 0;
3473 int i, j, ret;
3475 mutex_lock(&memcg->thresholds_lock);
3476 if (type == _MEM)
3477 thresholds = memcg->thresholds;
3478 else if (type == _MEMSWAP)
3479 thresholds = memcg->memsw_thresholds;
3480 else
3481 BUG();
3484 * Something went wrong if we trying to unregister a threshold
3485 * if we don't have thresholds
3487 BUG_ON(!thresholds);
3489 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3491 /* Check if a threshold crossed before removing */
3492 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3494 /* Calculate new number of threshold */
3495 for (i = 0; i < thresholds->size; i++) {
3496 if (thresholds->entries[i].eventfd != eventfd)
3497 size++;
3500 /* Set thresholds array to NULL if we don't have thresholds */
3501 if (!size) {
3502 thresholds_new = NULL;
3503 goto assign;
3506 /* Allocate memory for new array of thresholds */
3507 thresholds_new = kmalloc(sizeof(*thresholds_new) +
3508 size * sizeof(struct mem_cgroup_threshold),
3509 GFP_KERNEL);
3510 if (!thresholds_new) {
3511 ret = -ENOMEM;
3512 goto unlock;
3514 thresholds_new->size = size;
3516 /* Copy thresholds and find current threshold */
3517 atomic_set(&thresholds_new->current_threshold, -1);
3518 for (i = 0, j = 0; i < thresholds->size; i++) {
3519 if (thresholds->entries[i].eventfd == eventfd)
3520 continue;
3522 thresholds_new->entries[j] = thresholds->entries[i];
3523 if (thresholds_new->entries[j].threshold < usage) {
3525 * thresholds_new->current_threshold will not be used
3526 * until rcu_assign_pointer(), so it's safe to increment
3527 * it here.
3529 atomic_inc(&thresholds_new->current_threshold);
3531 j++;
3534 assign:
3535 if (type == _MEM)
3536 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3537 else
3538 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3540 /* To be sure that nobody uses thresholds before freeing it */
3541 synchronize_rcu();
3543 kfree(thresholds);
3544 unlock:
3545 mutex_unlock(&memcg->thresholds_lock);
3547 return ret;
3550 static struct cftype mem_cgroup_files[] = {
3552 .name = "usage_in_bytes",
3553 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3554 .read_u64 = mem_cgroup_read,
3555 .register_event = mem_cgroup_register_event,
3556 .unregister_event = mem_cgroup_unregister_event,
3559 .name = "max_usage_in_bytes",
3560 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3561 .trigger = mem_cgroup_reset,
3562 .read_u64 = mem_cgroup_read,
3565 .name = "limit_in_bytes",
3566 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3567 .write_string = mem_cgroup_write,
3568 .read_u64 = mem_cgroup_read,
3571 .name = "soft_limit_in_bytes",
3572 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3573 .write_string = mem_cgroup_write,
3574 .read_u64 = mem_cgroup_read,
3577 .name = "failcnt",
3578 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3579 .trigger = mem_cgroup_reset,
3580 .read_u64 = mem_cgroup_read,
3583 .name = "stat",
3584 .read_map = mem_control_stat_show,
3587 .name = "force_empty",
3588 .trigger = mem_cgroup_force_empty_write,
3591 .name = "use_hierarchy",
3592 .write_u64 = mem_cgroup_hierarchy_write,
3593 .read_u64 = mem_cgroup_hierarchy_read,
3596 .name = "swappiness",
3597 .read_u64 = mem_cgroup_swappiness_read,
3598 .write_u64 = mem_cgroup_swappiness_write,
3601 .name = "move_charge_at_immigrate",
3602 .read_u64 = mem_cgroup_move_charge_read,
3603 .write_u64 = mem_cgroup_move_charge_write,
3607 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3608 static struct cftype memsw_cgroup_files[] = {
3610 .name = "memsw.usage_in_bytes",
3611 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3612 .read_u64 = mem_cgroup_read,
3613 .register_event = mem_cgroup_register_event,
3614 .unregister_event = mem_cgroup_unregister_event,
3617 .name = "memsw.max_usage_in_bytes",
3618 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3619 .trigger = mem_cgroup_reset,
3620 .read_u64 = mem_cgroup_read,
3623 .name = "memsw.limit_in_bytes",
3624 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3625 .write_string = mem_cgroup_write,
3626 .read_u64 = mem_cgroup_read,
3629 .name = "memsw.failcnt",
3630 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3631 .trigger = mem_cgroup_reset,
3632 .read_u64 = mem_cgroup_read,
3636 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3638 if (!do_swap_account)
3639 return 0;
3640 return cgroup_add_files(cont, ss, memsw_cgroup_files,
3641 ARRAY_SIZE(memsw_cgroup_files));
3643 #else
3644 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3646 return 0;
3648 #endif
3650 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3652 struct mem_cgroup_per_node *pn;
3653 struct mem_cgroup_per_zone *mz;
3654 enum lru_list l;
3655 int zone, tmp = node;
3657 * This routine is called against possible nodes.
3658 * But it's BUG to call kmalloc() against offline node.
3660 * TODO: this routine can waste much memory for nodes which will
3661 * never be onlined. It's better to use memory hotplug callback
3662 * function.
3664 if (!node_state(node, N_NORMAL_MEMORY))
3665 tmp = -1;
3666 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3667 if (!pn)
3668 return 1;
3670 mem->info.nodeinfo[node] = pn;
3671 memset(pn, 0, sizeof(*pn));
3673 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3674 mz = &pn->zoneinfo[zone];
3675 for_each_lru(l)
3676 INIT_LIST_HEAD(&mz->lists[l]);
3677 mz->usage_in_excess = 0;
3678 mz->on_tree = false;
3679 mz->mem = mem;
3681 return 0;
3684 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3686 kfree(mem->info.nodeinfo[node]);
3689 static struct mem_cgroup *mem_cgroup_alloc(void)
3691 struct mem_cgroup *mem;
3692 int size = sizeof(struct mem_cgroup);
3694 /* Can be very big if MAX_NUMNODES is very big */
3695 if (size < PAGE_SIZE)
3696 mem = kmalloc(size, GFP_KERNEL);
3697 else
3698 mem = vmalloc(size);
3700 if (!mem)
3701 return NULL;
3703 memset(mem, 0, size);
3704 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3705 if (!mem->stat) {
3706 if (size < PAGE_SIZE)
3707 kfree(mem);
3708 else
3709 vfree(mem);
3710 mem = NULL;
3712 return mem;
3716 * At destroying mem_cgroup, references from swap_cgroup can remain.
3717 * (scanning all at force_empty is too costly...)
3719 * Instead of clearing all references at force_empty, we remember
3720 * the number of reference from swap_cgroup and free mem_cgroup when
3721 * it goes down to 0.
3723 * Removal of cgroup itself succeeds regardless of refs from swap.
3726 static void __mem_cgroup_free(struct mem_cgroup *mem)
3728 int node;
3730 mem_cgroup_remove_from_trees(mem);
3731 free_css_id(&mem_cgroup_subsys, &mem->css);
3733 for_each_node_state(node, N_POSSIBLE)
3734 free_mem_cgroup_per_zone_info(mem, node);
3736 free_percpu(mem->stat);
3737 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3738 kfree(mem);
3739 else
3740 vfree(mem);
3743 static void mem_cgroup_get(struct mem_cgroup *mem)
3745 atomic_inc(&mem->refcnt);
3748 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3750 if (atomic_sub_and_test(count, &mem->refcnt)) {
3751 struct mem_cgroup *parent = parent_mem_cgroup(mem);
3752 __mem_cgroup_free(mem);
3753 if (parent)
3754 mem_cgroup_put(parent);
3758 static void mem_cgroup_put(struct mem_cgroup *mem)
3760 __mem_cgroup_put(mem, 1);
3764 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3766 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3768 if (!mem->res.parent)
3769 return NULL;
3770 return mem_cgroup_from_res_counter(mem->res.parent, res);
3773 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3774 static void __init enable_swap_cgroup(void)
3776 if (!mem_cgroup_disabled() && really_do_swap_account)
3777 do_swap_account = 1;
3779 #else
3780 static void __init enable_swap_cgroup(void)
3783 #endif
3785 static int mem_cgroup_soft_limit_tree_init(void)
3787 struct mem_cgroup_tree_per_node *rtpn;
3788 struct mem_cgroup_tree_per_zone *rtpz;
3789 int tmp, node, zone;
3791 for_each_node_state(node, N_POSSIBLE) {
3792 tmp = node;
3793 if (!node_state(node, N_NORMAL_MEMORY))
3794 tmp = -1;
3795 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3796 if (!rtpn)
3797 return 1;
3799 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3801 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3802 rtpz = &rtpn->rb_tree_per_zone[zone];
3803 rtpz->rb_root = RB_ROOT;
3804 spin_lock_init(&rtpz->lock);
3807 return 0;
3810 static struct cgroup_subsys_state * __ref
3811 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3813 struct mem_cgroup *mem, *parent;
3814 long error = -ENOMEM;
3815 int node;
3817 mem = mem_cgroup_alloc();
3818 if (!mem)
3819 return ERR_PTR(error);
3821 for_each_node_state(node, N_POSSIBLE)
3822 if (alloc_mem_cgroup_per_zone_info(mem, node))
3823 goto free_out;
3825 /* root ? */
3826 if (cont->parent == NULL) {
3827 int cpu;
3828 enable_swap_cgroup();
3829 parent = NULL;
3830 root_mem_cgroup = mem;
3831 if (mem_cgroup_soft_limit_tree_init())
3832 goto free_out;
3833 for_each_possible_cpu(cpu) {
3834 struct memcg_stock_pcp *stock =
3835 &per_cpu(memcg_stock, cpu);
3836 INIT_WORK(&stock->work, drain_local_stock);
3838 hotcpu_notifier(memcg_stock_cpu_callback, 0);
3839 } else {
3840 parent = mem_cgroup_from_cont(cont->parent);
3841 mem->use_hierarchy = parent->use_hierarchy;
3844 if (parent && parent->use_hierarchy) {
3845 res_counter_init(&mem->res, &parent->res);
3846 res_counter_init(&mem->memsw, &parent->memsw);
3848 * We increment refcnt of the parent to ensure that we can
3849 * safely access it on res_counter_charge/uncharge.
3850 * This refcnt will be decremented when freeing this
3851 * mem_cgroup(see mem_cgroup_put).
3853 mem_cgroup_get(parent);
3854 } else {
3855 res_counter_init(&mem->res, NULL);
3856 res_counter_init(&mem->memsw, NULL);
3858 mem->last_scanned_child = 0;
3859 spin_lock_init(&mem->reclaim_param_lock);
3861 if (parent)
3862 mem->swappiness = get_swappiness(parent);
3863 atomic_set(&mem->refcnt, 1);
3864 mem->move_charge_at_immigrate = 0;
3865 mutex_init(&mem->thresholds_lock);
3866 return &mem->css;
3867 free_out:
3868 __mem_cgroup_free(mem);
3869 root_mem_cgroup = NULL;
3870 return ERR_PTR(error);
3873 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3874 struct cgroup *cont)
3876 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3878 return mem_cgroup_force_empty(mem, false);
3881 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3882 struct cgroup *cont)
3884 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3886 mem_cgroup_put(mem);
3889 static int mem_cgroup_populate(struct cgroup_subsys *ss,
3890 struct cgroup *cont)
3892 int ret;
3894 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3895 ARRAY_SIZE(mem_cgroup_files));
3897 if (!ret)
3898 ret = register_memsw_files(cont, ss);
3899 return ret;
3902 #ifdef CONFIG_MMU
3903 /* Handlers for move charge at task migration. */
3904 #define PRECHARGE_COUNT_AT_ONCE 256
3905 static int mem_cgroup_do_precharge(unsigned long count)
3907 int ret = 0;
3908 int batch_count = PRECHARGE_COUNT_AT_ONCE;
3909 struct mem_cgroup *mem = mc.to;
3911 if (mem_cgroup_is_root(mem)) {
3912 mc.precharge += count;
3913 /* we don't need css_get for root */
3914 return ret;
3916 /* try to charge at once */
3917 if (count > 1) {
3918 struct res_counter *dummy;
3920 * "mem" cannot be under rmdir() because we've already checked
3921 * by cgroup_lock_live_cgroup() that it is not removed and we
3922 * are still under the same cgroup_mutex. So we can postpone
3923 * css_get().
3925 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
3926 goto one_by_one;
3927 if (do_swap_account && res_counter_charge(&mem->memsw,
3928 PAGE_SIZE * count, &dummy)) {
3929 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
3930 goto one_by_one;
3932 mc.precharge += count;
3933 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
3934 WARN_ON_ONCE(count > INT_MAX);
3935 __css_get(&mem->css, (int)count);
3936 return ret;
3938 one_by_one:
3939 /* fall back to one by one charge */
3940 while (count--) {
3941 if (signal_pending(current)) {
3942 ret = -EINTR;
3943 break;
3945 if (!batch_count--) {
3946 batch_count = PRECHARGE_COUNT_AT_ONCE;
3947 cond_resched();
3949 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
3950 if (ret || !mem)
3951 /* mem_cgroup_clear_mc() will do uncharge later */
3952 return -ENOMEM;
3953 mc.precharge++;
3955 return ret;
3959 * is_target_pte_for_mc - check a pte whether it is valid for move charge
3960 * @vma: the vma the pte to be checked belongs
3961 * @addr: the address corresponding to the pte to be checked
3962 * @ptent: the pte to be checked
3963 * @target: the pointer the target page or swap ent will be stored(can be NULL)
3965 * Returns
3966 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
3967 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
3968 * move charge. if @target is not NULL, the page is stored in target->page
3969 * with extra refcnt got(Callers should handle it).
3970 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
3971 * target for charge migration. if @target is not NULL, the entry is stored
3972 * in target->ent.
3974 * Called with pte lock held.
3976 union mc_target {
3977 struct page *page;
3978 swp_entry_t ent;
3981 enum mc_target_type {
3982 MC_TARGET_NONE, /* not used */
3983 MC_TARGET_PAGE,
3984 MC_TARGET_SWAP,
3987 static int is_target_pte_for_mc(struct vm_area_struct *vma,
3988 unsigned long addr, pte_t ptent, union mc_target *target)
3990 struct page *page = NULL;
3991 struct page_cgroup *pc;
3992 int ret = 0;
3993 swp_entry_t ent = { .val = 0 };
3994 int usage_count = 0;
3995 bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
3996 &mc.to->move_charge_at_immigrate);
3998 if (!pte_present(ptent)) {
3999 /* TODO: handle swap of shmes/tmpfs */
4000 if (pte_none(ptent) || pte_file(ptent))
4001 return 0;
4002 else if (is_swap_pte(ptent)) {
4003 ent = pte_to_swp_entry(ptent);
4004 if (!move_anon || non_swap_entry(ent))
4005 return 0;
4006 usage_count = mem_cgroup_count_swap_user(ent, &page);
4008 } else {
4009 page = vm_normal_page(vma, addr, ptent);
4010 if (!page || !page_mapped(page))
4011 return 0;
4013 * TODO: We don't move charges of file(including shmem/tmpfs)
4014 * pages for now.
4016 if (!move_anon || !PageAnon(page))
4017 return 0;
4018 if (!get_page_unless_zero(page))
4019 return 0;
4020 usage_count = page_mapcount(page);
4022 if (usage_count > 1) {
4024 * TODO: We don't move charges of shared(used by multiple
4025 * processes) pages for now.
4027 if (page)
4028 put_page(page);
4029 return 0;
4031 if (page) {
4032 pc = lookup_page_cgroup(page);
4034 * Do only loose check w/o page_cgroup lock.
4035 * mem_cgroup_move_account() checks the pc is valid or not under
4036 * the lock.
4038 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4039 ret = MC_TARGET_PAGE;
4040 if (target)
4041 target->page = page;
4043 if (!ret || !target)
4044 put_page(page);
4046 /* throught */
4047 if (ent.val && do_swap_account && !ret) {
4048 unsigned short id;
4049 rcu_read_lock();
4050 id = css_id(&mc.from->css);
4051 rcu_read_unlock();
4052 if (id == lookup_swap_cgroup(ent)) {
4053 ret = MC_TARGET_SWAP;
4054 if (target)
4055 target->ent = ent;
4058 return ret;
4061 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4062 unsigned long addr, unsigned long end,
4063 struct mm_walk *walk)
4065 struct vm_area_struct *vma = walk->private;
4066 pte_t *pte;
4067 spinlock_t *ptl;
4069 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4070 for (; addr != end; pte++, addr += PAGE_SIZE)
4071 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4072 mc.precharge++; /* increment precharge temporarily */
4073 pte_unmap_unlock(pte - 1, ptl);
4074 cond_resched();
4076 return 0;
4079 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4081 unsigned long precharge;
4082 struct vm_area_struct *vma;
4084 down_read(&mm->mmap_sem);
4085 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4086 struct mm_walk mem_cgroup_count_precharge_walk = {
4087 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4088 .mm = mm,
4089 .private = vma,
4091 if (is_vm_hugetlb_page(vma))
4092 continue;
4093 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
4094 if (vma->vm_flags & VM_SHARED)
4095 continue;
4096 walk_page_range(vma->vm_start, vma->vm_end,
4097 &mem_cgroup_count_precharge_walk);
4099 up_read(&mm->mmap_sem);
4101 precharge = mc.precharge;
4102 mc.precharge = 0;
4104 return precharge;
4107 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4109 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4112 static void mem_cgroup_clear_mc(void)
4114 /* we must uncharge all the leftover precharges from mc.to */
4115 if (mc.precharge) {
4116 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4117 mc.precharge = 0;
4120 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4121 * we must uncharge here.
4123 if (mc.moved_charge) {
4124 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4125 mc.moved_charge = 0;
4127 /* we must fixup refcnts and charges */
4128 if (mc.moved_swap) {
4129 WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4130 /* uncharge swap account from the old cgroup */
4131 if (!mem_cgroup_is_root(mc.from))
4132 res_counter_uncharge(&mc.from->memsw,
4133 PAGE_SIZE * mc.moved_swap);
4134 __mem_cgroup_put(mc.from, mc.moved_swap);
4136 if (!mem_cgroup_is_root(mc.to)) {
4138 * we charged both to->res and to->memsw, so we should
4139 * uncharge to->res.
4141 res_counter_uncharge(&mc.to->res,
4142 PAGE_SIZE * mc.moved_swap);
4143 VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4144 __css_put(&mc.to->css, mc.moved_swap);
4146 /* we've already done mem_cgroup_get(mc.to) */
4148 mc.moved_swap = 0;
4150 mc.from = NULL;
4151 mc.to = NULL;
4152 mc.moving_task = NULL;
4153 wake_up_all(&mc.waitq);
4156 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4157 struct cgroup *cgroup,
4158 struct task_struct *p,
4159 bool threadgroup)
4161 int ret = 0;
4162 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4164 if (mem->move_charge_at_immigrate) {
4165 struct mm_struct *mm;
4166 struct mem_cgroup *from = mem_cgroup_from_task(p);
4168 VM_BUG_ON(from == mem);
4170 mm = get_task_mm(p);
4171 if (!mm)
4172 return 0;
4173 /* We move charges only when we move a owner of the mm */
4174 if (mm->owner == p) {
4175 VM_BUG_ON(mc.from);
4176 VM_BUG_ON(mc.to);
4177 VM_BUG_ON(mc.precharge);
4178 VM_BUG_ON(mc.moved_charge);
4179 VM_BUG_ON(mc.moved_swap);
4180 VM_BUG_ON(mc.moving_task);
4181 mc.from = from;
4182 mc.to = mem;
4183 mc.precharge = 0;
4184 mc.moved_charge = 0;
4185 mc.moved_swap = 0;
4186 mc.moving_task = current;
4188 ret = mem_cgroup_precharge_mc(mm);
4189 if (ret)
4190 mem_cgroup_clear_mc();
4192 mmput(mm);
4194 return ret;
4197 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4198 struct cgroup *cgroup,
4199 struct task_struct *p,
4200 bool threadgroup)
4202 mem_cgroup_clear_mc();
4205 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4206 unsigned long addr, unsigned long end,
4207 struct mm_walk *walk)
4209 int ret = 0;
4210 struct vm_area_struct *vma = walk->private;
4211 pte_t *pte;
4212 spinlock_t *ptl;
4214 retry:
4215 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4216 for (; addr != end; addr += PAGE_SIZE) {
4217 pte_t ptent = *(pte++);
4218 union mc_target target;
4219 int type;
4220 struct page *page;
4221 struct page_cgroup *pc;
4222 swp_entry_t ent;
4224 if (!mc.precharge)
4225 break;
4227 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4228 switch (type) {
4229 case MC_TARGET_PAGE:
4230 page = target.page;
4231 if (isolate_lru_page(page))
4232 goto put;
4233 pc = lookup_page_cgroup(page);
4234 if (!mem_cgroup_move_account(pc,
4235 mc.from, mc.to, false)) {
4236 mc.precharge--;
4237 /* we uncharge from mc.from later. */
4238 mc.moved_charge++;
4240 putback_lru_page(page);
4241 put: /* is_target_pte_for_mc() gets the page */
4242 put_page(page);
4243 break;
4244 case MC_TARGET_SWAP:
4245 ent = target.ent;
4246 if (!mem_cgroup_move_swap_account(ent,
4247 mc.from, mc.to, false)) {
4248 mc.precharge--;
4249 /* we fixup refcnts and charges later. */
4250 mc.moved_swap++;
4252 break;
4253 default:
4254 break;
4257 pte_unmap_unlock(pte - 1, ptl);
4258 cond_resched();
4260 if (addr != end) {
4262 * We have consumed all precharges we got in can_attach().
4263 * We try charge one by one, but don't do any additional
4264 * charges to mc.to if we have failed in charge once in attach()
4265 * phase.
4267 ret = mem_cgroup_do_precharge(1);
4268 if (!ret)
4269 goto retry;
4272 return ret;
4275 static void mem_cgroup_move_charge(struct mm_struct *mm)
4277 struct vm_area_struct *vma;
4279 lru_add_drain_all();
4280 down_read(&mm->mmap_sem);
4281 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4282 int ret;
4283 struct mm_walk mem_cgroup_move_charge_walk = {
4284 .pmd_entry = mem_cgroup_move_charge_pte_range,
4285 .mm = mm,
4286 .private = vma,
4288 if (is_vm_hugetlb_page(vma))
4289 continue;
4290 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
4291 if (vma->vm_flags & VM_SHARED)
4292 continue;
4293 ret = walk_page_range(vma->vm_start, vma->vm_end,
4294 &mem_cgroup_move_charge_walk);
4295 if (ret)
4297 * means we have consumed all precharges and failed in
4298 * doing additional charge. Just abandon here.
4300 break;
4302 up_read(&mm->mmap_sem);
4305 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4306 struct cgroup *cont,
4307 struct cgroup *old_cont,
4308 struct task_struct *p,
4309 bool threadgroup)
4311 struct mm_struct *mm;
4313 if (!mc.to)
4314 /* no need to move charge */
4315 return;
4317 mm = get_task_mm(p);
4318 if (mm) {
4319 mem_cgroup_move_charge(mm);
4320 mmput(mm);
4322 mem_cgroup_clear_mc();
4324 #else /* !CONFIG_MMU */
4325 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4326 struct cgroup *cgroup,
4327 struct task_struct *p,
4328 bool threadgroup)
4330 return 0;
4332 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4333 struct cgroup *cgroup,
4334 struct task_struct *p,
4335 bool threadgroup)
4338 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4339 struct cgroup *cont,
4340 struct cgroup *old_cont,
4341 struct task_struct *p,
4342 bool threadgroup)
4345 #endif
4347 struct cgroup_subsys mem_cgroup_subsys = {
4348 .name = "memory",
4349 .subsys_id = mem_cgroup_subsys_id,
4350 .create = mem_cgroup_create,
4351 .pre_destroy = mem_cgroup_pre_destroy,
4352 .destroy = mem_cgroup_destroy,
4353 .populate = mem_cgroup_populate,
4354 .can_attach = mem_cgroup_can_attach,
4355 .cancel_attach = mem_cgroup_cancel_attach,
4356 .attach = mem_cgroup_move_task,
4357 .early_init = 0,
4358 .use_id = 1,
4361 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4363 static int __init disable_swap_account(char *s)
4365 really_do_swap_account = 0;
4366 return 1;
4368 __setup("noswapaccount", disable_swap_account);
4369 #endif