1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
52 #include <asm/uaccess.h>
54 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
55 #define MEM_CGROUP_RECLAIM_RETRIES 5
56 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
58 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
59 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 int do_swap_account __read_mostly
;
61 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
63 #define do_swap_account (0)
67 * Per memcg event counter is incremented at every pagein/pageout. This counter
68 * is used for trigger some periodic events. This is straightforward and better
69 * than using jiffies etc. to handle periodic memcg event.
71 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
73 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
74 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
77 * Statistics for memory cgroup.
79 enum mem_cgroup_stat_index
{
81 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
84 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
85 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
86 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
87 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
88 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
89 MEM_CGROUP_EVENTS
, /* incremented at every pagein/pageout */
91 MEM_CGROUP_STAT_NSTATS
,
94 struct mem_cgroup_stat_cpu
{
95 s64 count
[MEM_CGROUP_STAT_NSTATS
];
99 * per-zone information in memory controller.
101 struct mem_cgroup_per_zone
{
103 * spin_lock to protect the per cgroup LRU
105 struct list_head lists
[NR_LRU_LISTS
];
106 unsigned long count
[NR_LRU_LISTS
];
108 struct zone_reclaim_stat reclaim_stat
;
109 struct rb_node tree_node
; /* RB tree node */
110 unsigned long long usage_in_excess
;/* Set to the value by which */
111 /* the soft limit is exceeded*/
113 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
114 /* use container_of */
116 /* Macro for accessing counter */
117 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
119 struct mem_cgroup_per_node
{
120 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
123 struct mem_cgroup_lru_info
{
124 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
128 * Cgroups above their limits are maintained in a RB-Tree, independent of
129 * their hierarchy representation
132 struct mem_cgroup_tree_per_zone
{
133 struct rb_root rb_root
;
137 struct mem_cgroup_tree_per_node
{
138 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
141 struct mem_cgroup_tree
{
142 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
145 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
147 struct mem_cgroup_threshold
{
148 struct eventfd_ctx
*eventfd
;
152 struct mem_cgroup_threshold_ary
{
153 /* An array index points to threshold just below usage. */
154 atomic_t current_threshold
;
155 /* Size of entries[] */
157 /* Array of thresholds */
158 struct mem_cgroup_threshold entries
[0];
161 static void mem_cgroup_threshold(struct mem_cgroup
*mem
);
164 * The memory controller data structure. The memory controller controls both
165 * page cache and RSS per cgroup. We would eventually like to provide
166 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
167 * to help the administrator determine what knobs to tune.
169 * TODO: Add a water mark for the memory controller. Reclaim will begin when
170 * we hit the water mark. May be even add a low water mark, such that
171 * no reclaim occurs from a cgroup at it's low water mark, this is
172 * a feature that will be implemented much later in the future.
175 struct cgroup_subsys_state css
;
177 * the counter to account for memory usage
179 struct res_counter res
;
181 * the counter to account for mem+swap usage.
183 struct res_counter memsw
;
185 * Per cgroup active and inactive list, similar to the
186 * per zone LRU lists.
188 struct mem_cgroup_lru_info info
;
191 protect against reclaim related member.
193 spinlock_t reclaim_param_lock
;
195 int prev_priority
; /* for recording reclaim priority */
198 * While reclaiming in a hierarchy, we cache the last child we
201 int last_scanned_child
;
203 * Should the accounting and control be hierarchical, per subtree?
209 unsigned int swappiness
;
211 /* set when res.limit == memsw.limit */
212 bool memsw_is_minimum
;
214 /* protect arrays of thresholds */
215 struct mutex thresholds_lock
;
217 /* thresholds for memory usage. RCU-protected */
218 struct mem_cgroup_threshold_ary
*thresholds
;
220 /* thresholds for mem+swap usage. RCU-protected */
221 struct mem_cgroup_threshold_ary
*memsw_thresholds
;
224 * Should we move charges of a task when a task is moved into this
225 * mem_cgroup ? And what type of charges should we move ?
227 unsigned long move_charge_at_immigrate
;
232 struct mem_cgroup_stat_cpu
*stat
;
235 /* Stuffs for move charges at task migration. */
237 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
238 * left-shifted bitmap of these types.
241 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
245 /* "mc" and its members are protected by cgroup_mutex */
246 static struct move_charge_struct
{
247 struct mem_cgroup
*from
;
248 struct mem_cgroup
*to
;
249 unsigned long precharge
;
250 unsigned long moved_charge
;
251 unsigned long moved_swap
;
252 struct task_struct
*moving_task
; /* a task moving charges */
253 wait_queue_head_t waitq
; /* a waitq for other context */
255 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
259 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
260 * limit reclaim to prevent infinite loops, if they ever occur.
262 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
263 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
266 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
267 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
268 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
269 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
270 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
271 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
275 /* only for here (for easy reading.) */
276 #define PCGF_CACHE (1UL << PCG_CACHE)
277 #define PCGF_USED (1UL << PCG_USED)
278 #define PCGF_LOCK (1UL << PCG_LOCK)
279 /* Not used, but added here for completeness */
280 #define PCGF_ACCT (1UL << PCG_ACCT)
282 /* for encoding cft->private value on file */
285 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
286 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
287 #define MEMFILE_ATTR(val) ((val) & 0xffff)
290 * Reclaim flags for mem_cgroup_hierarchical_reclaim
292 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
293 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
294 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
295 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
296 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
297 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
299 static void mem_cgroup_get(struct mem_cgroup
*mem
);
300 static void mem_cgroup_put(struct mem_cgroup
*mem
);
301 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
302 static void drain_all_stock_async(void);
304 static struct mem_cgroup_per_zone
*
305 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
307 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
310 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*mem
)
315 static struct mem_cgroup_per_zone
*
316 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
318 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
319 int nid
= page_cgroup_nid(pc
);
320 int zid
= page_cgroup_zid(pc
);
325 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
328 static struct mem_cgroup_tree_per_zone
*
329 soft_limit_tree_node_zone(int nid
, int zid
)
331 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
334 static struct mem_cgroup_tree_per_zone
*
335 soft_limit_tree_from_page(struct page
*page
)
337 int nid
= page_to_nid(page
);
338 int zid
= page_zonenum(page
);
340 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
344 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
345 struct mem_cgroup_per_zone
*mz
,
346 struct mem_cgroup_tree_per_zone
*mctz
,
347 unsigned long long new_usage_in_excess
)
349 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
350 struct rb_node
*parent
= NULL
;
351 struct mem_cgroup_per_zone
*mz_node
;
356 mz
->usage_in_excess
= new_usage_in_excess
;
357 if (!mz
->usage_in_excess
)
361 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
363 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
366 * We can't avoid mem cgroups that are over their soft
367 * limit by the same amount
369 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
372 rb_link_node(&mz
->tree_node
, parent
, p
);
373 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
378 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
379 struct mem_cgroup_per_zone
*mz
,
380 struct mem_cgroup_tree_per_zone
*mctz
)
384 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
389 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
390 struct mem_cgroup_per_zone
*mz
,
391 struct mem_cgroup_tree_per_zone
*mctz
)
393 spin_lock(&mctz
->lock
);
394 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
395 spin_unlock(&mctz
->lock
);
399 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
401 unsigned long long excess
;
402 struct mem_cgroup_per_zone
*mz
;
403 struct mem_cgroup_tree_per_zone
*mctz
;
404 int nid
= page_to_nid(page
);
405 int zid
= page_zonenum(page
);
406 mctz
= soft_limit_tree_from_page(page
);
409 * Necessary to update all ancestors when hierarchy is used.
410 * because their event counter is not touched.
412 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
413 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
414 excess
= res_counter_soft_limit_excess(&mem
->res
);
416 * We have to update the tree if mz is on RB-tree or
417 * mem is over its softlimit.
419 if (excess
|| mz
->on_tree
) {
420 spin_lock(&mctz
->lock
);
421 /* if on-tree, remove it */
423 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
425 * Insert again. mz->usage_in_excess will be updated.
426 * If excess is 0, no tree ops.
428 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
429 spin_unlock(&mctz
->lock
);
434 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
437 struct mem_cgroup_per_zone
*mz
;
438 struct mem_cgroup_tree_per_zone
*mctz
;
440 for_each_node_state(node
, N_POSSIBLE
) {
441 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
442 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
443 mctz
= soft_limit_tree_node_zone(node
, zone
);
444 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
449 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup
*mem
)
451 return res_counter_soft_limit_excess(&mem
->res
) >> PAGE_SHIFT
;
454 static struct mem_cgroup_per_zone
*
455 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
457 struct rb_node
*rightmost
= NULL
;
458 struct mem_cgroup_per_zone
*mz
;
462 rightmost
= rb_last(&mctz
->rb_root
);
464 goto done
; /* Nothing to reclaim from */
466 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
468 * Remove the node now but someone else can add it back,
469 * we will to add it back at the end of reclaim to its correct
470 * position in the tree.
472 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
473 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
474 !css_tryget(&mz
->mem
->css
))
480 static struct mem_cgroup_per_zone
*
481 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
483 struct mem_cgroup_per_zone
*mz
;
485 spin_lock(&mctz
->lock
);
486 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
487 spin_unlock(&mctz
->lock
);
491 static s64
mem_cgroup_read_stat(struct mem_cgroup
*mem
,
492 enum mem_cgroup_stat_index idx
)
497 for_each_possible_cpu(cpu
)
498 val
+= per_cpu(mem
->stat
->count
[idx
], cpu
);
502 static s64
mem_cgroup_local_usage(struct mem_cgroup
*mem
)
506 ret
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
507 ret
+= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
511 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
514 int val
= (charge
) ? 1 : -1;
515 this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
518 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
519 struct page_cgroup
*pc
,
522 int val
= (charge
) ? 1 : -1;
526 if (PageCgroupCache(pc
))
527 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_CACHE
], val
);
529 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_RSS
], val
);
532 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_PGPGIN_COUNT
]);
534 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_PGPGOUT_COUNT
]);
535 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_EVENTS
]);
540 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
544 struct mem_cgroup_per_zone
*mz
;
547 for_each_online_node(nid
)
548 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
549 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
550 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
555 static bool __memcg_event_check(struct mem_cgroup
*mem
, int event_mask_shift
)
559 val
= this_cpu_read(mem
->stat
->count
[MEM_CGROUP_EVENTS
]);
561 return !(val
& ((1 << event_mask_shift
) - 1));
565 * Check events in order.
568 static void memcg_check_events(struct mem_cgroup
*mem
, struct page
*page
)
570 /* threshold event is triggered in finer grain than soft limit */
571 if (unlikely(__memcg_event_check(mem
, THRESHOLDS_EVENTS_THRESH
))) {
572 mem_cgroup_threshold(mem
);
573 if (unlikely(__memcg_event_check(mem
, SOFTLIMIT_EVENTS_THRESH
)))
574 mem_cgroup_update_tree(mem
, page
);
578 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
580 return container_of(cgroup_subsys_state(cont
,
581 mem_cgroup_subsys_id
), struct mem_cgroup
,
585 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
588 * mm_update_next_owner() may clear mm->owner to NULL
589 * if it races with swapoff, page migration, etc.
590 * So this can be called with p == NULL.
595 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
596 struct mem_cgroup
, css
);
599 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
601 struct mem_cgroup
*mem
= NULL
;
606 * Because we have no locks, mm->owner's may be being moved to other
607 * cgroup. We use css_tryget() here even if this looks
608 * pessimistic (rather than adding locks here).
612 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
615 } while (!css_tryget(&mem
->css
));
621 * Call callback function against all cgroup under hierarchy tree.
623 static int mem_cgroup_walk_tree(struct mem_cgroup
*root
, void *data
,
624 int (*func
)(struct mem_cgroup
*, void *))
626 int found
, ret
, nextid
;
627 struct cgroup_subsys_state
*css
;
628 struct mem_cgroup
*mem
;
630 if (!root
->use_hierarchy
)
631 return (*func
)(root
, data
);
639 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root
->css
,
641 if (css
&& css_tryget(css
))
642 mem
= container_of(css
, struct mem_cgroup
, css
);
646 ret
= (*func
)(mem
, data
);
650 } while (!ret
&& css
);
655 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
657 return (mem
== root_mem_cgroup
);
661 * Following LRU functions are allowed to be used without PCG_LOCK.
662 * Operations are called by routine of global LRU independently from memcg.
663 * What we have to take care of here is validness of pc->mem_cgroup.
665 * Changes to pc->mem_cgroup happens when
668 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
669 * It is added to LRU before charge.
670 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
671 * When moving account, the page is not on LRU. It's isolated.
674 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
676 struct page_cgroup
*pc
;
677 struct mem_cgroup_per_zone
*mz
;
679 if (mem_cgroup_disabled())
681 pc
= lookup_page_cgroup(page
);
682 /* can happen while we handle swapcache. */
683 if (!TestClearPageCgroupAcctLRU(pc
))
685 VM_BUG_ON(!pc
->mem_cgroup
);
687 * We don't check PCG_USED bit. It's cleared when the "page" is finally
688 * removed from global LRU.
690 mz
= page_cgroup_zoneinfo(pc
);
691 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
692 if (mem_cgroup_is_root(pc
->mem_cgroup
))
694 VM_BUG_ON(list_empty(&pc
->lru
));
695 list_del_init(&pc
->lru
);
699 void mem_cgroup_del_lru(struct page
*page
)
701 mem_cgroup_del_lru_list(page
, page_lru(page
));
704 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
706 struct mem_cgroup_per_zone
*mz
;
707 struct page_cgroup
*pc
;
709 if (mem_cgroup_disabled())
712 pc
= lookup_page_cgroup(page
);
714 * Used bit is set without atomic ops but after smp_wmb().
715 * For making pc->mem_cgroup visible, insert smp_rmb() here.
718 /* unused or root page is not rotated. */
719 if (!PageCgroupUsed(pc
) || mem_cgroup_is_root(pc
->mem_cgroup
))
721 mz
= page_cgroup_zoneinfo(pc
);
722 list_move(&pc
->lru
, &mz
->lists
[lru
]);
725 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
727 struct page_cgroup
*pc
;
728 struct mem_cgroup_per_zone
*mz
;
730 if (mem_cgroup_disabled())
732 pc
= lookup_page_cgroup(page
);
733 VM_BUG_ON(PageCgroupAcctLRU(pc
));
735 * Used bit is set without atomic ops but after smp_wmb().
736 * For making pc->mem_cgroup visible, insert smp_rmb() here.
739 if (!PageCgroupUsed(pc
))
742 mz
= page_cgroup_zoneinfo(pc
);
743 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
744 SetPageCgroupAcctLRU(pc
);
745 if (mem_cgroup_is_root(pc
->mem_cgroup
))
747 list_add(&pc
->lru
, &mz
->lists
[lru
]);
751 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
752 * lru because the page may.be reused after it's fully uncharged (because of
753 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
754 * it again. This function is only used to charge SwapCache. It's done under
755 * lock_page and expected that zone->lru_lock is never held.
757 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
760 struct zone
*zone
= page_zone(page
);
761 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
763 spin_lock_irqsave(&zone
->lru_lock
, flags
);
765 * Forget old LRU when this page_cgroup is *not* used. This Used bit
766 * is guarded by lock_page() because the page is SwapCache.
768 if (!PageCgroupUsed(pc
))
769 mem_cgroup_del_lru_list(page
, page_lru(page
));
770 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
773 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
776 struct zone
*zone
= page_zone(page
);
777 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
779 spin_lock_irqsave(&zone
->lru_lock
, flags
);
780 /* link when the page is linked to LRU but page_cgroup isn't */
781 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
782 mem_cgroup_add_lru_list(page
, page_lru(page
));
783 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
787 void mem_cgroup_move_lists(struct page
*page
,
788 enum lru_list from
, enum lru_list to
)
790 if (mem_cgroup_disabled())
792 mem_cgroup_del_lru_list(page
, from
);
793 mem_cgroup_add_lru_list(page
, to
);
796 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
799 struct mem_cgroup
*curr
= NULL
;
803 curr
= try_get_mem_cgroup_from_mm(task
->mm
);
809 * We should check use_hierarchy of "mem" not "curr". Because checking
810 * use_hierarchy of "curr" here make this function true if hierarchy is
811 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
812 * hierarchy(even if use_hierarchy is disabled in "mem").
815 if (mem
->use_hierarchy
)
816 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
825 * prev_priority control...this will be used in memory reclaim path.
827 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
831 spin_lock(&mem
->reclaim_param_lock
);
832 prev_priority
= mem
->prev_priority
;
833 spin_unlock(&mem
->reclaim_param_lock
);
835 return prev_priority
;
838 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
840 spin_lock(&mem
->reclaim_param_lock
);
841 if (priority
< mem
->prev_priority
)
842 mem
->prev_priority
= priority
;
843 spin_unlock(&mem
->reclaim_param_lock
);
846 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
848 spin_lock(&mem
->reclaim_param_lock
);
849 mem
->prev_priority
= priority
;
850 spin_unlock(&mem
->reclaim_param_lock
);
853 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
855 unsigned long active
;
856 unsigned long inactive
;
858 unsigned long inactive_ratio
;
860 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
861 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
863 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
865 inactive_ratio
= int_sqrt(10 * gb
);
870 present_pages
[0] = inactive
;
871 present_pages
[1] = active
;
874 return inactive_ratio
;
877 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
879 unsigned long active
;
880 unsigned long inactive
;
881 unsigned long present_pages
[2];
882 unsigned long inactive_ratio
;
884 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
886 inactive
= present_pages
[0];
887 active
= present_pages
[1];
889 if (inactive
* inactive_ratio
< active
)
895 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
897 unsigned long active
;
898 unsigned long inactive
;
900 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
901 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
903 return (active
> inactive
);
906 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
910 int nid
= zone
->zone_pgdat
->node_id
;
911 int zid
= zone_idx(zone
);
912 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
914 return MEM_CGROUP_ZSTAT(mz
, lru
);
917 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
920 int nid
= zone
->zone_pgdat
->node_id
;
921 int zid
= zone_idx(zone
);
922 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
924 return &mz
->reclaim_stat
;
927 struct zone_reclaim_stat
*
928 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
930 struct page_cgroup
*pc
;
931 struct mem_cgroup_per_zone
*mz
;
933 if (mem_cgroup_disabled())
936 pc
= lookup_page_cgroup(page
);
938 * Used bit is set without atomic ops but after smp_wmb().
939 * For making pc->mem_cgroup visible, insert smp_rmb() here.
942 if (!PageCgroupUsed(pc
))
945 mz
= page_cgroup_zoneinfo(pc
);
949 return &mz
->reclaim_stat
;
952 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
953 struct list_head
*dst
,
954 unsigned long *scanned
, int order
,
955 int mode
, struct zone
*z
,
956 struct mem_cgroup
*mem_cont
,
957 int active
, int file
)
959 unsigned long nr_taken
= 0;
963 struct list_head
*src
;
964 struct page_cgroup
*pc
, *tmp
;
965 int nid
= z
->zone_pgdat
->node_id
;
966 int zid
= zone_idx(z
);
967 struct mem_cgroup_per_zone
*mz
;
968 int lru
= LRU_FILE
* file
+ active
;
972 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
973 src
= &mz
->lists
[lru
];
976 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
977 if (scan
>= nr_to_scan
)
981 if (unlikely(!PageCgroupUsed(pc
)))
983 if (unlikely(!PageLRU(page
)))
987 ret
= __isolate_lru_page(page
, mode
, file
);
990 list_move(&page
->lru
, dst
);
991 mem_cgroup_del_lru(page
);
995 /* we don't affect global LRU but rotate in our LRU */
996 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1007 #define mem_cgroup_from_res_counter(counter, member) \
1008 container_of(counter, struct mem_cgroup, member)
1010 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
1012 if (do_swap_account
) {
1013 if (res_counter_check_under_limit(&mem
->res
) &&
1014 res_counter_check_under_limit(&mem
->memsw
))
1017 if (res_counter_check_under_limit(&mem
->res
))
1022 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
1024 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1025 unsigned int swappiness
;
1028 if (cgrp
->parent
== NULL
)
1029 return vm_swappiness
;
1031 spin_lock(&memcg
->reclaim_param_lock
);
1032 swappiness
= memcg
->swappiness
;
1033 spin_unlock(&memcg
->reclaim_param_lock
);
1038 static int mem_cgroup_count_children_cb(struct mem_cgroup
*mem
, void *data
)
1046 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1047 * @memcg: The memory cgroup that went over limit
1048 * @p: Task that is going to be killed
1050 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1053 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1055 struct cgroup
*task_cgrp
;
1056 struct cgroup
*mem_cgrp
;
1058 * Need a buffer in BSS, can't rely on allocations. The code relies
1059 * on the assumption that OOM is serialized for memory controller.
1060 * If this assumption is broken, revisit this code.
1062 static char memcg_name
[PATH_MAX
];
1071 mem_cgrp
= memcg
->css
.cgroup
;
1072 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1074 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1077 * Unfortunately, we are unable to convert to a useful name
1078 * But we'll still print out the usage information
1085 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1088 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1096 * Continues from above, so we don't need an KERN_ level
1098 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1101 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1102 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1103 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1104 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1105 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1107 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1108 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1109 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1113 * This function returns the number of memcg under hierarchy tree. Returns
1114 * 1(self count) if no children.
1116 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1119 mem_cgroup_walk_tree(mem
, &num
, mem_cgroup_count_children_cb
);
1124 * Visit the first child (need not be the first child as per the ordering
1125 * of the cgroup list, since we track last_scanned_child) of @mem and use
1126 * that to reclaim free pages from.
1128 static struct mem_cgroup
*
1129 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1131 struct mem_cgroup
*ret
= NULL
;
1132 struct cgroup_subsys_state
*css
;
1135 if (!root_mem
->use_hierarchy
) {
1136 css_get(&root_mem
->css
);
1142 nextid
= root_mem
->last_scanned_child
+ 1;
1143 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1145 if (css
&& css_tryget(css
))
1146 ret
= container_of(css
, struct mem_cgroup
, css
);
1149 /* Updates scanning parameter */
1150 spin_lock(&root_mem
->reclaim_param_lock
);
1152 /* this means start scan from ID:1 */
1153 root_mem
->last_scanned_child
= 0;
1155 root_mem
->last_scanned_child
= found
;
1156 spin_unlock(&root_mem
->reclaim_param_lock
);
1163 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1164 * we reclaimed from, so that we don't end up penalizing one child extensively
1165 * based on its position in the children list.
1167 * root_mem is the original ancestor that we've been reclaim from.
1169 * We give up and return to the caller when we visit root_mem twice.
1170 * (other groups can be removed while we're walking....)
1172 * If shrink==true, for avoiding to free too much, this returns immedieately.
1174 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1177 unsigned long reclaim_options
)
1179 struct mem_cgroup
*victim
;
1182 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1183 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1184 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1185 unsigned long excess
= mem_cgroup_get_excess(root_mem
);
1187 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1188 if (root_mem
->memsw_is_minimum
)
1192 victim
= mem_cgroup_select_victim(root_mem
);
1193 if (victim
== root_mem
) {
1196 drain_all_stock_async();
1199 * If we have not been able to reclaim
1200 * anything, it might because there are
1201 * no reclaimable pages under this hierarchy
1203 if (!check_soft
|| !total
) {
1204 css_put(&victim
->css
);
1208 * We want to do more targetted reclaim.
1209 * excess >> 2 is not to excessive so as to
1210 * reclaim too much, nor too less that we keep
1211 * coming back to reclaim from this cgroup
1213 if (total
>= (excess
>> 2) ||
1214 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1215 css_put(&victim
->css
);
1220 if (!mem_cgroup_local_usage(victim
)) {
1221 /* this cgroup's local usage == 0 */
1222 css_put(&victim
->css
);
1225 /* we use swappiness of local cgroup */
1227 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1228 noswap
, get_swappiness(victim
), zone
,
1229 zone
->zone_pgdat
->node_id
);
1231 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1232 noswap
, get_swappiness(victim
));
1233 css_put(&victim
->css
);
1235 * At shrinking usage, we can't check we should stop here or
1236 * reclaim more. It's depends on callers. last_scanned_child
1237 * will work enough for keeping fairness under tree.
1243 if (res_counter_check_under_soft_limit(&root_mem
->res
))
1245 } else if (mem_cgroup_check_under_limit(root_mem
))
1251 static int mem_cgroup_oom_lock_cb(struct mem_cgroup
*mem
, void *data
)
1253 int *val
= (int *)data
;
1256 * Logically, we can stop scanning immediately when we find
1257 * a memcg is already locked. But condidering unlock ops and
1258 * creation/removal of memcg, scan-all is simple operation.
1260 x
= atomic_inc_return(&mem
->oom_lock
);
1261 *val
= max(x
, *val
);
1265 * Check OOM-Killer is already running under our hierarchy.
1266 * If someone is running, return false.
1268 static bool mem_cgroup_oom_lock(struct mem_cgroup
*mem
)
1272 mem_cgroup_walk_tree(mem
, &lock_count
, mem_cgroup_oom_lock_cb
);
1274 if (lock_count
== 1)
1279 static int mem_cgroup_oom_unlock_cb(struct mem_cgroup
*mem
, void *data
)
1282 * When a new child is created while the hierarchy is under oom,
1283 * mem_cgroup_oom_lock() may not be called. We have to use
1284 * atomic_add_unless() here.
1286 atomic_add_unless(&mem
->oom_lock
, -1, 0);
1290 static void mem_cgroup_oom_unlock(struct mem_cgroup
*mem
)
1292 mem_cgroup_walk_tree(mem
, NULL
, mem_cgroup_oom_unlock_cb
);
1295 static DEFINE_MUTEX(memcg_oom_mutex
);
1296 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1299 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1301 bool mem_cgroup_handle_oom(struct mem_cgroup
*mem
, gfp_t mask
)
1306 /* At first, try to OOM lock hierarchy under mem.*/
1307 mutex_lock(&memcg_oom_mutex
);
1308 locked
= mem_cgroup_oom_lock(mem
);
1310 * Even if signal_pending(), we can't quit charge() loop without
1311 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1312 * under OOM is always welcomed, use TASK_KILLABLE here.
1315 prepare_to_wait(&memcg_oom_waitq
, &wait
, TASK_KILLABLE
);
1316 mutex_unlock(&memcg_oom_mutex
);
1319 mem_cgroup_out_of_memory(mem
, mask
);
1322 finish_wait(&memcg_oom_waitq
, &wait
);
1324 mutex_lock(&memcg_oom_mutex
);
1325 mem_cgroup_oom_unlock(mem
);
1327 * Here, we use global waitq .....more fine grained waitq ?
1328 * Assume following hierarchy.
1332 * assume OOM happens both in A and 01 at the same time. Tthey are
1333 * mutually exclusive by lock. (kill in 01 helps A.)
1334 * When we use per memcg waitq, we have to wake up waiters on A and 02
1335 * in addtion to waiters on 01. We use global waitq for avoiding mess.
1336 * It will not be a big problem.
1337 * (And a task may be moved to other groups while it's waiting for OOM.)
1339 wake_up_all(&memcg_oom_waitq
);
1340 mutex_unlock(&memcg_oom_mutex
);
1342 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1344 /* Give chance to dying process */
1345 schedule_timeout(1);
1350 * Currently used to update mapped file statistics, but the routine can be
1351 * generalized to update other statistics as well.
1353 void mem_cgroup_update_file_mapped(struct page
*page
, int val
)
1355 struct mem_cgroup
*mem
;
1356 struct page_cgroup
*pc
;
1358 pc
= lookup_page_cgroup(page
);
1362 lock_page_cgroup(pc
);
1363 mem
= pc
->mem_cgroup
;
1364 if (!mem
|| !PageCgroupUsed(pc
))
1368 * Preemption is already disabled. We can use __this_cpu_xxx
1371 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
1372 SetPageCgroupFileMapped(pc
);
1374 __this_cpu_dec(mem
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
1375 ClearPageCgroupFileMapped(pc
);
1379 unlock_page_cgroup(pc
);
1383 * size of first charge trial. "32" comes from vmscan.c's magic value.
1384 * TODO: maybe necessary to use big numbers in big irons.
1386 #define CHARGE_SIZE (32 * PAGE_SIZE)
1387 struct memcg_stock_pcp
{
1388 struct mem_cgroup
*cached
; /* this never be root cgroup */
1390 struct work_struct work
;
1392 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1393 static atomic_t memcg_drain_count
;
1396 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1397 * from local stock and true is returned. If the stock is 0 or charges from a
1398 * cgroup which is not current target, returns false. This stock will be
1401 static bool consume_stock(struct mem_cgroup
*mem
)
1403 struct memcg_stock_pcp
*stock
;
1406 stock
= &get_cpu_var(memcg_stock
);
1407 if (mem
== stock
->cached
&& stock
->charge
)
1408 stock
->charge
-= PAGE_SIZE
;
1409 else /* need to call res_counter_charge */
1411 put_cpu_var(memcg_stock
);
1416 * Returns stocks cached in percpu to res_counter and reset cached information.
1418 static void drain_stock(struct memcg_stock_pcp
*stock
)
1420 struct mem_cgroup
*old
= stock
->cached
;
1422 if (stock
->charge
) {
1423 res_counter_uncharge(&old
->res
, stock
->charge
);
1424 if (do_swap_account
)
1425 res_counter_uncharge(&old
->memsw
, stock
->charge
);
1427 stock
->cached
= NULL
;
1432 * This must be called under preempt disabled or must be called by
1433 * a thread which is pinned to local cpu.
1435 static void drain_local_stock(struct work_struct
*dummy
)
1437 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
1442 * Cache charges(val) which is from res_counter, to local per_cpu area.
1443 * This will be consumed by consumt_stock() function, later.
1445 static void refill_stock(struct mem_cgroup
*mem
, int val
)
1447 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1449 if (stock
->cached
!= mem
) { /* reset if necessary */
1451 stock
->cached
= mem
;
1453 stock
->charge
+= val
;
1454 put_cpu_var(memcg_stock
);
1458 * Tries to drain stocked charges in other cpus. This function is asynchronous
1459 * and just put a work per cpu for draining localy on each cpu. Caller can
1460 * expects some charges will be back to res_counter later but cannot wait for
1463 static void drain_all_stock_async(void)
1466 /* This function is for scheduling "drain" in asynchronous way.
1467 * The result of "drain" is not directly handled by callers. Then,
1468 * if someone is calling drain, we don't have to call drain more.
1469 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1470 * there is a race. We just do loose check here.
1472 if (atomic_read(&memcg_drain_count
))
1474 /* Notify other cpus that system-wide "drain" is running */
1475 atomic_inc(&memcg_drain_count
);
1477 for_each_online_cpu(cpu
) {
1478 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1479 schedule_work_on(cpu
, &stock
->work
);
1482 atomic_dec(&memcg_drain_count
);
1483 /* We don't wait for flush_work */
1486 /* This is a synchronous drain interface. */
1487 static void drain_all_stock_sync(void)
1489 /* called when force_empty is called */
1490 atomic_inc(&memcg_drain_count
);
1491 schedule_on_each_cpu(drain_local_stock
);
1492 atomic_dec(&memcg_drain_count
);
1495 static int __cpuinit
memcg_stock_cpu_callback(struct notifier_block
*nb
,
1496 unsigned long action
,
1499 int cpu
= (unsigned long)hcpu
;
1500 struct memcg_stock_pcp
*stock
;
1502 if (action
!= CPU_DEAD
)
1504 stock
= &per_cpu(memcg_stock
, cpu
);
1510 * Unlike exported interface, "oom" parameter is added. if oom==true,
1511 * oom-killer can be invoked.
1513 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
1514 gfp_t gfp_mask
, struct mem_cgroup
**memcg
, bool oom
)
1516 struct mem_cgroup
*mem
, *mem_over_limit
;
1517 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1518 struct res_counter
*fail_res
;
1519 int csize
= CHARGE_SIZE
;
1522 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1523 * in system level. So, allow to go ahead dying process in addition to
1526 if (unlikely(test_thread_flag(TIF_MEMDIE
)
1527 || fatal_signal_pending(current
)))
1531 * We always charge the cgroup the mm_struct belongs to.
1532 * The mm_struct's mem_cgroup changes on task migration if the
1533 * thread group leader migrates. It's possible that mm is not
1534 * set, if so charge the init_mm (happens for pagecache usage).
1538 mem
= try_get_mem_cgroup_from_mm(mm
);
1546 VM_BUG_ON(css_is_removed(&mem
->css
));
1547 if (mem_cgroup_is_root(mem
))
1552 unsigned long flags
= 0;
1554 if (consume_stock(mem
))
1557 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
1559 if (!do_swap_account
)
1561 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
1564 /* mem+swap counter fails */
1565 res_counter_uncharge(&mem
->res
, csize
);
1566 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
1567 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
1570 /* mem counter fails */
1571 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
1574 /* reduce request size and retry */
1575 if (csize
> PAGE_SIZE
) {
1579 if (!(gfp_mask
& __GFP_WAIT
))
1582 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
1588 * try_to_free_mem_cgroup_pages() might not give us a full
1589 * picture of reclaim. Some pages are reclaimed and might be
1590 * moved to swap cache or just unmapped from the cgroup.
1591 * Check the limit again to see if the reclaim reduced the
1592 * current usage of the cgroup before giving up
1595 if (mem_cgroup_check_under_limit(mem_over_limit
))
1598 /* try to avoid oom while someone is moving charge */
1599 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1600 struct mem_cgroup
*from
, *to
;
1601 bool do_continue
= false;
1603 * There is a small race that "from" or "to" can be
1604 * freed by rmdir, so we use css_tryget().
1609 if (from
&& css_tryget(&from
->css
)) {
1610 if (mem_over_limit
->use_hierarchy
)
1611 do_continue
= css_is_ancestor(
1613 &mem_over_limit
->css
);
1615 do_continue
= (from
== mem_over_limit
);
1616 css_put(&from
->css
);
1618 if (!do_continue
&& to
&& css_tryget(&to
->css
)) {
1619 if (mem_over_limit
->use_hierarchy
)
1620 do_continue
= css_is_ancestor(
1622 &mem_over_limit
->css
);
1624 do_continue
= (to
== mem_over_limit
);
1630 prepare_to_wait(&mc
.waitq
, &wait
,
1631 TASK_INTERRUPTIBLE
);
1632 /* moving charge context might have finished. */
1635 finish_wait(&mc
.waitq
, &wait
);
1640 if (!nr_retries
--) {
1643 if (mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
)) {
1644 nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1647 /* When we reach here, current task is dying .*/
1652 if (csize
> PAGE_SIZE
)
1653 refill_stock(mem
, csize
- PAGE_SIZE
);
1665 * Somemtimes we have to undo a charge we got by try_charge().
1666 * This function is for that and do uncharge, put css's refcnt.
1667 * gotten by try_charge().
1669 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
1670 unsigned long count
)
1672 if (!mem_cgroup_is_root(mem
)) {
1673 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
1674 if (do_swap_account
)
1675 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
* count
);
1676 VM_BUG_ON(test_bit(CSS_ROOT
, &mem
->css
.flags
));
1677 WARN_ON_ONCE(count
> INT_MAX
);
1678 __css_put(&mem
->css
, (int)count
);
1680 /* we don't need css_put for root */
1683 static void mem_cgroup_cancel_charge(struct mem_cgroup
*mem
)
1685 __mem_cgroup_cancel_charge(mem
, 1);
1689 * A helper function to get mem_cgroup from ID. must be called under
1690 * rcu_read_lock(). The caller must check css_is_removed() or some if
1691 * it's concern. (dropping refcnt from swap can be called against removed
1694 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
1696 struct cgroup_subsys_state
*css
;
1698 /* ID 0 is unused ID */
1701 css
= css_lookup(&mem_cgroup_subsys
, id
);
1704 return container_of(css
, struct mem_cgroup
, css
);
1707 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
1709 struct mem_cgroup
*mem
= NULL
;
1710 struct page_cgroup
*pc
;
1714 VM_BUG_ON(!PageLocked(page
));
1716 pc
= lookup_page_cgroup(page
);
1717 lock_page_cgroup(pc
);
1718 if (PageCgroupUsed(pc
)) {
1719 mem
= pc
->mem_cgroup
;
1720 if (mem
&& !css_tryget(&mem
->css
))
1722 } else if (PageSwapCache(page
)) {
1723 ent
.val
= page_private(page
);
1724 id
= lookup_swap_cgroup(ent
);
1726 mem
= mem_cgroup_lookup(id
);
1727 if (mem
&& !css_tryget(&mem
->css
))
1731 unlock_page_cgroup(pc
);
1736 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1737 * USED state. If already USED, uncharge and return.
1740 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
1741 struct page_cgroup
*pc
,
1742 enum charge_type ctype
)
1744 /* try_charge() can return NULL to *memcg, taking care of it. */
1748 lock_page_cgroup(pc
);
1749 if (unlikely(PageCgroupUsed(pc
))) {
1750 unlock_page_cgroup(pc
);
1751 mem_cgroup_cancel_charge(mem
);
1755 pc
->mem_cgroup
= mem
;
1757 * We access a page_cgroup asynchronously without lock_page_cgroup().
1758 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1759 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1760 * before USED bit, we need memory barrier here.
1761 * See mem_cgroup_add_lru_list(), etc.
1765 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
1766 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
1767 SetPageCgroupCache(pc
);
1768 SetPageCgroupUsed(pc
);
1770 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
1771 ClearPageCgroupCache(pc
);
1772 SetPageCgroupUsed(pc
);
1778 mem_cgroup_charge_statistics(mem
, pc
, true);
1780 unlock_page_cgroup(pc
);
1782 * "charge_statistics" updated event counter. Then, check it.
1783 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1784 * if they exceeds softlimit.
1786 memcg_check_events(mem
, pc
->page
);
1790 * __mem_cgroup_move_account - move account of the page
1791 * @pc: page_cgroup of the page.
1792 * @from: mem_cgroup which the page is moved from.
1793 * @to: mem_cgroup which the page is moved to. @from != @to.
1794 * @uncharge: whether we should call uncharge and css_put against @from.
1796 * The caller must confirm following.
1797 * - page is not on LRU (isolate_page() is useful.)
1798 * - the pc is locked, used, and ->mem_cgroup points to @from.
1800 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1801 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1802 * true, this function does "uncharge" from old cgroup, but it doesn't if
1803 * @uncharge is false, so a caller should do "uncharge".
1806 static void __mem_cgroup_move_account(struct page_cgroup
*pc
,
1807 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool uncharge
)
1809 VM_BUG_ON(from
== to
);
1810 VM_BUG_ON(PageLRU(pc
->page
));
1811 VM_BUG_ON(!PageCgroupLocked(pc
));
1812 VM_BUG_ON(!PageCgroupUsed(pc
));
1813 VM_BUG_ON(pc
->mem_cgroup
!= from
);
1815 if (PageCgroupFileMapped(pc
)) {
1816 /* Update mapped_file data for mem_cgroup */
1818 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
1819 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
1822 mem_cgroup_charge_statistics(from
, pc
, false);
1824 /* This is not "cancel", but cancel_charge does all we need. */
1825 mem_cgroup_cancel_charge(from
);
1827 /* caller should have done css_get */
1828 pc
->mem_cgroup
= to
;
1829 mem_cgroup_charge_statistics(to
, pc
, true);
1831 * We charges against "to" which may not have any tasks. Then, "to"
1832 * can be under rmdir(). But in current implementation, caller of
1833 * this function is just force_empty() and move charge, so it's
1834 * garanteed that "to" is never removed. So, we don't check rmdir
1840 * check whether the @pc is valid for moving account and call
1841 * __mem_cgroup_move_account()
1843 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
1844 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool uncharge
)
1847 lock_page_cgroup(pc
);
1848 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== from
) {
1849 __mem_cgroup_move_account(pc
, from
, to
, uncharge
);
1852 unlock_page_cgroup(pc
);
1856 memcg_check_events(to
, pc
->page
);
1857 memcg_check_events(from
, pc
->page
);
1862 * move charges to its parent.
1865 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
1866 struct mem_cgroup
*child
,
1869 struct page
*page
= pc
->page
;
1870 struct cgroup
*cg
= child
->css
.cgroup
;
1871 struct cgroup
*pcg
= cg
->parent
;
1872 struct mem_cgroup
*parent
;
1880 if (!get_page_unless_zero(page
))
1882 if (isolate_lru_page(page
))
1885 parent
= mem_cgroup_from_cont(pcg
);
1886 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false);
1890 ret
= mem_cgroup_move_account(pc
, child
, parent
, true);
1892 mem_cgroup_cancel_charge(parent
);
1894 putback_lru_page(page
);
1902 * Charge the memory controller for page usage.
1904 * 0 if the charge was successful
1905 * < 0 if the cgroup is over its limit
1907 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
1908 gfp_t gfp_mask
, enum charge_type ctype
,
1909 struct mem_cgroup
*memcg
)
1911 struct mem_cgroup
*mem
;
1912 struct page_cgroup
*pc
;
1915 pc
= lookup_page_cgroup(page
);
1916 /* can happen at boot */
1922 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true);
1926 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1930 int mem_cgroup_newpage_charge(struct page
*page
,
1931 struct mm_struct
*mm
, gfp_t gfp_mask
)
1933 if (mem_cgroup_disabled())
1935 if (PageCompound(page
))
1938 * If already mapped, we don't have to account.
1939 * If page cache, page->mapping has address_space.
1940 * But page->mapping may have out-of-use anon_vma pointer,
1941 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1944 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
1948 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1949 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
1953 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1954 enum charge_type ctype
);
1956 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
1959 struct mem_cgroup
*mem
= NULL
;
1962 if (mem_cgroup_disabled())
1964 if (PageCompound(page
))
1967 * Corner case handling. This is called from add_to_page_cache()
1968 * in usual. But some FS (shmem) precharges this page before calling it
1969 * and call add_to_page_cache() with GFP_NOWAIT.
1971 * For GFP_NOWAIT case, the page may be pre-charged before calling
1972 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1973 * charge twice. (It works but has to pay a bit larger cost.)
1974 * And when the page is SwapCache, it should take swap information
1975 * into account. This is under lock_page() now.
1977 if (!(gfp_mask
& __GFP_WAIT
)) {
1978 struct page_cgroup
*pc
;
1981 pc
= lookup_page_cgroup(page
);
1984 lock_page_cgroup(pc
);
1985 if (PageCgroupUsed(pc
)) {
1986 unlock_page_cgroup(pc
);
1989 unlock_page_cgroup(pc
);
1992 if (unlikely(!mm
&& !mem
))
1995 if (page_is_file_cache(page
))
1996 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1997 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
2000 if (PageSwapCache(page
)) {
2001 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2003 __mem_cgroup_commit_charge_swapin(page
, mem
,
2004 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2006 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2007 MEM_CGROUP_CHARGE_TYPE_SHMEM
, mem
);
2013 * While swap-in, try_charge -> commit or cancel, the page is locked.
2014 * And when try_charge() successfully returns, one refcnt to memcg without
2015 * struct page_cgroup is acquired. This refcnt will be consumed by
2016 * "commit()" or removed by "cancel()"
2018 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2020 gfp_t mask
, struct mem_cgroup
**ptr
)
2022 struct mem_cgroup
*mem
;
2025 if (mem_cgroup_disabled())
2028 if (!do_swap_account
)
2031 * A racing thread's fault, or swapoff, may have already updated
2032 * the pte, and even removed page from swap cache: in those cases
2033 * do_swap_page()'s pte_same() test will fail; but there's also a
2034 * KSM case which does need to charge the page.
2036 if (!PageSwapCache(page
))
2038 mem
= try_get_mem_cgroup_from_page(page
);
2042 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true);
2043 /* drop extra refcnt from tryget */
2049 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true);
2053 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2054 enum charge_type ctype
)
2056 struct page_cgroup
*pc
;
2058 if (mem_cgroup_disabled())
2062 cgroup_exclude_rmdir(&ptr
->css
);
2063 pc
= lookup_page_cgroup(page
);
2064 mem_cgroup_lru_del_before_commit_swapcache(page
);
2065 __mem_cgroup_commit_charge(ptr
, pc
, ctype
);
2066 mem_cgroup_lru_add_after_commit_swapcache(page
);
2068 * Now swap is on-memory. This means this page may be
2069 * counted both as mem and swap....double count.
2070 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2071 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2072 * may call delete_from_swap_cache() before reach here.
2074 if (do_swap_account
&& PageSwapCache(page
)) {
2075 swp_entry_t ent
= {.val
= page_private(page
)};
2077 struct mem_cgroup
*memcg
;
2079 id
= swap_cgroup_record(ent
, 0);
2081 memcg
= mem_cgroup_lookup(id
);
2084 * This recorded memcg can be obsolete one. So, avoid
2085 * calling css_tryget
2087 if (!mem_cgroup_is_root(memcg
))
2088 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2089 mem_cgroup_swap_statistics(memcg
, false);
2090 mem_cgroup_put(memcg
);
2095 * At swapin, we may charge account against cgroup which has no tasks.
2096 * So, rmdir()->pre_destroy() can be called while we do this charge.
2097 * In that case, we need to call pre_destroy() again. check it here.
2099 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2102 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2104 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2105 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2108 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
2110 if (mem_cgroup_disabled())
2114 mem_cgroup_cancel_charge(mem
);
2118 __do_uncharge(struct mem_cgroup
*mem
, const enum charge_type ctype
)
2120 struct memcg_batch_info
*batch
= NULL
;
2121 bool uncharge_memsw
= true;
2122 /* If swapout, usage of swap doesn't decrease */
2123 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2124 uncharge_memsw
= false;
2126 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2127 * In those cases, all pages freed continously can be expected to be in
2128 * the same cgroup and we have chance to coalesce uncharges.
2129 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2130 * because we want to do uncharge as soon as possible.
2132 if (!current
->memcg_batch
.do_batch
|| test_thread_flag(TIF_MEMDIE
))
2133 goto direct_uncharge
;
2135 batch
= ¤t
->memcg_batch
;
2137 * In usual, we do css_get() when we remember memcg pointer.
2138 * But in this case, we keep res->usage until end of a series of
2139 * uncharges. Then, it's ok to ignore memcg's refcnt.
2144 * In typical case, batch->memcg == mem. This means we can
2145 * merge a series of uncharges to an uncharge of res_counter.
2146 * If not, we uncharge res_counter ony by one.
2148 if (batch
->memcg
!= mem
)
2149 goto direct_uncharge
;
2150 /* remember freed charge and uncharge it later */
2151 batch
->bytes
+= PAGE_SIZE
;
2153 batch
->memsw_bytes
+= PAGE_SIZE
;
2156 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
2158 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
2163 * uncharge if !page_mapped(page)
2165 static struct mem_cgroup
*
2166 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2168 struct page_cgroup
*pc
;
2169 struct mem_cgroup
*mem
= NULL
;
2170 struct mem_cgroup_per_zone
*mz
;
2172 if (mem_cgroup_disabled())
2175 if (PageSwapCache(page
))
2179 * Check if our page_cgroup is valid
2181 pc
= lookup_page_cgroup(page
);
2182 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2185 lock_page_cgroup(pc
);
2187 mem
= pc
->mem_cgroup
;
2189 if (!PageCgroupUsed(pc
))
2193 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2194 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2195 if (page_mapped(page
))
2198 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2199 if (!PageAnon(page
)) { /* Shared memory */
2200 if (page
->mapping
&& !page_is_file_cache(page
))
2202 } else if (page_mapped(page
)) /* Anon */
2209 if (!mem_cgroup_is_root(mem
))
2210 __do_uncharge(mem
, ctype
);
2211 if (ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2212 mem_cgroup_swap_statistics(mem
, true);
2213 mem_cgroup_charge_statistics(mem
, pc
, false);
2215 ClearPageCgroupUsed(pc
);
2217 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2218 * freed from LRU. This is safe because uncharged page is expected not
2219 * to be reused (freed soon). Exception is SwapCache, it's handled by
2220 * special functions.
2223 mz
= page_cgroup_zoneinfo(pc
);
2224 unlock_page_cgroup(pc
);
2226 memcg_check_events(mem
, page
);
2227 /* at swapout, this memcg will be accessed to record to swap */
2228 if (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2234 unlock_page_cgroup(pc
);
2238 void mem_cgroup_uncharge_page(struct page
*page
)
2241 if (page_mapped(page
))
2243 if (page
->mapping
&& !PageAnon(page
))
2245 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2248 void mem_cgroup_uncharge_cache_page(struct page
*page
)
2250 VM_BUG_ON(page_mapped(page
));
2251 VM_BUG_ON(page
->mapping
);
2252 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
2256 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2257 * In that cases, pages are freed continuously and we can expect pages
2258 * are in the same memcg. All these calls itself limits the number of
2259 * pages freed at once, then uncharge_start/end() is called properly.
2260 * This may be called prural(2) times in a context,
2263 void mem_cgroup_uncharge_start(void)
2265 current
->memcg_batch
.do_batch
++;
2266 /* We can do nest. */
2267 if (current
->memcg_batch
.do_batch
== 1) {
2268 current
->memcg_batch
.memcg
= NULL
;
2269 current
->memcg_batch
.bytes
= 0;
2270 current
->memcg_batch
.memsw_bytes
= 0;
2274 void mem_cgroup_uncharge_end(void)
2276 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
2278 if (!batch
->do_batch
)
2282 if (batch
->do_batch
) /* If stacked, do nothing. */
2288 * This "batch->memcg" is valid without any css_get/put etc...
2289 * bacause we hide charges behind us.
2292 res_counter_uncharge(&batch
->memcg
->res
, batch
->bytes
);
2293 if (batch
->memsw_bytes
)
2294 res_counter_uncharge(&batch
->memcg
->memsw
, batch
->memsw_bytes
);
2295 /* forget this pointer (for sanity check) */
2296 batch
->memcg
= NULL
;
2301 * called after __delete_from_swap_cache() and drop "page" account.
2302 * memcg information is recorded to swap_cgroup of "ent"
2305 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
2307 struct mem_cgroup
*memcg
;
2308 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
2310 if (!swapout
) /* this was a swap cache but the swap is unused ! */
2311 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
2313 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
2315 /* record memcg information */
2316 if (do_swap_account
&& swapout
&& memcg
) {
2318 swap_cgroup_record(ent
, css_id(&memcg
->css
));
2320 mem_cgroup_get(memcg
);
2322 if (swapout
&& memcg
)
2323 css_put(&memcg
->css
);
2327 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2329 * called from swap_entry_free(). remove record in swap_cgroup and
2330 * uncharge "memsw" account.
2332 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
2334 struct mem_cgroup
*memcg
;
2337 if (!do_swap_account
)
2340 id
= swap_cgroup_record(ent
, 0);
2342 memcg
= mem_cgroup_lookup(id
);
2345 * We uncharge this because swap is freed.
2346 * This memcg can be obsolete one. We avoid calling css_tryget
2348 if (!mem_cgroup_is_root(memcg
))
2349 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2350 mem_cgroup_swap_statistics(memcg
, false);
2351 mem_cgroup_put(memcg
);
2357 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2358 * @entry: swap entry to be moved
2359 * @from: mem_cgroup which the entry is moved from
2360 * @to: mem_cgroup which the entry is moved to
2361 * @need_fixup: whether we should fixup res_counters and refcounts.
2363 * It succeeds only when the swap_cgroup's record for this entry is the same
2364 * as the mem_cgroup's id of @from.
2366 * Returns 0 on success, -EINVAL on failure.
2368 * The caller must have charged to @to, IOW, called res_counter_charge() about
2369 * both res and memsw, and called css_get().
2371 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2372 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2374 unsigned short old_id
, new_id
;
2377 old_id
= css_id(&from
->css
);
2378 new_id
= css_id(&to
->css
);
2381 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2382 mem_cgroup_swap_statistics(from
, false);
2383 mem_cgroup_swap_statistics(to
, true);
2385 * This function is only called from task migration context now.
2386 * It postpones res_counter and refcount handling till the end
2387 * of task migration(mem_cgroup_clear_mc()) for performance
2388 * improvement. But we cannot postpone mem_cgroup_get(to)
2389 * because if the process that has been moved to @to does
2390 * swap-in, the refcount of @to might be decreased to 0.
2394 if (!mem_cgroup_is_root(from
))
2395 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
2396 mem_cgroup_put(from
);
2398 * we charged both to->res and to->memsw, so we should
2401 if (!mem_cgroup_is_root(to
))
2402 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
2410 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2411 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2418 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2421 int mem_cgroup_prepare_migration(struct page
*page
, struct mem_cgroup
**ptr
)
2423 struct page_cgroup
*pc
;
2424 struct mem_cgroup
*mem
= NULL
;
2427 if (mem_cgroup_disabled())
2430 pc
= lookup_page_cgroup(page
);
2431 lock_page_cgroup(pc
);
2432 if (PageCgroupUsed(pc
)) {
2433 mem
= pc
->mem_cgroup
;
2436 unlock_page_cgroup(pc
);
2440 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, ptr
, false);
2446 /* remove redundant charge if migration failed*/
2447 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
2448 struct page
*oldpage
, struct page
*newpage
)
2450 struct page
*target
, *unused
;
2451 struct page_cgroup
*pc
;
2452 enum charge_type ctype
;
2456 cgroup_exclude_rmdir(&mem
->css
);
2457 /* at migration success, oldpage->mapping is NULL. */
2458 if (oldpage
->mapping
) {
2466 if (PageAnon(target
))
2467 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
2468 else if (page_is_file_cache(target
))
2469 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
2471 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
2473 /* unused page is not on radix-tree now. */
2475 __mem_cgroup_uncharge_common(unused
, ctype
);
2477 pc
= lookup_page_cgroup(target
);
2479 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2480 * So, double-counting is effectively avoided.
2482 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
2485 * Both of oldpage and newpage are still under lock_page().
2486 * Then, we don't have to care about race in radix-tree.
2487 * But we have to be careful that this page is unmapped or not.
2489 * There is a case for !page_mapped(). At the start of
2490 * migration, oldpage was mapped. But now, it's zapped.
2491 * But we know *target* page is not freed/reused under us.
2492 * mem_cgroup_uncharge_page() does all necessary checks.
2494 if (ctype
== MEM_CGROUP_CHARGE_TYPE_MAPPED
)
2495 mem_cgroup_uncharge_page(target
);
2497 * At migration, we may charge account against cgroup which has no tasks
2498 * So, rmdir()->pre_destroy() can be called while we do this charge.
2499 * In that case, we need to call pre_destroy() again. check it here.
2501 cgroup_release_and_wakeup_rmdir(&mem
->css
);
2505 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2506 * Calling hierarchical_reclaim is not enough because we should update
2507 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2508 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2509 * not from the memcg which this page would be charged to.
2510 * try_charge_swapin does all of these works properly.
2512 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
2513 struct mm_struct
*mm
,
2516 struct mem_cgroup
*mem
= NULL
;
2519 if (mem_cgroup_disabled())
2522 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2524 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
2529 static DEFINE_MUTEX(set_limit_mutex
);
2531 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2532 unsigned long long val
)
2537 int children
= mem_cgroup_count_children(memcg
);
2538 u64 curusage
, oldusage
;
2541 * For keeping hierarchical_reclaim simple, how long we should retry
2542 * is depends on callers. We set our retry-count to be function
2543 * of # of children which we should visit in this loop.
2545 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
2547 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2549 while (retry_count
) {
2550 if (signal_pending(current
)) {
2555 * Rather than hide all in some function, I do this in
2556 * open coded manner. You see what this really does.
2557 * We have to guarantee mem->res.limit < mem->memsw.limit.
2559 mutex_lock(&set_limit_mutex
);
2560 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2561 if (memswlimit
< val
) {
2563 mutex_unlock(&set_limit_mutex
);
2566 ret
= res_counter_set_limit(&memcg
->res
, val
);
2568 if (memswlimit
== val
)
2569 memcg
->memsw_is_minimum
= true;
2571 memcg
->memsw_is_minimum
= false;
2573 mutex_unlock(&set_limit_mutex
);
2578 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
2579 MEM_CGROUP_RECLAIM_SHRINK
);
2580 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2581 /* Usage is reduced ? */
2582 if (curusage
>= oldusage
)
2585 oldusage
= curusage
;
2591 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2592 unsigned long long val
)
2595 u64 memlimit
, oldusage
, curusage
;
2596 int children
= mem_cgroup_count_children(memcg
);
2599 /* see mem_cgroup_resize_res_limit */
2600 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
2601 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
2602 while (retry_count
) {
2603 if (signal_pending(current
)) {
2608 * Rather than hide all in some function, I do this in
2609 * open coded manner. You see what this really does.
2610 * We have to guarantee mem->res.limit < mem->memsw.limit.
2612 mutex_lock(&set_limit_mutex
);
2613 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2614 if (memlimit
> val
) {
2616 mutex_unlock(&set_limit_mutex
);
2619 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
2621 if (memlimit
== val
)
2622 memcg
->memsw_is_minimum
= true;
2624 memcg
->memsw_is_minimum
= false;
2626 mutex_unlock(&set_limit_mutex
);
2631 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
2632 MEM_CGROUP_RECLAIM_NOSWAP
|
2633 MEM_CGROUP_RECLAIM_SHRINK
);
2634 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
2635 /* Usage is reduced ? */
2636 if (curusage
>= oldusage
)
2639 oldusage
= curusage
;
2644 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
2645 gfp_t gfp_mask
, int nid
,
2648 unsigned long nr_reclaimed
= 0;
2649 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
2650 unsigned long reclaimed
;
2652 struct mem_cgroup_tree_per_zone
*mctz
;
2653 unsigned long long excess
;
2658 mctz
= soft_limit_tree_node_zone(nid
, zid
);
2660 * This loop can run a while, specially if mem_cgroup's continuously
2661 * keep exceeding their soft limit and putting the system under
2668 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2672 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
2674 MEM_CGROUP_RECLAIM_SOFT
);
2675 nr_reclaimed
+= reclaimed
;
2676 spin_lock(&mctz
->lock
);
2679 * If we failed to reclaim anything from this memory cgroup
2680 * it is time to move on to the next cgroup
2686 * Loop until we find yet another one.
2688 * By the time we get the soft_limit lock
2689 * again, someone might have aded the
2690 * group back on the RB tree. Iterate to
2691 * make sure we get a different mem.
2692 * mem_cgroup_largest_soft_limit_node returns
2693 * NULL if no other cgroup is present on
2697 __mem_cgroup_largest_soft_limit_node(mctz
);
2698 if (next_mz
== mz
) {
2699 css_put(&next_mz
->mem
->css
);
2701 } else /* next_mz == NULL or other memcg */
2705 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
2706 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
2708 * One school of thought says that we should not add
2709 * back the node to the tree if reclaim returns 0.
2710 * But our reclaim could return 0, simply because due
2711 * to priority we are exposing a smaller subset of
2712 * memory to reclaim from. Consider this as a longer
2715 /* If excess == 0, no tree ops */
2716 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
2717 spin_unlock(&mctz
->lock
);
2718 css_put(&mz
->mem
->css
);
2721 * Could not reclaim anything and there are no more
2722 * mem cgroups to try or we seem to be looping without
2723 * reclaiming anything.
2725 if (!nr_reclaimed
&&
2727 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2729 } while (!nr_reclaimed
);
2731 css_put(&next_mz
->mem
->css
);
2732 return nr_reclaimed
;
2736 * This routine traverse page_cgroup in given list and drop them all.
2737 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2739 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
2740 int node
, int zid
, enum lru_list lru
)
2743 struct mem_cgroup_per_zone
*mz
;
2744 struct page_cgroup
*pc
, *busy
;
2745 unsigned long flags
, loop
;
2746 struct list_head
*list
;
2749 zone
= &NODE_DATA(node
)->node_zones
[zid
];
2750 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
2751 list
= &mz
->lists
[lru
];
2753 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
2754 /* give some margin against EBUSY etc...*/
2759 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2760 if (list_empty(list
)) {
2761 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2764 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
2766 list_move(&pc
->lru
, list
);
2768 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2771 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2773 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
2777 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
2778 /* found lock contention or "pc" is obsolete. */
2785 if (!ret
&& !list_empty(list
))
2791 * make mem_cgroup's charge to be 0 if there is no task.
2792 * This enables deleting this mem_cgroup.
2794 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
2797 int node
, zid
, shrink
;
2798 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2799 struct cgroup
*cgrp
= mem
->css
.cgroup
;
2804 /* should free all ? */
2810 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
2813 if (signal_pending(current
))
2815 /* This is for making all *used* pages to be on LRU. */
2816 lru_add_drain_all();
2817 drain_all_stock_sync();
2819 for_each_node_state(node
, N_HIGH_MEMORY
) {
2820 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
2823 ret
= mem_cgroup_force_empty_list(mem
,
2832 /* it seems parent cgroup doesn't have enough mem */
2836 /* "ret" should also be checked to ensure all lists are empty. */
2837 } while (mem
->res
.usage
> 0 || ret
);
2843 /* returns EBUSY if there is a task or if we come here twice. */
2844 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
2848 /* we call try-to-free pages for make this cgroup empty */
2849 lru_add_drain_all();
2850 /* try to free all pages in this cgroup */
2852 while (nr_retries
&& mem
->res
.usage
> 0) {
2855 if (signal_pending(current
)) {
2859 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
2860 false, get_swappiness(mem
));
2863 /* maybe some writeback is necessary */
2864 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2869 /* try move_account...there may be some *locked* pages. */
2873 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
2875 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
2879 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
2881 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
2884 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
2888 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2889 struct cgroup
*parent
= cont
->parent
;
2890 struct mem_cgroup
*parent_mem
= NULL
;
2893 parent_mem
= mem_cgroup_from_cont(parent
);
2897 * If parent's use_hierarchy is set, we can't make any modifications
2898 * in the child subtrees. If it is unset, then the change can
2899 * occur, provided the current cgroup has no children.
2901 * For the root cgroup, parent_mem is NULL, we allow value to be
2902 * set if there are no children.
2904 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
2905 (val
== 1 || val
== 0)) {
2906 if (list_empty(&cont
->children
))
2907 mem
->use_hierarchy
= val
;
2917 struct mem_cgroup_idx_data
{
2919 enum mem_cgroup_stat_index idx
;
2923 mem_cgroup_get_idx_stat(struct mem_cgroup
*mem
, void *data
)
2925 struct mem_cgroup_idx_data
*d
= data
;
2926 d
->val
+= mem_cgroup_read_stat(mem
, d
->idx
);
2931 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup
*mem
,
2932 enum mem_cgroup_stat_index idx
, s64
*val
)
2934 struct mem_cgroup_idx_data d
;
2937 mem_cgroup_walk_tree(mem
, &d
, mem_cgroup_get_idx_stat
);
2941 static inline u64
mem_cgroup_usage(struct mem_cgroup
*mem
, bool swap
)
2945 if (!mem_cgroup_is_root(mem
)) {
2947 return res_counter_read_u64(&mem
->res
, RES_USAGE
);
2949 return res_counter_read_u64(&mem
->memsw
, RES_USAGE
);
2952 mem_cgroup_get_recursive_idx_stat(mem
, MEM_CGROUP_STAT_CACHE
, &idx_val
);
2954 mem_cgroup_get_recursive_idx_stat(mem
, MEM_CGROUP_STAT_RSS
, &idx_val
);
2958 mem_cgroup_get_recursive_idx_stat(mem
,
2959 MEM_CGROUP_STAT_SWAPOUT
, &idx_val
);
2963 return val
<< PAGE_SHIFT
;
2966 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
2968 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2972 type
= MEMFILE_TYPE(cft
->private);
2973 name
= MEMFILE_ATTR(cft
->private);
2976 if (name
== RES_USAGE
)
2977 val
= mem_cgroup_usage(mem
, false);
2979 val
= res_counter_read_u64(&mem
->res
, name
);
2982 if (name
== RES_USAGE
)
2983 val
= mem_cgroup_usage(mem
, true);
2985 val
= res_counter_read_u64(&mem
->memsw
, name
);
2994 * The user of this function is...
2997 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3000 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3002 unsigned long long val
;
3005 type
= MEMFILE_TYPE(cft
->private);
3006 name
= MEMFILE_ATTR(cft
->private);
3009 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3013 /* This function does all necessary parse...reuse it */
3014 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3018 ret
= mem_cgroup_resize_limit(memcg
, val
);
3020 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3022 case RES_SOFT_LIMIT
:
3023 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3027 * For memsw, soft limits are hard to implement in terms
3028 * of semantics, for now, we support soft limits for
3029 * control without swap
3032 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3037 ret
= -EINVAL
; /* should be BUG() ? */
3043 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3044 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3046 struct cgroup
*cgroup
;
3047 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3049 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3050 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3051 cgroup
= memcg
->css
.cgroup
;
3052 if (!memcg
->use_hierarchy
)
3055 while (cgroup
->parent
) {
3056 cgroup
= cgroup
->parent
;
3057 memcg
= mem_cgroup_from_cont(cgroup
);
3058 if (!memcg
->use_hierarchy
)
3060 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3061 min_limit
= min(min_limit
, tmp
);
3062 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3063 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3066 *mem_limit
= min_limit
;
3067 *memsw_limit
= min_memsw_limit
;
3071 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3073 struct mem_cgroup
*mem
;
3076 mem
= mem_cgroup_from_cont(cont
);
3077 type
= MEMFILE_TYPE(event
);
3078 name
= MEMFILE_ATTR(event
);
3082 res_counter_reset_max(&mem
->res
);
3084 res_counter_reset_max(&mem
->memsw
);
3088 res_counter_reset_failcnt(&mem
->res
);
3090 res_counter_reset_failcnt(&mem
->memsw
);
3097 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3100 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
3104 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3105 struct cftype
*cft
, u64 val
)
3107 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3109 if (val
>= (1 << NR_MOVE_TYPE
))
3112 * We check this value several times in both in can_attach() and
3113 * attach(), so we need cgroup lock to prevent this value from being
3117 mem
->move_charge_at_immigrate
= val
;
3123 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3124 struct cftype
*cft
, u64 val
)
3131 /* For read statistics */
3147 struct mcs_total_stat
{
3148 s64 stat
[NR_MCS_STAT
];
3154 } memcg_stat_strings
[NR_MCS_STAT
] = {
3155 {"cache", "total_cache"},
3156 {"rss", "total_rss"},
3157 {"mapped_file", "total_mapped_file"},
3158 {"pgpgin", "total_pgpgin"},
3159 {"pgpgout", "total_pgpgout"},
3160 {"swap", "total_swap"},
3161 {"inactive_anon", "total_inactive_anon"},
3162 {"active_anon", "total_active_anon"},
3163 {"inactive_file", "total_inactive_file"},
3164 {"active_file", "total_active_file"},
3165 {"unevictable", "total_unevictable"}
3169 static int mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, void *data
)
3171 struct mcs_total_stat
*s
= data
;
3175 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3176 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
3177 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
3178 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
3179 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_FILE_MAPPED
);
3180 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
3181 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_PGPGIN_COUNT
);
3182 s
->stat
[MCS_PGPGIN
] += val
;
3183 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_PGPGOUT_COUNT
);
3184 s
->stat
[MCS_PGPGOUT
] += val
;
3185 if (do_swap_account
) {
3186 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
3187 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
3191 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
3192 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
3193 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
3194 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
3195 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
3196 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
3197 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
3198 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
3199 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
3200 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
3205 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
3207 mem_cgroup_walk_tree(mem
, s
, mem_cgroup_get_local_stat
);
3210 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
3211 struct cgroup_map_cb
*cb
)
3213 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
3214 struct mcs_total_stat mystat
;
3217 memset(&mystat
, 0, sizeof(mystat
));
3218 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
3220 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3221 if (i
== MCS_SWAP
&& !do_swap_account
)
3223 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
3226 /* Hierarchical information */
3228 unsigned long long limit
, memsw_limit
;
3229 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
3230 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
3231 if (do_swap_account
)
3232 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
3235 memset(&mystat
, 0, sizeof(mystat
));
3236 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
3237 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3238 if (i
== MCS_SWAP
&& !do_swap_account
)
3240 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
3243 #ifdef CONFIG_DEBUG_VM
3244 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
3248 struct mem_cgroup_per_zone
*mz
;
3249 unsigned long recent_rotated
[2] = {0, 0};
3250 unsigned long recent_scanned
[2] = {0, 0};
3252 for_each_online_node(nid
)
3253 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3254 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
3256 recent_rotated
[0] +=
3257 mz
->reclaim_stat
.recent_rotated
[0];
3258 recent_rotated
[1] +=
3259 mz
->reclaim_stat
.recent_rotated
[1];
3260 recent_scanned
[0] +=
3261 mz
->reclaim_stat
.recent_scanned
[0];
3262 recent_scanned
[1] +=
3263 mz
->reclaim_stat
.recent_scanned
[1];
3265 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
3266 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
3267 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
3268 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
3275 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
3277 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3279 return get_swappiness(memcg
);
3282 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
3285 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3286 struct mem_cgroup
*parent
;
3291 if (cgrp
->parent
== NULL
)
3294 parent
= mem_cgroup_from_cont(cgrp
->parent
);
3298 /* If under hierarchy, only empty-root can set this value */
3299 if ((parent
->use_hierarchy
) ||
3300 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
3305 spin_lock(&memcg
->reclaim_param_lock
);
3306 memcg
->swappiness
= val
;
3307 spin_unlock(&memcg
->reclaim_param_lock
);
3314 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3316 struct mem_cgroup_threshold_ary
*t
;
3322 t
= rcu_dereference(memcg
->thresholds
);
3324 t
= rcu_dereference(memcg
->memsw_thresholds
);
3329 usage
= mem_cgroup_usage(memcg
, swap
);
3332 * current_threshold points to threshold just below usage.
3333 * If it's not true, a threshold was crossed after last
3334 * call of __mem_cgroup_threshold().
3336 i
= atomic_read(&t
->current_threshold
);
3339 * Iterate backward over array of thresholds starting from
3340 * current_threshold and check if a threshold is crossed.
3341 * If none of thresholds below usage is crossed, we read
3342 * only one element of the array here.
3344 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3345 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3347 /* i = current_threshold + 1 */
3351 * Iterate forward over array of thresholds starting from
3352 * current_threshold+1 and check if a threshold is crossed.
3353 * If none of thresholds above usage is crossed, we read
3354 * only one element of the array here.
3356 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3357 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3359 /* Update current_threshold */
3360 atomic_set(&t
->current_threshold
, i
- 1);
3365 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3367 __mem_cgroup_threshold(memcg
, false);
3368 if (do_swap_account
)
3369 __mem_cgroup_threshold(memcg
, true);
3372 static int compare_thresholds(const void *a
, const void *b
)
3374 const struct mem_cgroup_threshold
*_a
= a
;
3375 const struct mem_cgroup_threshold
*_b
= b
;
3377 return _a
->threshold
- _b
->threshold
;
3380 static int mem_cgroup_register_event(struct cgroup
*cgrp
, struct cftype
*cft
,
3381 struct eventfd_ctx
*eventfd
, const char *args
)
3383 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3384 struct mem_cgroup_threshold_ary
*thresholds
, *thresholds_new
;
3385 int type
= MEMFILE_TYPE(cft
->private);
3386 u64 threshold
, usage
;
3390 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
3394 mutex_lock(&memcg
->thresholds_lock
);
3396 thresholds
= memcg
->thresholds
;
3397 else if (type
== _MEMSWAP
)
3398 thresholds
= memcg
->memsw_thresholds
;
3402 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
3404 /* Check if a threshold crossed before adding a new one */
3406 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3409 size
= thresholds
->size
+ 1;
3413 /* Allocate memory for new array of thresholds */
3414 thresholds_new
= kmalloc(sizeof(*thresholds_new
) +
3415 size
* sizeof(struct mem_cgroup_threshold
),
3417 if (!thresholds_new
) {
3421 thresholds_new
->size
= size
;
3423 /* Copy thresholds (if any) to new array */
3425 memcpy(thresholds_new
->entries
, thresholds
->entries
,
3427 sizeof(struct mem_cgroup_threshold
));
3428 /* Add new threshold */
3429 thresholds_new
->entries
[size
- 1].eventfd
= eventfd
;
3430 thresholds_new
->entries
[size
- 1].threshold
= threshold
;
3432 /* Sort thresholds. Registering of new threshold isn't time-critical */
3433 sort(thresholds_new
->entries
, size
,
3434 sizeof(struct mem_cgroup_threshold
),
3435 compare_thresholds
, NULL
);
3437 /* Find current threshold */
3438 atomic_set(&thresholds_new
->current_threshold
, -1);
3439 for (i
= 0; i
< size
; i
++) {
3440 if (thresholds_new
->entries
[i
].threshold
< usage
) {
3442 * thresholds_new->current_threshold will not be used
3443 * until rcu_assign_pointer(), so it's safe to increment
3446 atomic_inc(&thresholds_new
->current_threshold
);
3451 rcu_assign_pointer(memcg
->thresholds
, thresholds_new
);
3453 rcu_assign_pointer(memcg
->memsw_thresholds
, thresholds_new
);
3455 /* To be sure that nobody uses thresholds before freeing it */
3460 mutex_unlock(&memcg
->thresholds_lock
);
3465 static int mem_cgroup_unregister_event(struct cgroup
*cgrp
, struct cftype
*cft
,
3466 struct eventfd_ctx
*eventfd
)
3468 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3469 struct mem_cgroup_threshold_ary
*thresholds
, *thresholds_new
;
3470 int type
= MEMFILE_TYPE(cft
->private);
3475 mutex_lock(&memcg
->thresholds_lock
);
3477 thresholds
= memcg
->thresholds
;
3478 else if (type
== _MEMSWAP
)
3479 thresholds
= memcg
->memsw_thresholds
;
3484 * Something went wrong if we trying to unregister a threshold
3485 * if we don't have thresholds
3487 BUG_ON(!thresholds
);
3489 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
3491 /* Check if a threshold crossed before removing */
3492 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3494 /* Calculate new number of threshold */
3495 for (i
= 0; i
< thresholds
->size
; i
++) {
3496 if (thresholds
->entries
[i
].eventfd
!= eventfd
)
3500 /* Set thresholds array to NULL if we don't have thresholds */
3502 thresholds_new
= NULL
;
3506 /* Allocate memory for new array of thresholds */
3507 thresholds_new
= kmalloc(sizeof(*thresholds_new
) +
3508 size
* sizeof(struct mem_cgroup_threshold
),
3510 if (!thresholds_new
) {
3514 thresholds_new
->size
= size
;
3516 /* Copy thresholds and find current threshold */
3517 atomic_set(&thresholds_new
->current_threshold
, -1);
3518 for (i
= 0, j
= 0; i
< thresholds
->size
; i
++) {
3519 if (thresholds
->entries
[i
].eventfd
== eventfd
)
3522 thresholds_new
->entries
[j
] = thresholds
->entries
[i
];
3523 if (thresholds_new
->entries
[j
].threshold
< usage
) {
3525 * thresholds_new->current_threshold will not be used
3526 * until rcu_assign_pointer(), so it's safe to increment
3529 atomic_inc(&thresholds_new
->current_threshold
);
3536 rcu_assign_pointer(memcg
->thresholds
, thresholds_new
);
3538 rcu_assign_pointer(memcg
->memsw_thresholds
, thresholds_new
);
3540 /* To be sure that nobody uses thresholds before freeing it */
3545 mutex_unlock(&memcg
->thresholds_lock
);
3550 static struct cftype mem_cgroup_files
[] = {
3552 .name
= "usage_in_bytes",
3553 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3554 .read_u64
= mem_cgroup_read
,
3555 .register_event
= mem_cgroup_register_event
,
3556 .unregister_event
= mem_cgroup_unregister_event
,
3559 .name
= "max_usage_in_bytes",
3560 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3561 .trigger
= mem_cgroup_reset
,
3562 .read_u64
= mem_cgroup_read
,
3565 .name
= "limit_in_bytes",
3566 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3567 .write_string
= mem_cgroup_write
,
3568 .read_u64
= mem_cgroup_read
,
3571 .name
= "soft_limit_in_bytes",
3572 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3573 .write_string
= mem_cgroup_write
,
3574 .read_u64
= mem_cgroup_read
,
3578 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3579 .trigger
= mem_cgroup_reset
,
3580 .read_u64
= mem_cgroup_read
,
3584 .read_map
= mem_control_stat_show
,
3587 .name
= "force_empty",
3588 .trigger
= mem_cgroup_force_empty_write
,
3591 .name
= "use_hierarchy",
3592 .write_u64
= mem_cgroup_hierarchy_write
,
3593 .read_u64
= mem_cgroup_hierarchy_read
,
3596 .name
= "swappiness",
3597 .read_u64
= mem_cgroup_swappiness_read
,
3598 .write_u64
= mem_cgroup_swappiness_write
,
3601 .name
= "move_charge_at_immigrate",
3602 .read_u64
= mem_cgroup_move_charge_read
,
3603 .write_u64
= mem_cgroup_move_charge_write
,
3607 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3608 static struct cftype memsw_cgroup_files
[] = {
3610 .name
= "memsw.usage_in_bytes",
3611 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
3612 .read_u64
= mem_cgroup_read
,
3613 .register_event
= mem_cgroup_register_event
,
3614 .unregister_event
= mem_cgroup_unregister_event
,
3617 .name
= "memsw.max_usage_in_bytes",
3618 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
3619 .trigger
= mem_cgroup_reset
,
3620 .read_u64
= mem_cgroup_read
,
3623 .name
= "memsw.limit_in_bytes",
3624 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
3625 .write_string
= mem_cgroup_write
,
3626 .read_u64
= mem_cgroup_read
,
3629 .name
= "memsw.failcnt",
3630 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
3631 .trigger
= mem_cgroup_reset
,
3632 .read_u64
= mem_cgroup_read
,
3636 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
3638 if (!do_swap_account
)
3640 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
3641 ARRAY_SIZE(memsw_cgroup_files
));
3644 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
3650 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
3652 struct mem_cgroup_per_node
*pn
;
3653 struct mem_cgroup_per_zone
*mz
;
3655 int zone
, tmp
= node
;
3657 * This routine is called against possible nodes.
3658 * But it's BUG to call kmalloc() against offline node.
3660 * TODO: this routine can waste much memory for nodes which will
3661 * never be onlined. It's better to use memory hotplug callback
3664 if (!node_state(node
, N_NORMAL_MEMORY
))
3666 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
3670 mem
->info
.nodeinfo
[node
] = pn
;
3671 memset(pn
, 0, sizeof(*pn
));
3673 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
3674 mz
= &pn
->zoneinfo
[zone
];
3676 INIT_LIST_HEAD(&mz
->lists
[l
]);
3677 mz
->usage_in_excess
= 0;
3678 mz
->on_tree
= false;
3684 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
3686 kfree(mem
->info
.nodeinfo
[node
]);
3689 static struct mem_cgroup
*mem_cgroup_alloc(void)
3691 struct mem_cgroup
*mem
;
3692 int size
= sizeof(struct mem_cgroup
);
3694 /* Can be very big if MAX_NUMNODES is very big */
3695 if (size
< PAGE_SIZE
)
3696 mem
= kmalloc(size
, GFP_KERNEL
);
3698 mem
= vmalloc(size
);
3703 memset(mem
, 0, size
);
3704 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
3706 if (size
< PAGE_SIZE
)
3716 * At destroying mem_cgroup, references from swap_cgroup can remain.
3717 * (scanning all at force_empty is too costly...)
3719 * Instead of clearing all references at force_empty, we remember
3720 * the number of reference from swap_cgroup and free mem_cgroup when
3721 * it goes down to 0.
3723 * Removal of cgroup itself succeeds regardless of refs from swap.
3726 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
3730 mem_cgroup_remove_from_trees(mem
);
3731 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
3733 for_each_node_state(node
, N_POSSIBLE
)
3734 free_mem_cgroup_per_zone_info(mem
, node
);
3736 free_percpu(mem
->stat
);
3737 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
3743 static void mem_cgroup_get(struct mem_cgroup
*mem
)
3745 atomic_inc(&mem
->refcnt
);
3748 static void __mem_cgroup_put(struct mem_cgroup
*mem
, int count
)
3750 if (atomic_sub_and_test(count
, &mem
->refcnt
)) {
3751 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
3752 __mem_cgroup_free(mem
);
3754 mem_cgroup_put(parent
);
3758 static void mem_cgroup_put(struct mem_cgroup
*mem
)
3760 __mem_cgroup_put(mem
, 1);
3764 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3766 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
3768 if (!mem
->res
.parent
)
3770 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
3773 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3774 static void __init
enable_swap_cgroup(void)
3776 if (!mem_cgroup_disabled() && really_do_swap_account
)
3777 do_swap_account
= 1;
3780 static void __init
enable_swap_cgroup(void)
3785 static int mem_cgroup_soft_limit_tree_init(void)
3787 struct mem_cgroup_tree_per_node
*rtpn
;
3788 struct mem_cgroup_tree_per_zone
*rtpz
;
3789 int tmp
, node
, zone
;
3791 for_each_node_state(node
, N_POSSIBLE
) {
3793 if (!node_state(node
, N_NORMAL_MEMORY
))
3795 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
3799 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
3801 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
3802 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
3803 rtpz
->rb_root
= RB_ROOT
;
3804 spin_lock_init(&rtpz
->lock
);
3810 static struct cgroup_subsys_state
* __ref
3811 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
3813 struct mem_cgroup
*mem
, *parent
;
3814 long error
= -ENOMEM
;
3817 mem
= mem_cgroup_alloc();
3819 return ERR_PTR(error
);
3821 for_each_node_state(node
, N_POSSIBLE
)
3822 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
3826 if (cont
->parent
== NULL
) {
3828 enable_swap_cgroup();
3830 root_mem_cgroup
= mem
;
3831 if (mem_cgroup_soft_limit_tree_init())
3833 for_each_possible_cpu(cpu
) {
3834 struct memcg_stock_pcp
*stock
=
3835 &per_cpu(memcg_stock
, cpu
);
3836 INIT_WORK(&stock
->work
, drain_local_stock
);
3838 hotcpu_notifier(memcg_stock_cpu_callback
, 0);
3840 parent
= mem_cgroup_from_cont(cont
->parent
);
3841 mem
->use_hierarchy
= parent
->use_hierarchy
;
3844 if (parent
&& parent
->use_hierarchy
) {
3845 res_counter_init(&mem
->res
, &parent
->res
);
3846 res_counter_init(&mem
->memsw
, &parent
->memsw
);
3848 * We increment refcnt of the parent to ensure that we can
3849 * safely access it on res_counter_charge/uncharge.
3850 * This refcnt will be decremented when freeing this
3851 * mem_cgroup(see mem_cgroup_put).
3853 mem_cgroup_get(parent
);
3855 res_counter_init(&mem
->res
, NULL
);
3856 res_counter_init(&mem
->memsw
, NULL
);
3858 mem
->last_scanned_child
= 0;
3859 spin_lock_init(&mem
->reclaim_param_lock
);
3862 mem
->swappiness
= get_swappiness(parent
);
3863 atomic_set(&mem
->refcnt
, 1);
3864 mem
->move_charge_at_immigrate
= 0;
3865 mutex_init(&mem
->thresholds_lock
);
3868 __mem_cgroup_free(mem
);
3869 root_mem_cgroup
= NULL
;
3870 return ERR_PTR(error
);
3873 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
3874 struct cgroup
*cont
)
3876 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3878 return mem_cgroup_force_empty(mem
, false);
3881 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
3882 struct cgroup
*cont
)
3884 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3886 mem_cgroup_put(mem
);
3889 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
3890 struct cgroup
*cont
)
3894 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
3895 ARRAY_SIZE(mem_cgroup_files
));
3898 ret
= register_memsw_files(cont
, ss
);
3903 /* Handlers for move charge at task migration. */
3904 #define PRECHARGE_COUNT_AT_ONCE 256
3905 static int mem_cgroup_do_precharge(unsigned long count
)
3908 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
3909 struct mem_cgroup
*mem
= mc
.to
;
3911 if (mem_cgroup_is_root(mem
)) {
3912 mc
.precharge
+= count
;
3913 /* we don't need css_get for root */
3916 /* try to charge at once */
3918 struct res_counter
*dummy
;
3920 * "mem" cannot be under rmdir() because we've already checked
3921 * by cgroup_lock_live_cgroup() that it is not removed and we
3922 * are still under the same cgroup_mutex. So we can postpone
3925 if (res_counter_charge(&mem
->res
, PAGE_SIZE
* count
, &dummy
))
3927 if (do_swap_account
&& res_counter_charge(&mem
->memsw
,
3928 PAGE_SIZE
* count
, &dummy
)) {
3929 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
3932 mc
.precharge
+= count
;
3933 VM_BUG_ON(test_bit(CSS_ROOT
, &mem
->css
.flags
));
3934 WARN_ON_ONCE(count
> INT_MAX
);
3935 __css_get(&mem
->css
, (int)count
);
3939 /* fall back to one by one charge */
3941 if (signal_pending(current
)) {
3945 if (!batch_count
--) {
3946 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
3949 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false);
3951 /* mem_cgroup_clear_mc() will do uncharge later */
3959 * is_target_pte_for_mc - check a pte whether it is valid for move charge
3960 * @vma: the vma the pte to be checked belongs
3961 * @addr: the address corresponding to the pte to be checked
3962 * @ptent: the pte to be checked
3963 * @target: the pointer the target page or swap ent will be stored(can be NULL)
3966 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
3967 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
3968 * move charge. if @target is not NULL, the page is stored in target->page
3969 * with extra refcnt got(Callers should handle it).
3970 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
3971 * target for charge migration. if @target is not NULL, the entry is stored
3974 * Called with pte lock held.
3981 enum mc_target_type
{
3982 MC_TARGET_NONE
, /* not used */
3987 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
3988 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
3990 struct page
*page
= NULL
;
3991 struct page_cgroup
*pc
;
3993 swp_entry_t ent
= { .val
= 0 };
3994 int usage_count
= 0;
3995 bool move_anon
= test_bit(MOVE_CHARGE_TYPE_ANON
,
3996 &mc
.to
->move_charge_at_immigrate
);
3998 if (!pte_present(ptent
)) {
3999 /* TODO: handle swap of shmes/tmpfs */
4000 if (pte_none(ptent
) || pte_file(ptent
))
4002 else if (is_swap_pte(ptent
)) {
4003 ent
= pte_to_swp_entry(ptent
);
4004 if (!move_anon
|| non_swap_entry(ent
))
4006 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
4009 page
= vm_normal_page(vma
, addr
, ptent
);
4010 if (!page
|| !page_mapped(page
))
4013 * TODO: We don't move charges of file(including shmem/tmpfs)
4016 if (!move_anon
|| !PageAnon(page
))
4018 if (!get_page_unless_zero(page
))
4020 usage_count
= page_mapcount(page
);
4022 if (usage_count
> 1) {
4024 * TODO: We don't move charges of shared(used by multiple
4025 * processes) pages for now.
4032 pc
= lookup_page_cgroup(page
);
4034 * Do only loose check w/o page_cgroup lock.
4035 * mem_cgroup_move_account() checks the pc is valid or not under
4038 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
4039 ret
= MC_TARGET_PAGE
;
4041 target
->page
= page
;
4043 if (!ret
|| !target
)
4047 if (ent
.val
&& do_swap_account
&& !ret
) {
4050 id
= css_id(&mc
.from
->css
);
4052 if (id
== lookup_swap_cgroup(ent
)) {
4053 ret
= MC_TARGET_SWAP
;
4061 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4062 unsigned long addr
, unsigned long end
,
4063 struct mm_walk
*walk
)
4065 struct vm_area_struct
*vma
= walk
->private;
4069 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4070 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4071 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
4072 mc
.precharge
++; /* increment precharge temporarily */
4073 pte_unmap_unlock(pte
- 1, ptl
);
4079 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4081 unsigned long precharge
;
4082 struct vm_area_struct
*vma
;
4084 down_read(&mm
->mmap_sem
);
4085 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
4086 struct mm_walk mem_cgroup_count_precharge_walk
= {
4087 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4091 if (is_vm_hugetlb_page(vma
))
4093 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
4094 if (vma
->vm_flags
& VM_SHARED
)
4096 walk_page_range(vma
->vm_start
, vma
->vm_end
,
4097 &mem_cgroup_count_precharge_walk
);
4099 up_read(&mm
->mmap_sem
);
4101 precharge
= mc
.precharge
;
4107 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4109 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm
));
4112 static void mem_cgroup_clear_mc(void)
4114 /* we must uncharge all the leftover precharges from mc.to */
4116 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
4120 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4121 * we must uncharge here.
4123 if (mc
.moved_charge
) {
4124 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
4125 mc
.moved_charge
= 0;
4127 /* we must fixup refcnts and charges */
4128 if (mc
.moved_swap
) {
4129 WARN_ON_ONCE(mc
.moved_swap
> INT_MAX
);
4130 /* uncharge swap account from the old cgroup */
4131 if (!mem_cgroup_is_root(mc
.from
))
4132 res_counter_uncharge(&mc
.from
->memsw
,
4133 PAGE_SIZE
* mc
.moved_swap
);
4134 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
4136 if (!mem_cgroup_is_root(mc
.to
)) {
4138 * we charged both to->res and to->memsw, so we should
4141 res_counter_uncharge(&mc
.to
->res
,
4142 PAGE_SIZE
* mc
.moved_swap
);
4143 VM_BUG_ON(test_bit(CSS_ROOT
, &mc
.to
->css
.flags
));
4144 __css_put(&mc
.to
->css
, mc
.moved_swap
);
4146 /* we've already done mem_cgroup_get(mc.to) */
4152 mc
.moving_task
= NULL
;
4153 wake_up_all(&mc
.waitq
);
4156 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
4157 struct cgroup
*cgroup
,
4158 struct task_struct
*p
,
4162 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgroup
);
4164 if (mem
->move_charge_at_immigrate
) {
4165 struct mm_struct
*mm
;
4166 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
4168 VM_BUG_ON(from
== mem
);
4170 mm
= get_task_mm(p
);
4173 /* We move charges only when we move a owner of the mm */
4174 if (mm
->owner
== p
) {
4177 VM_BUG_ON(mc
.precharge
);
4178 VM_BUG_ON(mc
.moved_charge
);
4179 VM_BUG_ON(mc
.moved_swap
);
4180 VM_BUG_ON(mc
.moving_task
);
4184 mc
.moved_charge
= 0;
4186 mc
.moving_task
= current
;
4188 ret
= mem_cgroup_precharge_mc(mm
);
4190 mem_cgroup_clear_mc();
4197 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
4198 struct cgroup
*cgroup
,
4199 struct task_struct
*p
,
4202 mem_cgroup_clear_mc();
4205 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4206 unsigned long addr
, unsigned long end
,
4207 struct mm_walk
*walk
)
4210 struct vm_area_struct
*vma
= walk
->private;
4215 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4216 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4217 pte_t ptent
= *(pte
++);
4218 union mc_target target
;
4221 struct page_cgroup
*pc
;
4227 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
4229 case MC_TARGET_PAGE
:
4231 if (isolate_lru_page(page
))
4233 pc
= lookup_page_cgroup(page
);
4234 if (!mem_cgroup_move_account(pc
,
4235 mc
.from
, mc
.to
, false)) {
4237 /* we uncharge from mc.from later. */
4240 putback_lru_page(page
);
4241 put
: /* is_target_pte_for_mc() gets the page */
4244 case MC_TARGET_SWAP
:
4246 if (!mem_cgroup_move_swap_account(ent
,
4247 mc
.from
, mc
.to
, false)) {
4249 /* we fixup refcnts and charges later. */
4257 pte_unmap_unlock(pte
- 1, ptl
);
4262 * We have consumed all precharges we got in can_attach().
4263 * We try charge one by one, but don't do any additional
4264 * charges to mc.to if we have failed in charge once in attach()
4267 ret
= mem_cgroup_do_precharge(1);
4275 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
4277 struct vm_area_struct
*vma
;
4279 lru_add_drain_all();
4280 down_read(&mm
->mmap_sem
);
4281 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
4283 struct mm_walk mem_cgroup_move_charge_walk
= {
4284 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
4288 if (is_vm_hugetlb_page(vma
))
4290 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
4291 if (vma
->vm_flags
& VM_SHARED
)
4293 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
4294 &mem_cgroup_move_charge_walk
);
4297 * means we have consumed all precharges and failed in
4298 * doing additional charge. Just abandon here.
4302 up_read(&mm
->mmap_sem
);
4305 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
4306 struct cgroup
*cont
,
4307 struct cgroup
*old_cont
,
4308 struct task_struct
*p
,
4311 struct mm_struct
*mm
;
4314 /* no need to move charge */
4317 mm
= get_task_mm(p
);
4319 mem_cgroup_move_charge(mm
);
4322 mem_cgroup_clear_mc();
4324 #else /* !CONFIG_MMU */
4325 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
4326 struct cgroup
*cgroup
,
4327 struct task_struct
*p
,
4332 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
4333 struct cgroup
*cgroup
,
4334 struct task_struct
*p
,
4338 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
4339 struct cgroup
*cont
,
4340 struct cgroup
*old_cont
,
4341 struct task_struct
*p
,
4347 struct cgroup_subsys mem_cgroup_subsys
= {
4349 .subsys_id
= mem_cgroup_subsys_id
,
4350 .create
= mem_cgroup_create
,
4351 .pre_destroy
= mem_cgroup_pre_destroy
,
4352 .destroy
= mem_cgroup_destroy
,
4353 .populate
= mem_cgroup_populate
,
4354 .can_attach
= mem_cgroup_can_attach
,
4355 .cancel_attach
= mem_cgroup_cancel_attach
,
4356 .attach
= mem_cgroup_move_task
,
4361 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4363 static int __init
disable_swap_account(char *s
)
4365 really_do_swap_account
= 0;
4368 __setup("noswapaccount", disable_swap_account
);