V4L/DVB: Complete rewrite of the DiB3000mc-driver
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / buffer.c
blob71649ef9b6586696c695e2d80c000ceedaa51282
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 bh->b_end_io = handler;
54 bh->b_private = private;
57 static int sync_buffer(void *word)
59 struct block_device *bd;
60 struct buffer_head *bh
61 = container_of(word, struct buffer_head, b_state);
63 smp_mb();
64 bd = bh->b_bdev;
65 if (bd)
66 blk_run_address_space(bd->bd_inode->i_mapping);
67 io_schedule();
68 return 0;
71 void fastcall __lock_buffer(struct buffer_head *bh)
73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 TASK_UNINTERRUPTIBLE);
76 EXPORT_SYMBOL(__lock_buffer);
78 void fastcall unlock_buffer(struct buffer_head *bh)
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
90 void __wait_on_buffer(struct buffer_head * bh)
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
95 static void
96 __clear_page_buffers(struct page *page)
98 ClearPagePrivate(page);
99 set_page_private(page, 0);
100 page_cache_release(page);
103 static void buffer_io_error(struct buffer_head *bh)
105 char b[BDEVNAME_SIZE];
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
114 * unlock the buffer. This is what ll_rw_block uses too.
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
118 if (uptodate) {
119 set_buffer_uptodate(bh);
120 } else {
121 /* This happens, due to failed READA attempts. */
122 clear_buffer_uptodate(bh);
124 unlock_buffer(bh);
125 put_bh(bh);
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130 char b[BDEVNAME_SIZE];
132 if (uptodate) {
133 set_buffer_uptodate(bh);
134 } else {
135 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136 buffer_io_error(bh);
137 printk(KERN_WARNING "lost page write due to "
138 "I/O error on %s\n",
139 bdevname(bh->b_bdev, b));
141 set_buffer_write_io_error(bh);
142 clear_buffer_uptodate(bh);
144 unlock_buffer(bh);
145 put_bh(bh);
149 * Write out and wait upon all the dirty data associated with a block
150 * device via its mapping. Does not take the superblock lock.
152 int sync_blockdev(struct block_device *bdev)
154 int ret = 0;
156 if (bdev)
157 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
158 return ret;
160 EXPORT_SYMBOL(sync_blockdev);
162 static void __fsync_super(struct super_block *sb)
164 sync_inodes_sb(sb, 0);
165 DQUOT_SYNC(sb);
166 lock_super(sb);
167 if (sb->s_dirt && sb->s_op->write_super)
168 sb->s_op->write_super(sb);
169 unlock_super(sb);
170 if (sb->s_op->sync_fs)
171 sb->s_op->sync_fs(sb, 1);
172 sync_blockdev(sb->s_bdev);
173 sync_inodes_sb(sb, 1);
177 * Write out and wait upon all dirty data associated with this
178 * superblock. Filesystem data as well as the underlying block
179 * device. Takes the superblock lock.
181 int fsync_super(struct super_block *sb)
183 __fsync_super(sb);
184 return sync_blockdev(sb->s_bdev);
188 * Write out and wait upon all dirty data associated with this
189 * device. Filesystem data as well as the underlying block
190 * device. Takes the superblock lock.
192 int fsync_bdev(struct block_device *bdev)
194 struct super_block *sb = get_super(bdev);
195 if (sb) {
196 int res = fsync_super(sb);
197 drop_super(sb);
198 return res;
200 return sync_blockdev(bdev);
204 * freeze_bdev -- lock a filesystem and force it into a consistent state
205 * @bdev: blockdevice to lock
207 * This takes the block device bd_mount_mutex to make sure no new mounts
208 * happen on bdev until thaw_bdev() is called.
209 * If a superblock is found on this device, we take the s_umount semaphore
210 * on it to make sure nobody unmounts until the snapshot creation is done.
212 struct super_block *freeze_bdev(struct block_device *bdev)
214 struct super_block *sb;
216 mutex_lock(&bdev->bd_mount_mutex);
217 sb = get_super(bdev);
218 if (sb && !(sb->s_flags & MS_RDONLY)) {
219 sb->s_frozen = SB_FREEZE_WRITE;
220 smp_wmb();
222 __fsync_super(sb);
224 sb->s_frozen = SB_FREEZE_TRANS;
225 smp_wmb();
227 sync_blockdev(sb->s_bdev);
229 if (sb->s_op->write_super_lockfs)
230 sb->s_op->write_super_lockfs(sb);
233 sync_blockdev(bdev);
234 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
236 EXPORT_SYMBOL(freeze_bdev);
239 * thaw_bdev -- unlock filesystem
240 * @bdev: blockdevice to unlock
241 * @sb: associated superblock
243 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
245 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
247 if (sb) {
248 BUG_ON(sb->s_bdev != bdev);
250 if (sb->s_op->unlockfs)
251 sb->s_op->unlockfs(sb);
252 sb->s_frozen = SB_UNFROZEN;
253 smp_wmb();
254 wake_up(&sb->s_wait_unfrozen);
255 drop_super(sb);
258 mutex_unlock(&bdev->bd_mount_mutex);
260 EXPORT_SYMBOL(thaw_bdev);
263 * sync everything. Start out by waking pdflush, because that writes back
264 * all queues in parallel.
266 static void do_sync(unsigned long wait)
268 wakeup_pdflush(0);
269 sync_inodes(0); /* All mappings, inodes and their blockdevs */
270 DQUOT_SYNC(NULL);
271 sync_supers(); /* Write the superblocks */
272 sync_filesystems(0); /* Start syncing the filesystems */
273 sync_filesystems(wait); /* Waitingly sync the filesystems */
274 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */
275 if (!wait)
276 printk("Emergency Sync complete\n");
277 if (unlikely(laptop_mode))
278 laptop_sync_completion();
281 asmlinkage long sys_sync(void)
283 do_sync(1);
284 return 0;
287 void emergency_sync(void)
289 pdflush_operation(do_sync, 0);
293 * Generic function to fsync a file.
295 * filp may be NULL if called via the msync of a vma.
298 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
300 struct inode * inode = dentry->d_inode;
301 struct super_block * sb;
302 int ret, err;
304 /* sync the inode to buffers */
305 ret = write_inode_now(inode, 0);
307 /* sync the superblock to buffers */
308 sb = inode->i_sb;
309 lock_super(sb);
310 if (sb->s_op->write_super)
311 sb->s_op->write_super(sb);
312 unlock_super(sb);
314 /* .. finally sync the buffers to disk */
315 err = sync_blockdev(sb->s_bdev);
316 if (!ret)
317 ret = err;
318 return ret;
321 long do_fsync(struct file *file, int datasync)
323 int ret;
324 int err;
325 struct address_space *mapping = file->f_mapping;
327 if (!file->f_op || !file->f_op->fsync) {
328 /* Why? We can still call filemap_fdatawrite */
329 ret = -EINVAL;
330 goto out;
333 ret = filemap_fdatawrite(mapping);
336 * We need to protect against concurrent writers, which could cause
337 * livelocks in fsync_buffers_list().
339 mutex_lock(&mapping->host->i_mutex);
340 err = file->f_op->fsync(file, file->f_dentry, datasync);
341 if (!ret)
342 ret = err;
343 mutex_unlock(&mapping->host->i_mutex);
344 err = filemap_fdatawait(mapping);
345 if (!ret)
346 ret = err;
347 out:
348 return ret;
351 static long __do_fsync(unsigned int fd, int datasync)
353 struct file *file;
354 int ret = -EBADF;
356 file = fget(fd);
357 if (file) {
358 ret = do_fsync(file, datasync);
359 fput(file);
361 return ret;
364 asmlinkage long sys_fsync(unsigned int fd)
366 return __do_fsync(fd, 0);
369 asmlinkage long sys_fdatasync(unsigned int fd)
371 return __do_fsync(fd, 1);
375 * Various filesystems appear to want __find_get_block to be non-blocking.
376 * But it's the page lock which protects the buffers. To get around this,
377 * we get exclusion from try_to_free_buffers with the blockdev mapping's
378 * private_lock.
380 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
381 * may be quite high. This code could TryLock the page, and if that
382 * succeeds, there is no need to take private_lock. (But if
383 * private_lock is contended then so is mapping->tree_lock).
385 static struct buffer_head *
386 __find_get_block_slow(struct block_device *bdev, sector_t block)
388 struct inode *bd_inode = bdev->bd_inode;
389 struct address_space *bd_mapping = bd_inode->i_mapping;
390 struct buffer_head *ret = NULL;
391 pgoff_t index;
392 struct buffer_head *bh;
393 struct buffer_head *head;
394 struct page *page;
395 int all_mapped = 1;
397 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
398 page = find_get_page(bd_mapping, index);
399 if (!page)
400 goto out;
402 spin_lock(&bd_mapping->private_lock);
403 if (!page_has_buffers(page))
404 goto out_unlock;
405 head = page_buffers(page);
406 bh = head;
407 do {
408 if (bh->b_blocknr == block) {
409 ret = bh;
410 get_bh(bh);
411 goto out_unlock;
413 if (!buffer_mapped(bh))
414 all_mapped = 0;
415 bh = bh->b_this_page;
416 } while (bh != head);
418 /* we might be here because some of the buffers on this page are
419 * not mapped. This is due to various races between
420 * file io on the block device and getblk. It gets dealt with
421 * elsewhere, don't buffer_error if we had some unmapped buffers
423 if (all_mapped) {
424 printk("__find_get_block_slow() failed. "
425 "block=%llu, b_blocknr=%llu\n",
426 (unsigned long long)block,
427 (unsigned long long)bh->b_blocknr);
428 printk("b_state=0x%08lx, b_size=%zu\n",
429 bh->b_state, bh->b_size);
430 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
432 out_unlock:
433 spin_unlock(&bd_mapping->private_lock);
434 page_cache_release(page);
435 out:
436 return ret;
439 /* If invalidate_buffers() will trash dirty buffers, it means some kind
440 of fs corruption is going on. Trashing dirty data always imply losing
441 information that was supposed to be just stored on the physical layer
442 by the user.
444 Thus invalidate_buffers in general usage is not allwowed to trash
445 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
446 be preserved. These buffers are simply skipped.
448 We also skip buffers which are still in use. For example this can
449 happen if a userspace program is reading the block device.
451 NOTE: In the case where the user removed a removable-media-disk even if
452 there's still dirty data not synced on disk (due a bug in the device driver
453 or due an error of the user), by not destroying the dirty buffers we could
454 generate corruption also on the next media inserted, thus a parameter is
455 necessary to handle this case in the most safe way possible (trying
456 to not corrupt also the new disk inserted with the data belonging to
457 the old now corrupted disk). Also for the ramdisk the natural thing
458 to do in order to release the ramdisk memory is to destroy dirty buffers.
460 These are two special cases. Normal usage imply the device driver
461 to issue a sync on the device (without waiting I/O completion) and
462 then an invalidate_buffers call that doesn't trash dirty buffers.
464 For handling cache coherency with the blkdev pagecache the 'update' case
465 is been introduced. It is needed to re-read from disk any pinned
466 buffer. NOTE: re-reading from disk is destructive so we can do it only
467 when we assume nobody is changing the buffercache under our I/O and when
468 we think the disk contains more recent information than the buffercache.
469 The update == 1 pass marks the buffers we need to update, the update == 2
470 pass does the actual I/O. */
471 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
473 struct address_space *mapping = bdev->bd_inode->i_mapping;
475 if (mapping->nrpages == 0)
476 return;
478 invalidate_bh_lrus();
480 * FIXME: what about destroy_dirty_buffers?
481 * We really want to use invalidate_inode_pages2() for
482 * that, but not until that's cleaned up.
484 invalidate_inode_pages(mapping);
488 * Kick pdflush then try to free up some ZONE_NORMAL memory.
490 static void free_more_memory(void)
492 struct zone **zones;
493 pg_data_t *pgdat;
495 wakeup_pdflush(1024);
496 yield();
498 for_each_online_pgdat(pgdat) {
499 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
500 if (*zones)
501 try_to_free_pages(zones, GFP_NOFS);
506 * I/O completion handler for block_read_full_page() - pages
507 * which come unlocked at the end of I/O.
509 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
511 unsigned long flags;
512 struct buffer_head *first;
513 struct buffer_head *tmp;
514 struct page *page;
515 int page_uptodate = 1;
517 BUG_ON(!buffer_async_read(bh));
519 page = bh->b_page;
520 if (uptodate) {
521 set_buffer_uptodate(bh);
522 } else {
523 clear_buffer_uptodate(bh);
524 if (printk_ratelimit())
525 buffer_io_error(bh);
526 SetPageError(page);
530 * Be _very_ careful from here on. Bad things can happen if
531 * two buffer heads end IO at almost the same time and both
532 * decide that the page is now completely done.
534 first = page_buffers(page);
535 local_irq_save(flags);
536 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
537 clear_buffer_async_read(bh);
538 unlock_buffer(bh);
539 tmp = bh;
540 do {
541 if (!buffer_uptodate(tmp))
542 page_uptodate = 0;
543 if (buffer_async_read(tmp)) {
544 BUG_ON(!buffer_locked(tmp));
545 goto still_busy;
547 tmp = tmp->b_this_page;
548 } while (tmp != bh);
549 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
550 local_irq_restore(flags);
553 * If none of the buffers had errors and they are all
554 * uptodate then we can set the page uptodate.
556 if (page_uptodate && !PageError(page))
557 SetPageUptodate(page);
558 unlock_page(page);
559 return;
561 still_busy:
562 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
563 local_irq_restore(flags);
564 return;
568 * Completion handler for block_write_full_page() - pages which are unlocked
569 * during I/O, and which have PageWriteback cleared upon I/O completion.
571 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
573 char b[BDEVNAME_SIZE];
574 unsigned long flags;
575 struct buffer_head *first;
576 struct buffer_head *tmp;
577 struct page *page;
579 BUG_ON(!buffer_async_write(bh));
581 page = bh->b_page;
582 if (uptodate) {
583 set_buffer_uptodate(bh);
584 } else {
585 if (printk_ratelimit()) {
586 buffer_io_error(bh);
587 printk(KERN_WARNING "lost page write due to "
588 "I/O error on %s\n",
589 bdevname(bh->b_bdev, b));
591 set_bit(AS_EIO, &page->mapping->flags);
592 clear_buffer_uptodate(bh);
593 SetPageError(page);
596 first = page_buffers(page);
597 local_irq_save(flags);
598 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
600 clear_buffer_async_write(bh);
601 unlock_buffer(bh);
602 tmp = bh->b_this_page;
603 while (tmp != bh) {
604 if (buffer_async_write(tmp)) {
605 BUG_ON(!buffer_locked(tmp));
606 goto still_busy;
608 tmp = tmp->b_this_page;
610 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
611 local_irq_restore(flags);
612 end_page_writeback(page);
613 return;
615 still_busy:
616 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
617 local_irq_restore(flags);
618 return;
622 * If a page's buffers are under async readin (end_buffer_async_read
623 * completion) then there is a possibility that another thread of
624 * control could lock one of the buffers after it has completed
625 * but while some of the other buffers have not completed. This
626 * locked buffer would confuse end_buffer_async_read() into not unlocking
627 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
628 * that this buffer is not under async I/O.
630 * The page comes unlocked when it has no locked buffer_async buffers
631 * left.
633 * PageLocked prevents anyone starting new async I/O reads any of
634 * the buffers.
636 * PageWriteback is used to prevent simultaneous writeout of the same
637 * page.
639 * PageLocked prevents anyone from starting writeback of a page which is
640 * under read I/O (PageWriteback is only ever set against a locked page).
642 static void mark_buffer_async_read(struct buffer_head *bh)
644 bh->b_end_io = end_buffer_async_read;
645 set_buffer_async_read(bh);
648 void mark_buffer_async_write(struct buffer_head *bh)
650 bh->b_end_io = end_buffer_async_write;
651 set_buffer_async_write(bh);
653 EXPORT_SYMBOL(mark_buffer_async_write);
657 * fs/buffer.c contains helper functions for buffer-backed address space's
658 * fsync functions. A common requirement for buffer-based filesystems is
659 * that certain data from the backing blockdev needs to be written out for
660 * a successful fsync(). For example, ext2 indirect blocks need to be
661 * written back and waited upon before fsync() returns.
663 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
664 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
665 * management of a list of dependent buffers at ->i_mapping->private_list.
667 * Locking is a little subtle: try_to_free_buffers() will remove buffers
668 * from their controlling inode's queue when they are being freed. But
669 * try_to_free_buffers() will be operating against the *blockdev* mapping
670 * at the time, not against the S_ISREG file which depends on those buffers.
671 * So the locking for private_list is via the private_lock in the address_space
672 * which backs the buffers. Which is different from the address_space
673 * against which the buffers are listed. So for a particular address_space,
674 * mapping->private_lock does *not* protect mapping->private_list! In fact,
675 * mapping->private_list will always be protected by the backing blockdev's
676 * ->private_lock.
678 * Which introduces a requirement: all buffers on an address_space's
679 * ->private_list must be from the same address_space: the blockdev's.
681 * address_spaces which do not place buffers at ->private_list via these
682 * utility functions are free to use private_lock and private_list for
683 * whatever they want. The only requirement is that list_empty(private_list)
684 * be true at clear_inode() time.
686 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
687 * filesystems should do that. invalidate_inode_buffers() should just go
688 * BUG_ON(!list_empty).
690 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
691 * take an address_space, not an inode. And it should be called
692 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
693 * queued up.
695 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
696 * list if it is already on a list. Because if the buffer is on a list,
697 * it *must* already be on the right one. If not, the filesystem is being
698 * silly. This will save a ton of locking. But first we have to ensure
699 * that buffers are taken *off* the old inode's list when they are freed
700 * (presumably in truncate). That requires careful auditing of all
701 * filesystems (do it inside bforget()). It could also be done by bringing
702 * b_inode back.
706 * The buffer's backing address_space's private_lock must be held
708 static inline void __remove_assoc_queue(struct buffer_head *bh)
710 list_del_init(&bh->b_assoc_buffers);
713 int inode_has_buffers(struct inode *inode)
715 return !list_empty(&inode->i_data.private_list);
719 * osync is designed to support O_SYNC io. It waits synchronously for
720 * all already-submitted IO to complete, but does not queue any new
721 * writes to the disk.
723 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
724 * you dirty the buffers, and then use osync_inode_buffers to wait for
725 * completion. Any other dirty buffers which are not yet queued for
726 * write will not be flushed to disk by the osync.
728 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
730 struct buffer_head *bh;
731 struct list_head *p;
732 int err = 0;
734 spin_lock(lock);
735 repeat:
736 list_for_each_prev(p, list) {
737 bh = BH_ENTRY(p);
738 if (buffer_locked(bh)) {
739 get_bh(bh);
740 spin_unlock(lock);
741 wait_on_buffer(bh);
742 if (!buffer_uptodate(bh))
743 err = -EIO;
744 brelse(bh);
745 spin_lock(lock);
746 goto repeat;
749 spin_unlock(lock);
750 return err;
754 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
755 * buffers
756 * @mapping: the mapping which wants those buffers written
758 * Starts I/O against the buffers at mapping->private_list, and waits upon
759 * that I/O.
761 * Basically, this is a convenience function for fsync().
762 * @mapping is a file or directory which needs those buffers to be written for
763 * a successful fsync().
765 int sync_mapping_buffers(struct address_space *mapping)
767 struct address_space *buffer_mapping = mapping->assoc_mapping;
769 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
770 return 0;
772 return fsync_buffers_list(&buffer_mapping->private_lock,
773 &mapping->private_list);
775 EXPORT_SYMBOL(sync_mapping_buffers);
778 * Called when we've recently written block `bblock', and it is known that
779 * `bblock' was for a buffer_boundary() buffer. This means that the block at
780 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
781 * dirty, schedule it for IO. So that indirects merge nicely with their data.
783 void write_boundary_block(struct block_device *bdev,
784 sector_t bblock, unsigned blocksize)
786 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
787 if (bh) {
788 if (buffer_dirty(bh))
789 ll_rw_block(WRITE, 1, &bh);
790 put_bh(bh);
794 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
796 struct address_space *mapping = inode->i_mapping;
797 struct address_space *buffer_mapping = bh->b_page->mapping;
799 mark_buffer_dirty(bh);
800 if (!mapping->assoc_mapping) {
801 mapping->assoc_mapping = buffer_mapping;
802 } else {
803 BUG_ON(mapping->assoc_mapping != buffer_mapping);
805 if (list_empty(&bh->b_assoc_buffers)) {
806 spin_lock(&buffer_mapping->private_lock);
807 list_move_tail(&bh->b_assoc_buffers,
808 &mapping->private_list);
809 spin_unlock(&buffer_mapping->private_lock);
812 EXPORT_SYMBOL(mark_buffer_dirty_inode);
815 * Add a page to the dirty page list.
817 * It is a sad fact of life that this function is called from several places
818 * deeply under spinlocking. It may not sleep.
820 * If the page has buffers, the uptodate buffers are set dirty, to preserve
821 * dirty-state coherency between the page and the buffers. It the page does
822 * not have buffers then when they are later attached they will all be set
823 * dirty.
825 * The buffers are dirtied before the page is dirtied. There's a small race
826 * window in which a writepage caller may see the page cleanness but not the
827 * buffer dirtiness. That's fine. If this code were to set the page dirty
828 * before the buffers, a concurrent writepage caller could clear the page dirty
829 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
830 * page on the dirty page list.
832 * We use private_lock to lock against try_to_free_buffers while using the
833 * page's buffer list. Also use this to protect against clean buffers being
834 * added to the page after it was set dirty.
836 * FIXME: may need to call ->reservepage here as well. That's rather up to the
837 * address_space though.
839 int __set_page_dirty_buffers(struct page *page)
841 struct address_space * const mapping = page->mapping;
843 spin_lock(&mapping->private_lock);
844 if (page_has_buffers(page)) {
845 struct buffer_head *head = page_buffers(page);
846 struct buffer_head *bh = head;
848 do {
849 set_buffer_dirty(bh);
850 bh = bh->b_this_page;
851 } while (bh != head);
853 spin_unlock(&mapping->private_lock);
855 if (!TestSetPageDirty(page)) {
856 write_lock_irq(&mapping->tree_lock);
857 if (page->mapping) { /* Race with truncate? */
858 if (mapping_cap_account_dirty(mapping))
859 __inc_zone_page_state(page, NR_FILE_DIRTY);
860 radix_tree_tag_set(&mapping->page_tree,
861 page_index(page),
862 PAGECACHE_TAG_DIRTY);
864 write_unlock_irq(&mapping->tree_lock);
865 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
866 return 1;
868 return 0;
870 EXPORT_SYMBOL(__set_page_dirty_buffers);
873 * Write out and wait upon a list of buffers.
875 * We have conflicting pressures: we want to make sure that all
876 * initially dirty buffers get waited on, but that any subsequently
877 * dirtied buffers don't. After all, we don't want fsync to last
878 * forever if somebody is actively writing to the file.
880 * Do this in two main stages: first we copy dirty buffers to a
881 * temporary inode list, queueing the writes as we go. Then we clean
882 * up, waiting for those writes to complete.
884 * During this second stage, any subsequent updates to the file may end
885 * up refiling the buffer on the original inode's dirty list again, so
886 * there is a chance we will end up with a buffer queued for write but
887 * not yet completed on that list. So, as a final cleanup we go through
888 * the osync code to catch these locked, dirty buffers without requeuing
889 * any newly dirty buffers for write.
891 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
893 struct buffer_head *bh;
894 struct list_head tmp;
895 int err = 0, err2;
897 INIT_LIST_HEAD(&tmp);
899 spin_lock(lock);
900 while (!list_empty(list)) {
901 bh = BH_ENTRY(list->next);
902 list_del_init(&bh->b_assoc_buffers);
903 if (buffer_dirty(bh) || buffer_locked(bh)) {
904 list_add(&bh->b_assoc_buffers, &tmp);
905 if (buffer_dirty(bh)) {
906 get_bh(bh);
907 spin_unlock(lock);
909 * Ensure any pending I/O completes so that
910 * ll_rw_block() actually writes the current
911 * contents - it is a noop if I/O is still in
912 * flight on potentially older contents.
914 ll_rw_block(SWRITE, 1, &bh);
915 brelse(bh);
916 spin_lock(lock);
921 while (!list_empty(&tmp)) {
922 bh = BH_ENTRY(tmp.prev);
923 __remove_assoc_queue(bh);
924 get_bh(bh);
925 spin_unlock(lock);
926 wait_on_buffer(bh);
927 if (!buffer_uptodate(bh))
928 err = -EIO;
929 brelse(bh);
930 spin_lock(lock);
933 spin_unlock(lock);
934 err2 = osync_buffers_list(lock, list);
935 if (err)
936 return err;
937 else
938 return err2;
942 * Invalidate any and all dirty buffers on a given inode. We are
943 * probably unmounting the fs, but that doesn't mean we have already
944 * done a sync(). Just drop the buffers from the inode list.
946 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
947 * assumes that all the buffers are against the blockdev. Not true
948 * for reiserfs.
950 void invalidate_inode_buffers(struct inode *inode)
952 if (inode_has_buffers(inode)) {
953 struct address_space *mapping = &inode->i_data;
954 struct list_head *list = &mapping->private_list;
955 struct address_space *buffer_mapping = mapping->assoc_mapping;
957 spin_lock(&buffer_mapping->private_lock);
958 while (!list_empty(list))
959 __remove_assoc_queue(BH_ENTRY(list->next));
960 spin_unlock(&buffer_mapping->private_lock);
965 * Remove any clean buffers from the inode's buffer list. This is called
966 * when we're trying to free the inode itself. Those buffers can pin it.
968 * Returns true if all buffers were removed.
970 int remove_inode_buffers(struct inode *inode)
972 int ret = 1;
974 if (inode_has_buffers(inode)) {
975 struct address_space *mapping = &inode->i_data;
976 struct list_head *list = &mapping->private_list;
977 struct address_space *buffer_mapping = mapping->assoc_mapping;
979 spin_lock(&buffer_mapping->private_lock);
980 while (!list_empty(list)) {
981 struct buffer_head *bh = BH_ENTRY(list->next);
982 if (buffer_dirty(bh)) {
983 ret = 0;
984 break;
986 __remove_assoc_queue(bh);
988 spin_unlock(&buffer_mapping->private_lock);
990 return ret;
994 * Create the appropriate buffers when given a page for data area and
995 * the size of each buffer.. Use the bh->b_this_page linked list to
996 * follow the buffers created. Return NULL if unable to create more
997 * buffers.
999 * The retry flag is used to differentiate async IO (paging, swapping)
1000 * which may not fail from ordinary buffer allocations.
1002 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1003 int retry)
1005 struct buffer_head *bh, *head;
1006 long offset;
1008 try_again:
1009 head = NULL;
1010 offset = PAGE_SIZE;
1011 while ((offset -= size) >= 0) {
1012 bh = alloc_buffer_head(GFP_NOFS);
1013 if (!bh)
1014 goto no_grow;
1016 bh->b_bdev = NULL;
1017 bh->b_this_page = head;
1018 bh->b_blocknr = -1;
1019 head = bh;
1021 bh->b_state = 0;
1022 atomic_set(&bh->b_count, 0);
1023 bh->b_private = NULL;
1024 bh->b_size = size;
1026 /* Link the buffer to its page */
1027 set_bh_page(bh, page, offset);
1029 init_buffer(bh, NULL, NULL);
1031 return head;
1033 * In case anything failed, we just free everything we got.
1035 no_grow:
1036 if (head) {
1037 do {
1038 bh = head;
1039 head = head->b_this_page;
1040 free_buffer_head(bh);
1041 } while (head);
1045 * Return failure for non-async IO requests. Async IO requests
1046 * are not allowed to fail, so we have to wait until buffer heads
1047 * become available. But we don't want tasks sleeping with
1048 * partially complete buffers, so all were released above.
1050 if (!retry)
1051 return NULL;
1053 /* We're _really_ low on memory. Now we just
1054 * wait for old buffer heads to become free due to
1055 * finishing IO. Since this is an async request and
1056 * the reserve list is empty, we're sure there are
1057 * async buffer heads in use.
1059 free_more_memory();
1060 goto try_again;
1062 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1064 static inline void
1065 link_dev_buffers(struct page *page, struct buffer_head *head)
1067 struct buffer_head *bh, *tail;
1069 bh = head;
1070 do {
1071 tail = bh;
1072 bh = bh->b_this_page;
1073 } while (bh);
1074 tail->b_this_page = head;
1075 attach_page_buffers(page, head);
1079 * Initialise the state of a blockdev page's buffers.
1081 static void
1082 init_page_buffers(struct page *page, struct block_device *bdev,
1083 sector_t block, int size)
1085 struct buffer_head *head = page_buffers(page);
1086 struct buffer_head *bh = head;
1087 int uptodate = PageUptodate(page);
1089 do {
1090 if (!buffer_mapped(bh)) {
1091 init_buffer(bh, NULL, NULL);
1092 bh->b_bdev = bdev;
1093 bh->b_blocknr = block;
1094 if (uptodate)
1095 set_buffer_uptodate(bh);
1096 set_buffer_mapped(bh);
1098 block++;
1099 bh = bh->b_this_page;
1100 } while (bh != head);
1104 * Create the page-cache page that contains the requested block.
1106 * This is user purely for blockdev mappings.
1108 static struct page *
1109 grow_dev_page(struct block_device *bdev, sector_t block,
1110 pgoff_t index, int size)
1112 struct inode *inode = bdev->bd_inode;
1113 struct page *page;
1114 struct buffer_head *bh;
1116 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1117 if (!page)
1118 return NULL;
1120 BUG_ON(!PageLocked(page));
1122 if (page_has_buffers(page)) {
1123 bh = page_buffers(page);
1124 if (bh->b_size == size) {
1125 init_page_buffers(page, bdev, block, size);
1126 return page;
1128 if (!try_to_free_buffers(page))
1129 goto failed;
1133 * Allocate some buffers for this page
1135 bh = alloc_page_buffers(page, size, 0);
1136 if (!bh)
1137 goto failed;
1140 * Link the page to the buffers and initialise them. Take the
1141 * lock to be atomic wrt __find_get_block(), which does not
1142 * run under the page lock.
1144 spin_lock(&inode->i_mapping->private_lock);
1145 link_dev_buffers(page, bh);
1146 init_page_buffers(page, bdev, block, size);
1147 spin_unlock(&inode->i_mapping->private_lock);
1148 return page;
1150 failed:
1151 BUG();
1152 unlock_page(page);
1153 page_cache_release(page);
1154 return NULL;
1158 * Create buffers for the specified block device block's page. If
1159 * that page was dirty, the buffers are set dirty also.
1161 * Except that's a bug. Attaching dirty buffers to a dirty
1162 * blockdev's page can result in filesystem corruption, because
1163 * some of those buffers may be aliases of filesystem data.
1164 * grow_dev_page() will go BUG() if this happens.
1166 static int
1167 grow_buffers(struct block_device *bdev, sector_t block, int size)
1169 struct page *page;
1170 pgoff_t index;
1171 int sizebits;
1173 sizebits = -1;
1174 do {
1175 sizebits++;
1176 } while ((size << sizebits) < PAGE_SIZE);
1178 index = block >> sizebits;
1179 block = index << sizebits;
1181 /* Create a page with the proper size buffers.. */
1182 page = grow_dev_page(bdev, block, index, size);
1183 if (!page)
1184 return 0;
1185 unlock_page(page);
1186 page_cache_release(page);
1187 return 1;
1190 static struct buffer_head *
1191 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1193 /* Size must be multiple of hard sectorsize */
1194 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1195 (size < 512 || size > PAGE_SIZE))) {
1196 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1197 size);
1198 printk(KERN_ERR "hardsect size: %d\n",
1199 bdev_hardsect_size(bdev));
1201 dump_stack();
1202 return NULL;
1205 for (;;) {
1206 struct buffer_head * bh;
1208 bh = __find_get_block(bdev, block, size);
1209 if (bh)
1210 return bh;
1212 if (!grow_buffers(bdev, block, size))
1213 free_more_memory();
1218 * The relationship between dirty buffers and dirty pages:
1220 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1221 * the page is tagged dirty in its radix tree.
1223 * At all times, the dirtiness of the buffers represents the dirtiness of
1224 * subsections of the page. If the page has buffers, the page dirty bit is
1225 * merely a hint about the true dirty state.
1227 * When a page is set dirty in its entirety, all its buffers are marked dirty
1228 * (if the page has buffers).
1230 * When a buffer is marked dirty, its page is dirtied, but the page's other
1231 * buffers are not.
1233 * Also. When blockdev buffers are explicitly read with bread(), they
1234 * individually become uptodate. But their backing page remains not
1235 * uptodate - even if all of its buffers are uptodate. A subsequent
1236 * block_read_full_page() against that page will discover all the uptodate
1237 * buffers, will set the page uptodate and will perform no I/O.
1241 * mark_buffer_dirty - mark a buffer_head as needing writeout
1242 * @bh: the buffer_head to mark dirty
1244 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1245 * backing page dirty, then tag the page as dirty in its address_space's radix
1246 * tree and then attach the address_space's inode to its superblock's dirty
1247 * inode list.
1249 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1250 * mapping->tree_lock and the global inode_lock.
1252 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1254 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1255 __set_page_dirty_nobuffers(bh->b_page);
1259 * Decrement a buffer_head's reference count. If all buffers against a page
1260 * have zero reference count, are clean and unlocked, and if the page is clean
1261 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1262 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1263 * a page but it ends up not being freed, and buffers may later be reattached).
1265 void __brelse(struct buffer_head * buf)
1267 if (atomic_read(&buf->b_count)) {
1268 put_bh(buf);
1269 return;
1271 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1272 WARN_ON(1);
1276 * bforget() is like brelse(), except it discards any
1277 * potentially dirty data.
1279 void __bforget(struct buffer_head *bh)
1281 clear_buffer_dirty(bh);
1282 if (!list_empty(&bh->b_assoc_buffers)) {
1283 struct address_space *buffer_mapping = bh->b_page->mapping;
1285 spin_lock(&buffer_mapping->private_lock);
1286 list_del_init(&bh->b_assoc_buffers);
1287 spin_unlock(&buffer_mapping->private_lock);
1289 __brelse(bh);
1292 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1294 lock_buffer(bh);
1295 if (buffer_uptodate(bh)) {
1296 unlock_buffer(bh);
1297 return bh;
1298 } else {
1299 get_bh(bh);
1300 bh->b_end_io = end_buffer_read_sync;
1301 submit_bh(READ, bh);
1302 wait_on_buffer(bh);
1303 if (buffer_uptodate(bh))
1304 return bh;
1306 brelse(bh);
1307 return NULL;
1311 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1312 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1313 * refcount elevated by one when they're in an LRU. A buffer can only appear
1314 * once in a particular CPU's LRU. A single buffer can be present in multiple
1315 * CPU's LRUs at the same time.
1317 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1318 * sb_find_get_block().
1320 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1321 * a local interrupt disable for that.
1324 #define BH_LRU_SIZE 8
1326 struct bh_lru {
1327 struct buffer_head *bhs[BH_LRU_SIZE];
1330 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1332 #ifdef CONFIG_SMP
1333 #define bh_lru_lock() local_irq_disable()
1334 #define bh_lru_unlock() local_irq_enable()
1335 #else
1336 #define bh_lru_lock() preempt_disable()
1337 #define bh_lru_unlock() preempt_enable()
1338 #endif
1340 static inline void check_irqs_on(void)
1342 #ifdef irqs_disabled
1343 BUG_ON(irqs_disabled());
1344 #endif
1348 * The LRU management algorithm is dopey-but-simple. Sorry.
1350 static void bh_lru_install(struct buffer_head *bh)
1352 struct buffer_head *evictee = NULL;
1353 struct bh_lru *lru;
1355 check_irqs_on();
1356 bh_lru_lock();
1357 lru = &__get_cpu_var(bh_lrus);
1358 if (lru->bhs[0] != bh) {
1359 struct buffer_head *bhs[BH_LRU_SIZE];
1360 int in;
1361 int out = 0;
1363 get_bh(bh);
1364 bhs[out++] = bh;
1365 for (in = 0; in < BH_LRU_SIZE; in++) {
1366 struct buffer_head *bh2 = lru->bhs[in];
1368 if (bh2 == bh) {
1369 __brelse(bh2);
1370 } else {
1371 if (out >= BH_LRU_SIZE) {
1372 BUG_ON(evictee != NULL);
1373 evictee = bh2;
1374 } else {
1375 bhs[out++] = bh2;
1379 while (out < BH_LRU_SIZE)
1380 bhs[out++] = NULL;
1381 memcpy(lru->bhs, bhs, sizeof(bhs));
1383 bh_lru_unlock();
1385 if (evictee)
1386 __brelse(evictee);
1390 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1392 static struct buffer_head *
1393 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1395 struct buffer_head *ret = NULL;
1396 struct bh_lru *lru;
1397 int i;
1399 check_irqs_on();
1400 bh_lru_lock();
1401 lru = &__get_cpu_var(bh_lrus);
1402 for (i = 0; i < BH_LRU_SIZE; i++) {
1403 struct buffer_head *bh = lru->bhs[i];
1405 if (bh && bh->b_bdev == bdev &&
1406 bh->b_blocknr == block && bh->b_size == size) {
1407 if (i) {
1408 while (i) {
1409 lru->bhs[i] = lru->bhs[i - 1];
1410 i--;
1412 lru->bhs[0] = bh;
1414 get_bh(bh);
1415 ret = bh;
1416 break;
1419 bh_lru_unlock();
1420 return ret;
1424 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1425 * it in the LRU and mark it as accessed. If it is not present then return
1426 * NULL
1428 struct buffer_head *
1429 __find_get_block(struct block_device *bdev, sector_t block, int size)
1431 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1433 if (bh == NULL) {
1434 bh = __find_get_block_slow(bdev, block);
1435 if (bh)
1436 bh_lru_install(bh);
1438 if (bh)
1439 touch_buffer(bh);
1440 return bh;
1442 EXPORT_SYMBOL(__find_get_block);
1445 * __getblk will locate (and, if necessary, create) the buffer_head
1446 * which corresponds to the passed block_device, block and size. The
1447 * returned buffer has its reference count incremented.
1449 * __getblk() cannot fail - it just keeps trying. If you pass it an
1450 * illegal block number, __getblk() will happily return a buffer_head
1451 * which represents the non-existent block. Very weird.
1453 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1454 * attempt is failing. FIXME, perhaps?
1456 struct buffer_head *
1457 __getblk(struct block_device *bdev, sector_t block, int size)
1459 struct buffer_head *bh = __find_get_block(bdev, block, size);
1461 might_sleep();
1462 if (bh == NULL)
1463 bh = __getblk_slow(bdev, block, size);
1464 return bh;
1466 EXPORT_SYMBOL(__getblk);
1469 * Do async read-ahead on a buffer..
1471 void __breadahead(struct block_device *bdev, sector_t block, int size)
1473 struct buffer_head *bh = __getblk(bdev, block, size);
1474 if (likely(bh)) {
1475 ll_rw_block(READA, 1, &bh);
1476 brelse(bh);
1479 EXPORT_SYMBOL(__breadahead);
1482 * __bread() - reads a specified block and returns the bh
1483 * @bdev: the block_device to read from
1484 * @block: number of block
1485 * @size: size (in bytes) to read
1487 * Reads a specified block, and returns buffer head that contains it.
1488 * It returns NULL if the block was unreadable.
1490 struct buffer_head *
1491 __bread(struct block_device *bdev, sector_t block, int size)
1493 struct buffer_head *bh = __getblk(bdev, block, size);
1495 if (likely(bh) && !buffer_uptodate(bh))
1496 bh = __bread_slow(bh);
1497 return bh;
1499 EXPORT_SYMBOL(__bread);
1502 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1503 * This doesn't race because it runs in each cpu either in irq
1504 * or with preempt disabled.
1506 static void invalidate_bh_lru(void *arg)
1508 struct bh_lru *b = &get_cpu_var(bh_lrus);
1509 int i;
1511 for (i = 0; i < BH_LRU_SIZE; i++) {
1512 brelse(b->bhs[i]);
1513 b->bhs[i] = NULL;
1515 put_cpu_var(bh_lrus);
1518 static void invalidate_bh_lrus(void)
1520 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1523 void set_bh_page(struct buffer_head *bh,
1524 struct page *page, unsigned long offset)
1526 bh->b_page = page;
1527 BUG_ON(offset >= PAGE_SIZE);
1528 if (PageHighMem(page))
1530 * This catches illegal uses and preserves the offset:
1532 bh->b_data = (char *)(0 + offset);
1533 else
1534 bh->b_data = page_address(page) + offset;
1536 EXPORT_SYMBOL(set_bh_page);
1539 * Called when truncating a buffer on a page completely.
1541 static void discard_buffer(struct buffer_head * bh)
1543 lock_buffer(bh);
1544 clear_buffer_dirty(bh);
1545 bh->b_bdev = NULL;
1546 clear_buffer_mapped(bh);
1547 clear_buffer_req(bh);
1548 clear_buffer_new(bh);
1549 clear_buffer_delay(bh);
1550 unlock_buffer(bh);
1554 * try_to_release_page() - release old fs-specific metadata on a page
1556 * @page: the page which the kernel is trying to free
1557 * @gfp_mask: memory allocation flags (and I/O mode)
1559 * The address_space is to try to release any data against the page
1560 * (presumably at page->private). If the release was successful, return `1'.
1561 * Otherwise return zero.
1563 * The @gfp_mask argument specifies whether I/O may be performed to release
1564 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1566 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1568 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1570 struct address_space * const mapping = page->mapping;
1572 BUG_ON(!PageLocked(page));
1573 if (PageWriteback(page))
1574 return 0;
1576 if (mapping && mapping->a_ops->releasepage)
1577 return mapping->a_ops->releasepage(page, gfp_mask);
1578 return try_to_free_buffers(page);
1580 EXPORT_SYMBOL(try_to_release_page);
1583 * block_invalidatepage - invalidate part of all of a buffer-backed page
1585 * @page: the page which is affected
1586 * @offset: the index of the truncation point
1588 * block_invalidatepage() is called when all or part of the page has become
1589 * invalidatedby a truncate operation.
1591 * block_invalidatepage() does not have to release all buffers, but it must
1592 * ensure that no dirty buffer is left outside @offset and that no I/O
1593 * is underway against any of the blocks which are outside the truncation
1594 * point. Because the caller is about to free (and possibly reuse) those
1595 * blocks on-disk.
1597 void block_invalidatepage(struct page *page, unsigned long offset)
1599 struct buffer_head *head, *bh, *next;
1600 unsigned int curr_off = 0;
1602 BUG_ON(!PageLocked(page));
1603 if (!page_has_buffers(page))
1604 goto out;
1606 head = page_buffers(page);
1607 bh = head;
1608 do {
1609 unsigned int next_off = curr_off + bh->b_size;
1610 next = bh->b_this_page;
1613 * is this block fully invalidated?
1615 if (offset <= curr_off)
1616 discard_buffer(bh);
1617 curr_off = next_off;
1618 bh = next;
1619 } while (bh != head);
1622 * We release buffers only if the entire page is being invalidated.
1623 * The get_block cached value has been unconditionally invalidated,
1624 * so real IO is not possible anymore.
1626 if (offset == 0)
1627 try_to_release_page(page, 0);
1628 out:
1629 return;
1631 EXPORT_SYMBOL(block_invalidatepage);
1633 void do_invalidatepage(struct page *page, unsigned long offset)
1635 void (*invalidatepage)(struct page *, unsigned long);
1636 invalidatepage = page->mapping->a_ops->invalidatepage ? :
1637 block_invalidatepage;
1638 (*invalidatepage)(page, offset);
1642 * We attach and possibly dirty the buffers atomically wrt
1643 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1644 * is already excluded via the page lock.
1646 void create_empty_buffers(struct page *page,
1647 unsigned long blocksize, unsigned long b_state)
1649 struct buffer_head *bh, *head, *tail;
1651 head = alloc_page_buffers(page, blocksize, 1);
1652 bh = head;
1653 do {
1654 bh->b_state |= b_state;
1655 tail = bh;
1656 bh = bh->b_this_page;
1657 } while (bh);
1658 tail->b_this_page = head;
1660 spin_lock(&page->mapping->private_lock);
1661 if (PageUptodate(page) || PageDirty(page)) {
1662 bh = head;
1663 do {
1664 if (PageDirty(page))
1665 set_buffer_dirty(bh);
1666 if (PageUptodate(page))
1667 set_buffer_uptodate(bh);
1668 bh = bh->b_this_page;
1669 } while (bh != head);
1671 attach_page_buffers(page, head);
1672 spin_unlock(&page->mapping->private_lock);
1674 EXPORT_SYMBOL(create_empty_buffers);
1677 * We are taking a block for data and we don't want any output from any
1678 * buffer-cache aliases starting from return from that function and
1679 * until the moment when something will explicitly mark the buffer
1680 * dirty (hopefully that will not happen until we will free that block ;-)
1681 * We don't even need to mark it not-uptodate - nobody can expect
1682 * anything from a newly allocated buffer anyway. We used to used
1683 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1684 * don't want to mark the alias unmapped, for example - it would confuse
1685 * anyone who might pick it with bread() afterwards...
1687 * Also.. Note that bforget() doesn't lock the buffer. So there can
1688 * be writeout I/O going on against recently-freed buffers. We don't
1689 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1690 * only if we really need to. That happens here.
1692 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1694 struct buffer_head *old_bh;
1696 might_sleep();
1698 old_bh = __find_get_block_slow(bdev, block);
1699 if (old_bh) {
1700 clear_buffer_dirty(old_bh);
1701 wait_on_buffer(old_bh);
1702 clear_buffer_req(old_bh);
1703 __brelse(old_bh);
1706 EXPORT_SYMBOL(unmap_underlying_metadata);
1709 * NOTE! All mapped/uptodate combinations are valid:
1711 * Mapped Uptodate Meaning
1713 * No No "unknown" - must do get_block()
1714 * No Yes "hole" - zero-filled
1715 * Yes No "allocated" - allocated on disk, not read in
1716 * Yes Yes "valid" - allocated and up-to-date in memory.
1718 * "Dirty" is valid only with the last case (mapped+uptodate).
1722 * While block_write_full_page is writing back the dirty buffers under
1723 * the page lock, whoever dirtied the buffers may decide to clean them
1724 * again at any time. We handle that by only looking at the buffer
1725 * state inside lock_buffer().
1727 * If block_write_full_page() is called for regular writeback
1728 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1729 * locked buffer. This only can happen if someone has written the buffer
1730 * directly, with submit_bh(). At the address_space level PageWriteback
1731 * prevents this contention from occurring.
1733 static int __block_write_full_page(struct inode *inode, struct page *page,
1734 get_block_t *get_block, struct writeback_control *wbc)
1736 int err;
1737 sector_t block;
1738 sector_t last_block;
1739 struct buffer_head *bh, *head;
1740 const unsigned blocksize = 1 << inode->i_blkbits;
1741 int nr_underway = 0;
1743 BUG_ON(!PageLocked(page));
1745 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1747 if (!page_has_buffers(page)) {
1748 create_empty_buffers(page, blocksize,
1749 (1 << BH_Dirty)|(1 << BH_Uptodate));
1753 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1754 * here, and the (potentially unmapped) buffers may become dirty at
1755 * any time. If a buffer becomes dirty here after we've inspected it
1756 * then we just miss that fact, and the page stays dirty.
1758 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1759 * handle that here by just cleaning them.
1762 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1763 head = page_buffers(page);
1764 bh = head;
1767 * Get all the dirty buffers mapped to disk addresses and
1768 * handle any aliases from the underlying blockdev's mapping.
1770 do {
1771 if (block > last_block) {
1773 * mapped buffers outside i_size will occur, because
1774 * this page can be outside i_size when there is a
1775 * truncate in progress.
1778 * The buffer was zeroed by block_write_full_page()
1780 clear_buffer_dirty(bh);
1781 set_buffer_uptodate(bh);
1782 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1783 WARN_ON(bh->b_size != blocksize);
1784 err = get_block(inode, block, bh, 1);
1785 if (err)
1786 goto recover;
1787 if (buffer_new(bh)) {
1788 /* blockdev mappings never come here */
1789 clear_buffer_new(bh);
1790 unmap_underlying_metadata(bh->b_bdev,
1791 bh->b_blocknr);
1794 bh = bh->b_this_page;
1795 block++;
1796 } while (bh != head);
1798 do {
1799 if (!buffer_mapped(bh))
1800 continue;
1802 * If it's a fully non-blocking write attempt and we cannot
1803 * lock the buffer then redirty the page. Note that this can
1804 * potentially cause a busy-wait loop from pdflush and kswapd
1805 * activity, but those code paths have their own higher-level
1806 * throttling.
1808 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1809 lock_buffer(bh);
1810 } else if (test_set_buffer_locked(bh)) {
1811 redirty_page_for_writepage(wbc, page);
1812 continue;
1814 if (test_clear_buffer_dirty(bh)) {
1815 mark_buffer_async_write(bh);
1816 } else {
1817 unlock_buffer(bh);
1819 } while ((bh = bh->b_this_page) != head);
1822 * The page and its buffers are protected by PageWriteback(), so we can
1823 * drop the bh refcounts early.
1825 BUG_ON(PageWriteback(page));
1826 set_page_writeback(page);
1828 do {
1829 struct buffer_head *next = bh->b_this_page;
1830 if (buffer_async_write(bh)) {
1831 submit_bh(WRITE, bh);
1832 nr_underway++;
1834 bh = next;
1835 } while (bh != head);
1836 unlock_page(page);
1838 err = 0;
1839 done:
1840 if (nr_underway == 0) {
1842 * The page was marked dirty, but the buffers were
1843 * clean. Someone wrote them back by hand with
1844 * ll_rw_block/submit_bh. A rare case.
1846 int uptodate = 1;
1847 do {
1848 if (!buffer_uptodate(bh)) {
1849 uptodate = 0;
1850 break;
1852 bh = bh->b_this_page;
1853 } while (bh != head);
1854 if (uptodate)
1855 SetPageUptodate(page);
1856 end_page_writeback(page);
1858 * The page and buffer_heads can be released at any time from
1859 * here on.
1861 wbc->pages_skipped++; /* We didn't write this page */
1863 return err;
1865 recover:
1867 * ENOSPC, or some other error. We may already have added some
1868 * blocks to the file, so we need to write these out to avoid
1869 * exposing stale data.
1870 * The page is currently locked and not marked for writeback
1872 bh = head;
1873 /* Recovery: lock and submit the mapped buffers */
1874 do {
1875 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1876 lock_buffer(bh);
1877 mark_buffer_async_write(bh);
1878 } else {
1880 * The buffer may have been set dirty during
1881 * attachment to a dirty page.
1883 clear_buffer_dirty(bh);
1885 } while ((bh = bh->b_this_page) != head);
1886 SetPageError(page);
1887 BUG_ON(PageWriteback(page));
1888 set_page_writeback(page);
1889 unlock_page(page);
1890 do {
1891 struct buffer_head *next = bh->b_this_page;
1892 if (buffer_async_write(bh)) {
1893 clear_buffer_dirty(bh);
1894 submit_bh(WRITE, bh);
1895 nr_underway++;
1897 bh = next;
1898 } while (bh != head);
1899 goto done;
1902 static int __block_prepare_write(struct inode *inode, struct page *page,
1903 unsigned from, unsigned to, get_block_t *get_block)
1905 unsigned block_start, block_end;
1906 sector_t block;
1907 int err = 0;
1908 unsigned blocksize, bbits;
1909 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1911 BUG_ON(!PageLocked(page));
1912 BUG_ON(from > PAGE_CACHE_SIZE);
1913 BUG_ON(to > PAGE_CACHE_SIZE);
1914 BUG_ON(from > to);
1916 blocksize = 1 << inode->i_blkbits;
1917 if (!page_has_buffers(page))
1918 create_empty_buffers(page, blocksize, 0);
1919 head = page_buffers(page);
1921 bbits = inode->i_blkbits;
1922 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1924 for(bh = head, block_start = 0; bh != head || !block_start;
1925 block++, block_start=block_end, bh = bh->b_this_page) {
1926 block_end = block_start + blocksize;
1927 if (block_end <= from || block_start >= to) {
1928 if (PageUptodate(page)) {
1929 if (!buffer_uptodate(bh))
1930 set_buffer_uptodate(bh);
1932 continue;
1934 if (buffer_new(bh))
1935 clear_buffer_new(bh);
1936 if (!buffer_mapped(bh)) {
1937 WARN_ON(bh->b_size != blocksize);
1938 err = get_block(inode, block, bh, 1);
1939 if (err)
1940 break;
1941 if (buffer_new(bh)) {
1942 unmap_underlying_metadata(bh->b_bdev,
1943 bh->b_blocknr);
1944 if (PageUptodate(page)) {
1945 set_buffer_uptodate(bh);
1946 continue;
1948 if (block_end > to || block_start < from) {
1949 void *kaddr;
1951 kaddr = kmap_atomic(page, KM_USER0);
1952 if (block_end > to)
1953 memset(kaddr+to, 0,
1954 block_end-to);
1955 if (block_start < from)
1956 memset(kaddr+block_start,
1957 0, from-block_start);
1958 flush_dcache_page(page);
1959 kunmap_atomic(kaddr, KM_USER0);
1961 continue;
1964 if (PageUptodate(page)) {
1965 if (!buffer_uptodate(bh))
1966 set_buffer_uptodate(bh);
1967 continue;
1969 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1970 (block_start < from || block_end > to)) {
1971 ll_rw_block(READ, 1, &bh);
1972 *wait_bh++=bh;
1976 * If we issued read requests - let them complete.
1978 while(wait_bh > wait) {
1979 wait_on_buffer(*--wait_bh);
1980 if (!buffer_uptodate(*wait_bh))
1981 err = -EIO;
1983 if (!err) {
1984 bh = head;
1985 do {
1986 if (buffer_new(bh))
1987 clear_buffer_new(bh);
1988 } while ((bh = bh->b_this_page) != head);
1989 return 0;
1991 /* Error case: */
1993 * Zero out any newly allocated blocks to avoid exposing stale
1994 * data. If BH_New is set, we know that the block was newly
1995 * allocated in the above loop.
1997 bh = head;
1998 block_start = 0;
1999 do {
2000 block_end = block_start+blocksize;
2001 if (block_end <= from)
2002 goto next_bh;
2003 if (block_start >= to)
2004 break;
2005 if (buffer_new(bh)) {
2006 void *kaddr;
2008 clear_buffer_new(bh);
2009 kaddr = kmap_atomic(page, KM_USER0);
2010 memset(kaddr+block_start, 0, bh->b_size);
2011 kunmap_atomic(kaddr, KM_USER0);
2012 set_buffer_uptodate(bh);
2013 mark_buffer_dirty(bh);
2015 next_bh:
2016 block_start = block_end;
2017 bh = bh->b_this_page;
2018 } while (bh != head);
2019 return err;
2022 static int __block_commit_write(struct inode *inode, struct page *page,
2023 unsigned from, unsigned to)
2025 unsigned block_start, block_end;
2026 int partial = 0;
2027 unsigned blocksize;
2028 struct buffer_head *bh, *head;
2030 blocksize = 1 << inode->i_blkbits;
2032 for(bh = head = page_buffers(page), block_start = 0;
2033 bh != head || !block_start;
2034 block_start=block_end, bh = bh->b_this_page) {
2035 block_end = block_start + blocksize;
2036 if (block_end <= from || block_start >= to) {
2037 if (!buffer_uptodate(bh))
2038 partial = 1;
2039 } else {
2040 set_buffer_uptodate(bh);
2041 mark_buffer_dirty(bh);
2046 * If this is a partial write which happened to make all buffers
2047 * uptodate then we can optimize away a bogus readpage() for
2048 * the next read(). Here we 'discover' whether the page went
2049 * uptodate as a result of this (potentially partial) write.
2051 if (!partial)
2052 SetPageUptodate(page);
2053 return 0;
2057 * Generic "read page" function for block devices that have the normal
2058 * get_block functionality. This is most of the block device filesystems.
2059 * Reads the page asynchronously --- the unlock_buffer() and
2060 * set/clear_buffer_uptodate() functions propagate buffer state into the
2061 * page struct once IO has completed.
2063 int block_read_full_page(struct page *page, get_block_t *get_block)
2065 struct inode *inode = page->mapping->host;
2066 sector_t iblock, lblock;
2067 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2068 unsigned int blocksize;
2069 int nr, i;
2070 int fully_mapped = 1;
2072 BUG_ON(!PageLocked(page));
2073 blocksize = 1 << inode->i_blkbits;
2074 if (!page_has_buffers(page))
2075 create_empty_buffers(page, blocksize, 0);
2076 head = page_buffers(page);
2078 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2079 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2080 bh = head;
2081 nr = 0;
2082 i = 0;
2084 do {
2085 if (buffer_uptodate(bh))
2086 continue;
2088 if (!buffer_mapped(bh)) {
2089 int err = 0;
2091 fully_mapped = 0;
2092 if (iblock < lblock) {
2093 WARN_ON(bh->b_size != blocksize);
2094 err = get_block(inode, iblock, bh, 0);
2095 if (err)
2096 SetPageError(page);
2098 if (!buffer_mapped(bh)) {
2099 void *kaddr = kmap_atomic(page, KM_USER0);
2100 memset(kaddr + i * blocksize, 0, blocksize);
2101 flush_dcache_page(page);
2102 kunmap_atomic(kaddr, KM_USER0);
2103 if (!err)
2104 set_buffer_uptodate(bh);
2105 continue;
2108 * get_block() might have updated the buffer
2109 * synchronously
2111 if (buffer_uptodate(bh))
2112 continue;
2114 arr[nr++] = bh;
2115 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2117 if (fully_mapped)
2118 SetPageMappedToDisk(page);
2120 if (!nr) {
2122 * All buffers are uptodate - we can set the page uptodate
2123 * as well. But not if get_block() returned an error.
2125 if (!PageError(page))
2126 SetPageUptodate(page);
2127 unlock_page(page);
2128 return 0;
2131 /* Stage two: lock the buffers */
2132 for (i = 0; i < nr; i++) {
2133 bh = arr[i];
2134 lock_buffer(bh);
2135 mark_buffer_async_read(bh);
2139 * Stage 3: start the IO. Check for uptodateness
2140 * inside the buffer lock in case another process reading
2141 * the underlying blockdev brought it uptodate (the sct fix).
2143 for (i = 0; i < nr; i++) {
2144 bh = arr[i];
2145 if (buffer_uptodate(bh))
2146 end_buffer_async_read(bh, 1);
2147 else
2148 submit_bh(READ, bh);
2150 return 0;
2153 /* utility function for filesystems that need to do work on expanding
2154 * truncates. Uses prepare/commit_write to allow the filesystem to
2155 * deal with the hole.
2157 static int __generic_cont_expand(struct inode *inode, loff_t size,
2158 pgoff_t index, unsigned int offset)
2160 struct address_space *mapping = inode->i_mapping;
2161 struct page *page;
2162 unsigned long limit;
2163 int err;
2165 err = -EFBIG;
2166 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2167 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2168 send_sig(SIGXFSZ, current, 0);
2169 goto out;
2171 if (size > inode->i_sb->s_maxbytes)
2172 goto out;
2174 err = -ENOMEM;
2175 page = grab_cache_page(mapping, index);
2176 if (!page)
2177 goto out;
2178 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2179 if (err) {
2181 * ->prepare_write() may have instantiated a few blocks
2182 * outside i_size. Trim these off again.
2184 unlock_page(page);
2185 page_cache_release(page);
2186 vmtruncate(inode, inode->i_size);
2187 goto out;
2190 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2192 unlock_page(page);
2193 page_cache_release(page);
2194 if (err > 0)
2195 err = 0;
2196 out:
2197 return err;
2200 int generic_cont_expand(struct inode *inode, loff_t size)
2202 pgoff_t index;
2203 unsigned int offset;
2205 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2207 /* ugh. in prepare/commit_write, if from==to==start of block, we
2208 ** skip the prepare. make sure we never send an offset for the start
2209 ** of a block
2211 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2212 /* caller must handle this extra byte. */
2213 offset++;
2215 index = size >> PAGE_CACHE_SHIFT;
2217 return __generic_cont_expand(inode, size, index, offset);
2220 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2222 loff_t pos = size - 1;
2223 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2224 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2226 /* prepare/commit_write can handle even if from==to==start of block. */
2227 return __generic_cont_expand(inode, size, index, offset);
2231 * For moronic filesystems that do not allow holes in file.
2232 * We may have to extend the file.
2235 int cont_prepare_write(struct page *page, unsigned offset,
2236 unsigned to, get_block_t *get_block, loff_t *bytes)
2238 struct address_space *mapping = page->mapping;
2239 struct inode *inode = mapping->host;
2240 struct page *new_page;
2241 pgoff_t pgpos;
2242 long status;
2243 unsigned zerofrom;
2244 unsigned blocksize = 1 << inode->i_blkbits;
2245 void *kaddr;
2247 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2248 status = -ENOMEM;
2249 new_page = grab_cache_page(mapping, pgpos);
2250 if (!new_page)
2251 goto out;
2252 /* we might sleep */
2253 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2254 unlock_page(new_page);
2255 page_cache_release(new_page);
2256 continue;
2258 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2259 if (zerofrom & (blocksize-1)) {
2260 *bytes |= (blocksize-1);
2261 (*bytes)++;
2263 status = __block_prepare_write(inode, new_page, zerofrom,
2264 PAGE_CACHE_SIZE, get_block);
2265 if (status)
2266 goto out_unmap;
2267 kaddr = kmap_atomic(new_page, KM_USER0);
2268 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2269 flush_dcache_page(new_page);
2270 kunmap_atomic(kaddr, KM_USER0);
2271 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2272 unlock_page(new_page);
2273 page_cache_release(new_page);
2276 if (page->index < pgpos) {
2277 /* completely inside the area */
2278 zerofrom = offset;
2279 } else {
2280 /* page covers the boundary, find the boundary offset */
2281 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2283 /* if we will expand the thing last block will be filled */
2284 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2285 *bytes |= (blocksize-1);
2286 (*bytes)++;
2289 /* starting below the boundary? Nothing to zero out */
2290 if (offset <= zerofrom)
2291 zerofrom = offset;
2293 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2294 if (status)
2295 goto out1;
2296 if (zerofrom < offset) {
2297 kaddr = kmap_atomic(page, KM_USER0);
2298 memset(kaddr+zerofrom, 0, offset-zerofrom);
2299 flush_dcache_page(page);
2300 kunmap_atomic(kaddr, KM_USER0);
2301 __block_commit_write(inode, page, zerofrom, offset);
2303 return 0;
2304 out1:
2305 ClearPageUptodate(page);
2306 return status;
2308 out_unmap:
2309 ClearPageUptodate(new_page);
2310 unlock_page(new_page);
2311 page_cache_release(new_page);
2312 out:
2313 return status;
2316 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2317 get_block_t *get_block)
2319 struct inode *inode = page->mapping->host;
2320 int err = __block_prepare_write(inode, page, from, to, get_block);
2321 if (err)
2322 ClearPageUptodate(page);
2323 return err;
2326 int block_commit_write(struct page *page, unsigned from, unsigned to)
2328 struct inode *inode = page->mapping->host;
2329 __block_commit_write(inode,page,from,to);
2330 return 0;
2333 int generic_commit_write(struct file *file, struct page *page,
2334 unsigned from, unsigned to)
2336 struct inode *inode = page->mapping->host;
2337 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2338 __block_commit_write(inode,page,from,to);
2340 * No need to use i_size_read() here, the i_size
2341 * cannot change under us because we hold i_mutex.
2343 if (pos > inode->i_size) {
2344 i_size_write(inode, pos);
2345 mark_inode_dirty(inode);
2347 return 0;
2352 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2353 * immediately, while under the page lock. So it needs a special end_io
2354 * handler which does not touch the bh after unlocking it.
2356 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2357 * a race there is benign: unlock_buffer() only use the bh's address for
2358 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2359 * itself.
2361 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2363 if (uptodate) {
2364 set_buffer_uptodate(bh);
2365 } else {
2366 /* This happens, due to failed READA attempts. */
2367 clear_buffer_uptodate(bh);
2369 unlock_buffer(bh);
2373 * On entry, the page is fully not uptodate.
2374 * On exit the page is fully uptodate in the areas outside (from,to)
2376 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2377 get_block_t *get_block)
2379 struct inode *inode = page->mapping->host;
2380 const unsigned blkbits = inode->i_blkbits;
2381 const unsigned blocksize = 1 << blkbits;
2382 struct buffer_head map_bh;
2383 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2384 unsigned block_in_page;
2385 unsigned block_start;
2386 sector_t block_in_file;
2387 char *kaddr;
2388 int nr_reads = 0;
2389 int i;
2390 int ret = 0;
2391 int is_mapped_to_disk = 1;
2392 int dirtied_it = 0;
2394 if (PageMappedToDisk(page))
2395 return 0;
2397 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2398 map_bh.b_page = page;
2401 * We loop across all blocks in the page, whether or not they are
2402 * part of the affected region. This is so we can discover if the
2403 * page is fully mapped-to-disk.
2405 for (block_start = 0, block_in_page = 0;
2406 block_start < PAGE_CACHE_SIZE;
2407 block_in_page++, block_start += blocksize) {
2408 unsigned block_end = block_start + blocksize;
2409 int create;
2411 map_bh.b_state = 0;
2412 create = 1;
2413 if (block_start >= to)
2414 create = 0;
2415 map_bh.b_size = blocksize;
2416 ret = get_block(inode, block_in_file + block_in_page,
2417 &map_bh, create);
2418 if (ret)
2419 goto failed;
2420 if (!buffer_mapped(&map_bh))
2421 is_mapped_to_disk = 0;
2422 if (buffer_new(&map_bh))
2423 unmap_underlying_metadata(map_bh.b_bdev,
2424 map_bh.b_blocknr);
2425 if (PageUptodate(page))
2426 continue;
2427 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2428 kaddr = kmap_atomic(page, KM_USER0);
2429 if (block_start < from) {
2430 memset(kaddr+block_start, 0, from-block_start);
2431 dirtied_it = 1;
2433 if (block_end > to) {
2434 memset(kaddr + to, 0, block_end - to);
2435 dirtied_it = 1;
2437 flush_dcache_page(page);
2438 kunmap_atomic(kaddr, KM_USER0);
2439 continue;
2441 if (buffer_uptodate(&map_bh))
2442 continue; /* reiserfs does this */
2443 if (block_start < from || block_end > to) {
2444 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2446 if (!bh) {
2447 ret = -ENOMEM;
2448 goto failed;
2450 bh->b_state = map_bh.b_state;
2451 atomic_set(&bh->b_count, 0);
2452 bh->b_this_page = NULL;
2453 bh->b_page = page;
2454 bh->b_blocknr = map_bh.b_blocknr;
2455 bh->b_size = blocksize;
2456 bh->b_data = (char *)(long)block_start;
2457 bh->b_bdev = map_bh.b_bdev;
2458 bh->b_private = NULL;
2459 read_bh[nr_reads++] = bh;
2463 if (nr_reads) {
2464 struct buffer_head *bh;
2467 * The page is locked, so these buffers are protected from
2468 * any VM or truncate activity. Hence we don't need to care
2469 * for the buffer_head refcounts.
2471 for (i = 0; i < nr_reads; i++) {
2472 bh = read_bh[i];
2473 lock_buffer(bh);
2474 bh->b_end_io = end_buffer_read_nobh;
2475 submit_bh(READ, bh);
2477 for (i = 0; i < nr_reads; i++) {
2478 bh = read_bh[i];
2479 wait_on_buffer(bh);
2480 if (!buffer_uptodate(bh))
2481 ret = -EIO;
2482 free_buffer_head(bh);
2483 read_bh[i] = NULL;
2485 if (ret)
2486 goto failed;
2489 if (is_mapped_to_disk)
2490 SetPageMappedToDisk(page);
2491 SetPageUptodate(page);
2494 * Setting the page dirty here isn't necessary for the prepare_write
2495 * function - commit_write will do that. But if/when this function is
2496 * used within the pagefault handler to ensure that all mmapped pages
2497 * have backing space in the filesystem, we will need to dirty the page
2498 * if its contents were altered.
2500 if (dirtied_it)
2501 set_page_dirty(page);
2503 return 0;
2505 failed:
2506 for (i = 0; i < nr_reads; i++) {
2507 if (read_bh[i])
2508 free_buffer_head(read_bh[i]);
2512 * Error recovery is pretty slack. Clear the page and mark it dirty
2513 * so we'll later zero out any blocks which _were_ allocated.
2515 kaddr = kmap_atomic(page, KM_USER0);
2516 memset(kaddr, 0, PAGE_CACHE_SIZE);
2517 kunmap_atomic(kaddr, KM_USER0);
2518 SetPageUptodate(page);
2519 set_page_dirty(page);
2520 return ret;
2522 EXPORT_SYMBOL(nobh_prepare_write);
2524 int nobh_commit_write(struct file *file, struct page *page,
2525 unsigned from, unsigned to)
2527 struct inode *inode = page->mapping->host;
2528 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2530 set_page_dirty(page);
2531 if (pos > inode->i_size) {
2532 i_size_write(inode, pos);
2533 mark_inode_dirty(inode);
2535 return 0;
2537 EXPORT_SYMBOL(nobh_commit_write);
2540 * nobh_writepage() - based on block_full_write_page() except
2541 * that it tries to operate without attaching bufferheads to
2542 * the page.
2544 int nobh_writepage(struct page *page, get_block_t *get_block,
2545 struct writeback_control *wbc)
2547 struct inode * const inode = page->mapping->host;
2548 loff_t i_size = i_size_read(inode);
2549 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2550 unsigned offset;
2551 void *kaddr;
2552 int ret;
2554 /* Is the page fully inside i_size? */
2555 if (page->index < end_index)
2556 goto out;
2558 /* Is the page fully outside i_size? (truncate in progress) */
2559 offset = i_size & (PAGE_CACHE_SIZE-1);
2560 if (page->index >= end_index+1 || !offset) {
2562 * The page may have dirty, unmapped buffers. For example,
2563 * they may have been added in ext3_writepage(). Make them
2564 * freeable here, so the page does not leak.
2566 #if 0
2567 /* Not really sure about this - do we need this ? */
2568 if (page->mapping->a_ops->invalidatepage)
2569 page->mapping->a_ops->invalidatepage(page, offset);
2570 #endif
2571 unlock_page(page);
2572 return 0; /* don't care */
2576 * The page straddles i_size. It must be zeroed out on each and every
2577 * writepage invocation because it may be mmapped. "A file is mapped
2578 * in multiples of the page size. For a file that is not a multiple of
2579 * the page size, the remaining memory is zeroed when mapped, and
2580 * writes to that region are not written out to the file."
2582 kaddr = kmap_atomic(page, KM_USER0);
2583 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2584 flush_dcache_page(page);
2585 kunmap_atomic(kaddr, KM_USER0);
2586 out:
2587 ret = mpage_writepage(page, get_block, wbc);
2588 if (ret == -EAGAIN)
2589 ret = __block_write_full_page(inode, page, get_block, wbc);
2590 return ret;
2592 EXPORT_SYMBOL(nobh_writepage);
2595 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2597 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2599 struct inode *inode = mapping->host;
2600 unsigned blocksize = 1 << inode->i_blkbits;
2601 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2602 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2603 unsigned to;
2604 struct page *page;
2605 const struct address_space_operations *a_ops = mapping->a_ops;
2606 char *kaddr;
2607 int ret = 0;
2609 if ((offset & (blocksize - 1)) == 0)
2610 goto out;
2612 ret = -ENOMEM;
2613 page = grab_cache_page(mapping, index);
2614 if (!page)
2615 goto out;
2617 to = (offset + blocksize) & ~(blocksize - 1);
2618 ret = a_ops->prepare_write(NULL, page, offset, to);
2619 if (ret == 0) {
2620 kaddr = kmap_atomic(page, KM_USER0);
2621 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2622 flush_dcache_page(page);
2623 kunmap_atomic(kaddr, KM_USER0);
2624 set_page_dirty(page);
2626 unlock_page(page);
2627 page_cache_release(page);
2628 out:
2629 return ret;
2631 EXPORT_SYMBOL(nobh_truncate_page);
2633 int block_truncate_page(struct address_space *mapping,
2634 loff_t from, get_block_t *get_block)
2636 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2637 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2638 unsigned blocksize;
2639 sector_t iblock;
2640 unsigned length, pos;
2641 struct inode *inode = mapping->host;
2642 struct page *page;
2643 struct buffer_head *bh;
2644 void *kaddr;
2645 int err;
2647 blocksize = 1 << inode->i_blkbits;
2648 length = offset & (blocksize - 1);
2650 /* Block boundary? Nothing to do */
2651 if (!length)
2652 return 0;
2654 length = blocksize - length;
2655 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2657 page = grab_cache_page(mapping, index);
2658 err = -ENOMEM;
2659 if (!page)
2660 goto out;
2662 if (!page_has_buffers(page))
2663 create_empty_buffers(page, blocksize, 0);
2665 /* Find the buffer that contains "offset" */
2666 bh = page_buffers(page);
2667 pos = blocksize;
2668 while (offset >= pos) {
2669 bh = bh->b_this_page;
2670 iblock++;
2671 pos += blocksize;
2674 err = 0;
2675 if (!buffer_mapped(bh)) {
2676 WARN_ON(bh->b_size != blocksize);
2677 err = get_block(inode, iblock, bh, 0);
2678 if (err)
2679 goto unlock;
2680 /* unmapped? It's a hole - nothing to do */
2681 if (!buffer_mapped(bh))
2682 goto unlock;
2685 /* Ok, it's mapped. Make sure it's up-to-date */
2686 if (PageUptodate(page))
2687 set_buffer_uptodate(bh);
2689 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2690 err = -EIO;
2691 ll_rw_block(READ, 1, &bh);
2692 wait_on_buffer(bh);
2693 /* Uhhuh. Read error. Complain and punt. */
2694 if (!buffer_uptodate(bh))
2695 goto unlock;
2698 kaddr = kmap_atomic(page, KM_USER0);
2699 memset(kaddr + offset, 0, length);
2700 flush_dcache_page(page);
2701 kunmap_atomic(kaddr, KM_USER0);
2703 mark_buffer_dirty(bh);
2704 err = 0;
2706 unlock:
2707 unlock_page(page);
2708 page_cache_release(page);
2709 out:
2710 return err;
2714 * The generic ->writepage function for buffer-backed address_spaces
2716 int block_write_full_page(struct page *page, get_block_t *get_block,
2717 struct writeback_control *wbc)
2719 struct inode * const inode = page->mapping->host;
2720 loff_t i_size = i_size_read(inode);
2721 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2722 unsigned offset;
2723 void *kaddr;
2725 /* Is the page fully inside i_size? */
2726 if (page->index < end_index)
2727 return __block_write_full_page(inode, page, get_block, wbc);
2729 /* Is the page fully outside i_size? (truncate in progress) */
2730 offset = i_size & (PAGE_CACHE_SIZE-1);
2731 if (page->index >= end_index+1 || !offset) {
2733 * The page may have dirty, unmapped buffers. For example,
2734 * they may have been added in ext3_writepage(). Make them
2735 * freeable here, so the page does not leak.
2737 do_invalidatepage(page, 0);
2738 unlock_page(page);
2739 return 0; /* don't care */
2743 * The page straddles i_size. It must be zeroed out on each and every
2744 * writepage invokation because it may be mmapped. "A file is mapped
2745 * in multiples of the page size. For a file that is not a multiple of
2746 * the page size, the remaining memory is zeroed when mapped, and
2747 * writes to that region are not written out to the file."
2749 kaddr = kmap_atomic(page, KM_USER0);
2750 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2751 flush_dcache_page(page);
2752 kunmap_atomic(kaddr, KM_USER0);
2753 return __block_write_full_page(inode, page, get_block, wbc);
2756 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2757 get_block_t *get_block)
2759 struct buffer_head tmp;
2760 struct inode *inode = mapping->host;
2761 tmp.b_state = 0;
2762 tmp.b_blocknr = 0;
2763 tmp.b_size = 1 << inode->i_blkbits;
2764 get_block(inode, block, &tmp, 0);
2765 return tmp.b_blocknr;
2768 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2770 struct buffer_head *bh = bio->bi_private;
2772 if (bio->bi_size)
2773 return 1;
2775 if (err == -EOPNOTSUPP) {
2776 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2777 set_bit(BH_Eopnotsupp, &bh->b_state);
2780 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2781 bio_put(bio);
2782 return 0;
2785 int submit_bh(int rw, struct buffer_head * bh)
2787 struct bio *bio;
2788 int ret = 0;
2790 BUG_ON(!buffer_locked(bh));
2791 BUG_ON(!buffer_mapped(bh));
2792 BUG_ON(!bh->b_end_io);
2794 if (buffer_ordered(bh) && (rw == WRITE))
2795 rw = WRITE_BARRIER;
2798 * Only clear out a write error when rewriting, should this
2799 * include WRITE_SYNC as well?
2801 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2802 clear_buffer_write_io_error(bh);
2805 * from here on down, it's all bio -- do the initial mapping,
2806 * submit_bio -> generic_make_request may further map this bio around
2808 bio = bio_alloc(GFP_NOIO, 1);
2810 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2811 bio->bi_bdev = bh->b_bdev;
2812 bio->bi_io_vec[0].bv_page = bh->b_page;
2813 bio->bi_io_vec[0].bv_len = bh->b_size;
2814 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2816 bio->bi_vcnt = 1;
2817 bio->bi_idx = 0;
2818 bio->bi_size = bh->b_size;
2820 bio->bi_end_io = end_bio_bh_io_sync;
2821 bio->bi_private = bh;
2823 bio_get(bio);
2824 submit_bio(rw, bio);
2826 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2827 ret = -EOPNOTSUPP;
2829 bio_put(bio);
2830 return ret;
2834 * ll_rw_block: low-level access to block devices (DEPRECATED)
2835 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2836 * @nr: number of &struct buffer_heads in the array
2837 * @bhs: array of pointers to &struct buffer_head
2839 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2840 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2841 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2842 * are sent to disk. The fourth %READA option is described in the documentation
2843 * for generic_make_request() which ll_rw_block() calls.
2845 * This function drops any buffer that it cannot get a lock on (with the
2846 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2847 * clean when doing a write request, and any buffer that appears to be
2848 * up-to-date when doing read request. Further it marks as clean buffers that
2849 * are processed for writing (the buffer cache won't assume that they are
2850 * actually clean until the buffer gets unlocked).
2852 * ll_rw_block sets b_end_io to simple completion handler that marks
2853 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2854 * any waiters.
2856 * All of the buffers must be for the same device, and must also be a
2857 * multiple of the current approved size for the device.
2859 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2861 int i;
2863 for (i = 0; i < nr; i++) {
2864 struct buffer_head *bh = bhs[i];
2866 if (rw == SWRITE)
2867 lock_buffer(bh);
2868 else if (test_set_buffer_locked(bh))
2869 continue;
2871 if (rw == WRITE || rw == SWRITE) {
2872 if (test_clear_buffer_dirty(bh)) {
2873 bh->b_end_io = end_buffer_write_sync;
2874 get_bh(bh);
2875 submit_bh(WRITE, bh);
2876 continue;
2878 } else {
2879 if (!buffer_uptodate(bh)) {
2880 bh->b_end_io = end_buffer_read_sync;
2881 get_bh(bh);
2882 submit_bh(rw, bh);
2883 continue;
2886 unlock_buffer(bh);
2891 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2892 * and then start new I/O and then wait upon it. The caller must have a ref on
2893 * the buffer_head.
2895 int sync_dirty_buffer(struct buffer_head *bh)
2897 int ret = 0;
2899 WARN_ON(atomic_read(&bh->b_count) < 1);
2900 lock_buffer(bh);
2901 if (test_clear_buffer_dirty(bh)) {
2902 get_bh(bh);
2903 bh->b_end_io = end_buffer_write_sync;
2904 ret = submit_bh(WRITE, bh);
2905 wait_on_buffer(bh);
2906 if (buffer_eopnotsupp(bh)) {
2907 clear_buffer_eopnotsupp(bh);
2908 ret = -EOPNOTSUPP;
2910 if (!ret && !buffer_uptodate(bh))
2911 ret = -EIO;
2912 } else {
2913 unlock_buffer(bh);
2915 return ret;
2919 * try_to_free_buffers() checks if all the buffers on this particular page
2920 * are unused, and releases them if so.
2922 * Exclusion against try_to_free_buffers may be obtained by either
2923 * locking the page or by holding its mapping's private_lock.
2925 * If the page is dirty but all the buffers are clean then we need to
2926 * be sure to mark the page clean as well. This is because the page
2927 * may be against a block device, and a later reattachment of buffers
2928 * to a dirty page will set *all* buffers dirty. Which would corrupt
2929 * filesystem data on the same device.
2931 * The same applies to regular filesystem pages: if all the buffers are
2932 * clean then we set the page clean and proceed. To do that, we require
2933 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2934 * private_lock.
2936 * try_to_free_buffers() is non-blocking.
2938 static inline int buffer_busy(struct buffer_head *bh)
2940 return atomic_read(&bh->b_count) |
2941 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2944 static int
2945 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2947 struct buffer_head *head = page_buffers(page);
2948 struct buffer_head *bh;
2950 bh = head;
2951 do {
2952 if (buffer_write_io_error(bh) && page->mapping)
2953 set_bit(AS_EIO, &page->mapping->flags);
2954 if (buffer_busy(bh))
2955 goto failed;
2956 bh = bh->b_this_page;
2957 } while (bh != head);
2959 do {
2960 struct buffer_head *next = bh->b_this_page;
2962 if (!list_empty(&bh->b_assoc_buffers))
2963 __remove_assoc_queue(bh);
2964 bh = next;
2965 } while (bh != head);
2966 *buffers_to_free = head;
2967 __clear_page_buffers(page);
2968 return 1;
2969 failed:
2970 return 0;
2973 int try_to_free_buffers(struct page *page)
2975 struct address_space * const mapping = page->mapping;
2976 struct buffer_head *buffers_to_free = NULL;
2977 int ret = 0;
2979 BUG_ON(!PageLocked(page));
2980 if (PageWriteback(page))
2981 return 0;
2983 if (mapping == NULL) { /* can this still happen? */
2984 ret = drop_buffers(page, &buffers_to_free);
2985 goto out;
2988 spin_lock(&mapping->private_lock);
2989 ret = drop_buffers(page, &buffers_to_free);
2990 if (ret) {
2992 * If the filesystem writes its buffers by hand (eg ext3)
2993 * then we can have clean buffers against a dirty page. We
2994 * clean the page here; otherwise later reattachment of buffers
2995 * could encounter a non-uptodate page, which is unresolvable.
2996 * This only applies in the rare case where try_to_free_buffers
2997 * succeeds but the page is not freed.
2999 clear_page_dirty(page);
3001 spin_unlock(&mapping->private_lock);
3002 out:
3003 if (buffers_to_free) {
3004 struct buffer_head *bh = buffers_to_free;
3006 do {
3007 struct buffer_head *next = bh->b_this_page;
3008 free_buffer_head(bh);
3009 bh = next;
3010 } while (bh != buffers_to_free);
3012 return ret;
3014 EXPORT_SYMBOL(try_to_free_buffers);
3016 void block_sync_page(struct page *page)
3018 struct address_space *mapping;
3020 smp_mb();
3021 mapping = page_mapping(page);
3022 if (mapping)
3023 blk_run_backing_dev(mapping->backing_dev_info, page);
3027 * There are no bdflush tunables left. But distributions are
3028 * still running obsolete flush daemons, so we terminate them here.
3030 * Use of bdflush() is deprecated and will be removed in a future kernel.
3031 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3033 asmlinkage long sys_bdflush(int func, long data)
3035 static int msg_count;
3037 if (!capable(CAP_SYS_ADMIN))
3038 return -EPERM;
3040 if (msg_count < 5) {
3041 msg_count++;
3042 printk(KERN_INFO
3043 "warning: process `%s' used the obsolete bdflush"
3044 " system call\n", current->comm);
3045 printk(KERN_INFO "Fix your initscripts?\n");
3048 if (func == 1)
3049 do_exit(0);
3050 return 0;
3054 * Buffer-head allocation
3056 static kmem_cache_t *bh_cachep;
3059 * Once the number of bh's in the machine exceeds this level, we start
3060 * stripping them in writeback.
3062 static int max_buffer_heads;
3064 int buffer_heads_over_limit;
3066 struct bh_accounting {
3067 int nr; /* Number of live bh's */
3068 int ratelimit; /* Limit cacheline bouncing */
3071 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3073 static void recalc_bh_state(void)
3075 int i;
3076 int tot = 0;
3078 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3079 return;
3080 __get_cpu_var(bh_accounting).ratelimit = 0;
3081 for_each_online_cpu(i)
3082 tot += per_cpu(bh_accounting, i).nr;
3083 buffer_heads_over_limit = (tot > max_buffer_heads);
3086 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3088 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3089 if (ret) {
3090 get_cpu_var(bh_accounting).nr++;
3091 recalc_bh_state();
3092 put_cpu_var(bh_accounting);
3094 return ret;
3096 EXPORT_SYMBOL(alloc_buffer_head);
3098 void free_buffer_head(struct buffer_head *bh)
3100 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3101 kmem_cache_free(bh_cachep, bh);
3102 get_cpu_var(bh_accounting).nr--;
3103 recalc_bh_state();
3104 put_cpu_var(bh_accounting);
3106 EXPORT_SYMBOL(free_buffer_head);
3108 static void
3109 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3111 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3112 SLAB_CTOR_CONSTRUCTOR) {
3113 struct buffer_head * bh = (struct buffer_head *)data;
3115 memset(bh, 0, sizeof(*bh));
3116 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3120 #ifdef CONFIG_HOTPLUG_CPU
3121 static void buffer_exit_cpu(int cpu)
3123 int i;
3124 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3126 for (i = 0; i < BH_LRU_SIZE; i++) {
3127 brelse(b->bhs[i]);
3128 b->bhs[i] = NULL;
3130 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3131 per_cpu(bh_accounting, cpu).nr = 0;
3132 put_cpu_var(bh_accounting);
3135 static int buffer_cpu_notify(struct notifier_block *self,
3136 unsigned long action, void *hcpu)
3138 if (action == CPU_DEAD)
3139 buffer_exit_cpu((unsigned long)hcpu);
3140 return NOTIFY_OK;
3142 #endif /* CONFIG_HOTPLUG_CPU */
3144 void __init buffer_init(void)
3146 int nrpages;
3148 bh_cachep = kmem_cache_create("buffer_head",
3149 sizeof(struct buffer_head), 0,
3150 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3151 SLAB_MEM_SPREAD),
3152 init_buffer_head,
3153 NULL);
3156 * Limit the bh occupancy to 10% of ZONE_NORMAL
3158 nrpages = (nr_free_buffer_pages() * 10) / 100;
3159 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3160 hotcpu_notifier(buffer_cpu_notify, 0);
3163 EXPORT_SYMBOL(__bforget);
3164 EXPORT_SYMBOL(__brelse);
3165 EXPORT_SYMBOL(__wait_on_buffer);
3166 EXPORT_SYMBOL(block_commit_write);
3167 EXPORT_SYMBOL(block_prepare_write);
3168 EXPORT_SYMBOL(block_read_full_page);
3169 EXPORT_SYMBOL(block_sync_page);
3170 EXPORT_SYMBOL(block_truncate_page);
3171 EXPORT_SYMBOL(block_write_full_page);
3172 EXPORT_SYMBOL(cont_prepare_write);
3173 EXPORT_SYMBOL(end_buffer_read_sync);
3174 EXPORT_SYMBOL(end_buffer_write_sync);
3175 EXPORT_SYMBOL(file_fsync);
3176 EXPORT_SYMBOL(fsync_bdev);
3177 EXPORT_SYMBOL(generic_block_bmap);
3178 EXPORT_SYMBOL(generic_commit_write);
3179 EXPORT_SYMBOL(generic_cont_expand);
3180 EXPORT_SYMBOL(generic_cont_expand_simple);
3181 EXPORT_SYMBOL(init_buffer);
3182 EXPORT_SYMBOL(invalidate_bdev);
3183 EXPORT_SYMBOL(ll_rw_block);
3184 EXPORT_SYMBOL(mark_buffer_dirty);
3185 EXPORT_SYMBOL(submit_bh);
3186 EXPORT_SYMBOL(sync_dirty_buffer);
3187 EXPORT_SYMBOL(unlock_buffer);