ALSA: hda - Add quirk for Dell Vostro 1220
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / korina.c
blob300c2249812d7a89df044d99aa2a6c15f5a874c0
1 /*
2 * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
4 * Copyright 2004 IDT Inc. (rischelp@idt.com)
5 * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6 * Copyright 2008 Florian Fainelli <florian@openwrt.org>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
14 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
16 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
19 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 * Writing to a DMA status register:
30 * When writing to the status register, you should mask the bit you have
31 * been testing the status register with. Both Tx and Rx DMA registers
32 * should stick to this procedure.
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/moduleparam.h>
38 #include <linux/sched.h>
39 #include <linux/ctype.h>
40 #include <linux/types.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/ioport.h>
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/delay.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/errno.h>
52 #include <linux/platform_device.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
57 #include <asm/bootinfo.h>
58 #include <asm/system.h>
59 #include <asm/bitops.h>
60 #include <asm/pgtable.h>
61 #include <asm/segment.h>
62 #include <asm/io.h>
63 #include <asm/dma.h>
65 #include <asm/mach-rc32434/rb.h>
66 #include <asm/mach-rc32434/rc32434.h>
67 #include <asm/mach-rc32434/eth.h>
68 #include <asm/mach-rc32434/dma_v.h>
70 #define DRV_NAME "korina"
71 #define DRV_VERSION "0.10"
72 #define DRV_RELDATE "04Mar2008"
74 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
75 ((dev)->dev_addr[1]))
76 #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
77 ((dev)->dev_addr[3] << 16) | \
78 ((dev)->dev_addr[4] << 8) | \
79 ((dev)->dev_addr[5]))
81 #define MII_CLOCK 1250000 /* no more than 2.5MHz */
83 /* the following must be powers of two */
84 #define KORINA_NUM_RDS 64 /* number of receive descriptors */
85 #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
87 /* KORINA_RBSIZE is the hardware's default maximum receive
88 * frame size in bytes. Having this hardcoded means that there
89 * is no support for MTU sizes greater than 1500. */
90 #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
91 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
92 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
93 #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
94 #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
96 #define TX_TIMEOUT (6000 * HZ / 1000)
98 enum chain_status { desc_filled, desc_empty };
99 #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
100 #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
101 #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
103 /* Information that need to be kept for each board. */
104 struct korina_private {
105 struct eth_regs *eth_regs;
106 struct dma_reg *rx_dma_regs;
107 struct dma_reg *tx_dma_regs;
108 struct dma_desc *td_ring; /* transmit descriptor ring */
109 struct dma_desc *rd_ring; /* receive descriptor ring */
111 struct sk_buff *tx_skb[KORINA_NUM_TDS];
112 struct sk_buff *rx_skb[KORINA_NUM_RDS];
114 int rx_next_done;
115 int rx_chain_head;
116 int rx_chain_tail;
117 enum chain_status rx_chain_status;
119 int tx_next_done;
120 int tx_chain_head;
121 int tx_chain_tail;
122 enum chain_status tx_chain_status;
123 int tx_count;
124 int tx_full;
126 int rx_irq;
127 int tx_irq;
128 int ovr_irq;
129 int und_irq;
131 spinlock_t lock; /* NIC xmit lock */
133 int dma_halt_cnt;
134 int dma_run_cnt;
135 struct napi_struct napi;
136 struct timer_list media_check_timer;
137 struct mii_if_info mii_if;
138 struct net_device *dev;
139 int phy_addr;
142 extern unsigned int idt_cpu_freq;
144 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
146 writel(0, &ch->dmandptr);
147 writel(dma_addr, &ch->dmadptr);
150 static inline void korina_abort_dma(struct net_device *dev,
151 struct dma_reg *ch)
153 if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
154 writel(0x10, &ch->dmac);
156 while (!(readl(&ch->dmas) & DMA_STAT_HALT))
157 dev->trans_start = jiffies;
159 writel(0, &ch->dmas);
162 writel(0, &ch->dmadptr);
163 writel(0, &ch->dmandptr);
166 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
168 writel(dma_addr, &ch->dmandptr);
171 static void korina_abort_tx(struct net_device *dev)
173 struct korina_private *lp = netdev_priv(dev);
175 korina_abort_dma(dev, lp->tx_dma_regs);
178 static void korina_abort_rx(struct net_device *dev)
180 struct korina_private *lp = netdev_priv(dev);
182 korina_abort_dma(dev, lp->rx_dma_regs);
185 static void korina_start_rx(struct korina_private *lp,
186 struct dma_desc *rd)
188 korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
191 static void korina_chain_rx(struct korina_private *lp,
192 struct dma_desc *rd)
194 korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
197 /* transmit packet */
198 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
200 struct korina_private *lp = netdev_priv(dev);
201 unsigned long flags;
202 u32 length;
203 u32 chain_prev, chain_next;
204 struct dma_desc *td;
206 spin_lock_irqsave(&lp->lock, flags);
208 td = &lp->td_ring[lp->tx_chain_tail];
210 /* stop queue when full, drop pkts if queue already full */
211 if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
212 lp->tx_full = 1;
214 if (lp->tx_count == (KORINA_NUM_TDS - 2))
215 netif_stop_queue(dev);
216 else {
217 dev->stats.tx_dropped++;
218 dev_kfree_skb_any(skb);
219 spin_unlock_irqrestore(&lp->lock, flags);
221 return NETDEV_TX_BUSY;
225 lp->tx_count++;
227 lp->tx_skb[lp->tx_chain_tail] = skb;
229 length = skb->len;
230 dma_cache_wback((u32)skb->data, skb->len);
232 /* Setup the transmit descriptor. */
233 dma_cache_inv((u32) td, sizeof(*td));
234 td->ca = CPHYSADDR(skb->data);
235 chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
236 chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
238 if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
239 if (lp->tx_chain_status == desc_empty) {
240 /* Update tail */
241 td->control = DMA_COUNT(length) |
242 DMA_DESC_COF | DMA_DESC_IOF;
243 /* Move tail */
244 lp->tx_chain_tail = chain_next;
245 /* Write to NDPTR */
246 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
247 &lp->tx_dma_regs->dmandptr);
248 /* Move head to tail */
249 lp->tx_chain_head = lp->tx_chain_tail;
250 } else {
251 /* Update tail */
252 td->control = DMA_COUNT(length) |
253 DMA_DESC_COF | DMA_DESC_IOF;
254 /* Link to prev */
255 lp->td_ring[chain_prev].control &=
256 ~DMA_DESC_COF;
257 /* Link to prev */
258 lp->td_ring[chain_prev].link = CPHYSADDR(td);
259 /* Move tail */
260 lp->tx_chain_tail = chain_next;
261 /* Write to NDPTR */
262 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
263 &(lp->tx_dma_regs->dmandptr));
264 /* Move head to tail */
265 lp->tx_chain_head = lp->tx_chain_tail;
266 lp->tx_chain_status = desc_empty;
268 } else {
269 if (lp->tx_chain_status == desc_empty) {
270 /* Update tail */
271 td->control = DMA_COUNT(length) |
272 DMA_DESC_COF | DMA_DESC_IOF;
273 /* Move tail */
274 lp->tx_chain_tail = chain_next;
275 lp->tx_chain_status = desc_filled;
276 } else {
277 /* Update tail */
278 td->control = DMA_COUNT(length) |
279 DMA_DESC_COF | DMA_DESC_IOF;
280 lp->td_ring[chain_prev].control &=
281 ~DMA_DESC_COF;
282 lp->td_ring[chain_prev].link = CPHYSADDR(td);
283 lp->tx_chain_tail = chain_next;
286 dma_cache_wback((u32) td, sizeof(*td));
288 dev->trans_start = jiffies;
289 spin_unlock_irqrestore(&lp->lock, flags);
291 return NETDEV_TX_OK;
294 static int mdio_read(struct net_device *dev, int mii_id, int reg)
296 struct korina_private *lp = netdev_priv(dev);
297 int ret;
299 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
301 writel(0, &lp->eth_regs->miimcfg);
302 writel(0, &lp->eth_regs->miimcmd);
303 writel(mii_id | reg, &lp->eth_regs->miimaddr);
304 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
306 ret = (int)(readl(&lp->eth_regs->miimrdd));
307 return ret;
310 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
312 struct korina_private *lp = netdev_priv(dev);
314 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
316 writel(0, &lp->eth_regs->miimcfg);
317 writel(1, &lp->eth_regs->miimcmd);
318 writel(mii_id | reg, &lp->eth_regs->miimaddr);
319 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
320 writel(val, &lp->eth_regs->miimwtd);
323 /* Ethernet Rx DMA interrupt */
324 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
326 struct net_device *dev = dev_id;
327 struct korina_private *lp = netdev_priv(dev);
328 u32 dmas, dmasm;
329 irqreturn_t retval;
331 dmas = readl(&lp->rx_dma_regs->dmas);
332 if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
333 dmasm = readl(&lp->rx_dma_regs->dmasm);
334 writel(dmasm | (DMA_STAT_DONE |
335 DMA_STAT_HALT | DMA_STAT_ERR),
336 &lp->rx_dma_regs->dmasm);
338 napi_schedule(&lp->napi);
340 if (dmas & DMA_STAT_ERR)
341 printk(KERN_ERR "%s: DMA error\n", dev->name);
343 retval = IRQ_HANDLED;
344 } else
345 retval = IRQ_NONE;
347 return retval;
350 static int korina_rx(struct net_device *dev, int limit)
352 struct korina_private *lp = netdev_priv(dev);
353 struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
354 struct sk_buff *skb, *skb_new;
355 u8 *pkt_buf;
356 u32 devcs, pkt_len, dmas;
357 int count;
359 dma_cache_inv((u32)rd, sizeof(*rd));
361 for (count = 0; count < limit; count++) {
362 skb = lp->rx_skb[lp->rx_next_done];
363 skb_new = NULL;
365 devcs = rd->devcs;
367 if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
368 break;
370 /* Update statistics counters */
371 if (devcs & ETH_RX_CRC)
372 dev->stats.rx_crc_errors++;
373 if (devcs & ETH_RX_LOR)
374 dev->stats.rx_length_errors++;
375 if (devcs & ETH_RX_LE)
376 dev->stats.rx_length_errors++;
377 if (devcs & ETH_RX_OVR)
378 dev->stats.rx_over_errors++;
379 if (devcs & ETH_RX_CV)
380 dev->stats.rx_frame_errors++;
381 if (devcs & ETH_RX_CES)
382 dev->stats.rx_length_errors++;
383 if (devcs & ETH_RX_MP)
384 dev->stats.multicast++;
386 if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
387 /* check that this is a whole packet
388 * WARNING: DMA_FD bit incorrectly set
389 * in Rc32434 (errata ref #077) */
390 dev->stats.rx_errors++;
391 dev->stats.rx_dropped++;
392 } else if ((devcs & ETH_RX_ROK)) {
393 pkt_len = RCVPKT_LENGTH(devcs);
395 /* must be the (first and) last
396 * descriptor then */
397 pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
399 /* invalidate the cache */
400 dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
402 /* Malloc up new buffer. */
403 skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
405 if (!skb_new)
406 break;
407 /* Do not count the CRC */
408 skb_put(skb, pkt_len - 4);
409 skb->protocol = eth_type_trans(skb, dev);
411 /* Pass the packet to upper layers */
412 netif_receive_skb(skb);
413 dev->stats.rx_packets++;
414 dev->stats.rx_bytes += pkt_len;
416 /* Update the mcast stats */
417 if (devcs & ETH_RX_MP)
418 dev->stats.multicast++;
420 lp->rx_skb[lp->rx_next_done] = skb_new;
423 rd->devcs = 0;
425 /* Restore descriptor's curr_addr */
426 if (skb_new)
427 rd->ca = CPHYSADDR(skb_new->data);
428 else
429 rd->ca = CPHYSADDR(skb->data);
431 rd->control = DMA_COUNT(KORINA_RBSIZE) |
432 DMA_DESC_COD | DMA_DESC_IOD;
433 lp->rd_ring[(lp->rx_next_done - 1) &
434 KORINA_RDS_MASK].control &=
435 ~DMA_DESC_COD;
437 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
438 dma_cache_wback((u32)rd, sizeof(*rd));
439 rd = &lp->rd_ring[lp->rx_next_done];
440 writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
443 dmas = readl(&lp->rx_dma_regs->dmas);
445 if (dmas & DMA_STAT_HALT) {
446 writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
447 &lp->rx_dma_regs->dmas);
449 lp->dma_halt_cnt++;
450 rd->devcs = 0;
451 skb = lp->rx_skb[lp->rx_next_done];
452 rd->ca = CPHYSADDR(skb->data);
453 dma_cache_wback((u32)rd, sizeof(*rd));
454 korina_chain_rx(lp, rd);
457 return count;
460 static int korina_poll(struct napi_struct *napi, int budget)
462 struct korina_private *lp =
463 container_of(napi, struct korina_private, napi);
464 struct net_device *dev = lp->dev;
465 int work_done;
467 work_done = korina_rx(dev, budget);
468 if (work_done < budget) {
469 napi_complete(napi);
471 writel(readl(&lp->rx_dma_regs->dmasm) &
472 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
473 &lp->rx_dma_regs->dmasm);
475 return work_done;
479 * Set or clear the multicast filter for this adaptor.
481 static void korina_multicast_list(struct net_device *dev)
483 struct korina_private *lp = netdev_priv(dev);
484 unsigned long flags;
485 struct dev_mc_list *dmi;
486 u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
487 int i;
489 /* Set promiscuous mode */
490 if (dev->flags & IFF_PROMISC)
491 recognise |= ETH_ARC_PRO;
493 else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
494 /* All multicast and broadcast */
495 recognise |= ETH_ARC_AM;
497 /* Build the hash table */
498 if (netdev_mc_count(dev) > 4) {
499 u16 hash_table[4];
500 u32 crc;
502 for (i = 0; i < 4; i++)
503 hash_table[i] = 0;
505 netdev_for_each_mc_addr(dmi, dev) {
506 char *addrs = dmi->dmi_addr;
508 if (!(*addrs & 1))
509 continue;
511 crc = ether_crc_le(6, addrs);
512 crc >>= 26;
513 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
515 /* Accept filtered multicast */
516 recognise |= ETH_ARC_AFM;
518 /* Fill the MAC hash tables with their values */
519 writel((u32)(hash_table[1] << 16 | hash_table[0]),
520 &lp->eth_regs->ethhash0);
521 writel((u32)(hash_table[3] << 16 | hash_table[2]),
522 &lp->eth_regs->ethhash1);
525 spin_lock_irqsave(&lp->lock, flags);
526 writel(recognise, &lp->eth_regs->etharc);
527 spin_unlock_irqrestore(&lp->lock, flags);
530 static void korina_tx(struct net_device *dev)
532 struct korina_private *lp = netdev_priv(dev);
533 struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
534 u32 devcs;
535 u32 dmas;
537 spin_lock(&lp->lock);
539 /* Process all desc that are done */
540 while (IS_DMA_FINISHED(td->control)) {
541 if (lp->tx_full == 1) {
542 netif_wake_queue(dev);
543 lp->tx_full = 0;
546 devcs = lp->td_ring[lp->tx_next_done].devcs;
547 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
548 (ETH_TX_FD | ETH_TX_LD)) {
549 dev->stats.tx_errors++;
550 dev->stats.tx_dropped++;
552 /* Should never happen */
553 printk(KERN_ERR "%s: split tx ignored\n",
554 dev->name);
555 } else if (devcs & ETH_TX_TOK) {
556 dev->stats.tx_packets++;
557 dev->stats.tx_bytes +=
558 lp->tx_skb[lp->tx_next_done]->len;
559 } else {
560 dev->stats.tx_errors++;
561 dev->stats.tx_dropped++;
563 /* Underflow */
564 if (devcs & ETH_TX_UND)
565 dev->stats.tx_fifo_errors++;
567 /* Oversized frame */
568 if (devcs & ETH_TX_OF)
569 dev->stats.tx_aborted_errors++;
571 /* Excessive deferrals */
572 if (devcs & ETH_TX_ED)
573 dev->stats.tx_carrier_errors++;
575 /* Collisions: medium busy */
576 if (devcs & ETH_TX_EC)
577 dev->stats.collisions++;
579 /* Late collision */
580 if (devcs & ETH_TX_LC)
581 dev->stats.tx_window_errors++;
584 /* We must always free the original skb */
585 if (lp->tx_skb[lp->tx_next_done]) {
586 dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
587 lp->tx_skb[lp->tx_next_done] = NULL;
590 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
591 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
592 lp->td_ring[lp->tx_next_done].link = 0;
593 lp->td_ring[lp->tx_next_done].ca = 0;
594 lp->tx_count--;
596 /* Go on to next transmission */
597 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
598 td = &lp->td_ring[lp->tx_next_done];
602 /* Clear the DMA status register */
603 dmas = readl(&lp->tx_dma_regs->dmas);
604 writel(~dmas, &lp->tx_dma_regs->dmas);
606 writel(readl(&lp->tx_dma_regs->dmasm) &
607 ~(DMA_STAT_FINI | DMA_STAT_ERR),
608 &lp->tx_dma_regs->dmasm);
610 spin_unlock(&lp->lock);
613 static irqreturn_t
614 korina_tx_dma_interrupt(int irq, void *dev_id)
616 struct net_device *dev = dev_id;
617 struct korina_private *lp = netdev_priv(dev);
618 u32 dmas, dmasm;
619 irqreturn_t retval;
621 dmas = readl(&lp->tx_dma_regs->dmas);
623 if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
624 dmasm = readl(&lp->tx_dma_regs->dmasm);
625 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
626 &lp->tx_dma_regs->dmasm);
628 korina_tx(dev);
630 if (lp->tx_chain_status == desc_filled &&
631 (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
632 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
633 &(lp->tx_dma_regs->dmandptr));
634 lp->tx_chain_status = desc_empty;
635 lp->tx_chain_head = lp->tx_chain_tail;
636 dev->trans_start = jiffies;
638 if (dmas & DMA_STAT_ERR)
639 printk(KERN_ERR "%s: DMA error\n", dev->name);
641 retval = IRQ_HANDLED;
642 } else
643 retval = IRQ_NONE;
645 return retval;
649 static void korina_check_media(struct net_device *dev, unsigned int init_media)
651 struct korina_private *lp = netdev_priv(dev);
653 mii_check_media(&lp->mii_if, 0, init_media);
655 if (lp->mii_if.full_duplex)
656 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
657 &lp->eth_regs->ethmac2);
658 else
659 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
660 &lp->eth_regs->ethmac2);
663 static void korina_poll_media(unsigned long data)
665 struct net_device *dev = (struct net_device *) data;
666 struct korina_private *lp = netdev_priv(dev);
668 korina_check_media(dev, 0);
669 mod_timer(&lp->media_check_timer, jiffies + HZ);
672 static void korina_set_carrier(struct mii_if_info *mii)
674 if (mii->force_media) {
675 /* autoneg is off: Link is always assumed to be up */
676 if (!netif_carrier_ok(mii->dev))
677 netif_carrier_on(mii->dev);
678 } else /* Let MMI library update carrier status */
679 korina_check_media(mii->dev, 0);
682 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
684 struct korina_private *lp = netdev_priv(dev);
685 struct mii_ioctl_data *data = if_mii(rq);
686 int rc;
688 if (!netif_running(dev))
689 return -EINVAL;
690 spin_lock_irq(&lp->lock);
691 rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
692 spin_unlock_irq(&lp->lock);
693 korina_set_carrier(&lp->mii_if);
695 return rc;
698 /* ethtool helpers */
699 static void netdev_get_drvinfo(struct net_device *dev,
700 struct ethtool_drvinfo *info)
702 struct korina_private *lp = netdev_priv(dev);
704 strcpy(info->driver, DRV_NAME);
705 strcpy(info->version, DRV_VERSION);
706 strcpy(info->bus_info, lp->dev->name);
709 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
711 struct korina_private *lp = netdev_priv(dev);
712 int rc;
714 spin_lock_irq(&lp->lock);
715 rc = mii_ethtool_gset(&lp->mii_if, cmd);
716 spin_unlock_irq(&lp->lock);
718 return rc;
721 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
723 struct korina_private *lp = netdev_priv(dev);
724 int rc;
726 spin_lock_irq(&lp->lock);
727 rc = mii_ethtool_sset(&lp->mii_if, cmd);
728 spin_unlock_irq(&lp->lock);
729 korina_set_carrier(&lp->mii_if);
731 return rc;
734 static u32 netdev_get_link(struct net_device *dev)
736 struct korina_private *lp = netdev_priv(dev);
738 return mii_link_ok(&lp->mii_if);
741 static const struct ethtool_ops netdev_ethtool_ops = {
742 .get_drvinfo = netdev_get_drvinfo,
743 .get_settings = netdev_get_settings,
744 .set_settings = netdev_set_settings,
745 .get_link = netdev_get_link,
748 static int korina_alloc_ring(struct net_device *dev)
750 struct korina_private *lp = netdev_priv(dev);
751 struct sk_buff *skb;
752 int i;
754 /* Initialize the transmit descriptors */
755 for (i = 0; i < KORINA_NUM_TDS; i++) {
756 lp->td_ring[i].control = DMA_DESC_IOF;
757 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
758 lp->td_ring[i].ca = 0;
759 lp->td_ring[i].link = 0;
761 lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
762 lp->tx_full = lp->tx_count = 0;
763 lp->tx_chain_status = desc_empty;
765 /* Initialize the receive descriptors */
766 for (i = 0; i < KORINA_NUM_RDS; i++) {
767 skb = dev_alloc_skb(KORINA_RBSIZE + 2);
768 if (!skb)
769 return -ENOMEM;
770 skb_reserve(skb, 2);
771 lp->rx_skb[i] = skb;
772 lp->rd_ring[i].control = DMA_DESC_IOD |
773 DMA_COUNT(KORINA_RBSIZE);
774 lp->rd_ring[i].devcs = 0;
775 lp->rd_ring[i].ca = CPHYSADDR(skb->data);
776 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
779 /* loop back receive descriptors, so the last
780 * descriptor points to the first one */
781 lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
782 lp->rd_ring[i - 1].control |= DMA_DESC_COD;
784 lp->rx_next_done = 0;
785 lp->rx_chain_head = 0;
786 lp->rx_chain_tail = 0;
787 lp->rx_chain_status = desc_empty;
789 return 0;
792 static void korina_free_ring(struct net_device *dev)
794 struct korina_private *lp = netdev_priv(dev);
795 int i;
797 for (i = 0; i < KORINA_NUM_RDS; i++) {
798 lp->rd_ring[i].control = 0;
799 if (lp->rx_skb[i])
800 dev_kfree_skb_any(lp->rx_skb[i]);
801 lp->rx_skb[i] = NULL;
804 for (i = 0; i < KORINA_NUM_TDS; i++) {
805 lp->td_ring[i].control = 0;
806 if (lp->tx_skb[i])
807 dev_kfree_skb_any(lp->tx_skb[i]);
808 lp->tx_skb[i] = NULL;
813 * Initialize the RC32434 ethernet controller.
815 static int korina_init(struct net_device *dev)
817 struct korina_private *lp = netdev_priv(dev);
819 /* Disable DMA */
820 korina_abort_tx(dev);
821 korina_abort_rx(dev);
823 /* reset ethernet logic */
824 writel(0, &lp->eth_regs->ethintfc);
825 while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
826 dev->trans_start = jiffies;
828 /* Enable Ethernet Interface */
829 writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
831 /* Allocate rings */
832 if (korina_alloc_ring(dev)) {
833 printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
834 korina_free_ring(dev);
835 return -ENOMEM;
838 writel(0, &lp->rx_dma_regs->dmas);
839 /* Start Rx DMA */
840 korina_start_rx(lp, &lp->rd_ring[0]);
842 writel(readl(&lp->tx_dma_regs->dmasm) &
843 ~(DMA_STAT_FINI | DMA_STAT_ERR),
844 &lp->tx_dma_regs->dmasm);
845 writel(readl(&lp->rx_dma_regs->dmasm) &
846 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
847 &lp->rx_dma_regs->dmasm);
849 /* Accept only packets destined for this Ethernet device address */
850 writel(ETH_ARC_AB, &lp->eth_regs->etharc);
852 /* Set all Ether station address registers to their initial values */
853 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
854 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
856 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
857 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
859 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
860 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
862 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
863 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
866 /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
867 writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
868 &lp->eth_regs->ethmac2);
870 /* Back to back inter-packet-gap */
871 writel(0x15, &lp->eth_regs->ethipgt);
872 /* Non - Back to back inter-packet-gap */
873 writel(0x12, &lp->eth_regs->ethipgr);
875 /* Management Clock Prescaler Divisor
876 * Clock independent setting */
877 writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
878 &lp->eth_regs->ethmcp);
880 /* don't transmit until fifo contains 48b */
881 writel(48, &lp->eth_regs->ethfifott);
883 writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
885 napi_enable(&lp->napi);
886 netif_start_queue(dev);
888 return 0;
892 * Restart the RC32434 ethernet controller.
893 * FIXME: check the return status where we call it
895 static int korina_restart(struct net_device *dev)
897 struct korina_private *lp = netdev_priv(dev);
898 int ret;
901 * Disable interrupts
903 disable_irq(lp->rx_irq);
904 disable_irq(lp->tx_irq);
905 disable_irq(lp->ovr_irq);
906 disable_irq(lp->und_irq);
908 writel(readl(&lp->tx_dma_regs->dmasm) |
909 DMA_STAT_FINI | DMA_STAT_ERR,
910 &lp->tx_dma_regs->dmasm);
911 writel(readl(&lp->rx_dma_regs->dmasm) |
912 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
913 &lp->rx_dma_regs->dmasm);
915 korina_free_ring(dev);
917 napi_disable(&lp->napi);
919 ret = korina_init(dev);
920 if (ret < 0) {
921 printk(KERN_ERR "%s: cannot restart device\n", dev->name);
922 return ret;
924 korina_multicast_list(dev);
926 enable_irq(lp->und_irq);
927 enable_irq(lp->ovr_irq);
928 enable_irq(lp->tx_irq);
929 enable_irq(lp->rx_irq);
931 return ret;
934 static void korina_clear_and_restart(struct net_device *dev, u32 value)
936 struct korina_private *lp = netdev_priv(dev);
938 netif_stop_queue(dev);
939 writel(value, &lp->eth_regs->ethintfc);
940 korina_restart(dev);
943 /* Ethernet Tx Underflow interrupt */
944 static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
946 struct net_device *dev = dev_id;
947 struct korina_private *lp = netdev_priv(dev);
948 unsigned int und;
950 spin_lock(&lp->lock);
952 und = readl(&lp->eth_regs->ethintfc);
954 if (und & ETH_INT_FC_UND)
955 korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
957 spin_unlock(&lp->lock);
959 return IRQ_HANDLED;
962 static void korina_tx_timeout(struct net_device *dev)
964 struct korina_private *lp = netdev_priv(dev);
965 unsigned long flags;
967 spin_lock_irqsave(&lp->lock, flags);
968 korina_restart(dev);
969 spin_unlock_irqrestore(&lp->lock, flags);
972 /* Ethernet Rx Overflow interrupt */
973 static irqreturn_t
974 korina_ovr_interrupt(int irq, void *dev_id)
976 struct net_device *dev = dev_id;
977 struct korina_private *lp = netdev_priv(dev);
978 unsigned int ovr;
980 spin_lock(&lp->lock);
981 ovr = readl(&lp->eth_regs->ethintfc);
983 if (ovr & ETH_INT_FC_OVR)
984 korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
986 spin_unlock(&lp->lock);
988 return IRQ_HANDLED;
991 #ifdef CONFIG_NET_POLL_CONTROLLER
992 static void korina_poll_controller(struct net_device *dev)
994 disable_irq(dev->irq);
995 korina_tx_dma_interrupt(dev->irq, dev);
996 enable_irq(dev->irq);
998 #endif
1000 static int korina_open(struct net_device *dev)
1002 struct korina_private *lp = netdev_priv(dev);
1003 int ret;
1005 /* Initialize */
1006 ret = korina_init(dev);
1007 if (ret < 0) {
1008 printk(KERN_ERR "%s: cannot open device\n", dev->name);
1009 goto out;
1012 /* Install the interrupt handler
1013 * that handles the Done Finished
1014 * Ovr and Und Events */
1015 ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
1016 IRQF_DISABLED, "Korina ethernet Rx", dev);
1017 if (ret < 0) {
1018 printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1019 dev->name, lp->rx_irq);
1020 goto err_release;
1022 ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1023 IRQF_DISABLED, "Korina ethernet Tx", dev);
1024 if (ret < 0) {
1025 printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1026 dev->name, lp->tx_irq);
1027 goto err_free_rx_irq;
1030 /* Install handler for overrun error. */
1031 ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
1032 IRQF_DISABLED, "Ethernet Overflow", dev);
1033 if (ret < 0) {
1034 printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
1035 dev->name, lp->ovr_irq);
1036 goto err_free_tx_irq;
1039 /* Install handler for underflow error. */
1040 ret = request_irq(lp->und_irq, korina_und_interrupt,
1041 IRQF_DISABLED, "Ethernet Underflow", dev);
1042 if (ret < 0) {
1043 printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
1044 dev->name, lp->und_irq);
1045 goto err_free_ovr_irq;
1047 mod_timer(&lp->media_check_timer, jiffies + 1);
1048 out:
1049 return ret;
1051 err_free_ovr_irq:
1052 free_irq(lp->ovr_irq, dev);
1053 err_free_tx_irq:
1054 free_irq(lp->tx_irq, dev);
1055 err_free_rx_irq:
1056 free_irq(lp->rx_irq, dev);
1057 err_release:
1058 korina_free_ring(dev);
1059 goto out;
1062 static int korina_close(struct net_device *dev)
1064 struct korina_private *lp = netdev_priv(dev);
1065 u32 tmp;
1067 del_timer(&lp->media_check_timer);
1069 /* Disable interrupts */
1070 disable_irq(lp->rx_irq);
1071 disable_irq(lp->tx_irq);
1072 disable_irq(lp->ovr_irq);
1073 disable_irq(lp->und_irq);
1075 korina_abort_tx(dev);
1076 tmp = readl(&lp->tx_dma_regs->dmasm);
1077 tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1078 writel(tmp, &lp->tx_dma_regs->dmasm);
1080 korina_abort_rx(dev);
1081 tmp = readl(&lp->rx_dma_regs->dmasm);
1082 tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1083 writel(tmp, &lp->rx_dma_regs->dmasm);
1085 korina_free_ring(dev);
1087 napi_disable(&lp->napi);
1089 free_irq(lp->rx_irq, dev);
1090 free_irq(lp->tx_irq, dev);
1091 free_irq(lp->ovr_irq, dev);
1092 free_irq(lp->und_irq, dev);
1094 return 0;
1097 static const struct net_device_ops korina_netdev_ops = {
1098 .ndo_open = korina_open,
1099 .ndo_stop = korina_close,
1100 .ndo_start_xmit = korina_send_packet,
1101 .ndo_set_multicast_list = korina_multicast_list,
1102 .ndo_tx_timeout = korina_tx_timeout,
1103 .ndo_do_ioctl = korina_ioctl,
1104 .ndo_change_mtu = eth_change_mtu,
1105 .ndo_validate_addr = eth_validate_addr,
1106 .ndo_set_mac_address = eth_mac_addr,
1107 #ifdef CONFIG_NET_POLL_CONTROLLER
1108 .ndo_poll_controller = korina_poll_controller,
1109 #endif
1112 static int korina_probe(struct platform_device *pdev)
1114 struct korina_device *bif = platform_get_drvdata(pdev);
1115 struct korina_private *lp;
1116 struct net_device *dev;
1117 struct resource *r;
1118 int rc;
1120 dev = alloc_etherdev(sizeof(struct korina_private));
1121 if (!dev) {
1122 printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
1123 return -ENOMEM;
1125 SET_NETDEV_DEV(dev, &pdev->dev);
1126 lp = netdev_priv(dev);
1128 bif->dev = dev;
1129 memcpy(dev->dev_addr, bif->mac, 6);
1131 lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1132 lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1133 lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
1134 lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
1136 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1137 dev->base_addr = r->start;
1138 lp->eth_regs = ioremap_nocache(r->start, r->end - r->start);
1139 if (!lp->eth_regs) {
1140 printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1141 rc = -ENXIO;
1142 goto probe_err_out;
1145 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1146 lp->rx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
1147 if (!lp->rx_dma_regs) {
1148 printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1149 rc = -ENXIO;
1150 goto probe_err_dma_rx;
1153 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1154 lp->tx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
1155 if (!lp->tx_dma_regs) {
1156 printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1157 rc = -ENXIO;
1158 goto probe_err_dma_tx;
1161 lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
1162 if (!lp->td_ring) {
1163 printk(KERN_ERR DRV_NAME ": cannot allocate descriptors\n");
1164 rc = -ENXIO;
1165 goto probe_err_td_ring;
1168 dma_cache_inv((unsigned long)(lp->td_ring),
1169 TD_RING_SIZE + RD_RING_SIZE);
1171 /* now convert TD_RING pointer to KSEG1 */
1172 lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1173 lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1175 spin_lock_init(&lp->lock);
1176 /* just use the rx dma irq */
1177 dev->irq = lp->rx_irq;
1178 lp->dev = dev;
1180 dev->netdev_ops = &korina_netdev_ops;
1181 dev->ethtool_ops = &netdev_ethtool_ops;
1182 dev->watchdog_timeo = TX_TIMEOUT;
1183 netif_napi_add(dev, &lp->napi, korina_poll, 64);
1185 lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1186 lp->mii_if.dev = dev;
1187 lp->mii_if.mdio_read = mdio_read;
1188 lp->mii_if.mdio_write = mdio_write;
1189 lp->mii_if.phy_id = lp->phy_addr;
1190 lp->mii_if.phy_id_mask = 0x1f;
1191 lp->mii_if.reg_num_mask = 0x1f;
1193 rc = register_netdev(dev);
1194 if (rc < 0) {
1195 printk(KERN_ERR DRV_NAME
1196 ": cannot register net device: %d\n", rc);
1197 goto probe_err_register;
1199 setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
1201 printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1202 dev->name);
1203 out:
1204 return rc;
1206 probe_err_register:
1207 kfree(lp->td_ring);
1208 probe_err_td_ring:
1209 iounmap(lp->tx_dma_regs);
1210 probe_err_dma_tx:
1211 iounmap(lp->rx_dma_regs);
1212 probe_err_dma_rx:
1213 iounmap(lp->eth_regs);
1214 probe_err_out:
1215 free_netdev(dev);
1216 goto out;
1219 static int korina_remove(struct platform_device *pdev)
1221 struct korina_device *bif = platform_get_drvdata(pdev);
1222 struct korina_private *lp = netdev_priv(bif->dev);
1224 iounmap(lp->eth_regs);
1225 iounmap(lp->rx_dma_regs);
1226 iounmap(lp->tx_dma_regs);
1228 platform_set_drvdata(pdev, NULL);
1229 unregister_netdev(bif->dev);
1230 free_netdev(bif->dev);
1232 return 0;
1235 static struct platform_driver korina_driver = {
1236 .driver.name = "korina",
1237 .probe = korina_probe,
1238 .remove = korina_remove,
1241 static int __init korina_init_module(void)
1243 return platform_driver_register(&korina_driver);
1246 static void korina_cleanup_module(void)
1248 return platform_driver_unregister(&korina_driver);
1251 module_init(korina_init_module);
1252 module_exit(korina_cleanup_module);
1254 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1255 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1256 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1257 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1258 MODULE_LICENSE("GPL");