ALSA: hda - Add quirk for Dell Vostro 1220
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / dma / iop-adma.c
blob1ebc801678b0159e2d7a7017036234160a9493be
1 /*
2 * offload engine driver for the Intel Xscale series of i/o processors
3 * Copyright © 2006, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * This driver supports the asynchrounous DMA copy and RAID engines available
22 * on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/spinlock.h>
30 #include <linux/interrupt.h>
31 #include <linux/platform_device.h>
32 #include <linux/memory.h>
33 #include <linux/ioport.h>
34 #include <linux/raid/pq.h>
35 #include <linux/slab.h>
37 #include <mach/adma.h>
39 #define to_iop_adma_chan(chan) container_of(chan, struct iop_adma_chan, common)
40 #define to_iop_adma_device(dev) \
41 container_of(dev, struct iop_adma_device, common)
42 #define tx_to_iop_adma_slot(tx) \
43 container_of(tx, struct iop_adma_desc_slot, async_tx)
45 /**
46 * iop_adma_free_slots - flags descriptor slots for reuse
47 * @slot: Slot to free
48 * Caller must hold &iop_chan->lock while calling this function
50 static void iop_adma_free_slots(struct iop_adma_desc_slot *slot)
52 int stride = slot->slots_per_op;
54 while (stride--) {
55 slot->slots_per_op = 0;
56 slot = list_entry(slot->slot_node.next,
57 struct iop_adma_desc_slot,
58 slot_node);
62 static void
63 iop_desc_unmap(struct iop_adma_chan *iop_chan, struct iop_adma_desc_slot *desc)
65 struct dma_async_tx_descriptor *tx = &desc->async_tx;
66 struct iop_adma_desc_slot *unmap = desc->group_head;
67 struct device *dev = &iop_chan->device->pdev->dev;
68 u32 len = unmap->unmap_len;
69 enum dma_ctrl_flags flags = tx->flags;
70 u32 src_cnt;
71 dma_addr_t addr;
72 dma_addr_t dest;
74 src_cnt = unmap->unmap_src_cnt;
75 dest = iop_desc_get_dest_addr(unmap, iop_chan);
76 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
77 enum dma_data_direction dir;
79 if (src_cnt > 1) /* is xor? */
80 dir = DMA_BIDIRECTIONAL;
81 else
82 dir = DMA_FROM_DEVICE;
84 dma_unmap_page(dev, dest, len, dir);
87 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
88 while (src_cnt--) {
89 addr = iop_desc_get_src_addr(unmap, iop_chan, src_cnt);
90 if (addr == dest)
91 continue;
92 dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
95 desc->group_head = NULL;
98 static void
99 iop_desc_unmap_pq(struct iop_adma_chan *iop_chan, struct iop_adma_desc_slot *desc)
101 struct dma_async_tx_descriptor *tx = &desc->async_tx;
102 struct iop_adma_desc_slot *unmap = desc->group_head;
103 struct device *dev = &iop_chan->device->pdev->dev;
104 u32 len = unmap->unmap_len;
105 enum dma_ctrl_flags flags = tx->flags;
106 u32 src_cnt = unmap->unmap_src_cnt;
107 dma_addr_t pdest = iop_desc_get_dest_addr(unmap, iop_chan);
108 dma_addr_t qdest = iop_desc_get_qdest_addr(unmap, iop_chan);
109 int i;
111 if (tx->flags & DMA_PREP_CONTINUE)
112 src_cnt -= 3;
114 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP) && !desc->pq_check_result) {
115 dma_unmap_page(dev, pdest, len, DMA_BIDIRECTIONAL);
116 dma_unmap_page(dev, qdest, len, DMA_BIDIRECTIONAL);
119 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
120 dma_addr_t addr;
122 for (i = 0; i < src_cnt; i++) {
123 addr = iop_desc_get_src_addr(unmap, iop_chan, i);
124 dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
126 if (desc->pq_check_result) {
127 dma_unmap_page(dev, pdest, len, DMA_TO_DEVICE);
128 dma_unmap_page(dev, qdest, len, DMA_TO_DEVICE);
132 desc->group_head = NULL;
136 static dma_cookie_t
137 iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot *desc,
138 struct iop_adma_chan *iop_chan, dma_cookie_t cookie)
140 struct dma_async_tx_descriptor *tx = &desc->async_tx;
142 BUG_ON(tx->cookie < 0);
143 if (tx->cookie > 0) {
144 cookie = tx->cookie;
145 tx->cookie = 0;
147 /* call the callback (must not sleep or submit new
148 * operations to this channel)
150 if (tx->callback)
151 tx->callback(tx->callback_param);
153 /* unmap dma addresses
154 * (unmap_single vs unmap_page?)
156 if (desc->group_head && desc->unmap_len) {
157 if (iop_desc_is_pq(desc))
158 iop_desc_unmap_pq(iop_chan, desc);
159 else
160 iop_desc_unmap(iop_chan, desc);
164 /* run dependent operations */
165 dma_run_dependencies(tx);
167 return cookie;
170 static int
171 iop_adma_clean_slot(struct iop_adma_desc_slot *desc,
172 struct iop_adma_chan *iop_chan)
174 /* the client is allowed to attach dependent operations
175 * until 'ack' is set
177 if (!async_tx_test_ack(&desc->async_tx))
178 return 0;
180 /* leave the last descriptor in the chain
181 * so we can append to it
183 if (desc->chain_node.next == &iop_chan->chain)
184 return 1;
186 dev_dbg(iop_chan->device->common.dev,
187 "\tfree slot: %d slots_per_op: %d\n",
188 desc->idx, desc->slots_per_op);
190 list_del(&desc->chain_node);
191 iop_adma_free_slots(desc);
193 return 0;
196 static void __iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
198 struct iop_adma_desc_slot *iter, *_iter, *grp_start = NULL;
199 dma_cookie_t cookie = 0;
200 u32 current_desc = iop_chan_get_current_descriptor(iop_chan);
201 int busy = iop_chan_is_busy(iop_chan);
202 int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
204 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
205 /* free completed slots from the chain starting with
206 * the oldest descriptor
208 list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
209 chain_node) {
210 pr_debug("\tcookie: %d slot: %d busy: %d "
211 "this_desc: %#x next_desc: %#x ack: %d\n",
212 iter->async_tx.cookie, iter->idx, busy,
213 iter->async_tx.phys, iop_desc_get_next_desc(iter),
214 async_tx_test_ack(&iter->async_tx));
215 prefetch(_iter);
216 prefetch(&_iter->async_tx);
218 /* do not advance past the current descriptor loaded into the
219 * hardware channel, subsequent descriptors are either in
220 * process or have not been submitted
222 if (seen_current)
223 break;
225 /* stop the search if we reach the current descriptor and the
226 * channel is busy, or if it appears that the current descriptor
227 * needs to be re-read (i.e. has been appended to)
229 if (iter->async_tx.phys == current_desc) {
230 BUG_ON(seen_current++);
231 if (busy || iop_desc_get_next_desc(iter))
232 break;
235 /* detect the start of a group transaction */
236 if (!slot_cnt && !slots_per_op) {
237 slot_cnt = iter->slot_cnt;
238 slots_per_op = iter->slots_per_op;
239 if (slot_cnt <= slots_per_op) {
240 slot_cnt = 0;
241 slots_per_op = 0;
245 if (slot_cnt) {
246 pr_debug("\tgroup++\n");
247 if (!grp_start)
248 grp_start = iter;
249 slot_cnt -= slots_per_op;
252 /* all the members of a group are complete */
253 if (slots_per_op != 0 && slot_cnt == 0) {
254 struct iop_adma_desc_slot *grp_iter, *_grp_iter;
255 int end_of_chain = 0;
256 pr_debug("\tgroup end\n");
258 /* collect the total results */
259 if (grp_start->xor_check_result) {
260 u32 zero_sum_result = 0;
261 slot_cnt = grp_start->slot_cnt;
262 grp_iter = grp_start;
264 list_for_each_entry_from(grp_iter,
265 &iop_chan->chain, chain_node) {
266 zero_sum_result |=
267 iop_desc_get_zero_result(grp_iter);
268 pr_debug("\titer%d result: %d\n",
269 grp_iter->idx, zero_sum_result);
270 slot_cnt -= slots_per_op;
271 if (slot_cnt == 0)
272 break;
274 pr_debug("\tgrp_start->xor_check_result: %p\n",
275 grp_start->xor_check_result);
276 *grp_start->xor_check_result = zero_sum_result;
279 /* clean up the group */
280 slot_cnt = grp_start->slot_cnt;
281 grp_iter = grp_start;
282 list_for_each_entry_safe_from(grp_iter, _grp_iter,
283 &iop_chan->chain, chain_node) {
284 cookie = iop_adma_run_tx_complete_actions(
285 grp_iter, iop_chan, cookie);
287 slot_cnt -= slots_per_op;
288 end_of_chain = iop_adma_clean_slot(grp_iter,
289 iop_chan);
291 if (slot_cnt == 0 || end_of_chain)
292 break;
295 /* the group should be complete at this point */
296 BUG_ON(slot_cnt);
298 slots_per_op = 0;
299 grp_start = NULL;
300 if (end_of_chain)
301 break;
302 else
303 continue;
304 } else if (slots_per_op) /* wait for group completion */
305 continue;
307 /* write back zero sum results (single descriptor case) */
308 if (iter->xor_check_result && iter->async_tx.cookie)
309 *iter->xor_check_result =
310 iop_desc_get_zero_result(iter);
312 cookie = iop_adma_run_tx_complete_actions(
313 iter, iop_chan, cookie);
315 if (iop_adma_clean_slot(iter, iop_chan))
316 break;
319 if (cookie > 0) {
320 iop_chan->completed_cookie = cookie;
321 pr_debug("\tcompleted cookie %d\n", cookie);
325 static void
326 iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
328 spin_lock_bh(&iop_chan->lock);
329 __iop_adma_slot_cleanup(iop_chan);
330 spin_unlock_bh(&iop_chan->lock);
333 static void iop_adma_tasklet(unsigned long data)
335 struct iop_adma_chan *iop_chan = (struct iop_adma_chan *) data;
337 /* lockdep will flag depedency submissions as potentially
338 * recursive locking, this is not the case as a dependency
339 * submission will never recurse a channels submit routine.
340 * There are checks in async_tx.c to prevent this.
342 spin_lock_nested(&iop_chan->lock, SINGLE_DEPTH_NESTING);
343 __iop_adma_slot_cleanup(iop_chan);
344 spin_unlock(&iop_chan->lock);
347 static struct iop_adma_desc_slot *
348 iop_adma_alloc_slots(struct iop_adma_chan *iop_chan, int num_slots,
349 int slots_per_op)
351 struct iop_adma_desc_slot *iter, *_iter, *alloc_start = NULL;
352 LIST_HEAD(chain);
353 int slots_found, retry = 0;
355 /* start search from the last allocated descrtiptor
356 * if a contiguous allocation can not be found start searching
357 * from the beginning of the list
359 retry:
360 slots_found = 0;
361 if (retry == 0)
362 iter = iop_chan->last_used;
363 else
364 iter = list_entry(&iop_chan->all_slots,
365 struct iop_adma_desc_slot,
366 slot_node);
368 list_for_each_entry_safe_continue(
369 iter, _iter, &iop_chan->all_slots, slot_node) {
370 prefetch(_iter);
371 prefetch(&_iter->async_tx);
372 if (iter->slots_per_op) {
373 /* give up after finding the first busy slot
374 * on the second pass through the list
376 if (retry)
377 break;
379 slots_found = 0;
380 continue;
383 /* start the allocation if the slot is correctly aligned */
384 if (!slots_found++) {
385 if (iop_desc_is_aligned(iter, slots_per_op))
386 alloc_start = iter;
387 else {
388 slots_found = 0;
389 continue;
393 if (slots_found == num_slots) {
394 struct iop_adma_desc_slot *alloc_tail = NULL;
395 struct iop_adma_desc_slot *last_used = NULL;
396 iter = alloc_start;
397 while (num_slots) {
398 int i;
399 dev_dbg(iop_chan->device->common.dev,
400 "allocated slot: %d "
401 "(desc %p phys: %#x) slots_per_op %d\n",
402 iter->idx, iter->hw_desc,
403 iter->async_tx.phys, slots_per_op);
405 /* pre-ack all but the last descriptor */
406 if (num_slots != slots_per_op)
407 async_tx_ack(&iter->async_tx);
409 list_add_tail(&iter->chain_node, &chain);
410 alloc_tail = iter;
411 iter->async_tx.cookie = 0;
412 iter->slot_cnt = num_slots;
413 iter->xor_check_result = NULL;
414 for (i = 0; i < slots_per_op; i++) {
415 iter->slots_per_op = slots_per_op - i;
416 last_used = iter;
417 iter = list_entry(iter->slot_node.next,
418 struct iop_adma_desc_slot,
419 slot_node);
421 num_slots -= slots_per_op;
423 alloc_tail->group_head = alloc_start;
424 alloc_tail->async_tx.cookie = -EBUSY;
425 list_splice(&chain, &alloc_tail->tx_list);
426 iop_chan->last_used = last_used;
427 iop_desc_clear_next_desc(alloc_start);
428 iop_desc_clear_next_desc(alloc_tail);
429 return alloc_tail;
432 if (!retry++)
433 goto retry;
435 /* perform direct reclaim if the allocation fails */
436 __iop_adma_slot_cleanup(iop_chan);
438 return NULL;
441 static dma_cookie_t
442 iop_desc_assign_cookie(struct iop_adma_chan *iop_chan,
443 struct iop_adma_desc_slot *desc)
445 dma_cookie_t cookie = iop_chan->common.cookie;
446 cookie++;
447 if (cookie < 0)
448 cookie = 1;
449 iop_chan->common.cookie = desc->async_tx.cookie = cookie;
450 return cookie;
453 static void iop_adma_check_threshold(struct iop_adma_chan *iop_chan)
455 dev_dbg(iop_chan->device->common.dev, "pending: %d\n",
456 iop_chan->pending);
458 if (iop_chan->pending >= IOP_ADMA_THRESHOLD) {
459 iop_chan->pending = 0;
460 iop_chan_append(iop_chan);
464 static dma_cookie_t
465 iop_adma_tx_submit(struct dma_async_tx_descriptor *tx)
467 struct iop_adma_desc_slot *sw_desc = tx_to_iop_adma_slot(tx);
468 struct iop_adma_chan *iop_chan = to_iop_adma_chan(tx->chan);
469 struct iop_adma_desc_slot *grp_start, *old_chain_tail;
470 int slot_cnt;
471 int slots_per_op;
472 dma_cookie_t cookie;
473 dma_addr_t next_dma;
475 grp_start = sw_desc->group_head;
476 slot_cnt = grp_start->slot_cnt;
477 slots_per_op = grp_start->slots_per_op;
479 spin_lock_bh(&iop_chan->lock);
480 cookie = iop_desc_assign_cookie(iop_chan, sw_desc);
482 old_chain_tail = list_entry(iop_chan->chain.prev,
483 struct iop_adma_desc_slot, chain_node);
484 list_splice_init(&sw_desc->tx_list,
485 &old_chain_tail->chain_node);
487 /* fix up the hardware chain */
488 next_dma = grp_start->async_tx.phys;
489 iop_desc_set_next_desc(old_chain_tail, next_dma);
490 BUG_ON(iop_desc_get_next_desc(old_chain_tail) != next_dma); /* flush */
492 /* check for pre-chained descriptors */
493 iop_paranoia(iop_desc_get_next_desc(sw_desc));
495 /* increment the pending count by the number of slots
496 * memcpy operations have a 1:1 (slot:operation) relation
497 * other operations are heavier and will pop the threshold
498 * more often.
500 iop_chan->pending += slot_cnt;
501 iop_adma_check_threshold(iop_chan);
502 spin_unlock_bh(&iop_chan->lock);
504 dev_dbg(iop_chan->device->common.dev, "%s cookie: %d slot: %d\n",
505 __func__, sw_desc->async_tx.cookie, sw_desc->idx);
507 return cookie;
510 static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan);
511 static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan);
514 * iop_adma_alloc_chan_resources - returns the number of allocated descriptors
515 * @chan - allocate descriptor resources for this channel
516 * @client - current client requesting the channel be ready for requests
518 * Note: We keep the slots for 1 operation on iop_chan->chain at all times. To
519 * avoid deadlock, via async_xor, num_descs_in_pool must at a minimum be
520 * greater than 2x the number slots needed to satisfy a device->max_xor
521 * request.
522 * */
523 static int iop_adma_alloc_chan_resources(struct dma_chan *chan)
525 char *hw_desc;
526 int idx;
527 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
528 struct iop_adma_desc_slot *slot = NULL;
529 int init = iop_chan->slots_allocated ? 0 : 1;
530 struct iop_adma_platform_data *plat_data =
531 iop_chan->device->pdev->dev.platform_data;
532 int num_descs_in_pool = plat_data->pool_size/IOP_ADMA_SLOT_SIZE;
534 /* Allocate descriptor slots */
535 do {
536 idx = iop_chan->slots_allocated;
537 if (idx == num_descs_in_pool)
538 break;
540 slot = kzalloc(sizeof(*slot), GFP_KERNEL);
541 if (!slot) {
542 printk(KERN_INFO "IOP ADMA Channel only initialized"
543 " %d descriptor slots", idx);
544 break;
546 hw_desc = (char *) iop_chan->device->dma_desc_pool_virt;
547 slot->hw_desc = (void *) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
549 dma_async_tx_descriptor_init(&slot->async_tx, chan);
550 slot->async_tx.tx_submit = iop_adma_tx_submit;
551 INIT_LIST_HEAD(&slot->tx_list);
552 INIT_LIST_HEAD(&slot->chain_node);
553 INIT_LIST_HEAD(&slot->slot_node);
554 hw_desc = (char *) iop_chan->device->dma_desc_pool;
555 slot->async_tx.phys =
556 (dma_addr_t) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
557 slot->idx = idx;
559 spin_lock_bh(&iop_chan->lock);
560 iop_chan->slots_allocated++;
561 list_add_tail(&slot->slot_node, &iop_chan->all_slots);
562 spin_unlock_bh(&iop_chan->lock);
563 } while (iop_chan->slots_allocated < num_descs_in_pool);
565 if (idx && !iop_chan->last_used)
566 iop_chan->last_used = list_entry(iop_chan->all_slots.next,
567 struct iop_adma_desc_slot,
568 slot_node);
570 dev_dbg(iop_chan->device->common.dev,
571 "allocated %d descriptor slots last_used: %p\n",
572 iop_chan->slots_allocated, iop_chan->last_used);
574 /* initialize the channel and the chain with a null operation */
575 if (init) {
576 if (dma_has_cap(DMA_MEMCPY,
577 iop_chan->device->common.cap_mask))
578 iop_chan_start_null_memcpy(iop_chan);
579 else if (dma_has_cap(DMA_XOR,
580 iop_chan->device->common.cap_mask))
581 iop_chan_start_null_xor(iop_chan);
582 else
583 BUG();
586 return (idx > 0) ? idx : -ENOMEM;
589 static struct dma_async_tx_descriptor *
590 iop_adma_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
592 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
593 struct iop_adma_desc_slot *sw_desc, *grp_start;
594 int slot_cnt, slots_per_op;
596 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
598 spin_lock_bh(&iop_chan->lock);
599 slot_cnt = iop_chan_interrupt_slot_count(&slots_per_op, iop_chan);
600 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
601 if (sw_desc) {
602 grp_start = sw_desc->group_head;
603 iop_desc_init_interrupt(grp_start, iop_chan);
604 grp_start->unmap_len = 0;
605 sw_desc->async_tx.flags = flags;
607 spin_unlock_bh(&iop_chan->lock);
609 return sw_desc ? &sw_desc->async_tx : NULL;
612 static struct dma_async_tx_descriptor *
613 iop_adma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
614 dma_addr_t dma_src, size_t len, unsigned long flags)
616 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
617 struct iop_adma_desc_slot *sw_desc, *grp_start;
618 int slot_cnt, slots_per_op;
620 if (unlikely(!len))
621 return NULL;
622 BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT));
624 dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
625 __func__, len);
627 spin_lock_bh(&iop_chan->lock);
628 slot_cnt = iop_chan_memcpy_slot_count(len, &slots_per_op);
629 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
630 if (sw_desc) {
631 grp_start = sw_desc->group_head;
632 iop_desc_init_memcpy(grp_start, flags);
633 iop_desc_set_byte_count(grp_start, iop_chan, len);
634 iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
635 iop_desc_set_memcpy_src_addr(grp_start, dma_src);
636 sw_desc->unmap_src_cnt = 1;
637 sw_desc->unmap_len = len;
638 sw_desc->async_tx.flags = flags;
640 spin_unlock_bh(&iop_chan->lock);
642 return sw_desc ? &sw_desc->async_tx : NULL;
645 static struct dma_async_tx_descriptor *
646 iop_adma_prep_dma_memset(struct dma_chan *chan, dma_addr_t dma_dest,
647 int value, size_t len, unsigned long flags)
649 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
650 struct iop_adma_desc_slot *sw_desc, *grp_start;
651 int slot_cnt, slots_per_op;
653 if (unlikely(!len))
654 return NULL;
655 BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT));
657 dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
658 __func__, len);
660 spin_lock_bh(&iop_chan->lock);
661 slot_cnt = iop_chan_memset_slot_count(len, &slots_per_op);
662 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
663 if (sw_desc) {
664 grp_start = sw_desc->group_head;
665 iop_desc_init_memset(grp_start, flags);
666 iop_desc_set_byte_count(grp_start, iop_chan, len);
667 iop_desc_set_block_fill_val(grp_start, value);
668 iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
669 sw_desc->unmap_src_cnt = 1;
670 sw_desc->unmap_len = len;
671 sw_desc->async_tx.flags = flags;
673 spin_unlock_bh(&iop_chan->lock);
675 return sw_desc ? &sw_desc->async_tx : NULL;
678 static struct dma_async_tx_descriptor *
679 iop_adma_prep_dma_xor(struct dma_chan *chan, dma_addr_t dma_dest,
680 dma_addr_t *dma_src, unsigned int src_cnt, size_t len,
681 unsigned long flags)
683 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
684 struct iop_adma_desc_slot *sw_desc, *grp_start;
685 int slot_cnt, slots_per_op;
687 if (unlikely(!len))
688 return NULL;
689 BUG_ON(unlikely(len > IOP_ADMA_XOR_MAX_BYTE_COUNT));
691 dev_dbg(iop_chan->device->common.dev,
692 "%s src_cnt: %d len: %u flags: %lx\n",
693 __func__, src_cnt, len, flags);
695 spin_lock_bh(&iop_chan->lock);
696 slot_cnt = iop_chan_xor_slot_count(len, src_cnt, &slots_per_op);
697 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
698 if (sw_desc) {
699 grp_start = sw_desc->group_head;
700 iop_desc_init_xor(grp_start, src_cnt, flags);
701 iop_desc_set_byte_count(grp_start, iop_chan, len);
702 iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
703 sw_desc->unmap_src_cnt = src_cnt;
704 sw_desc->unmap_len = len;
705 sw_desc->async_tx.flags = flags;
706 while (src_cnt--)
707 iop_desc_set_xor_src_addr(grp_start, src_cnt,
708 dma_src[src_cnt]);
710 spin_unlock_bh(&iop_chan->lock);
712 return sw_desc ? &sw_desc->async_tx : NULL;
715 static struct dma_async_tx_descriptor *
716 iop_adma_prep_dma_xor_val(struct dma_chan *chan, dma_addr_t *dma_src,
717 unsigned int src_cnt, size_t len, u32 *result,
718 unsigned long flags)
720 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
721 struct iop_adma_desc_slot *sw_desc, *grp_start;
722 int slot_cnt, slots_per_op;
724 if (unlikely(!len))
725 return NULL;
727 dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
728 __func__, src_cnt, len);
730 spin_lock_bh(&iop_chan->lock);
731 slot_cnt = iop_chan_zero_sum_slot_count(len, src_cnt, &slots_per_op);
732 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
733 if (sw_desc) {
734 grp_start = sw_desc->group_head;
735 iop_desc_init_zero_sum(grp_start, src_cnt, flags);
736 iop_desc_set_zero_sum_byte_count(grp_start, len);
737 grp_start->xor_check_result = result;
738 pr_debug("\t%s: grp_start->xor_check_result: %p\n",
739 __func__, grp_start->xor_check_result);
740 sw_desc->unmap_src_cnt = src_cnt;
741 sw_desc->unmap_len = len;
742 sw_desc->async_tx.flags = flags;
743 while (src_cnt--)
744 iop_desc_set_zero_sum_src_addr(grp_start, src_cnt,
745 dma_src[src_cnt]);
747 spin_unlock_bh(&iop_chan->lock);
749 return sw_desc ? &sw_desc->async_tx : NULL;
752 static struct dma_async_tx_descriptor *
753 iop_adma_prep_dma_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
754 unsigned int src_cnt, const unsigned char *scf, size_t len,
755 unsigned long flags)
757 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
758 struct iop_adma_desc_slot *sw_desc, *g;
759 int slot_cnt, slots_per_op;
760 int continue_srcs;
762 if (unlikely(!len))
763 return NULL;
764 BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
766 dev_dbg(iop_chan->device->common.dev,
767 "%s src_cnt: %d len: %u flags: %lx\n",
768 __func__, src_cnt, len, flags);
770 if (dmaf_p_disabled_continue(flags))
771 continue_srcs = 1+src_cnt;
772 else if (dmaf_continue(flags))
773 continue_srcs = 3+src_cnt;
774 else
775 continue_srcs = 0+src_cnt;
777 spin_lock_bh(&iop_chan->lock);
778 slot_cnt = iop_chan_pq_slot_count(len, continue_srcs, &slots_per_op);
779 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
780 if (sw_desc) {
781 int i;
783 g = sw_desc->group_head;
784 iop_desc_set_byte_count(g, iop_chan, len);
786 /* even if P is disabled its destination address (bits
787 * [3:0]) must match Q. It is ok if P points to an
788 * invalid address, it won't be written.
790 if (flags & DMA_PREP_PQ_DISABLE_P)
791 dst[0] = dst[1] & 0x7;
793 iop_desc_set_pq_addr(g, dst);
794 sw_desc->unmap_src_cnt = src_cnt;
795 sw_desc->unmap_len = len;
796 sw_desc->async_tx.flags = flags;
797 for (i = 0; i < src_cnt; i++)
798 iop_desc_set_pq_src_addr(g, i, src[i], scf[i]);
800 /* if we are continuing a previous operation factor in
801 * the old p and q values, see the comment for dma_maxpq
802 * in include/linux/dmaengine.h
804 if (dmaf_p_disabled_continue(flags))
805 iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
806 else if (dmaf_continue(flags)) {
807 iop_desc_set_pq_src_addr(g, i++, dst[0], 0);
808 iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
809 iop_desc_set_pq_src_addr(g, i++, dst[1], 0);
811 iop_desc_init_pq(g, i, flags);
813 spin_unlock_bh(&iop_chan->lock);
815 return sw_desc ? &sw_desc->async_tx : NULL;
818 static struct dma_async_tx_descriptor *
819 iop_adma_prep_dma_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
820 unsigned int src_cnt, const unsigned char *scf,
821 size_t len, enum sum_check_flags *pqres,
822 unsigned long flags)
824 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
825 struct iop_adma_desc_slot *sw_desc, *g;
826 int slot_cnt, slots_per_op;
828 if (unlikely(!len))
829 return NULL;
830 BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
832 dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
833 __func__, src_cnt, len);
835 spin_lock_bh(&iop_chan->lock);
836 slot_cnt = iop_chan_pq_zero_sum_slot_count(len, src_cnt + 2, &slots_per_op);
837 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
838 if (sw_desc) {
839 /* for validate operations p and q are tagged onto the
840 * end of the source list
842 int pq_idx = src_cnt;
844 g = sw_desc->group_head;
845 iop_desc_init_pq_zero_sum(g, src_cnt+2, flags);
846 iop_desc_set_pq_zero_sum_byte_count(g, len);
847 g->pq_check_result = pqres;
848 pr_debug("\t%s: g->pq_check_result: %p\n",
849 __func__, g->pq_check_result);
850 sw_desc->unmap_src_cnt = src_cnt+2;
851 sw_desc->unmap_len = len;
852 sw_desc->async_tx.flags = flags;
853 while (src_cnt--)
854 iop_desc_set_pq_zero_sum_src_addr(g, src_cnt,
855 src[src_cnt],
856 scf[src_cnt]);
857 iop_desc_set_pq_zero_sum_addr(g, pq_idx, src);
859 spin_unlock_bh(&iop_chan->lock);
861 return sw_desc ? &sw_desc->async_tx : NULL;
864 static void iop_adma_free_chan_resources(struct dma_chan *chan)
866 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
867 struct iop_adma_desc_slot *iter, *_iter;
868 int in_use_descs = 0;
870 iop_adma_slot_cleanup(iop_chan);
872 spin_lock_bh(&iop_chan->lock);
873 list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
874 chain_node) {
875 in_use_descs++;
876 list_del(&iter->chain_node);
878 list_for_each_entry_safe_reverse(
879 iter, _iter, &iop_chan->all_slots, slot_node) {
880 list_del(&iter->slot_node);
881 kfree(iter);
882 iop_chan->slots_allocated--;
884 iop_chan->last_used = NULL;
886 dev_dbg(iop_chan->device->common.dev, "%s slots_allocated %d\n",
887 __func__, iop_chan->slots_allocated);
888 spin_unlock_bh(&iop_chan->lock);
890 /* one is ok since we left it on there on purpose */
891 if (in_use_descs > 1)
892 printk(KERN_ERR "IOP: Freeing %d in use descriptors!\n",
893 in_use_descs - 1);
897 * iop_adma_is_complete - poll the status of an ADMA transaction
898 * @chan: ADMA channel handle
899 * @cookie: ADMA transaction identifier
901 static enum dma_status iop_adma_is_complete(struct dma_chan *chan,
902 dma_cookie_t cookie,
903 dma_cookie_t *done,
904 dma_cookie_t *used)
906 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
907 dma_cookie_t last_used;
908 dma_cookie_t last_complete;
909 enum dma_status ret;
911 last_used = chan->cookie;
912 last_complete = iop_chan->completed_cookie;
914 if (done)
915 *done = last_complete;
916 if (used)
917 *used = last_used;
919 ret = dma_async_is_complete(cookie, last_complete, last_used);
920 if (ret == DMA_SUCCESS)
921 return ret;
923 iop_adma_slot_cleanup(iop_chan);
925 last_used = chan->cookie;
926 last_complete = iop_chan->completed_cookie;
928 if (done)
929 *done = last_complete;
930 if (used)
931 *used = last_used;
933 return dma_async_is_complete(cookie, last_complete, last_used);
936 static irqreturn_t iop_adma_eot_handler(int irq, void *data)
938 struct iop_adma_chan *chan = data;
940 dev_dbg(chan->device->common.dev, "%s\n", __func__);
942 tasklet_schedule(&chan->irq_tasklet);
944 iop_adma_device_clear_eot_status(chan);
946 return IRQ_HANDLED;
949 static irqreturn_t iop_adma_eoc_handler(int irq, void *data)
951 struct iop_adma_chan *chan = data;
953 dev_dbg(chan->device->common.dev, "%s\n", __func__);
955 tasklet_schedule(&chan->irq_tasklet);
957 iop_adma_device_clear_eoc_status(chan);
959 return IRQ_HANDLED;
962 static irqreturn_t iop_adma_err_handler(int irq, void *data)
964 struct iop_adma_chan *chan = data;
965 unsigned long status = iop_chan_get_status(chan);
967 dev_printk(KERN_ERR, chan->device->common.dev,
968 "error ( %s%s%s%s%s%s%s)\n",
969 iop_is_err_int_parity(status, chan) ? "int_parity " : "",
970 iop_is_err_mcu_abort(status, chan) ? "mcu_abort " : "",
971 iop_is_err_int_tabort(status, chan) ? "int_tabort " : "",
972 iop_is_err_int_mabort(status, chan) ? "int_mabort " : "",
973 iop_is_err_pci_tabort(status, chan) ? "pci_tabort " : "",
974 iop_is_err_pci_mabort(status, chan) ? "pci_mabort " : "",
975 iop_is_err_split_tx(status, chan) ? "split_tx " : "");
977 iop_adma_device_clear_err_status(chan);
979 BUG();
981 return IRQ_HANDLED;
984 static void iop_adma_issue_pending(struct dma_chan *chan)
986 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
988 if (iop_chan->pending) {
989 iop_chan->pending = 0;
990 iop_chan_append(iop_chan);
995 * Perform a transaction to verify the HW works.
997 #define IOP_ADMA_TEST_SIZE 2000
999 static int __devinit iop_adma_memcpy_self_test(struct iop_adma_device *device)
1001 int i;
1002 void *src, *dest;
1003 dma_addr_t src_dma, dest_dma;
1004 struct dma_chan *dma_chan;
1005 dma_cookie_t cookie;
1006 struct dma_async_tx_descriptor *tx;
1007 int err = 0;
1008 struct iop_adma_chan *iop_chan;
1010 dev_dbg(device->common.dev, "%s\n", __func__);
1012 src = kmalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
1013 if (!src)
1014 return -ENOMEM;
1015 dest = kzalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
1016 if (!dest) {
1017 kfree(src);
1018 return -ENOMEM;
1021 /* Fill in src buffer */
1022 for (i = 0; i < IOP_ADMA_TEST_SIZE; i++)
1023 ((u8 *) src)[i] = (u8)i;
1025 /* Start copy, using first DMA channel */
1026 dma_chan = container_of(device->common.channels.next,
1027 struct dma_chan,
1028 device_node);
1029 if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
1030 err = -ENODEV;
1031 goto out;
1034 dest_dma = dma_map_single(dma_chan->device->dev, dest,
1035 IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
1036 src_dma = dma_map_single(dma_chan->device->dev, src,
1037 IOP_ADMA_TEST_SIZE, DMA_TO_DEVICE);
1038 tx = iop_adma_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
1039 IOP_ADMA_TEST_SIZE,
1040 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1042 cookie = iop_adma_tx_submit(tx);
1043 iop_adma_issue_pending(dma_chan);
1044 msleep(1);
1046 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
1047 DMA_SUCCESS) {
1048 dev_printk(KERN_ERR, dma_chan->device->dev,
1049 "Self-test copy timed out, disabling\n");
1050 err = -ENODEV;
1051 goto free_resources;
1054 iop_chan = to_iop_adma_chan(dma_chan);
1055 dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
1056 IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
1057 if (memcmp(src, dest, IOP_ADMA_TEST_SIZE)) {
1058 dev_printk(KERN_ERR, dma_chan->device->dev,
1059 "Self-test copy failed compare, disabling\n");
1060 err = -ENODEV;
1061 goto free_resources;
1064 free_resources:
1065 iop_adma_free_chan_resources(dma_chan);
1066 out:
1067 kfree(src);
1068 kfree(dest);
1069 return err;
1072 #define IOP_ADMA_NUM_SRC_TEST 4 /* must be <= 15 */
1073 static int __devinit
1074 iop_adma_xor_val_self_test(struct iop_adma_device *device)
1076 int i, src_idx;
1077 struct page *dest;
1078 struct page *xor_srcs[IOP_ADMA_NUM_SRC_TEST];
1079 struct page *zero_sum_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
1080 dma_addr_t dma_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
1081 dma_addr_t dma_addr, dest_dma;
1082 struct dma_async_tx_descriptor *tx;
1083 struct dma_chan *dma_chan;
1084 dma_cookie_t cookie;
1085 u8 cmp_byte = 0;
1086 u32 cmp_word;
1087 u32 zero_sum_result;
1088 int err = 0;
1089 struct iop_adma_chan *iop_chan;
1091 dev_dbg(device->common.dev, "%s\n", __func__);
1093 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
1094 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
1095 if (!xor_srcs[src_idx]) {
1096 while (src_idx--)
1097 __free_page(xor_srcs[src_idx]);
1098 return -ENOMEM;
1102 dest = alloc_page(GFP_KERNEL);
1103 if (!dest) {
1104 while (src_idx--)
1105 __free_page(xor_srcs[src_idx]);
1106 return -ENOMEM;
1109 /* Fill in src buffers */
1110 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
1111 u8 *ptr = page_address(xor_srcs[src_idx]);
1112 for (i = 0; i < PAGE_SIZE; i++)
1113 ptr[i] = (1 << src_idx);
1116 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++)
1117 cmp_byte ^= (u8) (1 << src_idx);
1119 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
1120 (cmp_byte << 8) | cmp_byte;
1122 memset(page_address(dest), 0, PAGE_SIZE);
1124 dma_chan = container_of(device->common.channels.next,
1125 struct dma_chan,
1126 device_node);
1127 if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
1128 err = -ENODEV;
1129 goto out;
1132 /* test xor */
1133 dest_dma = dma_map_page(dma_chan->device->dev, dest, 0,
1134 PAGE_SIZE, DMA_FROM_DEVICE);
1135 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
1136 dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
1137 0, PAGE_SIZE, DMA_TO_DEVICE);
1138 tx = iop_adma_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
1139 IOP_ADMA_NUM_SRC_TEST, PAGE_SIZE,
1140 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1142 cookie = iop_adma_tx_submit(tx);
1143 iop_adma_issue_pending(dma_chan);
1144 msleep(8);
1146 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
1147 DMA_SUCCESS) {
1148 dev_printk(KERN_ERR, dma_chan->device->dev,
1149 "Self-test xor timed out, disabling\n");
1150 err = -ENODEV;
1151 goto free_resources;
1154 iop_chan = to_iop_adma_chan(dma_chan);
1155 dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
1156 PAGE_SIZE, DMA_FROM_DEVICE);
1157 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
1158 u32 *ptr = page_address(dest);
1159 if (ptr[i] != cmp_word) {
1160 dev_printk(KERN_ERR, dma_chan->device->dev,
1161 "Self-test xor failed compare, disabling\n");
1162 err = -ENODEV;
1163 goto free_resources;
1166 dma_sync_single_for_device(&iop_chan->device->pdev->dev, dest_dma,
1167 PAGE_SIZE, DMA_TO_DEVICE);
1169 /* skip zero sum if the capability is not present */
1170 if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
1171 goto free_resources;
1173 /* zero sum the sources with the destintation page */
1174 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
1175 zero_sum_srcs[i] = xor_srcs[i];
1176 zero_sum_srcs[i] = dest;
1178 zero_sum_result = 1;
1180 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
1181 dma_srcs[i] = dma_map_page(dma_chan->device->dev,
1182 zero_sum_srcs[i], 0, PAGE_SIZE,
1183 DMA_TO_DEVICE);
1184 tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
1185 IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
1186 &zero_sum_result,
1187 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1189 cookie = iop_adma_tx_submit(tx);
1190 iop_adma_issue_pending(dma_chan);
1191 msleep(8);
1193 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
1194 dev_printk(KERN_ERR, dma_chan->device->dev,
1195 "Self-test zero sum timed out, disabling\n");
1196 err = -ENODEV;
1197 goto free_resources;
1200 if (zero_sum_result != 0) {
1201 dev_printk(KERN_ERR, dma_chan->device->dev,
1202 "Self-test zero sum failed compare, disabling\n");
1203 err = -ENODEV;
1204 goto free_resources;
1207 /* test memset */
1208 dma_addr = dma_map_page(dma_chan->device->dev, dest, 0,
1209 PAGE_SIZE, DMA_FROM_DEVICE);
1210 tx = iop_adma_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
1211 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1213 cookie = iop_adma_tx_submit(tx);
1214 iop_adma_issue_pending(dma_chan);
1215 msleep(8);
1217 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
1218 dev_printk(KERN_ERR, dma_chan->device->dev,
1219 "Self-test memset timed out, disabling\n");
1220 err = -ENODEV;
1221 goto free_resources;
1224 for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
1225 u32 *ptr = page_address(dest);
1226 if (ptr[i]) {
1227 dev_printk(KERN_ERR, dma_chan->device->dev,
1228 "Self-test memset failed compare, disabling\n");
1229 err = -ENODEV;
1230 goto free_resources;
1234 /* test for non-zero parity sum */
1235 zero_sum_result = 0;
1236 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
1237 dma_srcs[i] = dma_map_page(dma_chan->device->dev,
1238 zero_sum_srcs[i], 0, PAGE_SIZE,
1239 DMA_TO_DEVICE);
1240 tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
1241 IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
1242 &zero_sum_result,
1243 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1245 cookie = iop_adma_tx_submit(tx);
1246 iop_adma_issue_pending(dma_chan);
1247 msleep(8);
1249 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
1250 dev_printk(KERN_ERR, dma_chan->device->dev,
1251 "Self-test non-zero sum timed out, disabling\n");
1252 err = -ENODEV;
1253 goto free_resources;
1256 if (zero_sum_result != 1) {
1257 dev_printk(KERN_ERR, dma_chan->device->dev,
1258 "Self-test non-zero sum failed compare, disabling\n");
1259 err = -ENODEV;
1260 goto free_resources;
1263 free_resources:
1264 iop_adma_free_chan_resources(dma_chan);
1265 out:
1266 src_idx = IOP_ADMA_NUM_SRC_TEST;
1267 while (src_idx--)
1268 __free_page(xor_srcs[src_idx]);
1269 __free_page(dest);
1270 return err;
1273 #ifdef CONFIG_MD_RAID6_PQ
1274 static int __devinit
1275 iop_adma_pq_zero_sum_self_test(struct iop_adma_device *device)
1277 /* combined sources, software pq results, and extra hw pq results */
1278 struct page *pq[IOP_ADMA_NUM_SRC_TEST+2+2];
1279 /* ptr to the extra hw pq buffers defined above */
1280 struct page **pq_hw = &pq[IOP_ADMA_NUM_SRC_TEST+2];
1281 /* address conversion buffers (dma_map / page_address) */
1282 void *pq_sw[IOP_ADMA_NUM_SRC_TEST+2];
1283 dma_addr_t pq_src[IOP_ADMA_NUM_SRC_TEST];
1284 dma_addr_t pq_dest[2];
1286 int i;
1287 struct dma_async_tx_descriptor *tx;
1288 struct dma_chan *dma_chan;
1289 dma_cookie_t cookie;
1290 u32 zero_sum_result;
1291 int err = 0;
1292 struct device *dev;
1294 dev_dbg(device->common.dev, "%s\n", __func__);
1296 for (i = 0; i < ARRAY_SIZE(pq); i++) {
1297 pq[i] = alloc_page(GFP_KERNEL);
1298 if (!pq[i]) {
1299 while (i--)
1300 __free_page(pq[i]);
1301 return -ENOMEM;
1305 /* Fill in src buffers */
1306 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++) {
1307 pq_sw[i] = page_address(pq[i]);
1308 memset(pq_sw[i], 0x11111111 * (1<<i), PAGE_SIZE);
1310 pq_sw[i] = page_address(pq[i]);
1311 pq_sw[i+1] = page_address(pq[i+1]);
1313 dma_chan = container_of(device->common.channels.next,
1314 struct dma_chan,
1315 device_node);
1316 if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
1317 err = -ENODEV;
1318 goto out;
1321 dev = dma_chan->device->dev;
1323 /* initialize the dests */
1324 memset(page_address(pq_hw[0]), 0 , PAGE_SIZE);
1325 memset(page_address(pq_hw[1]), 0 , PAGE_SIZE);
1327 /* test pq */
1328 pq_dest[0] = dma_map_page(dev, pq_hw[0], 0, PAGE_SIZE, DMA_FROM_DEVICE);
1329 pq_dest[1] = dma_map_page(dev, pq_hw[1], 0, PAGE_SIZE, DMA_FROM_DEVICE);
1330 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
1331 pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
1332 DMA_TO_DEVICE);
1334 tx = iop_adma_prep_dma_pq(dma_chan, pq_dest, pq_src,
1335 IOP_ADMA_NUM_SRC_TEST, (u8 *)raid6_gfexp,
1336 PAGE_SIZE,
1337 DMA_PREP_INTERRUPT |
1338 DMA_CTRL_ACK);
1340 cookie = iop_adma_tx_submit(tx);
1341 iop_adma_issue_pending(dma_chan);
1342 msleep(8);
1344 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
1345 DMA_SUCCESS) {
1346 dev_err(dev, "Self-test pq timed out, disabling\n");
1347 err = -ENODEV;
1348 goto free_resources;
1351 raid6_call.gen_syndrome(IOP_ADMA_NUM_SRC_TEST+2, PAGE_SIZE, pq_sw);
1353 if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST],
1354 page_address(pq_hw[0]), PAGE_SIZE) != 0) {
1355 dev_err(dev, "Self-test p failed compare, disabling\n");
1356 err = -ENODEV;
1357 goto free_resources;
1359 if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST+1],
1360 page_address(pq_hw[1]), PAGE_SIZE) != 0) {
1361 dev_err(dev, "Self-test q failed compare, disabling\n");
1362 err = -ENODEV;
1363 goto free_resources;
1366 /* test correct zero sum using the software generated pq values */
1367 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
1368 pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
1369 DMA_TO_DEVICE);
1371 zero_sum_result = ~0;
1372 tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
1373 pq_src, IOP_ADMA_NUM_SRC_TEST,
1374 raid6_gfexp, PAGE_SIZE, &zero_sum_result,
1375 DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
1377 cookie = iop_adma_tx_submit(tx);
1378 iop_adma_issue_pending(dma_chan);
1379 msleep(8);
1381 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
1382 DMA_SUCCESS) {
1383 dev_err(dev, "Self-test pq-zero-sum timed out, disabling\n");
1384 err = -ENODEV;
1385 goto free_resources;
1388 if (zero_sum_result != 0) {
1389 dev_err(dev, "Self-test pq-zero-sum failed to validate: %x\n",
1390 zero_sum_result);
1391 err = -ENODEV;
1392 goto free_resources;
1395 /* test incorrect zero sum */
1396 i = IOP_ADMA_NUM_SRC_TEST;
1397 memset(pq_sw[i] + 100, 0, 100);
1398 memset(pq_sw[i+1] + 200, 0, 200);
1399 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
1400 pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
1401 DMA_TO_DEVICE);
1403 zero_sum_result = 0;
1404 tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
1405 pq_src, IOP_ADMA_NUM_SRC_TEST,
1406 raid6_gfexp, PAGE_SIZE, &zero_sum_result,
1407 DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
1409 cookie = iop_adma_tx_submit(tx);
1410 iop_adma_issue_pending(dma_chan);
1411 msleep(8);
1413 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
1414 DMA_SUCCESS) {
1415 dev_err(dev, "Self-test !pq-zero-sum timed out, disabling\n");
1416 err = -ENODEV;
1417 goto free_resources;
1420 if (zero_sum_result != (SUM_CHECK_P_RESULT | SUM_CHECK_Q_RESULT)) {
1421 dev_err(dev, "Self-test !pq-zero-sum failed to validate: %x\n",
1422 zero_sum_result);
1423 err = -ENODEV;
1424 goto free_resources;
1427 free_resources:
1428 iop_adma_free_chan_resources(dma_chan);
1429 out:
1430 i = ARRAY_SIZE(pq);
1431 while (i--)
1432 __free_page(pq[i]);
1433 return err;
1435 #endif
1437 static int __devexit iop_adma_remove(struct platform_device *dev)
1439 struct iop_adma_device *device = platform_get_drvdata(dev);
1440 struct dma_chan *chan, *_chan;
1441 struct iop_adma_chan *iop_chan;
1442 struct iop_adma_platform_data *plat_data = dev->dev.platform_data;
1444 dma_async_device_unregister(&device->common);
1446 dma_free_coherent(&dev->dev, plat_data->pool_size,
1447 device->dma_desc_pool_virt, device->dma_desc_pool);
1449 list_for_each_entry_safe(chan, _chan, &device->common.channels,
1450 device_node) {
1451 iop_chan = to_iop_adma_chan(chan);
1452 list_del(&chan->device_node);
1453 kfree(iop_chan);
1455 kfree(device);
1457 return 0;
1460 static int __devinit iop_adma_probe(struct platform_device *pdev)
1462 struct resource *res;
1463 int ret = 0, i;
1464 struct iop_adma_device *adev;
1465 struct iop_adma_chan *iop_chan;
1466 struct dma_device *dma_dev;
1467 struct iop_adma_platform_data *plat_data = pdev->dev.platform_data;
1469 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1470 if (!res)
1471 return -ENODEV;
1473 if (!devm_request_mem_region(&pdev->dev, res->start,
1474 resource_size(res), pdev->name))
1475 return -EBUSY;
1477 adev = kzalloc(sizeof(*adev), GFP_KERNEL);
1478 if (!adev)
1479 return -ENOMEM;
1480 dma_dev = &adev->common;
1482 /* allocate coherent memory for hardware descriptors
1483 * note: writecombine gives slightly better performance, but
1484 * requires that we explicitly flush the writes
1486 if ((adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
1487 plat_data->pool_size,
1488 &adev->dma_desc_pool,
1489 GFP_KERNEL)) == NULL) {
1490 ret = -ENOMEM;
1491 goto err_free_adev;
1494 dev_dbg(&pdev->dev, "%s: allocted descriptor pool virt %p phys %p\n",
1495 __func__, adev->dma_desc_pool_virt,
1496 (void *) adev->dma_desc_pool);
1498 adev->id = plat_data->hw_id;
1500 /* discover transaction capabilites from the platform data */
1501 dma_dev->cap_mask = plat_data->cap_mask;
1503 adev->pdev = pdev;
1504 platform_set_drvdata(pdev, adev);
1506 INIT_LIST_HEAD(&dma_dev->channels);
1508 /* set base routines */
1509 dma_dev->device_alloc_chan_resources = iop_adma_alloc_chan_resources;
1510 dma_dev->device_free_chan_resources = iop_adma_free_chan_resources;
1511 dma_dev->device_is_tx_complete = iop_adma_is_complete;
1512 dma_dev->device_issue_pending = iop_adma_issue_pending;
1513 dma_dev->dev = &pdev->dev;
1515 /* set prep routines based on capability */
1516 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1517 dma_dev->device_prep_dma_memcpy = iop_adma_prep_dma_memcpy;
1518 if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
1519 dma_dev->device_prep_dma_memset = iop_adma_prep_dma_memset;
1520 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1521 dma_dev->max_xor = iop_adma_get_max_xor();
1522 dma_dev->device_prep_dma_xor = iop_adma_prep_dma_xor;
1524 if (dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask))
1525 dma_dev->device_prep_dma_xor_val =
1526 iop_adma_prep_dma_xor_val;
1527 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1528 dma_set_maxpq(dma_dev, iop_adma_get_max_pq(), 0);
1529 dma_dev->device_prep_dma_pq = iop_adma_prep_dma_pq;
1531 if (dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask))
1532 dma_dev->device_prep_dma_pq_val =
1533 iop_adma_prep_dma_pq_val;
1534 if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
1535 dma_dev->device_prep_dma_interrupt =
1536 iop_adma_prep_dma_interrupt;
1538 iop_chan = kzalloc(sizeof(*iop_chan), GFP_KERNEL);
1539 if (!iop_chan) {
1540 ret = -ENOMEM;
1541 goto err_free_dma;
1543 iop_chan->device = adev;
1545 iop_chan->mmr_base = devm_ioremap(&pdev->dev, res->start,
1546 resource_size(res));
1547 if (!iop_chan->mmr_base) {
1548 ret = -ENOMEM;
1549 goto err_free_iop_chan;
1551 tasklet_init(&iop_chan->irq_tasklet, iop_adma_tasklet, (unsigned long)
1552 iop_chan);
1554 /* clear errors before enabling interrupts */
1555 iop_adma_device_clear_err_status(iop_chan);
1557 for (i = 0; i < 3; i++) {
1558 irq_handler_t handler[] = { iop_adma_eot_handler,
1559 iop_adma_eoc_handler,
1560 iop_adma_err_handler };
1561 int irq = platform_get_irq(pdev, i);
1562 if (irq < 0) {
1563 ret = -ENXIO;
1564 goto err_free_iop_chan;
1565 } else {
1566 ret = devm_request_irq(&pdev->dev, irq,
1567 handler[i], 0, pdev->name, iop_chan);
1568 if (ret)
1569 goto err_free_iop_chan;
1573 spin_lock_init(&iop_chan->lock);
1574 INIT_LIST_HEAD(&iop_chan->chain);
1575 INIT_LIST_HEAD(&iop_chan->all_slots);
1576 iop_chan->common.device = dma_dev;
1577 list_add_tail(&iop_chan->common.device_node, &dma_dev->channels);
1579 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1580 ret = iop_adma_memcpy_self_test(adev);
1581 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1582 if (ret)
1583 goto err_free_iop_chan;
1586 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask) ||
1587 dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) {
1588 ret = iop_adma_xor_val_self_test(adev);
1589 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1590 if (ret)
1591 goto err_free_iop_chan;
1594 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask) &&
1595 dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask)) {
1596 #ifdef CONFIG_MD_RAID6_PQ
1597 ret = iop_adma_pq_zero_sum_self_test(adev);
1598 dev_dbg(&pdev->dev, "pq self test returned %d\n", ret);
1599 #else
1600 /* can not test raid6, so do not publish capability */
1601 dma_cap_clear(DMA_PQ, dma_dev->cap_mask);
1602 dma_cap_clear(DMA_PQ_VAL, dma_dev->cap_mask);
1603 ret = 0;
1604 #endif
1605 if (ret)
1606 goto err_free_iop_chan;
1609 dev_printk(KERN_INFO, &pdev->dev, "Intel(R) IOP: "
1610 "( %s%s%s%s%s%s%s)\n",
1611 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "pq " : "",
1612 dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask) ? "pq_val " : "",
1613 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1614 dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask) ? "xor_val " : "",
1615 dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
1616 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1617 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1619 dma_async_device_register(dma_dev);
1620 goto out;
1622 err_free_iop_chan:
1623 kfree(iop_chan);
1624 err_free_dma:
1625 dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
1626 adev->dma_desc_pool_virt, adev->dma_desc_pool);
1627 err_free_adev:
1628 kfree(adev);
1629 out:
1630 return ret;
1633 static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan)
1635 struct iop_adma_desc_slot *sw_desc, *grp_start;
1636 dma_cookie_t cookie;
1637 int slot_cnt, slots_per_op;
1639 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
1641 spin_lock_bh(&iop_chan->lock);
1642 slot_cnt = iop_chan_memcpy_slot_count(0, &slots_per_op);
1643 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
1644 if (sw_desc) {
1645 grp_start = sw_desc->group_head;
1647 list_splice_init(&sw_desc->tx_list, &iop_chan->chain);
1648 async_tx_ack(&sw_desc->async_tx);
1649 iop_desc_init_memcpy(grp_start, 0);
1650 iop_desc_set_byte_count(grp_start, iop_chan, 0);
1651 iop_desc_set_dest_addr(grp_start, iop_chan, 0);
1652 iop_desc_set_memcpy_src_addr(grp_start, 0);
1654 cookie = iop_chan->common.cookie;
1655 cookie++;
1656 if (cookie <= 1)
1657 cookie = 2;
1659 /* initialize the completed cookie to be less than
1660 * the most recently used cookie
1662 iop_chan->completed_cookie = cookie - 1;
1663 iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
1665 /* channel should not be busy */
1666 BUG_ON(iop_chan_is_busy(iop_chan));
1668 /* clear any prior error-status bits */
1669 iop_adma_device_clear_err_status(iop_chan);
1671 /* disable operation */
1672 iop_chan_disable(iop_chan);
1674 /* set the descriptor address */
1675 iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
1677 /* 1/ don't add pre-chained descriptors
1678 * 2/ dummy read to flush next_desc write
1680 BUG_ON(iop_desc_get_next_desc(sw_desc));
1682 /* run the descriptor */
1683 iop_chan_enable(iop_chan);
1684 } else
1685 dev_printk(KERN_ERR, iop_chan->device->common.dev,
1686 "failed to allocate null descriptor\n");
1687 spin_unlock_bh(&iop_chan->lock);
1690 static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan)
1692 struct iop_adma_desc_slot *sw_desc, *grp_start;
1693 dma_cookie_t cookie;
1694 int slot_cnt, slots_per_op;
1696 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
1698 spin_lock_bh(&iop_chan->lock);
1699 slot_cnt = iop_chan_xor_slot_count(0, 2, &slots_per_op);
1700 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
1701 if (sw_desc) {
1702 grp_start = sw_desc->group_head;
1703 list_splice_init(&sw_desc->tx_list, &iop_chan->chain);
1704 async_tx_ack(&sw_desc->async_tx);
1705 iop_desc_init_null_xor(grp_start, 2, 0);
1706 iop_desc_set_byte_count(grp_start, iop_chan, 0);
1707 iop_desc_set_dest_addr(grp_start, iop_chan, 0);
1708 iop_desc_set_xor_src_addr(grp_start, 0, 0);
1709 iop_desc_set_xor_src_addr(grp_start, 1, 0);
1711 cookie = iop_chan->common.cookie;
1712 cookie++;
1713 if (cookie <= 1)
1714 cookie = 2;
1716 /* initialize the completed cookie to be less than
1717 * the most recently used cookie
1719 iop_chan->completed_cookie = cookie - 1;
1720 iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
1722 /* channel should not be busy */
1723 BUG_ON(iop_chan_is_busy(iop_chan));
1725 /* clear any prior error-status bits */
1726 iop_adma_device_clear_err_status(iop_chan);
1728 /* disable operation */
1729 iop_chan_disable(iop_chan);
1731 /* set the descriptor address */
1732 iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
1734 /* 1/ don't add pre-chained descriptors
1735 * 2/ dummy read to flush next_desc write
1737 BUG_ON(iop_desc_get_next_desc(sw_desc));
1739 /* run the descriptor */
1740 iop_chan_enable(iop_chan);
1741 } else
1742 dev_printk(KERN_ERR, iop_chan->device->common.dev,
1743 "failed to allocate null descriptor\n");
1744 spin_unlock_bh(&iop_chan->lock);
1747 MODULE_ALIAS("platform:iop-adma");
1749 static struct platform_driver iop_adma_driver = {
1750 .probe = iop_adma_probe,
1751 .remove = __devexit_p(iop_adma_remove),
1752 .driver = {
1753 .owner = THIS_MODULE,
1754 .name = "iop-adma",
1758 static int __init iop_adma_init (void)
1760 return platform_driver_register(&iop_adma_driver);
1763 static void __exit iop_adma_exit (void)
1765 platform_driver_unregister(&iop_adma_driver);
1766 return;
1768 module_exit(iop_adma_exit);
1769 module_init(iop_adma_init);
1771 MODULE_AUTHOR("Intel Corporation");
1772 MODULE_DESCRIPTION("IOP ADMA Engine Driver");
1773 MODULE_LICENSE("GPL");