USB: usbsevseg: fix max length
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid1.c
blob7d9e071f2304aa57ef4a68fae878b4af88d046cb
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* When there are this many requests queue to be written by
50 * the raid1 thread, we become 'congested' to provide back-pressure
51 * for writeback.
53 static int max_queued_requests = 1024;
55 static void allow_barrier(struct r1conf *conf);
56 static void lower_barrier(struct r1conf *conf);
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
60 struct pool_info *pi = data;
61 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
64 return kzalloc(size, gfp_flags);
67 static void r1bio_pool_free(void *r1_bio, void *data)
69 kfree(r1_bio);
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
80 struct pool_info *pi = data;
81 struct page *page;
82 struct r1bio *r1_bio;
83 struct bio *bio;
84 int i, j;
86 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87 if (!r1_bio)
88 return NULL;
91 * Allocate bios : 1 for reading, n-1 for writing
93 for (j = pi->raid_disks ; j-- ; ) {
94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95 if (!bio)
96 goto out_free_bio;
97 r1_bio->bios[j] = bio;
100 * Allocate RESYNC_PAGES data pages and attach them to
101 * the first bio.
102 * If this is a user-requested check/repair, allocate
103 * RESYNC_PAGES for each bio.
105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 j = pi->raid_disks;
107 else
108 j = 1;
109 while(j--) {
110 bio = r1_bio->bios[j];
111 for (i = 0; i < RESYNC_PAGES; i++) {
112 page = alloc_page(gfp_flags);
113 if (unlikely(!page))
114 goto out_free_pages;
116 bio->bi_io_vec[i].bv_page = page;
117 bio->bi_vcnt = i+1;
120 /* If not user-requests, copy the page pointers to all bios */
121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 for (i=0; i<RESYNC_PAGES ; i++)
123 for (j=1; j<pi->raid_disks; j++)
124 r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 r1_bio->bios[0]->bi_io_vec[i].bv_page;
128 r1_bio->master_bio = NULL;
130 return r1_bio;
132 out_free_pages:
133 for (j=0 ; j < pi->raid_disks; j++)
134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136 j = -1;
137 out_free_bio:
138 while ( ++j < pi->raid_disks )
139 bio_put(r1_bio->bios[j]);
140 r1bio_pool_free(r1_bio, data);
141 return NULL;
144 static void r1buf_pool_free(void *__r1_bio, void *data)
146 struct pool_info *pi = data;
147 int i,j;
148 struct r1bio *r1bio = __r1_bio;
150 for (i = 0; i < RESYNC_PAGES; i++)
151 for (j = pi->raid_disks; j-- ;) {
152 if (j == 0 ||
153 r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 r1bio->bios[0]->bi_io_vec[i].bv_page)
155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
157 for (i=0 ; i < pi->raid_disks; i++)
158 bio_put(r1bio->bios[i]);
160 r1bio_pool_free(r1bio, data);
163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
165 int i;
167 for (i = 0; i < conf->raid_disks; i++) {
168 struct bio **bio = r1_bio->bios + i;
169 if (!BIO_SPECIAL(*bio))
170 bio_put(*bio);
171 *bio = NULL;
175 static void free_r1bio(struct r1bio *r1_bio)
177 struct r1conf *conf = r1_bio->mddev->private;
179 put_all_bios(conf, r1_bio);
180 mempool_free(r1_bio, conf->r1bio_pool);
183 static void put_buf(struct r1bio *r1_bio)
185 struct r1conf *conf = r1_bio->mddev->private;
186 int i;
188 for (i=0; i<conf->raid_disks; i++) {
189 struct bio *bio = r1_bio->bios[i];
190 if (bio->bi_end_io)
191 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
194 mempool_free(r1_bio, conf->r1buf_pool);
196 lower_barrier(conf);
199 static void reschedule_retry(struct r1bio *r1_bio)
201 unsigned long flags;
202 struct mddev *mddev = r1_bio->mddev;
203 struct r1conf *conf = mddev->private;
205 spin_lock_irqsave(&conf->device_lock, flags);
206 list_add(&r1_bio->retry_list, &conf->retry_list);
207 conf->nr_queued ++;
208 spin_unlock_irqrestore(&conf->device_lock, flags);
210 wake_up(&conf->wait_barrier);
211 md_wakeup_thread(mddev->thread);
215 * raid_end_bio_io() is called when we have finished servicing a mirrored
216 * operation and are ready to return a success/failure code to the buffer
217 * cache layer.
219 static void call_bio_endio(struct r1bio *r1_bio)
221 struct bio *bio = r1_bio->master_bio;
222 int done;
223 struct r1conf *conf = r1_bio->mddev->private;
225 if (bio->bi_phys_segments) {
226 unsigned long flags;
227 spin_lock_irqsave(&conf->device_lock, flags);
228 bio->bi_phys_segments--;
229 done = (bio->bi_phys_segments == 0);
230 spin_unlock_irqrestore(&conf->device_lock, flags);
231 } else
232 done = 1;
234 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235 clear_bit(BIO_UPTODATE, &bio->bi_flags);
236 if (done) {
237 bio_endio(bio, 0);
239 * Wake up any possible resync thread that waits for the device
240 * to go idle.
242 allow_barrier(conf);
246 static void raid_end_bio_io(struct r1bio *r1_bio)
248 struct bio *bio = r1_bio->master_bio;
250 /* if nobody has done the final endio yet, do it now */
251 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 (bio_data_dir(bio) == WRITE) ? "write" : "read",
254 (unsigned long long) bio->bi_sector,
255 (unsigned long long) bio->bi_sector +
256 (bio->bi_size >> 9) - 1);
258 call_bio_endio(r1_bio);
260 free_r1bio(r1_bio);
264 * Update disk head position estimator based on IRQ completion info.
266 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
268 struct r1conf *conf = r1_bio->mddev->private;
270 conf->mirrors[disk].head_position =
271 r1_bio->sector + (r1_bio->sectors);
275 * Find the disk number which triggered given bio
277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
279 int mirror;
280 int raid_disks = r1_bio->mddev->raid_disks;
282 for (mirror = 0; mirror < raid_disks; mirror++)
283 if (r1_bio->bios[mirror] == bio)
284 break;
286 BUG_ON(mirror == raid_disks);
287 update_head_pos(mirror, r1_bio);
289 return mirror;
292 static void raid1_end_read_request(struct bio *bio, int error)
294 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
295 struct r1bio *r1_bio = bio->bi_private;
296 int mirror;
297 struct r1conf *conf = r1_bio->mddev->private;
299 mirror = r1_bio->read_disk;
301 * this branch is our 'one mirror IO has finished' event handler:
303 update_head_pos(mirror, r1_bio);
305 if (uptodate)
306 set_bit(R1BIO_Uptodate, &r1_bio->state);
307 else {
308 /* If all other devices have failed, we want to return
309 * the error upwards rather than fail the last device.
310 * Here we redefine "uptodate" to mean "Don't want to retry"
312 unsigned long flags;
313 spin_lock_irqsave(&conf->device_lock, flags);
314 if (r1_bio->mddev->degraded == conf->raid_disks ||
315 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
316 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
317 uptodate = 1;
318 spin_unlock_irqrestore(&conf->device_lock, flags);
321 if (uptodate)
322 raid_end_bio_io(r1_bio);
323 else {
325 * oops, read error:
327 char b[BDEVNAME_SIZE];
328 printk_ratelimited(
329 KERN_ERR "md/raid1:%s: %s: "
330 "rescheduling sector %llu\n",
331 mdname(conf->mddev),
332 bdevname(conf->mirrors[mirror].rdev->bdev,
334 (unsigned long long)r1_bio->sector);
335 set_bit(R1BIO_ReadError, &r1_bio->state);
336 reschedule_retry(r1_bio);
339 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
342 static void close_write(struct r1bio *r1_bio)
344 /* it really is the end of this request */
345 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
346 /* free extra copy of the data pages */
347 int i = r1_bio->behind_page_count;
348 while (i--)
349 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
350 kfree(r1_bio->behind_bvecs);
351 r1_bio->behind_bvecs = NULL;
353 /* clear the bitmap if all writes complete successfully */
354 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
355 r1_bio->sectors,
356 !test_bit(R1BIO_Degraded, &r1_bio->state),
357 test_bit(R1BIO_BehindIO, &r1_bio->state));
358 md_write_end(r1_bio->mddev);
361 static void r1_bio_write_done(struct r1bio *r1_bio)
363 if (!atomic_dec_and_test(&r1_bio->remaining))
364 return;
366 if (test_bit(R1BIO_WriteError, &r1_bio->state))
367 reschedule_retry(r1_bio);
368 else {
369 close_write(r1_bio);
370 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
371 reschedule_retry(r1_bio);
372 else
373 raid_end_bio_io(r1_bio);
377 static void raid1_end_write_request(struct bio *bio, int error)
379 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
380 struct r1bio *r1_bio = bio->bi_private;
381 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
382 struct r1conf *conf = r1_bio->mddev->private;
383 struct bio *to_put = NULL;
385 mirror = find_bio_disk(r1_bio, bio);
388 * 'one mirror IO has finished' event handler:
390 if (!uptodate) {
391 set_bit(WriteErrorSeen,
392 &conf->mirrors[mirror].rdev->flags);
393 set_bit(R1BIO_WriteError, &r1_bio->state);
394 } else {
396 * Set R1BIO_Uptodate in our master bio, so that we
397 * will return a good error code for to the higher
398 * levels even if IO on some other mirrored buffer
399 * fails.
401 * The 'master' represents the composite IO operation
402 * to user-side. So if something waits for IO, then it
403 * will wait for the 'master' bio.
405 sector_t first_bad;
406 int bad_sectors;
408 r1_bio->bios[mirror] = NULL;
409 to_put = bio;
410 set_bit(R1BIO_Uptodate, &r1_bio->state);
412 /* Maybe we can clear some bad blocks. */
413 if (is_badblock(conf->mirrors[mirror].rdev,
414 r1_bio->sector, r1_bio->sectors,
415 &first_bad, &bad_sectors)) {
416 r1_bio->bios[mirror] = IO_MADE_GOOD;
417 set_bit(R1BIO_MadeGood, &r1_bio->state);
421 if (behind) {
422 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
423 atomic_dec(&r1_bio->behind_remaining);
426 * In behind mode, we ACK the master bio once the I/O
427 * has safely reached all non-writemostly
428 * disks. Setting the Returned bit ensures that this
429 * gets done only once -- we don't ever want to return
430 * -EIO here, instead we'll wait
432 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
433 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
434 /* Maybe we can return now */
435 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
436 struct bio *mbio = r1_bio->master_bio;
437 pr_debug("raid1: behind end write sectors"
438 " %llu-%llu\n",
439 (unsigned long long) mbio->bi_sector,
440 (unsigned long long) mbio->bi_sector +
441 (mbio->bi_size >> 9) - 1);
442 call_bio_endio(r1_bio);
446 if (r1_bio->bios[mirror] == NULL)
447 rdev_dec_pending(conf->mirrors[mirror].rdev,
448 conf->mddev);
451 * Let's see if all mirrored write operations have finished
452 * already.
454 r1_bio_write_done(r1_bio);
456 if (to_put)
457 bio_put(to_put);
462 * This routine returns the disk from which the requested read should
463 * be done. There is a per-array 'next expected sequential IO' sector
464 * number - if this matches on the next IO then we use the last disk.
465 * There is also a per-disk 'last know head position' sector that is
466 * maintained from IRQ contexts, both the normal and the resync IO
467 * completion handlers update this position correctly. If there is no
468 * perfect sequential match then we pick the disk whose head is closest.
470 * If there are 2 mirrors in the same 2 devices, performance degrades
471 * because position is mirror, not device based.
473 * The rdev for the device selected will have nr_pending incremented.
475 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
477 const sector_t this_sector = r1_bio->sector;
478 int sectors;
479 int best_good_sectors;
480 int start_disk;
481 int best_disk;
482 int i;
483 sector_t best_dist;
484 struct md_rdev *rdev;
485 int choose_first;
487 rcu_read_lock();
489 * Check if we can balance. We can balance on the whole
490 * device if no resync is going on, or below the resync window.
491 * We take the first readable disk when above the resync window.
493 retry:
494 sectors = r1_bio->sectors;
495 best_disk = -1;
496 best_dist = MaxSector;
497 best_good_sectors = 0;
499 if (conf->mddev->recovery_cp < MaxSector &&
500 (this_sector + sectors >= conf->next_resync)) {
501 choose_first = 1;
502 start_disk = 0;
503 } else {
504 choose_first = 0;
505 start_disk = conf->last_used;
508 for (i = 0 ; i < conf->raid_disks ; i++) {
509 sector_t dist;
510 sector_t first_bad;
511 int bad_sectors;
513 int disk = start_disk + i;
514 if (disk >= conf->raid_disks)
515 disk -= conf->raid_disks;
517 rdev = rcu_dereference(conf->mirrors[disk].rdev);
518 if (r1_bio->bios[disk] == IO_BLOCKED
519 || rdev == NULL
520 || test_bit(Faulty, &rdev->flags))
521 continue;
522 if (!test_bit(In_sync, &rdev->flags) &&
523 rdev->recovery_offset < this_sector + sectors)
524 continue;
525 if (test_bit(WriteMostly, &rdev->flags)) {
526 /* Don't balance among write-mostly, just
527 * use the first as a last resort */
528 if (best_disk < 0) {
529 if (is_badblock(rdev, this_sector, sectors,
530 &first_bad, &bad_sectors)) {
531 if (first_bad < this_sector)
532 /* Cannot use this */
533 continue;
534 best_good_sectors = first_bad - this_sector;
535 } else
536 best_good_sectors = sectors;
537 best_disk = disk;
539 continue;
541 /* This is a reasonable device to use. It might
542 * even be best.
544 if (is_badblock(rdev, this_sector, sectors,
545 &first_bad, &bad_sectors)) {
546 if (best_dist < MaxSector)
547 /* already have a better device */
548 continue;
549 if (first_bad <= this_sector) {
550 /* cannot read here. If this is the 'primary'
551 * device, then we must not read beyond
552 * bad_sectors from another device..
554 bad_sectors -= (this_sector - first_bad);
555 if (choose_first && sectors > bad_sectors)
556 sectors = bad_sectors;
557 if (best_good_sectors > sectors)
558 best_good_sectors = sectors;
560 } else {
561 sector_t good_sectors = first_bad - this_sector;
562 if (good_sectors > best_good_sectors) {
563 best_good_sectors = good_sectors;
564 best_disk = disk;
566 if (choose_first)
567 break;
569 continue;
570 } else
571 best_good_sectors = sectors;
573 dist = abs(this_sector - conf->mirrors[disk].head_position);
574 if (choose_first
575 /* Don't change to another disk for sequential reads */
576 || conf->next_seq_sect == this_sector
577 || dist == 0
578 /* If device is idle, use it */
579 || atomic_read(&rdev->nr_pending) == 0) {
580 best_disk = disk;
581 break;
583 if (dist < best_dist) {
584 best_dist = dist;
585 best_disk = disk;
589 if (best_disk >= 0) {
590 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
591 if (!rdev)
592 goto retry;
593 atomic_inc(&rdev->nr_pending);
594 if (test_bit(Faulty, &rdev->flags)) {
595 /* cannot risk returning a device that failed
596 * before we inc'ed nr_pending
598 rdev_dec_pending(rdev, conf->mddev);
599 goto retry;
601 sectors = best_good_sectors;
602 conf->next_seq_sect = this_sector + sectors;
603 conf->last_used = best_disk;
605 rcu_read_unlock();
606 *max_sectors = sectors;
608 return best_disk;
611 int md_raid1_congested(struct mddev *mddev, int bits)
613 struct r1conf *conf = mddev->private;
614 int i, ret = 0;
616 if ((bits & (1 << BDI_async_congested)) &&
617 conf->pending_count >= max_queued_requests)
618 return 1;
620 rcu_read_lock();
621 for (i = 0; i < mddev->raid_disks; i++) {
622 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
623 if (rdev && !test_bit(Faulty, &rdev->flags)) {
624 struct request_queue *q = bdev_get_queue(rdev->bdev);
626 BUG_ON(!q);
628 /* Note the '|| 1' - when read_balance prefers
629 * non-congested targets, it can be removed
631 if ((bits & (1<<BDI_async_congested)) || 1)
632 ret |= bdi_congested(&q->backing_dev_info, bits);
633 else
634 ret &= bdi_congested(&q->backing_dev_info, bits);
637 rcu_read_unlock();
638 return ret;
640 EXPORT_SYMBOL_GPL(md_raid1_congested);
642 static int raid1_congested(void *data, int bits)
644 struct mddev *mddev = data;
646 return mddev_congested(mddev, bits) ||
647 md_raid1_congested(mddev, bits);
650 static void flush_pending_writes(struct r1conf *conf)
652 /* Any writes that have been queued but are awaiting
653 * bitmap updates get flushed here.
655 spin_lock_irq(&conf->device_lock);
657 if (conf->pending_bio_list.head) {
658 struct bio *bio;
659 bio = bio_list_get(&conf->pending_bio_list);
660 conf->pending_count = 0;
661 spin_unlock_irq(&conf->device_lock);
662 /* flush any pending bitmap writes to
663 * disk before proceeding w/ I/O */
664 bitmap_unplug(conf->mddev->bitmap);
665 wake_up(&conf->wait_barrier);
667 while (bio) { /* submit pending writes */
668 struct bio *next = bio->bi_next;
669 bio->bi_next = NULL;
670 generic_make_request(bio);
671 bio = next;
673 } else
674 spin_unlock_irq(&conf->device_lock);
677 /* Barriers....
678 * Sometimes we need to suspend IO while we do something else,
679 * either some resync/recovery, or reconfigure the array.
680 * To do this we raise a 'barrier'.
681 * The 'barrier' is a counter that can be raised multiple times
682 * to count how many activities are happening which preclude
683 * normal IO.
684 * We can only raise the barrier if there is no pending IO.
685 * i.e. if nr_pending == 0.
686 * We choose only to raise the barrier if no-one is waiting for the
687 * barrier to go down. This means that as soon as an IO request
688 * is ready, no other operations which require a barrier will start
689 * until the IO request has had a chance.
691 * So: regular IO calls 'wait_barrier'. When that returns there
692 * is no backgroup IO happening, It must arrange to call
693 * allow_barrier when it has finished its IO.
694 * backgroup IO calls must call raise_barrier. Once that returns
695 * there is no normal IO happeing. It must arrange to call
696 * lower_barrier when the particular background IO completes.
698 #define RESYNC_DEPTH 32
700 static void raise_barrier(struct r1conf *conf)
702 spin_lock_irq(&conf->resync_lock);
704 /* Wait until no block IO is waiting */
705 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
706 conf->resync_lock, );
708 /* block any new IO from starting */
709 conf->barrier++;
711 /* Now wait for all pending IO to complete */
712 wait_event_lock_irq(conf->wait_barrier,
713 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
714 conf->resync_lock, );
716 spin_unlock_irq(&conf->resync_lock);
719 static void lower_barrier(struct r1conf *conf)
721 unsigned long flags;
722 BUG_ON(conf->barrier <= 0);
723 spin_lock_irqsave(&conf->resync_lock, flags);
724 conf->barrier--;
725 spin_unlock_irqrestore(&conf->resync_lock, flags);
726 wake_up(&conf->wait_barrier);
729 static void wait_barrier(struct r1conf *conf)
731 spin_lock_irq(&conf->resync_lock);
732 if (conf->barrier) {
733 conf->nr_waiting++;
734 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
735 conf->resync_lock,
737 conf->nr_waiting--;
739 conf->nr_pending++;
740 spin_unlock_irq(&conf->resync_lock);
743 static void allow_barrier(struct r1conf *conf)
745 unsigned long flags;
746 spin_lock_irqsave(&conf->resync_lock, flags);
747 conf->nr_pending--;
748 spin_unlock_irqrestore(&conf->resync_lock, flags);
749 wake_up(&conf->wait_barrier);
752 static void freeze_array(struct r1conf *conf)
754 /* stop syncio and normal IO and wait for everything to
755 * go quite.
756 * We increment barrier and nr_waiting, and then
757 * wait until nr_pending match nr_queued+1
758 * This is called in the context of one normal IO request
759 * that has failed. Thus any sync request that might be pending
760 * will be blocked by nr_pending, and we need to wait for
761 * pending IO requests to complete or be queued for re-try.
762 * Thus the number queued (nr_queued) plus this request (1)
763 * must match the number of pending IOs (nr_pending) before
764 * we continue.
766 spin_lock_irq(&conf->resync_lock);
767 conf->barrier++;
768 conf->nr_waiting++;
769 wait_event_lock_irq(conf->wait_barrier,
770 conf->nr_pending == conf->nr_queued+1,
771 conf->resync_lock,
772 flush_pending_writes(conf));
773 spin_unlock_irq(&conf->resync_lock);
775 static void unfreeze_array(struct r1conf *conf)
777 /* reverse the effect of the freeze */
778 spin_lock_irq(&conf->resync_lock);
779 conf->barrier--;
780 conf->nr_waiting--;
781 wake_up(&conf->wait_barrier);
782 spin_unlock_irq(&conf->resync_lock);
786 /* duplicate the data pages for behind I/O
788 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
790 int i;
791 struct bio_vec *bvec;
792 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
793 GFP_NOIO);
794 if (unlikely(!bvecs))
795 return;
797 bio_for_each_segment(bvec, bio, i) {
798 bvecs[i] = *bvec;
799 bvecs[i].bv_page = alloc_page(GFP_NOIO);
800 if (unlikely(!bvecs[i].bv_page))
801 goto do_sync_io;
802 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
803 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
804 kunmap(bvecs[i].bv_page);
805 kunmap(bvec->bv_page);
807 r1_bio->behind_bvecs = bvecs;
808 r1_bio->behind_page_count = bio->bi_vcnt;
809 set_bit(R1BIO_BehindIO, &r1_bio->state);
810 return;
812 do_sync_io:
813 for (i = 0; i < bio->bi_vcnt; i++)
814 if (bvecs[i].bv_page)
815 put_page(bvecs[i].bv_page);
816 kfree(bvecs);
817 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
820 static void make_request(struct mddev *mddev, struct bio * bio)
822 struct r1conf *conf = mddev->private;
823 struct mirror_info *mirror;
824 struct r1bio *r1_bio;
825 struct bio *read_bio;
826 int i, disks;
827 struct bitmap *bitmap;
828 unsigned long flags;
829 const int rw = bio_data_dir(bio);
830 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
831 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
832 struct md_rdev *blocked_rdev;
833 int plugged;
834 int first_clone;
835 int sectors_handled;
836 int max_sectors;
839 * Register the new request and wait if the reconstruction
840 * thread has put up a bar for new requests.
841 * Continue immediately if no resync is active currently.
844 md_write_start(mddev, bio); /* wait on superblock update early */
846 if (bio_data_dir(bio) == WRITE &&
847 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
848 bio->bi_sector < mddev->suspend_hi) {
849 /* As the suspend_* range is controlled by
850 * userspace, we want an interruptible
851 * wait.
853 DEFINE_WAIT(w);
854 for (;;) {
855 flush_signals(current);
856 prepare_to_wait(&conf->wait_barrier,
857 &w, TASK_INTERRUPTIBLE);
858 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
859 bio->bi_sector >= mddev->suspend_hi)
860 break;
861 schedule();
863 finish_wait(&conf->wait_barrier, &w);
866 wait_barrier(conf);
868 bitmap = mddev->bitmap;
871 * make_request() can abort the operation when READA is being
872 * used and no empty request is available.
875 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
877 r1_bio->master_bio = bio;
878 r1_bio->sectors = bio->bi_size >> 9;
879 r1_bio->state = 0;
880 r1_bio->mddev = mddev;
881 r1_bio->sector = bio->bi_sector;
883 /* We might need to issue multiple reads to different
884 * devices if there are bad blocks around, so we keep
885 * track of the number of reads in bio->bi_phys_segments.
886 * If this is 0, there is only one r1_bio and no locking
887 * will be needed when requests complete. If it is
888 * non-zero, then it is the number of not-completed requests.
890 bio->bi_phys_segments = 0;
891 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
893 if (rw == READ) {
895 * read balancing logic:
897 int rdisk;
899 read_again:
900 rdisk = read_balance(conf, r1_bio, &max_sectors);
902 if (rdisk < 0) {
903 /* couldn't find anywhere to read from */
904 raid_end_bio_io(r1_bio);
905 return;
907 mirror = conf->mirrors + rdisk;
909 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
910 bitmap) {
911 /* Reading from a write-mostly device must
912 * take care not to over-take any writes
913 * that are 'behind'
915 wait_event(bitmap->behind_wait,
916 atomic_read(&bitmap->behind_writes) == 0);
918 r1_bio->read_disk = rdisk;
920 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
921 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
922 max_sectors);
924 r1_bio->bios[rdisk] = read_bio;
926 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
927 read_bio->bi_bdev = mirror->rdev->bdev;
928 read_bio->bi_end_io = raid1_end_read_request;
929 read_bio->bi_rw = READ | do_sync;
930 read_bio->bi_private = r1_bio;
932 if (max_sectors < r1_bio->sectors) {
933 /* could not read all from this device, so we will
934 * need another r1_bio.
937 sectors_handled = (r1_bio->sector + max_sectors
938 - bio->bi_sector);
939 r1_bio->sectors = max_sectors;
940 spin_lock_irq(&conf->device_lock);
941 if (bio->bi_phys_segments == 0)
942 bio->bi_phys_segments = 2;
943 else
944 bio->bi_phys_segments++;
945 spin_unlock_irq(&conf->device_lock);
946 /* Cannot call generic_make_request directly
947 * as that will be queued in __make_request
948 * and subsequent mempool_alloc might block waiting
949 * for it. So hand bio over to raid1d.
951 reschedule_retry(r1_bio);
953 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
955 r1_bio->master_bio = bio;
956 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
957 r1_bio->state = 0;
958 r1_bio->mddev = mddev;
959 r1_bio->sector = bio->bi_sector + sectors_handled;
960 goto read_again;
961 } else
962 generic_make_request(read_bio);
963 return;
967 * WRITE:
969 if (conf->pending_count >= max_queued_requests) {
970 md_wakeup_thread(mddev->thread);
971 wait_event(conf->wait_barrier,
972 conf->pending_count < max_queued_requests);
974 /* first select target devices under rcu_lock and
975 * inc refcount on their rdev. Record them by setting
976 * bios[x] to bio
977 * If there are known/acknowledged bad blocks on any device on
978 * which we have seen a write error, we want to avoid writing those
979 * blocks.
980 * This potentially requires several writes to write around
981 * the bad blocks. Each set of writes gets it's own r1bio
982 * with a set of bios attached.
984 plugged = mddev_check_plugged(mddev);
986 disks = conf->raid_disks;
987 retry_write:
988 blocked_rdev = NULL;
989 rcu_read_lock();
990 max_sectors = r1_bio->sectors;
991 for (i = 0; i < disks; i++) {
992 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
993 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
994 atomic_inc(&rdev->nr_pending);
995 blocked_rdev = rdev;
996 break;
998 r1_bio->bios[i] = NULL;
999 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1000 set_bit(R1BIO_Degraded, &r1_bio->state);
1001 continue;
1004 atomic_inc(&rdev->nr_pending);
1005 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1006 sector_t first_bad;
1007 int bad_sectors;
1008 int is_bad;
1010 is_bad = is_badblock(rdev, r1_bio->sector,
1011 max_sectors,
1012 &first_bad, &bad_sectors);
1013 if (is_bad < 0) {
1014 /* mustn't write here until the bad block is
1015 * acknowledged*/
1016 set_bit(BlockedBadBlocks, &rdev->flags);
1017 blocked_rdev = rdev;
1018 break;
1020 if (is_bad && first_bad <= r1_bio->sector) {
1021 /* Cannot write here at all */
1022 bad_sectors -= (r1_bio->sector - first_bad);
1023 if (bad_sectors < max_sectors)
1024 /* mustn't write more than bad_sectors
1025 * to other devices yet
1027 max_sectors = bad_sectors;
1028 rdev_dec_pending(rdev, mddev);
1029 /* We don't set R1BIO_Degraded as that
1030 * only applies if the disk is
1031 * missing, so it might be re-added,
1032 * and we want to know to recover this
1033 * chunk.
1034 * In this case the device is here,
1035 * and the fact that this chunk is not
1036 * in-sync is recorded in the bad
1037 * block log
1039 continue;
1041 if (is_bad) {
1042 int good_sectors = first_bad - r1_bio->sector;
1043 if (good_sectors < max_sectors)
1044 max_sectors = good_sectors;
1047 r1_bio->bios[i] = bio;
1049 rcu_read_unlock();
1051 if (unlikely(blocked_rdev)) {
1052 /* Wait for this device to become unblocked */
1053 int j;
1055 for (j = 0; j < i; j++)
1056 if (r1_bio->bios[j])
1057 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1058 r1_bio->state = 0;
1059 allow_barrier(conf);
1060 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1061 wait_barrier(conf);
1062 goto retry_write;
1065 if (max_sectors < r1_bio->sectors) {
1066 /* We are splitting this write into multiple parts, so
1067 * we need to prepare for allocating another r1_bio.
1069 r1_bio->sectors = max_sectors;
1070 spin_lock_irq(&conf->device_lock);
1071 if (bio->bi_phys_segments == 0)
1072 bio->bi_phys_segments = 2;
1073 else
1074 bio->bi_phys_segments++;
1075 spin_unlock_irq(&conf->device_lock);
1077 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1079 atomic_set(&r1_bio->remaining, 1);
1080 atomic_set(&r1_bio->behind_remaining, 0);
1082 first_clone = 1;
1083 for (i = 0; i < disks; i++) {
1084 struct bio *mbio;
1085 if (!r1_bio->bios[i])
1086 continue;
1088 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1089 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1091 if (first_clone) {
1092 /* do behind I/O ?
1093 * Not if there are too many, or cannot
1094 * allocate memory, or a reader on WriteMostly
1095 * is waiting for behind writes to flush */
1096 if (bitmap &&
1097 (atomic_read(&bitmap->behind_writes)
1098 < mddev->bitmap_info.max_write_behind) &&
1099 !waitqueue_active(&bitmap->behind_wait))
1100 alloc_behind_pages(mbio, r1_bio);
1102 bitmap_startwrite(bitmap, r1_bio->sector,
1103 r1_bio->sectors,
1104 test_bit(R1BIO_BehindIO,
1105 &r1_bio->state));
1106 first_clone = 0;
1108 if (r1_bio->behind_bvecs) {
1109 struct bio_vec *bvec;
1110 int j;
1112 /* Yes, I really want the '__' version so that
1113 * we clear any unused pointer in the io_vec, rather
1114 * than leave them unchanged. This is important
1115 * because when we come to free the pages, we won't
1116 * know the original bi_idx, so we just free
1117 * them all
1119 __bio_for_each_segment(bvec, mbio, j, 0)
1120 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1121 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1122 atomic_inc(&r1_bio->behind_remaining);
1125 r1_bio->bios[i] = mbio;
1127 mbio->bi_sector = (r1_bio->sector +
1128 conf->mirrors[i].rdev->data_offset);
1129 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1130 mbio->bi_end_io = raid1_end_write_request;
1131 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1132 mbio->bi_private = r1_bio;
1134 atomic_inc(&r1_bio->remaining);
1135 spin_lock_irqsave(&conf->device_lock, flags);
1136 bio_list_add(&conf->pending_bio_list, mbio);
1137 conf->pending_count++;
1138 spin_unlock_irqrestore(&conf->device_lock, flags);
1140 /* Mustn't call r1_bio_write_done before this next test,
1141 * as it could result in the bio being freed.
1143 if (sectors_handled < (bio->bi_size >> 9)) {
1144 r1_bio_write_done(r1_bio);
1145 /* We need another r1_bio. It has already been counted
1146 * in bio->bi_phys_segments
1148 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1149 r1_bio->master_bio = bio;
1150 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1151 r1_bio->state = 0;
1152 r1_bio->mddev = mddev;
1153 r1_bio->sector = bio->bi_sector + sectors_handled;
1154 goto retry_write;
1157 r1_bio_write_done(r1_bio);
1159 /* In case raid1d snuck in to freeze_array */
1160 wake_up(&conf->wait_barrier);
1162 if (do_sync || !bitmap || !plugged)
1163 md_wakeup_thread(mddev->thread);
1166 static void status(struct seq_file *seq, struct mddev *mddev)
1168 struct r1conf *conf = mddev->private;
1169 int i;
1171 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1172 conf->raid_disks - mddev->degraded);
1173 rcu_read_lock();
1174 for (i = 0; i < conf->raid_disks; i++) {
1175 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1176 seq_printf(seq, "%s",
1177 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1179 rcu_read_unlock();
1180 seq_printf(seq, "]");
1184 static void error(struct mddev *mddev, struct md_rdev *rdev)
1186 char b[BDEVNAME_SIZE];
1187 struct r1conf *conf = mddev->private;
1190 * If it is not operational, then we have already marked it as dead
1191 * else if it is the last working disks, ignore the error, let the
1192 * next level up know.
1193 * else mark the drive as failed
1195 if (test_bit(In_sync, &rdev->flags)
1196 && (conf->raid_disks - mddev->degraded) == 1) {
1198 * Don't fail the drive, act as though we were just a
1199 * normal single drive.
1200 * However don't try a recovery from this drive as
1201 * it is very likely to fail.
1203 conf->recovery_disabled = mddev->recovery_disabled;
1204 return;
1206 set_bit(Blocked, &rdev->flags);
1207 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1208 unsigned long flags;
1209 spin_lock_irqsave(&conf->device_lock, flags);
1210 mddev->degraded++;
1211 set_bit(Faulty, &rdev->flags);
1212 spin_unlock_irqrestore(&conf->device_lock, flags);
1214 * if recovery is running, make sure it aborts.
1216 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1217 } else
1218 set_bit(Faulty, &rdev->flags);
1219 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1220 printk(KERN_ALERT
1221 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1222 "md/raid1:%s: Operation continuing on %d devices.\n",
1223 mdname(mddev), bdevname(rdev->bdev, b),
1224 mdname(mddev), conf->raid_disks - mddev->degraded);
1227 static void print_conf(struct r1conf *conf)
1229 int i;
1231 printk(KERN_DEBUG "RAID1 conf printout:\n");
1232 if (!conf) {
1233 printk(KERN_DEBUG "(!conf)\n");
1234 return;
1236 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1237 conf->raid_disks);
1239 rcu_read_lock();
1240 for (i = 0; i < conf->raid_disks; i++) {
1241 char b[BDEVNAME_SIZE];
1242 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1243 if (rdev)
1244 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1245 i, !test_bit(In_sync, &rdev->flags),
1246 !test_bit(Faulty, &rdev->flags),
1247 bdevname(rdev->bdev,b));
1249 rcu_read_unlock();
1252 static void close_sync(struct r1conf *conf)
1254 wait_barrier(conf);
1255 allow_barrier(conf);
1257 mempool_destroy(conf->r1buf_pool);
1258 conf->r1buf_pool = NULL;
1261 static int raid1_spare_active(struct mddev *mddev)
1263 int i;
1264 struct r1conf *conf = mddev->private;
1265 int count = 0;
1266 unsigned long flags;
1269 * Find all failed disks within the RAID1 configuration
1270 * and mark them readable.
1271 * Called under mddev lock, so rcu protection not needed.
1273 for (i = 0; i < conf->raid_disks; i++) {
1274 struct md_rdev *rdev = conf->mirrors[i].rdev;
1275 if (rdev
1276 && !test_bit(Faulty, &rdev->flags)
1277 && !test_and_set_bit(In_sync, &rdev->flags)) {
1278 count++;
1279 sysfs_notify_dirent_safe(rdev->sysfs_state);
1282 spin_lock_irqsave(&conf->device_lock, flags);
1283 mddev->degraded -= count;
1284 spin_unlock_irqrestore(&conf->device_lock, flags);
1286 print_conf(conf);
1287 return count;
1291 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1293 struct r1conf *conf = mddev->private;
1294 int err = -EEXIST;
1295 int mirror = 0;
1296 struct mirror_info *p;
1297 int first = 0;
1298 int last = mddev->raid_disks - 1;
1300 if (mddev->recovery_disabled == conf->recovery_disabled)
1301 return -EBUSY;
1303 if (rdev->raid_disk >= 0)
1304 first = last = rdev->raid_disk;
1306 for (mirror = first; mirror <= last; mirror++)
1307 if ( !(p=conf->mirrors+mirror)->rdev) {
1309 disk_stack_limits(mddev->gendisk, rdev->bdev,
1310 rdev->data_offset << 9);
1311 /* as we don't honour merge_bvec_fn, we must
1312 * never risk violating it, so limit
1313 * ->max_segments to one lying with a single
1314 * page, as a one page request is never in
1315 * violation.
1317 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1318 blk_queue_max_segments(mddev->queue, 1);
1319 blk_queue_segment_boundary(mddev->queue,
1320 PAGE_CACHE_SIZE - 1);
1323 p->head_position = 0;
1324 rdev->raid_disk = mirror;
1325 err = 0;
1326 /* As all devices are equivalent, we don't need a full recovery
1327 * if this was recently any drive of the array
1329 if (rdev->saved_raid_disk < 0)
1330 conf->fullsync = 1;
1331 rcu_assign_pointer(p->rdev, rdev);
1332 break;
1334 md_integrity_add_rdev(rdev, mddev);
1335 print_conf(conf);
1336 return err;
1339 static int raid1_remove_disk(struct mddev *mddev, int number)
1341 struct r1conf *conf = mddev->private;
1342 int err = 0;
1343 struct md_rdev *rdev;
1344 struct mirror_info *p = conf->mirrors+ number;
1346 print_conf(conf);
1347 rdev = p->rdev;
1348 if (rdev) {
1349 if (test_bit(In_sync, &rdev->flags) ||
1350 atomic_read(&rdev->nr_pending)) {
1351 err = -EBUSY;
1352 goto abort;
1354 /* Only remove non-faulty devices if recovery
1355 * is not possible.
1357 if (!test_bit(Faulty, &rdev->flags) &&
1358 mddev->recovery_disabled != conf->recovery_disabled &&
1359 mddev->degraded < conf->raid_disks) {
1360 err = -EBUSY;
1361 goto abort;
1363 p->rdev = NULL;
1364 synchronize_rcu();
1365 if (atomic_read(&rdev->nr_pending)) {
1366 /* lost the race, try later */
1367 err = -EBUSY;
1368 p->rdev = rdev;
1369 goto abort;
1371 err = md_integrity_register(mddev);
1373 abort:
1375 print_conf(conf);
1376 return err;
1380 static void end_sync_read(struct bio *bio, int error)
1382 struct r1bio *r1_bio = bio->bi_private;
1384 update_head_pos(r1_bio->read_disk, r1_bio);
1387 * we have read a block, now it needs to be re-written,
1388 * or re-read if the read failed.
1389 * We don't do much here, just schedule handling by raid1d
1391 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1392 set_bit(R1BIO_Uptodate, &r1_bio->state);
1394 if (atomic_dec_and_test(&r1_bio->remaining))
1395 reschedule_retry(r1_bio);
1398 static void end_sync_write(struct bio *bio, int error)
1400 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1401 struct r1bio *r1_bio = bio->bi_private;
1402 struct mddev *mddev = r1_bio->mddev;
1403 struct r1conf *conf = mddev->private;
1404 int mirror=0;
1405 sector_t first_bad;
1406 int bad_sectors;
1408 mirror = find_bio_disk(r1_bio, bio);
1410 if (!uptodate) {
1411 sector_t sync_blocks = 0;
1412 sector_t s = r1_bio->sector;
1413 long sectors_to_go = r1_bio->sectors;
1414 /* make sure these bits doesn't get cleared. */
1415 do {
1416 bitmap_end_sync(mddev->bitmap, s,
1417 &sync_blocks, 1);
1418 s += sync_blocks;
1419 sectors_to_go -= sync_blocks;
1420 } while (sectors_to_go > 0);
1421 set_bit(WriteErrorSeen,
1422 &conf->mirrors[mirror].rdev->flags);
1423 set_bit(R1BIO_WriteError, &r1_bio->state);
1424 } else if (is_badblock(conf->mirrors[mirror].rdev,
1425 r1_bio->sector,
1426 r1_bio->sectors,
1427 &first_bad, &bad_sectors) &&
1428 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1429 r1_bio->sector,
1430 r1_bio->sectors,
1431 &first_bad, &bad_sectors)
1433 set_bit(R1BIO_MadeGood, &r1_bio->state);
1435 if (atomic_dec_and_test(&r1_bio->remaining)) {
1436 int s = r1_bio->sectors;
1437 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1438 test_bit(R1BIO_WriteError, &r1_bio->state))
1439 reschedule_retry(r1_bio);
1440 else {
1441 put_buf(r1_bio);
1442 md_done_sync(mddev, s, uptodate);
1447 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1448 int sectors, struct page *page, int rw)
1450 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1451 /* success */
1452 return 1;
1453 if (rw == WRITE)
1454 set_bit(WriteErrorSeen, &rdev->flags);
1455 /* need to record an error - either for the block or the device */
1456 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1457 md_error(rdev->mddev, rdev);
1458 return 0;
1461 static int fix_sync_read_error(struct r1bio *r1_bio)
1463 /* Try some synchronous reads of other devices to get
1464 * good data, much like with normal read errors. Only
1465 * read into the pages we already have so we don't
1466 * need to re-issue the read request.
1467 * We don't need to freeze the array, because being in an
1468 * active sync request, there is no normal IO, and
1469 * no overlapping syncs.
1470 * We don't need to check is_badblock() again as we
1471 * made sure that anything with a bad block in range
1472 * will have bi_end_io clear.
1474 struct mddev *mddev = r1_bio->mddev;
1475 struct r1conf *conf = mddev->private;
1476 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1477 sector_t sect = r1_bio->sector;
1478 int sectors = r1_bio->sectors;
1479 int idx = 0;
1481 while(sectors) {
1482 int s = sectors;
1483 int d = r1_bio->read_disk;
1484 int success = 0;
1485 struct md_rdev *rdev;
1486 int start;
1488 if (s > (PAGE_SIZE>>9))
1489 s = PAGE_SIZE >> 9;
1490 do {
1491 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1492 /* No rcu protection needed here devices
1493 * can only be removed when no resync is
1494 * active, and resync is currently active
1496 rdev = conf->mirrors[d].rdev;
1497 if (sync_page_io(rdev, sect, s<<9,
1498 bio->bi_io_vec[idx].bv_page,
1499 READ, false)) {
1500 success = 1;
1501 break;
1504 d++;
1505 if (d == conf->raid_disks)
1506 d = 0;
1507 } while (!success && d != r1_bio->read_disk);
1509 if (!success) {
1510 char b[BDEVNAME_SIZE];
1511 int abort = 0;
1512 /* Cannot read from anywhere, this block is lost.
1513 * Record a bad block on each device. If that doesn't
1514 * work just disable and interrupt the recovery.
1515 * Don't fail devices as that won't really help.
1517 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1518 " for block %llu\n",
1519 mdname(mddev),
1520 bdevname(bio->bi_bdev, b),
1521 (unsigned long long)r1_bio->sector);
1522 for (d = 0; d < conf->raid_disks; d++) {
1523 rdev = conf->mirrors[d].rdev;
1524 if (!rdev || test_bit(Faulty, &rdev->flags))
1525 continue;
1526 if (!rdev_set_badblocks(rdev, sect, s, 0))
1527 abort = 1;
1529 if (abort) {
1530 conf->recovery_disabled =
1531 mddev->recovery_disabled;
1532 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1533 md_done_sync(mddev, r1_bio->sectors, 0);
1534 put_buf(r1_bio);
1535 return 0;
1537 /* Try next page */
1538 sectors -= s;
1539 sect += s;
1540 idx++;
1541 continue;
1544 start = d;
1545 /* write it back and re-read */
1546 while (d != r1_bio->read_disk) {
1547 if (d == 0)
1548 d = conf->raid_disks;
1549 d--;
1550 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1551 continue;
1552 rdev = conf->mirrors[d].rdev;
1553 if (r1_sync_page_io(rdev, sect, s,
1554 bio->bi_io_vec[idx].bv_page,
1555 WRITE) == 0) {
1556 r1_bio->bios[d]->bi_end_io = NULL;
1557 rdev_dec_pending(rdev, mddev);
1560 d = start;
1561 while (d != r1_bio->read_disk) {
1562 if (d == 0)
1563 d = conf->raid_disks;
1564 d--;
1565 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1566 continue;
1567 rdev = conf->mirrors[d].rdev;
1568 if (r1_sync_page_io(rdev, sect, s,
1569 bio->bi_io_vec[idx].bv_page,
1570 READ) != 0)
1571 atomic_add(s, &rdev->corrected_errors);
1573 sectors -= s;
1574 sect += s;
1575 idx ++;
1577 set_bit(R1BIO_Uptodate, &r1_bio->state);
1578 set_bit(BIO_UPTODATE, &bio->bi_flags);
1579 return 1;
1582 static int process_checks(struct r1bio *r1_bio)
1584 /* We have read all readable devices. If we haven't
1585 * got the block, then there is no hope left.
1586 * If we have, then we want to do a comparison
1587 * and skip the write if everything is the same.
1588 * If any blocks failed to read, then we need to
1589 * attempt an over-write
1591 struct mddev *mddev = r1_bio->mddev;
1592 struct r1conf *conf = mddev->private;
1593 int primary;
1594 int i;
1596 for (primary = 0; primary < conf->raid_disks; primary++)
1597 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1598 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1599 r1_bio->bios[primary]->bi_end_io = NULL;
1600 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1601 break;
1603 r1_bio->read_disk = primary;
1604 for (i = 0; i < conf->raid_disks; i++) {
1605 int j;
1606 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1607 struct bio *pbio = r1_bio->bios[primary];
1608 struct bio *sbio = r1_bio->bios[i];
1609 int size;
1611 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1612 continue;
1614 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1615 for (j = vcnt; j-- ; ) {
1616 struct page *p, *s;
1617 p = pbio->bi_io_vec[j].bv_page;
1618 s = sbio->bi_io_vec[j].bv_page;
1619 if (memcmp(page_address(p),
1620 page_address(s),
1621 PAGE_SIZE))
1622 break;
1624 } else
1625 j = 0;
1626 if (j >= 0)
1627 mddev->resync_mismatches += r1_bio->sectors;
1628 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1629 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1630 /* No need to write to this device. */
1631 sbio->bi_end_io = NULL;
1632 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1633 continue;
1635 /* fixup the bio for reuse */
1636 sbio->bi_vcnt = vcnt;
1637 sbio->bi_size = r1_bio->sectors << 9;
1638 sbio->bi_idx = 0;
1639 sbio->bi_phys_segments = 0;
1640 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1641 sbio->bi_flags |= 1 << BIO_UPTODATE;
1642 sbio->bi_next = NULL;
1643 sbio->bi_sector = r1_bio->sector +
1644 conf->mirrors[i].rdev->data_offset;
1645 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1646 size = sbio->bi_size;
1647 for (j = 0; j < vcnt ; j++) {
1648 struct bio_vec *bi;
1649 bi = &sbio->bi_io_vec[j];
1650 bi->bv_offset = 0;
1651 if (size > PAGE_SIZE)
1652 bi->bv_len = PAGE_SIZE;
1653 else
1654 bi->bv_len = size;
1655 size -= PAGE_SIZE;
1656 memcpy(page_address(bi->bv_page),
1657 page_address(pbio->bi_io_vec[j].bv_page),
1658 PAGE_SIZE);
1661 return 0;
1664 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1666 struct r1conf *conf = mddev->private;
1667 int i;
1668 int disks = conf->raid_disks;
1669 struct bio *bio, *wbio;
1671 bio = r1_bio->bios[r1_bio->read_disk];
1673 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1674 /* ouch - failed to read all of that. */
1675 if (!fix_sync_read_error(r1_bio))
1676 return;
1678 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1679 if (process_checks(r1_bio) < 0)
1680 return;
1682 * schedule writes
1684 atomic_set(&r1_bio->remaining, 1);
1685 for (i = 0; i < disks ; i++) {
1686 wbio = r1_bio->bios[i];
1687 if (wbio->bi_end_io == NULL ||
1688 (wbio->bi_end_io == end_sync_read &&
1689 (i == r1_bio->read_disk ||
1690 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1691 continue;
1693 wbio->bi_rw = WRITE;
1694 wbio->bi_end_io = end_sync_write;
1695 atomic_inc(&r1_bio->remaining);
1696 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1698 generic_make_request(wbio);
1701 if (atomic_dec_and_test(&r1_bio->remaining)) {
1702 /* if we're here, all write(s) have completed, so clean up */
1703 md_done_sync(mddev, r1_bio->sectors, 1);
1704 put_buf(r1_bio);
1709 * This is a kernel thread which:
1711 * 1. Retries failed read operations on working mirrors.
1712 * 2. Updates the raid superblock when problems encounter.
1713 * 3. Performs writes following reads for array synchronising.
1716 static void fix_read_error(struct r1conf *conf, int read_disk,
1717 sector_t sect, int sectors)
1719 struct mddev *mddev = conf->mddev;
1720 while(sectors) {
1721 int s = sectors;
1722 int d = read_disk;
1723 int success = 0;
1724 int start;
1725 struct md_rdev *rdev;
1727 if (s > (PAGE_SIZE>>9))
1728 s = PAGE_SIZE >> 9;
1730 do {
1731 /* Note: no rcu protection needed here
1732 * as this is synchronous in the raid1d thread
1733 * which is the thread that might remove
1734 * a device. If raid1d ever becomes multi-threaded....
1736 sector_t first_bad;
1737 int bad_sectors;
1739 rdev = conf->mirrors[d].rdev;
1740 if (rdev &&
1741 test_bit(In_sync, &rdev->flags) &&
1742 is_badblock(rdev, sect, s,
1743 &first_bad, &bad_sectors) == 0 &&
1744 sync_page_io(rdev, sect, s<<9,
1745 conf->tmppage, READ, false))
1746 success = 1;
1747 else {
1748 d++;
1749 if (d == conf->raid_disks)
1750 d = 0;
1752 } while (!success && d != read_disk);
1754 if (!success) {
1755 /* Cannot read from anywhere - mark it bad */
1756 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1757 if (!rdev_set_badblocks(rdev, sect, s, 0))
1758 md_error(mddev, rdev);
1759 break;
1761 /* write it back and re-read */
1762 start = d;
1763 while (d != read_disk) {
1764 if (d==0)
1765 d = conf->raid_disks;
1766 d--;
1767 rdev = conf->mirrors[d].rdev;
1768 if (rdev &&
1769 test_bit(In_sync, &rdev->flags))
1770 r1_sync_page_io(rdev, sect, s,
1771 conf->tmppage, WRITE);
1773 d = start;
1774 while (d != read_disk) {
1775 char b[BDEVNAME_SIZE];
1776 if (d==0)
1777 d = conf->raid_disks;
1778 d--;
1779 rdev = conf->mirrors[d].rdev;
1780 if (rdev &&
1781 test_bit(In_sync, &rdev->flags)) {
1782 if (r1_sync_page_io(rdev, sect, s,
1783 conf->tmppage, READ)) {
1784 atomic_add(s, &rdev->corrected_errors);
1785 printk(KERN_INFO
1786 "md/raid1:%s: read error corrected "
1787 "(%d sectors at %llu on %s)\n",
1788 mdname(mddev), s,
1789 (unsigned long long)(sect +
1790 rdev->data_offset),
1791 bdevname(rdev->bdev, b));
1795 sectors -= s;
1796 sect += s;
1800 static void bi_complete(struct bio *bio, int error)
1802 complete((struct completion *)bio->bi_private);
1805 static int submit_bio_wait(int rw, struct bio *bio)
1807 struct completion event;
1808 rw |= REQ_SYNC;
1810 init_completion(&event);
1811 bio->bi_private = &event;
1812 bio->bi_end_io = bi_complete;
1813 submit_bio(rw, bio);
1814 wait_for_completion(&event);
1816 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1819 static int narrow_write_error(struct r1bio *r1_bio, int i)
1821 struct mddev *mddev = r1_bio->mddev;
1822 struct r1conf *conf = mddev->private;
1823 struct md_rdev *rdev = conf->mirrors[i].rdev;
1824 int vcnt, idx;
1825 struct bio_vec *vec;
1827 /* bio has the data to be written to device 'i' where
1828 * we just recently had a write error.
1829 * We repeatedly clone the bio and trim down to one block,
1830 * then try the write. Where the write fails we record
1831 * a bad block.
1832 * It is conceivable that the bio doesn't exactly align with
1833 * blocks. We must handle this somehow.
1835 * We currently own a reference on the rdev.
1838 int block_sectors;
1839 sector_t sector;
1840 int sectors;
1841 int sect_to_write = r1_bio->sectors;
1842 int ok = 1;
1844 if (rdev->badblocks.shift < 0)
1845 return 0;
1847 block_sectors = 1 << rdev->badblocks.shift;
1848 sector = r1_bio->sector;
1849 sectors = ((sector + block_sectors)
1850 & ~(sector_t)(block_sectors - 1))
1851 - sector;
1853 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1854 vcnt = r1_bio->behind_page_count;
1855 vec = r1_bio->behind_bvecs;
1856 idx = 0;
1857 while (vec[idx].bv_page == NULL)
1858 idx++;
1859 } else {
1860 vcnt = r1_bio->master_bio->bi_vcnt;
1861 vec = r1_bio->master_bio->bi_io_vec;
1862 idx = r1_bio->master_bio->bi_idx;
1864 while (sect_to_write) {
1865 struct bio *wbio;
1866 if (sectors > sect_to_write)
1867 sectors = sect_to_write;
1868 /* Write at 'sector' for 'sectors'*/
1870 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1871 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1872 wbio->bi_sector = r1_bio->sector;
1873 wbio->bi_rw = WRITE;
1874 wbio->bi_vcnt = vcnt;
1875 wbio->bi_size = r1_bio->sectors << 9;
1876 wbio->bi_idx = idx;
1878 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1879 wbio->bi_sector += rdev->data_offset;
1880 wbio->bi_bdev = rdev->bdev;
1881 if (submit_bio_wait(WRITE, wbio) == 0)
1882 /* failure! */
1883 ok = rdev_set_badblocks(rdev, sector,
1884 sectors, 0)
1885 && ok;
1887 bio_put(wbio);
1888 sect_to_write -= sectors;
1889 sector += sectors;
1890 sectors = block_sectors;
1892 return ok;
1895 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1897 int m;
1898 int s = r1_bio->sectors;
1899 for (m = 0; m < conf->raid_disks ; m++) {
1900 struct md_rdev *rdev = conf->mirrors[m].rdev;
1901 struct bio *bio = r1_bio->bios[m];
1902 if (bio->bi_end_io == NULL)
1903 continue;
1904 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1905 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1906 rdev_clear_badblocks(rdev, r1_bio->sector, s);
1908 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1909 test_bit(R1BIO_WriteError, &r1_bio->state)) {
1910 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1911 md_error(conf->mddev, rdev);
1914 put_buf(r1_bio);
1915 md_done_sync(conf->mddev, s, 1);
1918 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1920 int m;
1921 for (m = 0; m < conf->raid_disks ; m++)
1922 if (r1_bio->bios[m] == IO_MADE_GOOD) {
1923 struct md_rdev *rdev = conf->mirrors[m].rdev;
1924 rdev_clear_badblocks(rdev,
1925 r1_bio->sector,
1926 r1_bio->sectors);
1927 rdev_dec_pending(rdev, conf->mddev);
1928 } else if (r1_bio->bios[m] != NULL) {
1929 /* This drive got a write error. We need to
1930 * narrow down and record precise write
1931 * errors.
1933 if (!narrow_write_error(r1_bio, m)) {
1934 md_error(conf->mddev,
1935 conf->mirrors[m].rdev);
1936 /* an I/O failed, we can't clear the bitmap */
1937 set_bit(R1BIO_Degraded, &r1_bio->state);
1939 rdev_dec_pending(conf->mirrors[m].rdev,
1940 conf->mddev);
1942 if (test_bit(R1BIO_WriteError, &r1_bio->state))
1943 close_write(r1_bio);
1944 raid_end_bio_io(r1_bio);
1947 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
1949 int disk;
1950 int max_sectors;
1951 struct mddev *mddev = conf->mddev;
1952 struct bio *bio;
1953 char b[BDEVNAME_SIZE];
1954 struct md_rdev *rdev;
1956 clear_bit(R1BIO_ReadError, &r1_bio->state);
1957 /* we got a read error. Maybe the drive is bad. Maybe just
1958 * the block and we can fix it.
1959 * We freeze all other IO, and try reading the block from
1960 * other devices. When we find one, we re-write
1961 * and check it that fixes the read error.
1962 * This is all done synchronously while the array is
1963 * frozen
1965 if (mddev->ro == 0) {
1966 freeze_array(conf);
1967 fix_read_error(conf, r1_bio->read_disk,
1968 r1_bio->sector, r1_bio->sectors);
1969 unfreeze_array(conf);
1970 } else
1971 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1973 bio = r1_bio->bios[r1_bio->read_disk];
1974 bdevname(bio->bi_bdev, b);
1975 read_more:
1976 disk = read_balance(conf, r1_bio, &max_sectors);
1977 if (disk == -1) {
1978 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1979 " read error for block %llu\n",
1980 mdname(mddev), b, (unsigned long long)r1_bio->sector);
1981 raid_end_bio_io(r1_bio);
1982 } else {
1983 const unsigned long do_sync
1984 = r1_bio->master_bio->bi_rw & REQ_SYNC;
1985 if (bio) {
1986 r1_bio->bios[r1_bio->read_disk] =
1987 mddev->ro ? IO_BLOCKED : NULL;
1988 bio_put(bio);
1990 r1_bio->read_disk = disk;
1991 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1992 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1993 r1_bio->bios[r1_bio->read_disk] = bio;
1994 rdev = conf->mirrors[disk].rdev;
1995 printk_ratelimited(KERN_ERR
1996 "md/raid1:%s: redirecting sector %llu"
1997 " to other mirror: %s\n",
1998 mdname(mddev),
1999 (unsigned long long)r1_bio->sector,
2000 bdevname(rdev->bdev, b));
2001 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2002 bio->bi_bdev = rdev->bdev;
2003 bio->bi_end_io = raid1_end_read_request;
2004 bio->bi_rw = READ | do_sync;
2005 bio->bi_private = r1_bio;
2006 if (max_sectors < r1_bio->sectors) {
2007 /* Drat - have to split this up more */
2008 struct bio *mbio = r1_bio->master_bio;
2009 int sectors_handled = (r1_bio->sector + max_sectors
2010 - mbio->bi_sector);
2011 r1_bio->sectors = max_sectors;
2012 spin_lock_irq(&conf->device_lock);
2013 if (mbio->bi_phys_segments == 0)
2014 mbio->bi_phys_segments = 2;
2015 else
2016 mbio->bi_phys_segments++;
2017 spin_unlock_irq(&conf->device_lock);
2018 generic_make_request(bio);
2019 bio = NULL;
2021 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2023 r1_bio->master_bio = mbio;
2024 r1_bio->sectors = (mbio->bi_size >> 9)
2025 - sectors_handled;
2026 r1_bio->state = 0;
2027 set_bit(R1BIO_ReadError, &r1_bio->state);
2028 r1_bio->mddev = mddev;
2029 r1_bio->sector = mbio->bi_sector + sectors_handled;
2031 goto read_more;
2032 } else
2033 generic_make_request(bio);
2037 static void raid1d(struct mddev *mddev)
2039 struct r1bio *r1_bio;
2040 unsigned long flags;
2041 struct r1conf *conf = mddev->private;
2042 struct list_head *head = &conf->retry_list;
2043 struct blk_plug plug;
2045 md_check_recovery(mddev);
2047 blk_start_plug(&plug);
2048 for (;;) {
2050 if (atomic_read(&mddev->plug_cnt) == 0)
2051 flush_pending_writes(conf);
2053 spin_lock_irqsave(&conf->device_lock, flags);
2054 if (list_empty(head)) {
2055 spin_unlock_irqrestore(&conf->device_lock, flags);
2056 break;
2058 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2059 list_del(head->prev);
2060 conf->nr_queued--;
2061 spin_unlock_irqrestore(&conf->device_lock, flags);
2063 mddev = r1_bio->mddev;
2064 conf = mddev->private;
2065 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2066 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2067 test_bit(R1BIO_WriteError, &r1_bio->state))
2068 handle_sync_write_finished(conf, r1_bio);
2069 else
2070 sync_request_write(mddev, r1_bio);
2071 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2072 test_bit(R1BIO_WriteError, &r1_bio->state))
2073 handle_write_finished(conf, r1_bio);
2074 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2075 handle_read_error(conf, r1_bio);
2076 else
2077 /* just a partial read to be scheduled from separate
2078 * context
2080 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2082 cond_resched();
2083 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2084 md_check_recovery(mddev);
2086 blk_finish_plug(&plug);
2090 static int init_resync(struct r1conf *conf)
2092 int buffs;
2094 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2095 BUG_ON(conf->r1buf_pool);
2096 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2097 conf->poolinfo);
2098 if (!conf->r1buf_pool)
2099 return -ENOMEM;
2100 conf->next_resync = 0;
2101 return 0;
2105 * perform a "sync" on one "block"
2107 * We need to make sure that no normal I/O request - particularly write
2108 * requests - conflict with active sync requests.
2110 * This is achieved by tracking pending requests and a 'barrier' concept
2111 * that can be installed to exclude normal IO requests.
2114 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2116 struct r1conf *conf = mddev->private;
2117 struct r1bio *r1_bio;
2118 struct bio *bio;
2119 sector_t max_sector, nr_sectors;
2120 int disk = -1;
2121 int i;
2122 int wonly = -1;
2123 int write_targets = 0, read_targets = 0;
2124 sector_t sync_blocks;
2125 int still_degraded = 0;
2126 int good_sectors = RESYNC_SECTORS;
2127 int min_bad = 0; /* number of sectors that are bad in all devices */
2129 if (!conf->r1buf_pool)
2130 if (init_resync(conf))
2131 return 0;
2133 max_sector = mddev->dev_sectors;
2134 if (sector_nr >= max_sector) {
2135 /* If we aborted, we need to abort the
2136 * sync on the 'current' bitmap chunk (there will
2137 * only be one in raid1 resync.
2138 * We can find the current addess in mddev->curr_resync
2140 if (mddev->curr_resync < max_sector) /* aborted */
2141 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2142 &sync_blocks, 1);
2143 else /* completed sync */
2144 conf->fullsync = 0;
2146 bitmap_close_sync(mddev->bitmap);
2147 close_sync(conf);
2148 return 0;
2151 if (mddev->bitmap == NULL &&
2152 mddev->recovery_cp == MaxSector &&
2153 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2154 conf->fullsync == 0) {
2155 *skipped = 1;
2156 return max_sector - sector_nr;
2158 /* before building a request, check if we can skip these blocks..
2159 * This call the bitmap_start_sync doesn't actually record anything
2161 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2162 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2163 /* We can skip this block, and probably several more */
2164 *skipped = 1;
2165 return sync_blocks;
2168 * If there is non-resync activity waiting for a turn,
2169 * and resync is going fast enough,
2170 * then let it though before starting on this new sync request.
2172 if (!go_faster && conf->nr_waiting)
2173 msleep_interruptible(1000);
2175 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2176 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2177 raise_barrier(conf);
2179 conf->next_resync = sector_nr;
2181 rcu_read_lock();
2183 * If we get a correctably read error during resync or recovery,
2184 * we might want to read from a different device. So we
2185 * flag all drives that could conceivably be read from for READ,
2186 * and any others (which will be non-In_sync devices) for WRITE.
2187 * If a read fails, we try reading from something else for which READ
2188 * is OK.
2191 r1_bio->mddev = mddev;
2192 r1_bio->sector = sector_nr;
2193 r1_bio->state = 0;
2194 set_bit(R1BIO_IsSync, &r1_bio->state);
2196 for (i=0; i < conf->raid_disks; i++) {
2197 struct md_rdev *rdev;
2198 bio = r1_bio->bios[i];
2200 /* take from bio_init */
2201 bio->bi_next = NULL;
2202 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2203 bio->bi_flags |= 1 << BIO_UPTODATE;
2204 bio->bi_rw = READ;
2205 bio->bi_vcnt = 0;
2206 bio->bi_idx = 0;
2207 bio->bi_phys_segments = 0;
2208 bio->bi_size = 0;
2209 bio->bi_end_io = NULL;
2210 bio->bi_private = NULL;
2212 rdev = rcu_dereference(conf->mirrors[i].rdev);
2213 if (rdev == NULL ||
2214 test_bit(Faulty, &rdev->flags)) {
2215 still_degraded = 1;
2216 } else if (!test_bit(In_sync, &rdev->flags)) {
2217 bio->bi_rw = WRITE;
2218 bio->bi_end_io = end_sync_write;
2219 write_targets ++;
2220 } else {
2221 /* may need to read from here */
2222 sector_t first_bad = MaxSector;
2223 int bad_sectors;
2225 if (is_badblock(rdev, sector_nr, good_sectors,
2226 &first_bad, &bad_sectors)) {
2227 if (first_bad > sector_nr)
2228 good_sectors = first_bad - sector_nr;
2229 else {
2230 bad_sectors -= (sector_nr - first_bad);
2231 if (min_bad == 0 ||
2232 min_bad > bad_sectors)
2233 min_bad = bad_sectors;
2236 if (sector_nr < first_bad) {
2237 if (test_bit(WriteMostly, &rdev->flags)) {
2238 if (wonly < 0)
2239 wonly = i;
2240 } else {
2241 if (disk < 0)
2242 disk = i;
2244 bio->bi_rw = READ;
2245 bio->bi_end_io = end_sync_read;
2246 read_targets++;
2249 if (bio->bi_end_io) {
2250 atomic_inc(&rdev->nr_pending);
2251 bio->bi_sector = sector_nr + rdev->data_offset;
2252 bio->bi_bdev = rdev->bdev;
2253 bio->bi_private = r1_bio;
2256 rcu_read_unlock();
2257 if (disk < 0)
2258 disk = wonly;
2259 r1_bio->read_disk = disk;
2261 if (read_targets == 0 && min_bad > 0) {
2262 /* These sectors are bad on all InSync devices, so we
2263 * need to mark them bad on all write targets
2265 int ok = 1;
2266 for (i = 0 ; i < conf->raid_disks ; i++)
2267 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2268 struct md_rdev *rdev =
2269 rcu_dereference(conf->mirrors[i].rdev);
2270 ok = rdev_set_badblocks(rdev, sector_nr,
2271 min_bad, 0
2272 ) && ok;
2274 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2275 *skipped = 1;
2276 put_buf(r1_bio);
2278 if (!ok) {
2279 /* Cannot record the badblocks, so need to
2280 * abort the resync.
2281 * If there are multiple read targets, could just
2282 * fail the really bad ones ???
2284 conf->recovery_disabled = mddev->recovery_disabled;
2285 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2286 return 0;
2287 } else
2288 return min_bad;
2291 if (min_bad > 0 && min_bad < good_sectors) {
2292 /* only resync enough to reach the next bad->good
2293 * transition */
2294 good_sectors = min_bad;
2297 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2298 /* extra read targets are also write targets */
2299 write_targets += read_targets-1;
2301 if (write_targets == 0 || read_targets == 0) {
2302 /* There is nowhere to write, so all non-sync
2303 * drives must be failed - so we are finished
2305 sector_t rv = max_sector - sector_nr;
2306 *skipped = 1;
2307 put_buf(r1_bio);
2308 return rv;
2311 if (max_sector > mddev->resync_max)
2312 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2313 if (max_sector > sector_nr + good_sectors)
2314 max_sector = sector_nr + good_sectors;
2315 nr_sectors = 0;
2316 sync_blocks = 0;
2317 do {
2318 struct page *page;
2319 int len = PAGE_SIZE;
2320 if (sector_nr + (len>>9) > max_sector)
2321 len = (max_sector - sector_nr) << 9;
2322 if (len == 0)
2323 break;
2324 if (sync_blocks == 0) {
2325 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2326 &sync_blocks, still_degraded) &&
2327 !conf->fullsync &&
2328 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2329 break;
2330 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2331 if ((len >> 9) > sync_blocks)
2332 len = sync_blocks<<9;
2335 for (i=0 ; i < conf->raid_disks; i++) {
2336 bio = r1_bio->bios[i];
2337 if (bio->bi_end_io) {
2338 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2339 if (bio_add_page(bio, page, len, 0) == 0) {
2340 /* stop here */
2341 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2342 while (i > 0) {
2343 i--;
2344 bio = r1_bio->bios[i];
2345 if (bio->bi_end_io==NULL)
2346 continue;
2347 /* remove last page from this bio */
2348 bio->bi_vcnt--;
2349 bio->bi_size -= len;
2350 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2352 goto bio_full;
2356 nr_sectors += len>>9;
2357 sector_nr += len>>9;
2358 sync_blocks -= (len>>9);
2359 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2360 bio_full:
2361 r1_bio->sectors = nr_sectors;
2363 /* For a user-requested sync, we read all readable devices and do a
2364 * compare
2366 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2367 atomic_set(&r1_bio->remaining, read_targets);
2368 for (i=0; i<conf->raid_disks; i++) {
2369 bio = r1_bio->bios[i];
2370 if (bio->bi_end_io == end_sync_read) {
2371 md_sync_acct(bio->bi_bdev, nr_sectors);
2372 generic_make_request(bio);
2375 } else {
2376 atomic_set(&r1_bio->remaining, 1);
2377 bio = r1_bio->bios[r1_bio->read_disk];
2378 md_sync_acct(bio->bi_bdev, nr_sectors);
2379 generic_make_request(bio);
2382 return nr_sectors;
2385 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2387 if (sectors)
2388 return sectors;
2390 return mddev->dev_sectors;
2393 static struct r1conf *setup_conf(struct mddev *mddev)
2395 struct r1conf *conf;
2396 int i;
2397 struct mirror_info *disk;
2398 struct md_rdev *rdev;
2399 int err = -ENOMEM;
2401 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2402 if (!conf)
2403 goto abort;
2405 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2406 GFP_KERNEL);
2407 if (!conf->mirrors)
2408 goto abort;
2410 conf->tmppage = alloc_page(GFP_KERNEL);
2411 if (!conf->tmppage)
2412 goto abort;
2414 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2415 if (!conf->poolinfo)
2416 goto abort;
2417 conf->poolinfo->raid_disks = mddev->raid_disks;
2418 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2419 r1bio_pool_free,
2420 conf->poolinfo);
2421 if (!conf->r1bio_pool)
2422 goto abort;
2424 conf->poolinfo->mddev = mddev;
2426 spin_lock_init(&conf->device_lock);
2427 list_for_each_entry(rdev, &mddev->disks, same_set) {
2428 int disk_idx = rdev->raid_disk;
2429 if (disk_idx >= mddev->raid_disks
2430 || disk_idx < 0)
2431 continue;
2432 disk = conf->mirrors + disk_idx;
2434 disk->rdev = rdev;
2436 disk->head_position = 0;
2438 conf->raid_disks = mddev->raid_disks;
2439 conf->mddev = mddev;
2440 INIT_LIST_HEAD(&conf->retry_list);
2442 spin_lock_init(&conf->resync_lock);
2443 init_waitqueue_head(&conf->wait_barrier);
2445 bio_list_init(&conf->pending_bio_list);
2446 conf->pending_count = 0;
2447 conf->recovery_disabled = mddev->recovery_disabled - 1;
2449 conf->last_used = -1;
2450 for (i = 0; i < conf->raid_disks; i++) {
2452 disk = conf->mirrors + i;
2454 if (!disk->rdev ||
2455 !test_bit(In_sync, &disk->rdev->flags)) {
2456 disk->head_position = 0;
2457 if (disk->rdev)
2458 conf->fullsync = 1;
2459 } else if (conf->last_used < 0)
2461 * The first working device is used as a
2462 * starting point to read balancing.
2464 conf->last_used = i;
2467 err = -EIO;
2468 if (conf->last_used < 0) {
2469 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2470 mdname(mddev));
2471 goto abort;
2473 err = -ENOMEM;
2474 conf->thread = md_register_thread(raid1d, mddev, NULL);
2475 if (!conf->thread) {
2476 printk(KERN_ERR
2477 "md/raid1:%s: couldn't allocate thread\n",
2478 mdname(mddev));
2479 goto abort;
2482 return conf;
2484 abort:
2485 if (conf) {
2486 if (conf->r1bio_pool)
2487 mempool_destroy(conf->r1bio_pool);
2488 kfree(conf->mirrors);
2489 safe_put_page(conf->tmppage);
2490 kfree(conf->poolinfo);
2491 kfree(conf);
2493 return ERR_PTR(err);
2496 static int run(struct mddev *mddev)
2498 struct r1conf *conf;
2499 int i;
2500 struct md_rdev *rdev;
2502 if (mddev->level != 1) {
2503 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2504 mdname(mddev), mddev->level);
2505 return -EIO;
2507 if (mddev->reshape_position != MaxSector) {
2508 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2509 mdname(mddev));
2510 return -EIO;
2513 * copy the already verified devices into our private RAID1
2514 * bookkeeping area. [whatever we allocate in run(),
2515 * should be freed in stop()]
2517 if (mddev->private == NULL)
2518 conf = setup_conf(mddev);
2519 else
2520 conf = mddev->private;
2522 if (IS_ERR(conf))
2523 return PTR_ERR(conf);
2525 list_for_each_entry(rdev, &mddev->disks, same_set) {
2526 if (!mddev->gendisk)
2527 continue;
2528 disk_stack_limits(mddev->gendisk, rdev->bdev,
2529 rdev->data_offset << 9);
2530 /* as we don't honour merge_bvec_fn, we must never risk
2531 * violating it, so limit ->max_segments to 1 lying within
2532 * a single page, as a one page request is never in violation.
2534 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2535 blk_queue_max_segments(mddev->queue, 1);
2536 blk_queue_segment_boundary(mddev->queue,
2537 PAGE_CACHE_SIZE - 1);
2541 mddev->degraded = 0;
2542 for (i=0; i < conf->raid_disks; i++)
2543 if (conf->mirrors[i].rdev == NULL ||
2544 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2545 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2546 mddev->degraded++;
2548 if (conf->raid_disks - mddev->degraded == 1)
2549 mddev->recovery_cp = MaxSector;
2551 if (mddev->recovery_cp != MaxSector)
2552 printk(KERN_NOTICE "md/raid1:%s: not clean"
2553 " -- starting background reconstruction\n",
2554 mdname(mddev));
2555 printk(KERN_INFO
2556 "md/raid1:%s: active with %d out of %d mirrors\n",
2557 mdname(mddev), mddev->raid_disks - mddev->degraded,
2558 mddev->raid_disks);
2561 * Ok, everything is just fine now
2563 mddev->thread = conf->thread;
2564 conf->thread = NULL;
2565 mddev->private = conf;
2567 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2569 if (mddev->queue) {
2570 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2571 mddev->queue->backing_dev_info.congested_data = mddev;
2573 return md_integrity_register(mddev);
2576 static int stop(struct mddev *mddev)
2578 struct r1conf *conf = mddev->private;
2579 struct bitmap *bitmap = mddev->bitmap;
2581 /* wait for behind writes to complete */
2582 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2583 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2584 mdname(mddev));
2585 /* need to kick something here to make sure I/O goes? */
2586 wait_event(bitmap->behind_wait,
2587 atomic_read(&bitmap->behind_writes) == 0);
2590 raise_barrier(conf);
2591 lower_barrier(conf);
2593 md_unregister_thread(&mddev->thread);
2594 if (conf->r1bio_pool)
2595 mempool_destroy(conf->r1bio_pool);
2596 kfree(conf->mirrors);
2597 kfree(conf->poolinfo);
2598 kfree(conf);
2599 mddev->private = NULL;
2600 return 0;
2603 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2605 /* no resync is happening, and there is enough space
2606 * on all devices, so we can resize.
2607 * We need to make sure resync covers any new space.
2608 * If the array is shrinking we should possibly wait until
2609 * any io in the removed space completes, but it hardly seems
2610 * worth it.
2612 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2613 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2614 return -EINVAL;
2615 set_capacity(mddev->gendisk, mddev->array_sectors);
2616 revalidate_disk(mddev->gendisk);
2617 if (sectors > mddev->dev_sectors &&
2618 mddev->recovery_cp > mddev->dev_sectors) {
2619 mddev->recovery_cp = mddev->dev_sectors;
2620 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2622 mddev->dev_sectors = sectors;
2623 mddev->resync_max_sectors = sectors;
2624 return 0;
2627 static int raid1_reshape(struct mddev *mddev)
2629 /* We need to:
2630 * 1/ resize the r1bio_pool
2631 * 2/ resize conf->mirrors
2633 * We allocate a new r1bio_pool if we can.
2634 * Then raise a device barrier and wait until all IO stops.
2635 * Then resize conf->mirrors and swap in the new r1bio pool.
2637 * At the same time, we "pack" the devices so that all the missing
2638 * devices have the higher raid_disk numbers.
2640 mempool_t *newpool, *oldpool;
2641 struct pool_info *newpoolinfo;
2642 struct mirror_info *newmirrors;
2643 struct r1conf *conf = mddev->private;
2644 int cnt, raid_disks;
2645 unsigned long flags;
2646 int d, d2, err;
2648 /* Cannot change chunk_size, layout, or level */
2649 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2650 mddev->layout != mddev->new_layout ||
2651 mddev->level != mddev->new_level) {
2652 mddev->new_chunk_sectors = mddev->chunk_sectors;
2653 mddev->new_layout = mddev->layout;
2654 mddev->new_level = mddev->level;
2655 return -EINVAL;
2658 err = md_allow_write(mddev);
2659 if (err)
2660 return err;
2662 raid_disks = mddev->raid_disks + mddev->delta_disks;
2664 if (raid_disks < conf->raid_disks) {
2665 cnt=0;
2666 for (d= 0; d < conf->raid_disks; d++)
2667 if (conf->mirrors[d].rdev)
2668 cnt++;
2669 if (cnt > raid_disks)
2670 return -EBUSY;
2673 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2674 if (!newpoolinfo)
2675 return -ENOMEM;
2676 newpoolinfo->mddev = mddev;
2677 newpoolinfo->raid_disks = raid_disks;
2679 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2680 r1bio_pool_free, newpoolinfo);
2681 if (!newpool) {
2682 kfree(newpoolinfo);
2683 return -ENOMEM;
2685 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2686 if (!newmirrors) {
2687 kfree(newpoolinfo);
2688 mempool_destroy(newpool);
2689 return -ENOMEM;
2692 raise_barrier(conf);
2694 /* ok, everything is stopped */
2695 oldpool = conf->r1bio_pool;
2696 conf->r1bio_pool = newpool;
2698 for (d = d2 = 0; d < conf->raid_disks; d++) {
2699 struct md_rdev *rdev = conf->mirrors[d].rdev;
2700 if (rdev && rdev->raid_disk != d2) {
2701 sysfs_unlink_rdev(mddev, rdev);
2702 rdev->raid_disk = d2;
2703 sysfs_unlink_rdev(mddev, rdev);
2704 if (sysfs_link_rdev(mddev, rdev))
2705 printk(KERN_WARNING
2706 "md/raid1:%s: cannot register rd%d\n",
2707 mdname(mddev), rdev->raid_disk);
2709 if (rdev)
2710 newmirrors[d2++].rdev = rdev;
2712 kfree(conf->mirrors);
2713 conf->mirrors = newmirrors;
2714 kfree(conf->poolinfo);
2715 conf->poolinfo = newpoolinfo;
2717 spin_lock_irqsave(&conf->device_lock, flags);
2718 mddev->degraded += (raid_disks - conf->raid_disks);
2719 spin_unlock_irqrestore(&conf->device_lock, flags);
2720 conf->raid_disks = mddev->raid_disks = raid_disks;
2721 mddev->delta_disks = 0;
2723 conf->last_used = 0; /* just make sure it is in-range */
2724 lower_barrier(conf);
2726 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2727 md_wakeup_thread(mddev->thread);
2729 mempool_destroy(oldpool);
2730 return 0;
2733 static void raid1_quiesce(struct mddev *mddev, int state)
2735 struct r1conf *conf = mddev->private;
2737 switch(state) {
2738 case 2: /* wake for suspend */
2739 wake_up(&conf->wait_barrier);
2740 break;
2741 case 1:
2742 raise_barrier(conf);
2743 break;
2744 case 0:
2745 lower_barrier(conf);
2746 break;
2750 static void *raid1_takeover(struct mddev *mddev)
2752 /* raid1 can take over:
2753 * raid5 with 2 devices, any layout or chunk size
2755 if (mddev->level == 5 && mddev->raid_disks == 2) {
2756 struct r1conf *conf;
2757 mddev->new_level = 1;
2758 mddev->new_layout = 0;
2759 mddev->new_chunk_sectors = 0;
2760 conf = setup_conf(mddev);
2761 if (!IS_ERR(conf))
2762 conf->barrier = 1;
2763 return conf;
2765 return ERR_PTR(-EINVAL);
2768 static struct md_personality raid1_personality =
2770 .name = "raid1",
2771 .level = 1,
2772 .owner = THIS_MODULE,
2773 .make_request = make_request,
2774 .run = run,
2775 .stop = stop,
2776 .status = status,
2777 .error_handler = error,
2778 .hot_add_disk = raid1_add_disk,
2779 .hot_remove_disk= raid1_remove_disk,
2780 .spare_active = raid1_spare_active,
2781 .sync_request = sync_request,
2782 .resize = raid1_resize,
2783 .size = raid1_size,
2784 .check_reshape = raid1_reshape,
2785 .quiesce = raid1_quiesce,
2786 .takeover = raid1_takeover,
2789 static int __init raid_init(void)
2791 return register_md_personality(&raid1_personality);
2794 static void raid_exit(void)
2796 unregister_md_personality(&raid1_personality);
2799 module_init(raid_init);
2800 module_exit(raid_exit);
2801 MODULE_LICENSE("GPL");
2802 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2803 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2804 MODULE_ALIAS("md-raid1");
2805 MODULE_ALIAS("md-level-1");
2807 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);