2 * Support for Marvell's crypto engine which can be found on some Orion5X
5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <crypto/internal/hash.h>
20 #include <crypto/sha.h>
24 #define MV_CESA "MV-CESA:"
25 #define MAX_HW_HASH_SIZE 0xFFFF
29 * /---------------------------------------\
30 * | | request complete
32 * IDLE -> new request -> BUSY -> done -> DEQUEUE
34 * | | more scatter entries
44 * struct req_progress - used for every crypt request
45 * @src_sg_it: sg iterator for src
46 * @dst_sg_it: sg iterator for dst
47 * @sg_src_left: bytes left in src to process (scatter list)
48 * @src_start: offset to add to src start position (scatter list)
49 * @crypt_len: length of current hw crypt/hash process
50 * @hw_nbytes: total bytes to process in hw for this request
51 * @copy_back: whether to copy data back (crypt) or not (hash)
52 * @sg_dst_left: bytes left dst to process in this scatter list
53 * @dst_start: offset to add to dst start position (scatter list)
54 * @hw_processed_bytes: number of bytes processed by hw (request).
56 * sg helper are used to iterate over the scatterlist. Since the size of the
57 * SRAM may be less than the scatter size, this struct struct is used to keep
58 * track of progress within current scatterlist.
61 struct sg_mapping_iter src_sg_it
;
62 struct sg_mapping_iter dst_sg_it
;
63 void (*complete
) (void);
64 void (*process
) (int is_first
);
75 int hw_processed_bytes
;
82 struct task_struct
*queue_th
;
84 /* the lock protects queue and eng_st */
86 struct crypto_queue queue
;
87 enum engine_status eng_st
;
88 struct crypto_async_request
*cur_req
;
89 struct req_progress p
;
96 static struct crypto_priv
*cpg
;
99 u8 aes_enc_key
[AES_KEY_LEN
];
102 u32 need_calc_aes_dkey
;
120 struct mv_tfm_hash_ctx
{
121 struct crypto_shash
*fallback
;
122 struct crypto_shash
*base_hash
;
123 u32 ivs
[2 * SHA1_DIGEST_SIZE
/ 4];
128 struct mv_req_hash_ctx
{
130 u32 state
[SHA1_DIGEST_SIZE
/ 4];
131 u8 buffer
[SHA1_BLOCK_SIZE
];
132 int first_hash
; /* marks that we don't have previous state */
133 int last_chunk
; /* marks that this is the 'final' request */
134 int extra_bytes
; /* unprocessed bytes in buffer */
139 static void compute_aes_dec_key(struct mv_ctx
*ctx
)
141 struct crypto_aes_ctx gen_aes_key
;
144 if (!ctx
->need_calc_aes_dkey
)
147 crypto_aes_expand_key(&gen_aes_key
, ctx
->aes_enc_key
, ctx
->key_len
);
149 key_pos
= ctx
->key_len
+ 24;
150 memcpy(ctx
->aes_dec_key
, &gen_aes_key
.key_enc
[key_pos
], 4 * 4);
151 switch (ctx
->key_len
) {
152 case AES_KEYSIZE_256
:
155 case AES_KEYSIZE_192
:
157 memcpy(&ctx
->aes_dec_key
[4], &gen_aes_key
.key_enc
[key_pos
],
161 ctx
->need_calc_aes_dkey
= 0;
164 static int mv_setkey_aes(struct crypto_ablkcipher
*cipher
, const u8
*key
,
167 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
168 struct mv_ctx
*ctx
= crypto_tfm_ctx(tfm
);
171 case AES_KEYSIZE_128
:
172 case AES_KEYSIZE_192
:
173 case AES_KEYSIZE_256
:
176 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
180 ctx
->need_calc_aes_dkey
= 1;
182 memcpy(ctx
->aes_enc_key
, key
, AES_KEY_LEN
);
186 static void copy_src_to_buf(struct req_progress
*p
, char *dbuf
, int len
)
193 if (!p
->sg_src_left
) {
194 ret
= sg_miter_next(&p
->src_sg_it
);
196 p
->sg_src_left
= p
->src_sg_it
.length
;
200 sbuf
= p
->src_sg_it
.addr
+ p
->src_start
;
202 copy_len
= min(p
->sg_src_left
, len
);
203 memcpy(dbuf
, sbuf
, copy_len
);
205 p
->src_start
+= copy_len
;
206 p
->sg_src_left
-= copy_len
;
213 static void setup_data_in(void)
215 struct req_progress
*p
= &cpg
->p
;
217 min(p
->hw_nbytes
- p
->hw_processed_bytes
, cpg
->max_req_size
);
218 copy_src_to_buf(p
, cpg
->sram
+ SRAM_DATA_IN_START
+ p
->crypt_len
,
219 data_in_sram
- p
->crypt_len
);
220 p
->crypt_len
= data_in_sram
;
223 static void mv_process_current_q(int first_block
)
225 struct ablkcipher_request
*req
= ablkcipher_request_cast(cpg
->cur_req
);
226 struct mv_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
227 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
228 struct sec_accel_config op
;
230 switch (req_ctx
->op
) {
232 op
.config
= CFG_OP_CRYPT_ONLY
| CFG_ENCM_AES
| CFG_ENC_MODE_ECB
;
236 op
.config
= CFG_OP_CRYPT_ONLY
| CFG_ENCM_AES
| CFG_ENC_MODE_CBC
;
237 op
.enc_iv
= ENC_IV_POINT(SRAM_DATA_IV
) |
238 ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF
);
240 memcpy(cpg
->sram
+ SRAM_DATA_IV
, req
->info
, 16);
243 if (req_ctx
->decrypt
) {
244 op
.config
|= CFG_DIR_DEC
;
245 memcpy(cpg
->sram
+ SRAM_DATA_KEY_P
, ctx
->aes_dec_key
,
248 op
.config
|= CFG_DIR_ENC
;
249 memcpy(cpg
->sram
+ SRAM_DATA_KEY_P
, ctx
->aes_enc_key
,
253 switch (ctx
->key_len
) {
254 case AES_KEYSIZE_128
:
255 op
.config
|= CFG_AES_LEN_128
;
257 case AES_KEYSIZE_192
:
258 op
.config
|= CFG_AES_LEN_192
;
260 case AES_KEYSIZE_256
:
261 op
.config
|= CFG_AES_LEN_256
;
264 op
.enc_p
= ENC_P_SRC(SRAM_DATA_IN_START
) |
265 ENC_P_DST(SRAM_DATA_OUT_START
);
266 op
.enc_key_p
= SRAM_DATA_KEY_P
;
269 op
.enc_len
= cpg
->p
.crypt_len
;
270 memcpy(cpg
->sram
+ SRAM_CONFIG
, &op
,
271 sizeof(struct sec_accel_config
));
274 writel(SEC_CMD_EN_SEC_ACCL0
, cpg
->reg
+ SEC_ACCEL_CMD
);
277 * XXX: add timer if the interrupt does not occur for some mystery
282 static void mv_crypto_algo_completion(void)
284 struct ablkcipher_request
*req
= ablkcipher_request_cast(cpg
->cur_req
);
285 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
287 sg_miter_stop(&cpg
->p
.src_sg_it
);
288 sg_miter_stop(&cpg
->p
.dst_sg_it
);
290 if (req_ctx
->op
!= COP_AES_CBC
)
293 memcpy(req
->info
, cpg
->sram
+ SRAM_DATA_IV_BUF
, 16);
296 static void mv_process_hash_current(int first_block
)
298 struct ahash_request
*req
= ahash_request_cast(cpg
->cur_req
);
299 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
300 struct mv_req_hash_ctx
*req_ctx
= ahash_request_ctx(req
);
301 struct req_progress
*p
= &cpg
->p
;
302 struct sec_accel_config op
= { 0 };
305 switch (req_ctx
->op
) {
308 op
.config
= CFG_OP_MAC_ONLY
| CFG_MACM_SHA1
;
311 op
.config
= CFG_OP_MAC_ONLY
| CFG_MACM_HMAC_SHA1
;
312 memcpy(cpg
->sram
+ SRAM_HMAC_IV_IN
,
313 tfm_ctx
->ivs
, sizeof(tfm_ctx
->ivs
));
318 MAC_SRC_DATA_P(SRAM_DATA_IN_START
) | MAC_SRC_TOTAL_LEN((u32
)
325 MAC_DIGEST_P(SRAM_DIGEST_BUF
) | MAC_FRAG_LEN(p
->crypt_len
);
327 MAC_INNER_IV_P(SRAM_HMAC_IV_IN
) |
328 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT
);
330 is_last
= req_ctx
->last_chunk
331 && (p
->hw_processed_bytes
+ p
->crypt_len
>= p
->hw_nbytes
)
332 && (req_ctx
->count
<= MAX_HW_HASH_SIZE
);
333 if (req_ctx
->first_hash
) {
335 op
.config
|= CFG_NOT_FRAG
;
337 op
.config
|= CFG_FIRST_FRAG
;
339 req_ctx
->first_hash
= 0;
342 op
.config
|= CFG_LAST_FRAG
;
344 op
.config
|= CFG_MID_FRAG
;
347 writel(req_ctx
->state
[0], cpg
->reg
+ DIGEST_INITIAL_VAL_A
);
348 writel(req_ctx
->state
[1], cpg
->reg
+ DIGEST_INITIAL_VAL_B
);
349 writel(req_ctx
->state
[2], cpg
->reg
+ DIGEST_INITIAL_VAL_C
);
350 writel(req_ctx
->state
[3], cpg
->reg
+ DIGEST_INITIAL_VAL_D
);
351 writel(req_ctx
->state
[4], cpg
->reg
+ DIGEST_INITIAL_VAL_E
);
355 memcpy(cpg
->sram
+ SRAM_CONFIG
, &op
, sizeof(struct sec_accel_config
));
358 writel(SEC_CMD_EN_SEC_ACCL0
, cpg
->reg
+ SEC_ACCEL_CMD
);
361 * XXX: add timer if the interrupt does not occur for some mystery
366 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx
*ctx
,
367 struct shash_desc
*desc
)
370 struct sha1_state shash_state
;
372 shash_state
.count
= ctx
->count
+ ctx
->count_add
;
373 for (i
= 0; i
< 5; i
++)
374 shash_state
.state
[i
] = ctx
->state
[i
];
375 memcpy(shash_state
.buffer
, ctx
->buffer
, sizeof(shash_state
.buffer
));
376 return crypto_shash_import(desc
, &shash_state
);
379 static int mv_hash_final_fallback(struct ahash_request
*req
)
381 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
382 struct mv_req_hash_ctx
*req_ctx
= ahash_request_ctx(req
);
384 struct shash_desc shash
;
385 char ctx
[crypto_shash_descsize(tfm_ctx
->fallback
)];
389 desc
.shash
.tfm
= tfm_ctx
->fallback
;
390 desc
.shash
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
391 if (unlikely(req_ctx
->first_hash
)) {
392 crypto_shash_init(&desc
.shash
);
393 crypto_shash_update(&desc
.shash
, req_ctx
->buffer
,
394 req_ctx
->extra_bytes
);
396 /* only SHA1 for now....
398 rc
= mv_hash_import_sha1_ctx(req_ctx
, &desc
.shash
);
402 rc
= crypto_shash_final(&desc
.shash
, req
->result
);
407 static void mv_hash_algo_completion(void)
409 struct ahash_request
*req
= ahash_request_cast(cpg
->cur_req
);
410 struct mv_req_hash_ctx
*ctx
= ahash_request_ctx(req
);
412 if (ctx
->extra_bytes
)
413 copy_src_to_buf(&cpg
->p
, ctx
->buffer
, ctx
->extra_bytes
);
414 sg_miter_stop(&cpg
->p
.src_sg_it
);
416 if (likely(ctx
->last_chunk
)) {
417 if (likely(ctx
->count
<= MAX_HW_HASH_SIZE
)) {
418 memcpy(req
->result
, cpg
->sram
+ SRAM_DIGEST_BUF
,
419 crypto_ahash_digestsize(crypto_ahash_reqtfm
422 mv_hash_final_fallback(req
);
424 ctx
->state
[0] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_A
);
425 ctx
->state
[1] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_B
);
426 ctx
->state
[2] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_C
);
427 ctx
->state
[3] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_D
);
428 ctx
->state
[4] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_E
);
432 static void dequeue_complete_req(void)
434 struct crypto_async_request
*req
= cpg
->cur_req
;
437 cpg
->p
.hw_processed_bytes
+= cpg
->p
.crypt_len
;
438 if (cpg
->p
.copy_back
) {
439 int need_copy_len
= cpg
->p
.crypt_len
;
444 if (!cpg
->p
.sg_dst_left
) {
445 ret
= sg_miter_next(&cpg
->p
.dst_sg_it
);
447 cpg
->p
.sg_dst_left
= cpg
->p
.dst_sg_it
.length
;
448 cpg
->p
.dst_start
= 0;
451 buf
= cpg
->p
.dst_sg_it
.addr
;
452 buf
+= cpg
->p
.dst_start
;
454 dst_copy
= min(need_copy_len
, cpg
->p
.sg_dst_left
);
457 cpg
->sram
+ SRAM_DATA_OUT_START
+ sram_offset
,
459 sram_offset
+= dst_copy
;
460 cpg
->p
.sg_dst_left
-= dst_copy
;
461 need_copy_len
-= dst_copy
;
462 cpg
->p
.dst_start
+= dst_copy
;
463 } while (need_copy_len
> 0);
466 cpg
->p
.crypt_len
= 0;
468 BUG_ON(cpg
->eng_st
!= ENGINE_W_DEQUEUE
);
469 if (cpg
->p
.hw_processed_bytes
< cpg
->p
.hw_nbytes
) {
470 /* process next scatter list entry */
471 cpg
->eng_st
= ENGINE_BUSY
;
475 cpg
->eng_st
= ENGINE_IDLE
;
477 req
->complete(req
, 0);
482 static int count_sgs(struct scatterlist
*sl
, unsigned int total_bytes
)
488 cur_len
= sl
[i
].length
;
490 if (total_bytes
> cur_len
)
491 total_bytes
-= cur_len
;
499 static void mv_start_new_crypt_req(struct ablkcipher_request
*req
)
501 struct req_progress
*p
= &cpg
->p
;
504 cpg
->cur_req
= &req
->base
;
505 memset(p
, 0, sizeof(struct req_progress
));
506 p
->hw_nbytes
= req
->nbytes
;
507 p
->complete
= mv_crypto_algo_completion
;
508 p
->process
= mv_process_current_q
;
511 num_sgs
= count_sgs(req
->src
, req
->nbytes
);
512 sg_miter_start(&p
->src_sg_it
, req
->src
, num_sgs
, SG_MITER_FROM_SG
);
514 num_sgs
= count_sgs(req
->dst
, req
->nbytes
);
515 sg_miter_start(&p
->dst_sg_it
, req
->dst
, num_sgs
, SG_MITER_TO_SG
);
517 mv_process_current_q(1);
520 static void mv_start_new_hash_req(struct ahash_request
*req
)
522 struct req_progress
*p
= &cpg
->p
;
523 struct mv_req_hash_ctx
*ctx
= ahash_request_ctx(req
);
524 int num_sgs
, hw_bytes
, old_extra_bytes
, rc
;
525 cpg
->cur_req
= &req
->base
;
526 memset(p
, 0, sizeof(struct req_progress
));
527 hw_bytes
= req
->nbytes
+ ctx
->extra_bytes
;
528 old_extra_bytes
= ctx
->extra_bytes
;
530 ctx
->extra_bytes
= hw_bytes
% SHA1_BLOCK_SIZE
;
531 if (ctx
->extra_bytes
!= 0
532 && (!ctx
->last_chunk
|| ctx
->count
> MAX_HW_HASH_SIZE
))
533 hw_bytes
-= ctx
->extra_bytes
;
535 ctx
->extra_bytes
= 0;
537 num_sgs
= count_sgs(req
->src
, req
->nbytes
);
538 sg_miter_start(&p
->src_sg_it
, req
->src
, num_sgs
, SG_MITER_FROM_SG
);
541 p
->hw_nbytes
= hw_bytes
;
542 p
->complete
= mv_hash_algo_completion
;
543 p
->process
= mv_process_hash_current
;
545 if (unlikely(old_extra_bytes
)) {
546 memcpy(cpg
->sram
+ SRAM_DATA_IN_START
, ctx
->buffer
,
548 p
->crypt_len
= old_extra_bytes
;
551 mv_process_hash_current(1);
553 copy_src_to_buf(p
, ctx
->buffer
+ old_extra_bytes
,
554 ctx
->extra_bytes
- old_extra_bytes
);
555 sg_miter_stop(&p
->src_sg_it
);
557 rc
= mv_hash_final_fallback(req
);
560 cpg
->eng_st
= ENGINE_IDLE
;
562 req
->base
.complete(&req
->base
, rc
);
567 static int queue_manag(void *data
)
569 cpg
->eng_st
= ENGINE_IDLE
;
571 struct crypto_async_request
*async_req
= NULL
;
572 struct crypto_async_request
*backlog
;
574 __set_current_state(TASK_INTERRUPTIBLE
);
576 if (cpg
->eng_st
== ENGINE_W_DEQUEUE
)
577 dequeue_complete_req();
579 spin_lock_irq(&cpg
->lock
);
580 if (cpg
->eng_st
== ENGINE_IDLE
) {
581 backlog
= crypto_get_backlog(&cpg
->queue
);
582 async_req
= crypto_dequeue_request(&cpg
->queue
);
584 BUG_ON(cpg
->eng_st
!= ENGINE_IDLE
);
585 cpg
->eng_st
= ENGINE_BUSY
;
588 spin_unlock_irq(&cpg
->lock
);
591 backlog
->complete(backlog
, -EINPROGRESS
);
596 if (async_req
->tfm
->__crt_alg
->cra_type
!=
597 &crypto_ahash_type
) {
598 struct ablkcipher_request
*req
=
599 ablkcipher_request_cast(async_req
);
600 mv_start_new_crypt_req(req
);
602 struct ahash_request
*req
=
603 ahash_request_cast(async_req
);
604 mv_start_new_hash_req(req
);
611 } while (!kthread_should_stop());
615 static int mv_handle_req(struct crypto_async_request
*req
)
620 spin_lock_irqsave(&cpg
->lock
, flags
);
621 ret
= crypto_enqueue_request(&cpg
->queue
, req
);
622 spin_unlock_irqrestore(&cpg
->lock
, flags
);
623 wake_up_process(cpg
->queue_th
);
627 static int mv_enc_aes_ecb(struct ablkcipher_request
*req
)
629 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
631 req_ctx
->op
= COP_AES_ECB
;
632 req_ctx
->decrypt
= 0;
634 return mv_handle_req(&req
->base
);
637 static int mv_dec_aes_ecb(struct ablkcipher_request
*req
)
639 struct mv_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
640 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
642 req_ctx
->op
= COP_AES_ECB
;
643 req_ctx
->decrypt
= 1;
645 compute_aes_dec_key(ctx
);
646 return mv_handle_req(&req
->base
);
649 static int mv_enc_aes_cbc(struct ablkcipher_request
*req
)
651 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
653 req_ctx
->op
= COP_AES_CBC
;
654 req_ctx
->decrypt
= 0;
656 return mv_handle_req(&req
->base
);
659 static int mv_dec_aes_cbc(struct ablkcipher_request
*req
)
661 struct mv_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
662 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
664 req_ctx
->op
= COP_AES_CBC
;
665 req_ctx
->decrypt
= 1;
667 compute_aes_dec_key(ctx
);
668 return mv_handle_req(&req
->base
);
671 static int mv_cra_init(struct crypto_tfm
*tfm
)
673 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct mv_req_ctx
);
677 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx
*ctx
, int op
,
678 int is_last
, unsigned int req_len
,
681 memset(ctx
, 0, sizeof(*ctx
));
683 ctx
->count
= req_len
;
685 ctx
->last_chunk
= is_last
;
686 ctx
->count_add
= count_add
;
689 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx
*ctx
, int is_last
,
692 ctx
->last_chunk
= is_last
;
693 ctx
->count
+= req_len
;
696 static int mv_hash_init(struct ahash_request
*req
)
698 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
699 mv_init_hash_req_ctx(ahash_request_ctx(req
), tfm_ctx
->op
, 0, 0,
704 static int mv_hash_update(struct ahash_request
*req
)
709 mv_update_hash_req_ctx(ahash_request_ctx(req
), 0, req
->nbytes
);
710 return mv_handle_req(&req
->base
);
713 static int mv_hash_final(struct ahash_request
*req
)
715 struct mv_req_hash_ctx
*ctx
= ahash_request_ctx(req
);
717 mv_update_hash_req_ctx(ctx
, 1, 0);
718 return mv_handle_req(&req
->base
);
721 static int mv_hash_finup(struct ahash_request
*req
)
723 mv_update_hash_req_ctx(ahash_request_ctx(req
), 1, req
->nbytes
);
724 return mv_handle_req(&req
->base
);
727 static int mv_hash_digest(struct ahash_request
*req
)
729 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
730 mv_init_hash_req_ctx(ahash_request_ctx(req
), tfm_ctx
->op
, 1,
731 req
->nbytes
, tfm_ctx
->count_add
);
732 return mv_handle_req(&req
->base
);
735 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx
*ctx
, const void *istate
,
738 const struct sha1_state
*isha1_state
= istate
, *osha1_state
= ostate
;
740 for (i
= 0; i
< 5; i
++) {
741 ctx
->ivs
[i
] = cpu_to_be32(isha1_state
->state
[i
]);
742 ctx
->ivs
[i
+ 5] = cpu_to_be32(osha1_state
->state
[i
]);
746 static int mv_hash_setkey(struct crypto_ahash
*tfm
, const u8
* key
,
750 struct mv_tfm_hash_ctx
*ctx
= crypto_tfm_ctx(&tfm
->base
);
756 rc
= crypto_shash_setkey(ctx
->fallback
, key
, keylen
);
760 /* Can't see a way to extract the ipad/opad from the fallback tfm
761 so I'm basically copying code from the hmac module */
762 bs
= crypto_shash_blocksize(ctx
->base_hash
);
763 ds
= crypto_shash_digestsize(ctx
->base_hash
);
764 ss
= crypto_shash_statesize(ctx
->base_hash
);
768 struct shash_desc shash
;
769 char ctx
[crypto_shash_descsize(ctx
->base_hash
)];
775 desc
.shash
.tfm
= ctx
->base_hash
;
776 desc
.shash
.flags
= crypto_shash_get_flags(ctx
->base_hash
) &
777 CRYPTO_TFM_REQ_MAY_SLEEP
;
783 crypto_shash_digest(&desc
.shash
, key
, keylen
, ipad
);
789 memcpy(ipad
, key
, keylen
);
791 memset(ipad
+ keylen
, 0, bs
- keylen
);
792 memcpy(opad
, ipad
, bs
);
794 for (i
= 0; i
< bs
; i
++) {
799 rc
= crypto_shash_init(&desc
.shash
) ? :
800 crypto_shash_update(&desc
.shash
, ipad
, bs
) ? :
801 crypto_shash_export(&desc
.shash
, ipad
) ? :
802 crypto_shash_init(&desc
.shash
) ? :
803 crypto_shash_update(&desc
.shash
, opad
, bs
) ? :
804 crypto_shash_export(&desc
.shash
, opad
);
807 mv_hash_init_ivs(ctx
, ipad
, opad
);
813 static int mv_cra_hash_init(struct crypto_tfm
*tfm
, const char *base_hash_name
,
814 enum hash_op op
, int count_add
)
816 const char *fallback_driver_name
= tfm
->__crt_alg
->cra_name
;
817 struct mv_tfm_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
818 struct crypto_shash
*fallback_tfm
= NULL
;
819 struct crypto_shash
*base_hash
= NULL
;
823 ctx
->count_add
= count_add
;
825 /* Allocate a fallback and abort if it failed. */
826 fallback_tfm
= crypto_alloc_shash(fallback_driver_name
, 0,
827 CRYPTO_ALG_NEED_FALLBACK
);
828 if (IS_ERR(fallback_tfm
)) {
829 printk(KERN_WARNING MV_CESA
830 "Fallback driver '%s' could not be loaded!\n",
831 fallback_driver_name
);
832 err
= PTR_ERR(fallback_tfm
);
835 ctx
->fallback
= fallback_tfm
;
837 if (base_hash_name
) {
838 /* Allocate a hash to compute the ipad/opad of hmac. */
839 base_hash
= crypto_alloc_shash(base_hash_name
, 0,
840 CRYPTO_ALG_NEED_FALLBACK
);
841 if (IS_ERR(base_hash
)) {
842 printk(KERN_WARNING MV_CESA
843 "Base driver '%s' could not be loaded!\n",
845 err
= PTR_ERR(base_hash
);
849 ctx
->base_hash
= base_hash
;
851 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
852 sizeof(struct mv_req_hash_ctx
) +
853 crypto_shash_descsize(ctx
->fallback
));
856 crypto_free_shash(fallback_tfm
);
861 static void mv_cra_hash_exit(struct crypto_tfm
*tfm
)
863 struct mv_tfm_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
865 crypto_free_shash(ctx
->fallback
);
867 crypto_free_shash(ctx
->base_hash
);
870 static int mv_cra_hash_sha1_init(struct crypto_tfm
*tfm
)
872 return mv_cra_hash_init(tfm
, NULL
, COP_SHA1
, 0);
875 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm
*tfm
)
877 return mv_cra_hash_init(tfm
, "sha1", COP_HMAC_SHA1
, SHA1_BLOCK_SIZE
);
880 irqreturn_t
crypto_int(int irq
, void *priv
)
884 val
= readl(cpg
->reg
+ SEC_ACCEL_INT_STATUS
);
885 if (!(val
& SEC_INT_ACCEL0_DONE
))
888 val
&= ~SEC_INT_ACCEL0_DONE
;
889 writel(val
, cpg
->reg
+ FPGA_INT_STATUS
);
890 writel(val
, cpg
->reg
+ SEC_ACCEL_INT_STATUS
);
891 BUG_ON(cpg
->eng_st
!= ENGINE_BUSY
);
892 cpg
->eng_st
= ENGINE_W_DEQUEUE
;
893 wake_up_process(cpg
->queue_th
);
897 struct crypto_alg mv_aes_alg_ecb
= {
898 .cra_name
= "ecb(aes)",
899 .cra_driver_name
= "mv-ecb-aes",
901 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
| CRYPTO_ALG_ASYNC
,
903 .cra_ctxsize
= sizeof(struct mv_ctx
),
905 .cra_type
= &crypto_ablkcipher_type
,
906 .cra_module
= THIS_MODULE
,
907 .cra_init
= mv_cra_init
,
910 .min_keysize
= AES_MIN_KEY_SIZE
,
911 .max_keysize
= AES_MAX_KEY_SIZE
,
912 .setkey
= mv_setkey_aes
,
913 .encrypt
= mv_enc_aes_ecb
,
914 .decrypt
= mv_dec_aes_ecb
,
919 struct crypto_alg mv_aes_alg_cbc
= {
920 .cra_name
= "cbc(aes)",
921 .cra_driver_name
= "mv-cbc-aes",
923 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
| CRYPTO_ALG_ASYNC
,
924 .cra_blocksize
= AES_BLOCK_SIZE
,
925 .cra_ctxsize
= sizeof(struct mv_ctx
),
927 .cra_type
= &crypto_ablkcipher_type
,
928 .cra_module
= THIS_MODULE
,
929 .cra_init
= mv_cra_init
,
932 .ivsize
= AES_BLOCK_SIZE
,
933 .min_keysize
= AES_MIN_KEY_SIZE
,
934 .max_keysize
= AES_MAX_KEY_SIZE
,
935 .setkey
= mv_setkey_aes
,
936 .encrypt
= mv_enc_aes_cbc
,
937 .decrypt
= mv_dec_aes_cbc
,
942 struct ahash_alg mv_sha1_alg
= {
943 .init
= mv_hash_init
,
944 .update
= mv_hash_update
,
945 .final
= mv_hash_final
,
946 .finup
= mv_hash_finup
,
947 .digest
= mv_hash_digest
,
949 .digestsize
= SHA1_DIGEST_SIZE
,
952 .cra_driver_name
= "mv-sha1",
955 CRYPTO_ALG_ASYNC
| CRYPTO_ALG_NEED_FALLBACK
,
956 .cra_blocksize
= SHA1_BLOCK_SIZE
,
957 .cra_ctxsize
= sizeof(struct mv_tfm_hash_ctx
),
958 .cra_init
= mv_cra_hash_sha1_init
,
959 .cra_exit
= mv_cra_hash_exit
,
960 .cra_module
= THIS_MODULE
,
965 struct ahash_alg mv_hmac_sha1_alg
= {
966 .init
= mv_hash_init
,
967 .update
= mv_hash_update
,
968 .final
= mv_hash_final
,
969 .finup
= mv_hash_finup
,
970 .digest
= mv_hash_digest
,
971 .setkey
= mv_hash_setkey
,
973 .digestsize
= SHA1_DIGEST_SIZE
,
975 .cra_name
= "hmac(sha1)",
976 .cra_driver_name
= "mv-hmac-sha1",
979 CRYPTO_ALG_ASYNC
| CRYPTO_ALG_NEED_FALLBACK
,
980 .cra_blocksize
= SHA1_BLOCK_SIZE
,
981 .cra_ctxsize
= sizeof(struct mv_tfm_hash_ctx
),
982 .cra_init
= mv_cra_hash_hmac_sha1_init
,
983 .cra_exit
= mv_cra_hash_exit
,
984 .cra_module
= THIS_MODULE
,
989 static int mv_probe(struct platform_device
*pdev
)
991 struct crypto_priv
*cp
;
992 struct resource
*res
;
997 printk(KERN_ERR MV_CESA
"Second crypto dev?\n");
1001 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "regs");
1005 cp
= kzalloc(sizeof(*cp
), GFP_KERNEL
);
1009 spin_lock_init(&cp
->lock
);
1010 crypto_init_queue(&cp
->queue
, 50);
1011 cp
->reg
= ioremap(res
->start
, resource_size(res
));
1017 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "sram");
1022 cp
->sram_size
= resource_size(res
);
1023 cp
->max_req_size
= cp
->sram_size
- SRAM_CFG_SPACE
;
1024 cp
->sram
= ioremap(res
->start
, cp
->sram_size
);
1030 irq
= platform_get_irq(pdev
, 0);
1031 if (irq
< 0 || irq
== NO_IRQ
) {
1033 goto err_unmap_sram
;
1037 platform_set_drvdata(pdev
, cp
);
1040 cp
->queue_th
= kthread_run(queue_manag
, cp
, "mv_crypto");
1041 if (IS_ERR(cp
->queue_th
)) {
1042 ret
= PTR_ERR(cp
->queue_th
);
1043 goto err_unmap_sram
;
1046 ret
= request_irq(irq
, crypto_int
, IRQF_DISABLED
, dev_name(&pdev
->dev
),
1051 writel(SEC_INT_ACCEL0_DONE
, cpg
->reg
+ SEC_ACCEL_INT_MASK
);
1052 writel(SEC_CFG_STOP_DIG_ERR
, cpg
->reg
+ SEC_ACCEL_CFG
);
1053 writel(SRAM_CONFIG
, cpg
->reg
+ SEC_ACCEL_DESC_P0
);
1055 ret
= crypto_register_alg(&mv_aes_alg_ecb
);
1057 printk(KERN_WARNING MV_CESA
1058 "Could not register aes-ecb driver\n");
1062 ret
= crypto_register_alg(&mv_aes_alg_cbc
);
1064 printk(KERN_WARNING MV_CESA
1065 "Could not register aes-cbc driver\n");
1069 ret
= crypto_register_ahash(&mv_sha1_alg
);
1073 printk(KERN_WARNING MV_CESA
"Could not register sha1 driver\n");
1075 ret
= crypto_register_ahash(&mv_hmac_sha1_alg
);
1077 cpg
->has_hmac_sha1
= 1;
1079 printk(KERN_WARNING MV_CESA
1080 "Could not register hmac-sha1 driver\n");
1085 crypto_unregister_alg(&mv_aes_alg_ecb
);
1089 kthread_stop(cp
->queue_th
);
1097 platform_set_drvdata(pdev
, NULL
);
1101 static int mv_remove(struct platform_device
*pdev
)
1103 struct crypto_priv
*cp
= platform_get_drvdata(pdev
);
1105 crypto_unregister_alg(&mv_aes_alg_ecb
);
1106 crypto_unregister_alg(&mv_aes_alg_cbc
);
1108 crypto_unregister_ahash(&mv_sha1_alg
);
1109 if (cp
->has_hmac_sha1
)
1110 crypto_unregister_ahash(&mv_hmac_sha1_alg
);
1111 kthread_stop(cp
->queue_th
);
1112 free_irq(cp
->irq
, cp
);
1113 memset(cp
->sram
, 0, cp
->sram_size
);
1121 static struct platform_driver marvell_crypto
= {
1123 .remove
= mv_remove
,
1125 .owner
= THIS_MODULE
,
1126 .name
= "mv_crypto",
1129 MODULE_ALIAS("platform:mv_crypto");
1131 static int __init
mv_crypto_init(void)
1133 return platform_driver_register(&marvell_crypto
);
1135 module_init(mv_crypto_init
);
1137 static void __exit
mv_crypto_exit(void)
1139 platform_driver_unregister(&marvell_crypto
);
1141 module_exit(mv_crypto_exit
);
1143 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1144 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1145 MODULE_LICENSE("GPL");