2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
6 #ifdef CONFIG_RT_GROUP_SCHED
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
10 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
15 return container_of(rt_se
, struct task_struct
, rt
);
18 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
23 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
28 #else /* CONFIG_RT_GROUP_SCHED */
30 #define rt_entity_is_task(rt_se) (1)
32 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
34 return container_of(rt_se
, struct task_struct
, rt
);
37 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
39 return container_of(rt_rq
, struct rq
, rt
);
42 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
44 struct task_struct
*p
= rt_task_of(rt_se
);
45 struct rq
*rq
= task_rq(p
);
50 #endif /* CONFIG_RT_GROUP_SCHED */
54 static inline int rt_overloaded(struct rq
*rq
)
56 return atomic_read(&rq
->rd
->rto_count
);
59 static inline void rt_set_overload(struct rq
*rq
)
64 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
73 atomic_inc(&rq
->rd
->rto_count
);
76 static inline void rt_clear_overload(struct rq
*rq
)
81 /* the order here really doesn't matter */
82 atomic_dec(&rq
->rd
->rto_count
);
83 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
86 static void update_rt_migration(struct rt_rq
*rt_rq
)
88 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
89 if (!rt_rq
->overloaded
) {
90 rt_set_overload(rq_of_rt_rq(rt_rq
));
91 rt_rq
->overloaded
= 1;
93 } else if (rt_rq
->overloaded
) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq
));
95 rt_rq
->overloaded
= 0;
99 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
101 if (!rt_entity_is_task(rt_se
))
104 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
106 rt_rq
->rt_nr_total
++;
107 if (rt_se
->nr_cpus_allowed
> 1)
108 rt_rq
->rt_nr_migratory
++;
110 update_rt_migration(rt_rq
);
113 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
115 if (!rt_entity_is_task(rt_se
))
118 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
120 rt_rq
->rt_nr_total
--;
121 if (rt_se
->nr_cpus_allowed
> 1)
122 rt_rq
->rt_nr_migratory
--;
124 update_rt_migration(rt_rq
);
127 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
129 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
130 plist_node_init(&p
->pushable_tasks
, p
->prio
);
131 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
134 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
136 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
139 static inline int has_pushable_tasks(struct rq
*rq
)
141 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
146 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
150 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
155 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
160 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
164 #endif /* CONFIG_SMP */
166 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
168 return !list_empty(&rt_se
->run_list
);
171 #ifdef CONFIG_RT_GROUP_SCHED
173 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
178 return rt_rq
->rt_runtime
;
181 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
183 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
186 typedef struct task_group
*rt_rq_iter_t
;
188 #define for_each_rt_rq(rt_rq, iter, rq) \
189 for (iter = list_entry_rcu(task_groups.next, typeof(*iter), list); \
190 (&iter->list != &task_groups) && \
191 (rt_rq = iter->rt_rq[cpu_of(rq)]); \
192 iter = list_entry_rcu(iter->list.next, typeof(*iter), list))
194 static inline void list_add_leaf_rt_rq(struct rt_rq
*rt_rq
)
196 list_add_rcu(&rt_rq
->leaf_rt_rq_list
,
197 &rq_of_rt_rq(rt_rq
)->leaf_rt_rq_list
);
200 static inline void list_del_leaf_rt_rq(struct rt_rq
*rt_rq
)
202 list_del_rcu(&rt_rq
->leaf_rt_rq_list
);
205 #define for_each_leaf_rt_rq(rt_rq, rq) \
206 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
208 #define for_each_sched_rt_entity(rt_se) \
209 for (; rt_se; rt_se = rt_se->parent)
211 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
216 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
);
217 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
219 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
221 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
222 struct sched_rt_entity
*rt_se
;
224 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
226 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
228 if (rt_rq
->rt_nr_running
) {
229 if (rt_se
&& !on_rt_rq(rt_se
))
230 enqueue_rt_entity(rt_se
, false);
231 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
236 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
238 struct sched_rt_entity
*rt_se
;
239 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
241 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
243 if (rt_se
&& on_rt_rq(rt_se
))
244 dequeue_rt_entity(rt_se
);
247 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
249 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
252 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
254 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
255 struct task_struct
*p
;
258 return !!rt_rq
->rt_nr_boosted
;
260 p
= rt_task_of(rt_se
);
261 return p
->prio
!= p
->normal_prio
;
265 static inline const struct cpumask
*sched_rt_period_mask(void)
267 return cpu_rq(smp_processor_id())->rd
->span
;
270 static inline const struct cpumask
*sched_rt_period_mask(void)
272 return cpu_online_mask
;
277 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
279 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
282 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
284 return &rt_rq
->tg
->rt_bandwidth
;
287 #else /* !CONFIG_RT_GROUP_SCHED */
289 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
291 return rt_rq
->rt_runtime
;
294 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
296 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
299 typedef struct rt_rq
*rt_rq_iter_t
;
301 #define for_each_rt_rq(rt_rq, iter, rq) \
302 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
304 static inline void list_add_leaf_rt_rq(struct rt_rq
*rt_rq
)
308 static inline void list_del_leaf_rt_rq(struct rt_rq
*rt_rq
)
312 #define for_each_leaf_rt_rq(rt_rq, rq) \
313 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
315 #define for_each_sched_rt_entity(rt_se) \
316 for (; rt_se; rt_se = NULL)
318 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
323 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
325 if (rt_rq
->rt_nr_running
)
326 resched_task(rq_of_rt_rq(rt_rq
)->curr
);
329 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
333 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
335 return rt_rq
->rt_throttled
;
338 static inline const struct cpumask
*sched_rt_period_mask(void)
340 return cpu_online_mask
;
344 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
346 return &cpu_rq(cpu
)->rt
;
349 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
351 return &def_rt_bandwidth
;
354 #endif /* CONFIG_RT_GROUP_SCHED */
358 * We ran out of runtime, see if we can borrow some from our neighbours.
360 static int do_balance_runtime(struct rt_rq
*rt_rq
)
362 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
363 struct root_domain
*rd
= cpu_rq(smp_processor_id())->rd
;
364 int i
, weight
, more
= 0;
367 weight
= cpumask_weight(rd
->span
);
369 raw_spin_lock(&rt_b
->rt_runtime_lock
);
370 rt_period
= ktime_to_ns(rt_b
->rt_period
);
371 for_each_cpu(i
, rd
->span
) {
372 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
378 raw_spin_lock(&iter
->rt_runtime_lock
);
380 * Either all rqs have inf runtime and there's nothing to steal
381 * or __disable_runtime() below sets a specific rq to inf to
382 * indicate its been disabled and disalow stealing.
384 if (iter
->rt_runtime
== RUNTIME_INF
)
388 * From runqueues with spare time, take 1/n part of their
389 * spare time, but no more than our period.
391 diff
= iter
->rt_runtime
- iter
->rt_time
;
393 diff
= div_u64((u64
)diff
, weight
);
394 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
395 diff
= rt_period
- rt_rq
->rt_runtime
;
396 iter
->rt_runtime
-= diff
;
397 rt_rq
->rt_runtime
+= diff
;
399 if (rt_rq
->rt_runtime
== rt_period
) {
400 raw_spin_unlock(&iter
->rt_runtime_lock
);
405 raw_spin_unlock(&iter
->rt_runtime_lock
);
407 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
413 * Ensure this RQ takes back all the runtime it lend to its neighbours.
415 static void __disable_runtime(struct rq
*rq
)
417 struct root_domain
*rd
= rq
->rd
;
421 if (unlikely(!scheduler_running
))
424 for_each_rt_rq(rt_rq
, iter
, rq
) {
425 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
429 raw_spin_lock(&rt_b
->rt_runtime_lock
);
430 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
432 * Either we're all inf and nobody needs to borrow, or we're
433 * already disabled and thus have nothing to do, or we have
434 * exactly the right amount of runtime to take out.
436 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
437 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
439 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
442 * Calculate the difference between what we started out with
443 * and what we current have, that's the amount of runtime
444 * we lend and now have to reclaim.
446 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
449 * Greedy reclaim, take back as much as we can.
451 for_each_cpu(i
, rd
->span
) {
452 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
456 * Can't reclaim from ourselves or disabled runqueues.
458 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
461 raw_spin_lock(&iter
->rt_runtime_lock
);
463 diff
= min_t(s64
, iter
->rt_runtime
, want
);
464 iter
->rt_runtime
-= diff
;
467 iter
->rt_runtime
-= want
;
470 raw_spin_unlock(&iter
->rt_runtime_lock
);
476 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
478 * We cannot be left wanting - that would mean some runtime
479 * leaked out of the system.
484 * Disable all the borrow logic by pretending we have inf
485 * runtime - in which case borrowing doesn't make sense.
487 rt_rq
->rt_runtime
= RUNTIME_INF
;
488 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
489 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
493 static void disable_runtime(struct rq
*rq
)
497 raw_spin_lock_irqsave(&rq
->lock
, flags
);
498 __disable_runtime(rq
);
499 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
502 static void __enable_runtime(struct rq
*rq
)
507 if (unlikely(!scheduler_running
))
511 * Reset each runqueue's bandwidth settings
513 for_each_rt_rq(rt_rq
, iter
, rq
) {
514 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
516 raw_spin_lock(&rt_b
->rt_runtime_lock
);
517 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
518 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
520 rt_rq
->rt_throttled
= 0;
521 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
522 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
526 static void enable_runtime(struct rq
*rq
)
530 raw_spin_lock_irqsave(&rq
->lock
, flags
);
531 __enable_runtime(rq
);
532 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
535 static int balance_runtime(struct rt_rq
*rt_rq
)
539 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
540 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
541 more
= do_balance_runtime(rt_rq
);
542 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
547 #else /* !CONFIG_SMP */
548 static inline int balance_runtime(struct rt_rq
*rt_rq
)
552 #endif /* CONFIG_SMP */
554 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
557 const struct cpumask
*span
;
559 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
562 span
= sched_rt_period_mask();
563 for_each_cpu(i
, span
) {
565 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
566 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
568 raw_spin_lock(&rq
->lock
);
569 if (rt_rq
->rt_time
) {
572 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
573 if (rt_rq
->rt_throttled
)
574 balance_runtime(rt_rq
);
575 runtime
= rt_rq
->rt_runtime
;
576 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
577 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
578 rt_rq
->rt_throttled
= 0;
582 * Force a clock update if the CPU was idle,
583 * lest wakeup -> unthrottle time accumulate.
585 if (rt_rq
->rt_nr_running
&& rq
->curr
== rq
->idle
)
586 rq
->skip_clock_update
= -1;
588 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
590 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
591 } else if (rt_rq
->rt_nr_running
) {
593 if (!rt_rq_throttled(rt_rq
))
598 sched_rt_rq_enqueue(rt_rq
);
599 raw_spin_unlock(&rq
->lock
);
605 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
607 #ifdef CONFIG_RT_GROUP_SCHED
608 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
611 return rt_rq
->highest_prio
.curr
;
614 return rt_task_of(rt_se
)->prio
;
617 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
619 u64 runtime
= sched_rt_runtime(rt_rq
);
621 if (rt_rq
->rt_throttled
)
622 return rt_rq_throttled(rt_rq
);
624 if (sched_rt_runtime(rt_rq
) >= sched_rt_period(rt_rq
))
627 balance_runtime(rt_rq
);
628 runtime
= sched_rt_runtime(rt_rq
);
629 if (runtime
== RUNTIME_INF
)
632 if (rt_rq
->rt_time
> runtime
) {
633 rt_rq
->rt_throttled
= 1;
634 if (rt_rq_throttled(rt_rq
)) {
635 sched_rt_rq_dequeue(rt_rq
);
644 * Update the current task's runtime statistics. Skip current tasks that
645 * are not in our scheduling class.
647 static void update_curr_rt(struct rq
*rq
)
649 struct task_struct
*curr
= rq
->curr
;
650 struct sched_rt_entity
*rt_se
= &curr
->rt
;
651 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
654 if (curr
->sched_class
!= &rt_sched_class
)
657 delta_exec
= rq
->clock_task
- curr
->se
.exec_start
;
658 if (unlikely((s64
)delta_exec
< 0))
661 schedstat_set(curr
->se
.statistics
.exec_max
, max(curr
->se
.statistics
.exec_max
, delta_exec
));
663 curr
->se
.sum_exec_runtime
+= delta_exec
;
664 account_group_exec_runtime(curr
, delta_exec
);
666 curr
->se
.exec_start
= rq
->clock_task
;
667 cpuacct_charge(curr
, delta_exec
);
669 sched_rt_avg_update(rq
, delta_exec
);
671 if (!rt_bandwidth_enabled())
674 for_each_sched_rt_entity(rt_se
) {
675 rt_rq
= rt_rq_of_se(rt_se
);
677 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
678 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
679 rt_rq
->rt_time
+= delta_exec
;
680 if (sched_rt_runtime_exceeded(rt_rq
))
682 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
687 #if defined CONFIG_SMP
689 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
);
691 static inline int next_prio(struct rq
*rq
)
693 struct task_struct
*next
= pick_next_highest_task_rt(rq
, rq
->cpu
);
695 if (next
&& rt_prio(next
->prio
))
702 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
704 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
706 if (prio
< prev_prio
) {
709 * If the new task is higher in priority than anything on the
710 * run-queue, we know that the previous high becomes our
713 rt_rq
->highest_prio
.next
= prev_prio
;
716 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
718 } else if (prio
== rt_rq
->highest_prio
.curr
)
720 * If the next task is equal in priority to the highest on
721 * the run-queue, then we implicitly know that the next highest
722 * task cannot be any lower than current
724 rt_rq
->highest_prio
.next
= prio
;
725 else if (prio
< rt_rq
->highest_prio
.next
)
727 * Otherwise, we need to recompute next-highest
729 rt_rq
->highest_prio
.next
= next_prio(rq
);
733 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
735 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
737 if (rt_rq
->rt_nr_running
&& (prio
<= rt_rq
->highest_prio
.next
))
738 rt_rq
->highest_prio
.next
= next_prio(rq
);
740 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
741 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
744 #else /* CONFIG_SMP */
747 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
749 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
751 #endif /* CONFIG_SMP */
753 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
755 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
757 int prev_prio
= rt_rq
->highest_prio
.curr
;
759 if (prio
< prev_prio
)
760 rt_rq
->highest_prio
.curr
= prio
;
762 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
766 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
768 int prev_prio
= rt_rq
->highest_prio
.curr
;
770 if (rt_rq
->rt_nr_running
) {
772 WARN_ON(prio
< prev_prio
);
775 * This may have been our highest task, and therefore
776 * we may have some recomputation to do
778 if (prio
== prev_prio
) {
779 struct rt_prio_array
*array
= &rt_rq
->active
;
781 rt_rq
->highest_prio
.curr
=
782 sched_find_first_bit(array
->bitmap
);
786 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
788 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
793 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
794 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
796 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
798 #ifdef CONFIG_RT_GROUP_SCHED
801 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
803 if (rt_se_boosted(rt_se
))
804 rt_rq
->rt_nr_boosted
++;
807 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
811 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
813 if (rt_se_boosted(rt_se
))
814 rt_rq
->rt_nr_boosted
--;
816 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
819 #else /* CONFIG_RT_GROUP_SCHED */
822 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
824 start_rt_bandwidth(&def_rt_bandwidth
);
828 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
830 #endif /* CONFIG_RT_GROUP_SCHED */
833 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
835 int prio
= rt_se_prio(rt_se
);
837 WARN_ON(!rt_prio(prio
));
838 rt_rq
->rt_nr_running
++;
840 inc_rt_prio(rt_rq
, prio
);
841 inc_rt_migration(rt_se
, rt_rq
);
842 inc_rt_group(rt_se
, rt_rq
);
846 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
848 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
849 WARN_ON(!rt_rq
->rt_nr_running
);
850 rt_rq
->rt_nr_running
--;
852 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
853 dec_rt_migration(rt_se
, rt_rq
);
854 dec_rt_group(rt_se
, rt_rq
);
857 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
859 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
860 struct rt_prio_array
*array
= &rt_rq
->active
;
861 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
862 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
865 * Don't enqueue the group if its throttled, or when empty.
866 * The latter is a consequence of the former when a child group
867 * get throttled and the current group doesn't have any other
870 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
873 if (!rt_rq
->rt_nr_running
)
874 list_add_leaf_rt_rq(rt_rq
);
877 list_add(&rt_se
->run_list
, queue
);
879 list_add_tail(&rt_se
->run_list
, queue
);
880 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
882 inc_rt_tasks(rt_se
, rt_rq
);
885 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
887 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
888 struct rt_prio_array
*array
= &rt_rq
->active
;
890 list_del_init(&rt_se
->run_list
);
891 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
892 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
894 dec_rt_tasks(rt_se
, rt_rq
);
895 if (!rt_rq
->rt_nr_running
)
896 list_del_leaf_rt_rq(rt_rq
);
900 * Because the prio of an upper entry depends on the lower
901 * entries, we must remove entries top - down.
903 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
905 struct sched_rt_entity
*back
= NULL
;
907 for_each_sched_rt_entity(rt_se
) {
912 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
914 __dequeue_rt_entity(rt_se
);
918 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
920 dequeue_rt_stack(rt_se
);
921 for_each_sched_rt_entity(rt_se
)
922 __enqueue_rt_entity(rt_se
, head
);
925 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
927 dequeue_rt_stack(rt_se
);
929 for_each_sched_rt_entity(rt_se
) {
930 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
932 if (rt_rq
&& rt_rq
->rt_nr_running
)
933 __enqueue_rt_entity(rt_se
, false);
938 * Adding/removing a task to/from a priority array:
941 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
943 struct sched_rt_entity
*rt_se
= &p
->rt
;
945 if (flags
& ENQUEUE_WAKEUP
)
948 enqueue_rt_entity(rt_se
, flags
& ENQUEUE_HEAD
);
950 if (!task_current(rq
, p
) && p
->rt
.nr_cpus_allowed
> 1)
951 enqueue_pushable_task(rq
, p
);
954 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
956 struct sched_rt_entity
*rt_se
= &p
->rt
;
959 dequeue_rt_entity(rt_se
);
961 dequeue_pushable_task(rq
, p
);
965 * Put task to the end of the run list without the overhead of dequeue
966 * followed by enqueue.
969 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
971 if (on_rt_rq(rt_se
)) {
972 struct rt_prio_array
*array
= &rt_rq
->active
;
973 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
976 list_move(&rt_se
->run_list
, queue
);
978 list_move_tail(&rt_se
->run_list
, queue
);
982 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
984 struct sched_rt_entity
*rt_se
= &p
->rt
;
987 for_each_sched_rt_entity(rt_se
) {
988 rt_rq
= rt_rq_of_se(rt_se
);
989 requeue_rt_entity(rt_rq
, rt_se
, head
);
993 static void yield_task_rt(struct rq
*rq
)
995 requeue_task_rt(rq
, rq
->curr
, 0);
999 static int find_lowest_rq(struct task_struct
*task
);
1002 select_task_rq_rt(struct task_struct
*p
, int sd_flag
, int flags
)
1004 struct task_struct
*curr
;
1008 if (sd_flag
!= SD_BALANCE_WAKE
)
1009 return smp_processor_id();
1015 curr
= ACCESS_ONCE(rq
->curr
); /* unlocked access */
1018 * If the current task on @p's runqueue is an RT task, then
1019 * try to see if we can wake this RT task up on another
1020 * runqueue. Otherwise simply start this RT task
1021 * on its current runqueue.
1023 * We want to avoid overloading runqueues. If the woken
1024 * task is a higher priority, then it will stay on this CPU
1025 * and the lower prio task should be moved to another CPU.
1026 * Even though this will probably make the lower prio task
1027 * lose its cache, we do not want to bounce a higher task
1028 * around just because it gave up its CPU, perhaps for a
1031 * For equal prio tasks, we just let the scheduler sort it out.
1033 * Otherwise, just let it ride on the affined RQ and the
1034 * post-schedule router will push the preempted task away
1036 * This test is optimistic, if we get it wrong the load-balancer
1037 * will have to sort it out.
1039 if (curr
&& unlikely(rt_task(curr
)) &&
1040 (curr
->rt
.nr_cpus_allowed
< 2 ||
1041 curr
->prio
< p
->prio
) &&
1042 (p
->rt
.nr_cpus_allowed
> 1)) {
1043 int target
= find_lowest_rq(p
);
1053 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1055 if (rq
->curr
->rt
.nr_cpus_allowed
== 1)
1058 if (p
->rt
.nr_cpus_allowed
!= 1
1059 && cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
1062 if (!cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1066 * There appears to be other cpus that can accept
1067 * current and none to run 'p', so lets reschedule
1068 * to try and push current away:
1070 requeue_task_rt(rq
, p
, 1);
1071 resched_task(rq
->curr
);
1074 #endif /* CONFIG_SMP */
1077 * Preempt the current task with a newly woken task if needed:
1079 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1081 if (p
->prio
< rq
->curr
->prio
) {
1082 resched_task(rq
->curr
);
1090 * - the newly woken task is of equal priority to the current task
1091 * - the newly woken task is non-migratable while current is migratable
1092 * - current will be preempted on the next reschedule
1094 * we should check to see if current can readily move to a different
1095 * cpu. If so, we will reschedule to allow the push logic to try
1096 * to move current somewhere else, making room for our non-migratable
1099 if (p
->prio
== rq
->curr
->prio
&& !need_resched())
1100 check_preempt_equal_prio(rq
, p
);
1104 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1105 struct rt_rq
*rt_rq
)
1107 struct rt_prio_array
*array
= &rt_rq
->active
;
1108 struct sched_rt_entity
*next
= NULL
;
1109 struct list_head
*queue
;
1112 idx
= sched_find_first_bit(array
->bitmap
);
1113 BUG_ON(idx
>= MAX_RT_PRIO
);
1115 queue
= array
->queue
+ idx
;
1116 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1121 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1123 struct sched_rt_entity
*rt_se
;
1124 struct task_struct
*p
;
1125 struct rt_rq
*rt_rq
;
1129 if (unlikely(!rt_rq
->rt_nr_running
))
1132 if (rt_rq_throttled(rt_rq
))
1136 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1138 rt_rq
= group_rt_rq(rt_se
);
1141 p
= rt_task_of(rt_se
);
1142 p
->se
.exec_start
= rq
->clock_task
;
1147 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
1149 struct task_struct
*p
= _pick_next_task_rt(rq
);
1151 /* The running task is never eligible for pushing */
1153 dequeue_pushable_task(rq
, p
);
1157 * We detect this state here so that we can avoid taking the RQ
1158 * lock again later if there is no need to push
1160 rq
->post_schedule
= has_pushable_tasks(rq
);
1166 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1169 p
->se
.exec_start
= 0;
1172 * The previous task needs to be made eligible for pushing
1173 * if it is still active
1175 if (on_rt_rq(&p
->rt
) && p
->rt
.nr_cpus_allowed
> 1)
1176 enqueue_pushable_task(rq
, p
);
1181 /* Only try algorithms three times */
1182 #define RT_MAX_TRIES 3
1184 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
);
1186 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1188 if (!task_running(rq
, p
) &&
1189 (cpu
< 0 || cpumask_test_cpu(cpu
, &p
->cpus_allowed
)) &&
1190 (p
->rt
.nr_cpus_allowed
> 1))
1195 /* Return the second highest RT task, NULL otherwise */
1196 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
)
1198 struct task_struct
*next
= NULL
;
1199 struct sched_rt_entity
*rt_se
;
1200 struct rt_prio_array
*array
;
1201 struct rt_rq
*rt_rq
;
1204 for_each_leaf_rt_rq(rt_rq
, rq
) {
1205 array
= &rt_rq
->active
;
1206 idx
= sched_find_first_bit(array
->bitmap
);
1208 if (idx
>= MAX_RT_PRIO
)
1210 if (next
&& next
->prio
< idx
)
1212 list_for_each_entry(rt_se
, array
->queue
+ idx
, run_list
) {
1213 struct task_struct
*p
;
1215 if (!rt_entity_is_task(rt_se
))
1218 p
= rt_task_of(rt_se
);
1219 if (pick_rt_task(rq
, p
, cpu
)) {
1225 idx
= find_next_bit(array
->bitmap
, MAX_RT_PRIO
, idx
+1);
1233 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1235 static int find_lowest_rq(struct task_struct
*task
)
1237 struct sched_domain
*sd
;
1238 struct cpumask
*lowest_mask
= __get_cpu_var(local_cpu_mask
);
1239 int this_cpu
= smp_processor_id();
1240 int cpu
= task_cpu(task
);
1242 if (task
->rt
.nr_cpus_allowed
== 1)
1243 return -1; /* No other targets possible */
1245 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1246 return -1; /* No targets found */
1249 * At this point we have built a mask of cpus representing the
1250 * lowest priority tasks in the system. Now we want to elect
1251 * the best one based on our affinity and topology.
1253 * We prioritize the last cpu that the task executed on since
1254 * it is most likely cache-hot in that location.
1256 if (cpumask_test_cpu(cpu
, lowest_mask
))
1260 * Otherwise, we consult the sched_domains span maps to figure
1261 * out which cpu is logically closest to our hot cache data.
1263 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1264 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1267 for_each_domain(cpu
, sd
) {
1268 if (sd
->flags
& SD_WAKE_AFFINE
) {
1272 * "this_cpu" is cheaper to preempt than a
1275 if (this_cpu
!= -1 &&
1276 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1281 best_cpu
= cpumask_first_and(lowest_mask
,
1282 sched_domain_span(sd
));
1283 if (best_cpu
< nr_cpu_ids
) {
1292 * And finally, if there were no matches within the domains
1293 * just give the caller *something* to work with from the compatible
1299 cpu
= cpumask_any(lowest_mask
);
1300 if (cpu
< nr_cpu_ids
)
1305 /* Will lock the rq it finds */
1306 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1308 struct rq
*lowest_rq
= NULL
;
1312 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1313 cpu
= find_lowest_rq(task
);
1315 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1318 lowest_rq
= cpu_rq(cpu
);
1320 /* if the prio of this runqueue changed, try again */
1321 if (double_lock_balance(rq
, lowest_rq
)) {
1323 * We had to unlock the run queue. In
1324 * the mean time, task could have
1325 * migrated already or had its affinity changed.
1326 * Also make sure that it wasn't scheduled on its rq.
1328 if (unlikely(task_rq(task
) != rq
||
1329 !cpumask_test_cpu(lowest_rq
->cpu
,
1330 &task
->cpus_allowed
) ||
1331 task_running(rq
, task
) ||
1334 raw_spin_unlock(&lowest_rq
->lock
);
1340 /* If this rq is still suitable use it. */
1341 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1345 double_unlock_balance(rq
, lowest_rq
);
1352 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1354 struct task_struct
*p
;
1356 if (!has_pushable_tasks(rq
))
1359 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1360 struct task_struct
, pushable_tasks
);
1362 BUG_ON(rq
->cpu
!= task_cpu(p
));
1363 BUG_ON(task_current(rq
, p
));
1364 BUG_ON(p
->rt
.nr_cpus_allowed
<= 1);
1367 BUG_ON(!rt_task(p
));
1373 * If the current CPU has more than one RT task, see if the non
1374 * running task can migrate over to a CPU that is running a task
1375 * of lesser priority.
1377 static int push_rt_task(struct rq
*rq
)
1379 struct task_struct
*next_task
;
1380 struct rq
*lowest_rq
;
1382 if (!rq
->rt
.overloaded
)
1385 next_task
= pick_next_pushable_task(rq
);
1390 if (unlikely(next_task
== rq
->curr
)) {
1396 * It's possible that the next_task slipped in of
1397 * higher priority than current. If that's the case
1398 * just reschedule current.
1400 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1401 resched_task(rq
->curr
);
1405 /* We might release rq lock */
1406 get_task_struct(next_task
);
1408 /* find_lock_lowest_rq locks the rq if found */
1409 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1411 struct task_struct
*task
;
1413 * find lock_lowest_rq releases rq->lock
1414 * so it is possible that next_task has migrated.
1416 * We need to make sure that the task is still on the same
1417 * run-queue and is also still the next task eligible for
1420 task
= pick_next_pushable_task(rq
);
1421 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1423 * If we get here, the task hasn't moved at all, but
1424 * it has failed to push. We will not try again,
1425 * since the other cpus will pull from us when they
1428 dequeue_pushable_task(rq
, next_task
);
1433 /* No more tasks, just exit */
1437 * Something has shifted, try again.
1439 put_task_struct(next_task
);
1444 deactivate_task(rq
, next_task
, 0);
1445 set_task_cpu(next_task
, lowest_rq
->cpu
);
1446 activate_task(lowest_rq
, next_task
, 0);
1448 resched_task(lowest_rq
->curr
);
1450 double_unlock_balance(rq
, lowest_rq
);
1453 put_task_struct(next_task
);
1458 static void push_rt_tasks(struct rq
*rq
)
1460 /* push_rt_task will return true if it moved an RT */
1461 while (push_rt_task(rq
))
1465 static int pull_rt_task(struct rq
*this_rq
)
1467 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1468 struct task_struct
*p
;
1471 if (likely(!rt_overloaded(this_rq
)))
1474 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
1475 if (this_cpu
== cpu
)
1478 src_rq
= cpu_rq(cpu
);
1481 * Don't bother taking the src_rq->lock if the next highest
1482 * task is known to be lower-priority than our current task.
1483 * This may look racy, but if this value is about to go
1484 * logically higher, the src_rq will push this task away.
1485 * And if its going logically lower, we do not care
1487 if (src_rq
->rt
.highest_prio
.next
>=
1488 this_rq
->rt
.highest_prio
.curr
)
1492 * We can potentially drop this_rq's lock in
1493 * double_lock_balance, and another CPU could
1496 double_lock_balance(this_rq
, src_rq
);
1499 * Are there still pullable RT tasks?
1501 if (src_rq
->rt
.rt_nr_running
<= 1)
1504 p
= pick_next_highest_task_rt(src_rq
, this_cpu
);
1507 * Do we have an RT task that preempts
1508 * the to-be-scheduled task?
1510 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
1511 WARN_ON(p
== src_rq
->curr
);
1515 * There's a chance that p is higher in priority
1516 * than what's currently running on its cpu.
1517 * This is just that p is wakeing up and hasn't
1518 * had a chance to schedule. We only pull
1519 * p if it is lower in priority than the
1520 * current task on the run queue
1522 if (p
->prio
< src_rq
->curr
->prio
)
1527 deactivate_task(src_rq
, p
, 0);
1528 set_task_cpu(p
, this_cpu
);
1529 activate_task(this_rq
, p
, 0);
1531 * We continue with the search, just in
1532 * case there's an even higher prio task
1533 * in another runqueue. (low likelihood
1538 double_unlock_balance(this_rq
, src_rq
);
1544 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
1546 /* Try to pull RT tasks here if we lower this rq's prio */
1547 if (unlikely(rt_task(prev
)) && rq
->rt
.highest_prio
.curr
> prev
->prio
)
1551 static void post_schedule_rt(struct rq
*rq
)
1557 * If we are not running and we are not going to reschedule soon, we should
1558 * try to push tasks away now
1560 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
1562 if (!task_running(rq
, p
) &&
1563 !test_tsk_need_resched(rq
->curr
) &&
1564 has_pushable_tasks(rq
) &&
1565 p
->rt
.nr_cpus_allowed
> 1 &&
1566 rt_task(rq
->curr
) &&
1567 (rq
->curr
->rt
.nr_cpus_allowed
< 2 ||
1568 rq
->curr
->prio
< p
->prio
))
1572 static void set_cpus_allowed_rt(struct task_struct
*p
,
1573 const struct cpumask
*new_mask
)
1575 int weight
= cpumask_weight(new_mask
);
1577 BUG_ON(!rt_task(p
));
1580 * Update the migration status of the RQ if we have an RT task
1581 * which is running AND changing its weight value.
1583 if (p
->on_rq
&& (weight
!= p
->rt
.nr_cpus_allowed
)) {
1584 struct rq
*rq
= task_rq(p
);
1586 if (!task_current(rq
, p
)) {
1588 * Make sure we dequeue this task from the pushable list
1589 * before going further. It will either remain off of
1590 * the list because we are no longer pushable, or it
1593 if (p
->rt
.nr_cpus_allowed
> 1)
1594 dequeue_pushable_task(rq
, p
);
1597 * Requeue if our weight is changing and still > 1
1600 enqueue_pushable_task(rq
, p
);
1604 if ((p
->rt
.nr_cpus_allowed
<= 1) && (weight
> 1)) {
1605 rq
->rt
.rt_nr_migratory
++;
1606 } else if ((p
->rt
.nr_cpus_allowed
> 1) && (weight
<= 1)) {
1607 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1608 rq
->rt
.rt_nr_migratory
--;
1611 update_rt_migration(&rq
->rt
);
1614 cpumask_copy(&p
->cpus_allowed
, new_mask
);
1615 p
->rt
.nr_cpus_allowed
= weight
;
1618 /* Assumes rq->lock is held */
1619 static void rq_online_rt(struct rq
*rq
)
1621 if (rq
->rt
.overloaded
)
1622 rt_set_overload(rq
);
1624 __enable_runtime(rq
);
1626 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
1629 /* Assumes rq->lock is held */
1630 static void rq_offline_rt(struct rq
*rq
)
1632 if (rq
->rt
.overloaded
)
1633 rt_clear_overload(rq
);
1635 __disable_runtime(rq
);
1637 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
1641 * When switch from the rt queue, we bring ourselves to a position
1642 * that we might want to pull RT tasks from other runqueues.
1644 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
1647 * If there are other RT tasks then we will reschedule
1648 * and the scheduling of the other RT tasks will handle
1649 * the balancing. But if we are the last RT task
1650 * we may need to handle the pulling of RT tasks
1653 if (p
->on_rq
&& !rq
->rt
.rt_nr_running
)
1657 static inline void init_sched_rt_class(void)
1661 for_each_possible_cpu(i
)
1662 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
1663 GFP_KERNEL
, cpu_to_node(i
));
1665 #endif /* CONFIG_SMP */
1668 * When switching a task to RT, we may overload the runqueue
1669 * with RT tasks. In this case we try to push them off to
1672 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
1674 int check_resched
= 1;
1677 * If we are already running, then there's nothing
1678 * that needs to be done. But if we are not running
1679 * we may need to preempt the current running task.
1680 * If that current running task is also an RT task
1681 * then see if we can move to another run queue.
1683 if (p
->on_rq
&& rq
->curr
!= p
) {
1685 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1686 /* Don't resched if we changed runqueues */
1689 #endif /* CONFIG_SMP */
1690 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1691 resched_task(rq
->curr
);
1696 * Priority of the task has changed. This may cause
1697 * us to initiate a push or pull.
1700 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
1705 if (rq
->curr
== p
) {
1708 * If our priority decreases while running, we
1709 * may need to pull tasks to this runqueue.
1711 if (oldprio
< p
->prio
)
1714 * If there's a higher priority task waiting to run
1715 * then reschedule. Note, the above pull_rt_task
1716 * can release the rq lock and p could migrate.
1717 * Only reschedule if p is still on the same runqueue.
1719 if (p
->prio
> rq
->rt
.highest_prio
.curr
&& rq
->curr
== p
)
1722 /* For UP simply resched on drop of prio */
1723 if (oldprio
< p
->prio
)
1725 #endif /* CONFIG_SMP */
1728 * This task is not running, but if it is
1729 * greater than the current running task
1732 if (p
->prio
< rq
->curr
->prio
)
1733 resched_task(rq
->curr
);
1737 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1739 unsigned long soft
, hard
;
1741 /* max may change after cur was read, this will be fixed next tick */
1742 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
1743 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
1745 if (soft
!= RLIM_INFINITY
) {
1749 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1750 if (p
->rt
.timeout
> next
)
1751 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
1755 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
1762 * RR tasks need a special form of timeslice management.
1763 * FIFO tasks have no timeslices.
1765 if (p
->policy
!= SCHED_RR
)
1768 if (--p
->rt
.time_slice
)
1771 p
->rt
.time_slice
= DEF_TIMESLICE
;
1774 * Requeue to the end of queue if we are not the only element
1777 if (p
->rt
.run_list
.prev
!= p
->rt
.run_list
.next
) {
1778 requeue_task_rt(rq
, p
, 0);
1779 set_tsk_need_resched(p
);
1783 static void set_curr_task_rt(struct rq
*rq
)
1785 struct task_struct
*p
= rq
->curr
;
1787 p
->se
.exec_start
= rq
->clock_task
;
1789 /* The running task is never eligible for pushing */
1790 dequeue_pushable_task(rq
, p
);
1793 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
1796 * Time slice is 0 for SCHED_FIFO tasks
1798 if (task
->policy
== SCHED_RR
)
1799 return DEF_TIMESLICE
;
1804 static const struct sched_class rt_sched_class
= {
1805 .next
= &fair_sched_class
,
1806 .enqueue_task
= enqueue_task_rt
,
1807 .dequeue_task
= dequeue_task_rt
,
1808 .yield_task
= yield_task_rt
,
1810 .check_preempt_curr
= check_preempt_curr_rt
,
1812 .pick_next_task
= pick_next_task_rt
,
1813 .put_prev_task
= put_prev_task_rt
,
1816 .select_task_rq
= select_task_rq_rt
,
1818 .set_cpus_allowed
= set_cpus_allowed_rt
,
1819 .rq_online
= rq_online_rt
,
1820 .rq_offline
= rq_offline_rt
,
1821 .pre_schedule
= pre_schedule_rt
,
1822 .post_schedule
= post_schedule_rt
,
1823 .task_woken
= task_woken_rt
,
1824 .switched_from
= switched_from_rt
,
1827 .set_curr_task
= set_curr_task_rt
,
1828 .task_tick
= task_tick_rt
,
1830 .get_rr_interval
= get_rr_interval_rt
,
1832 .prio_changed
= prio_changed_rt
,
1833 .switched_to
= switched_to_rt
,
1836 #ifdef CONFIG_SCHED_DEBUG
1837 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
1839 static void print_rt_stats(struct seq_file
*m
, int cpu
)
1842 struct rt_rq
*rt_rq
;
1845 for_each_rt_rq(rt_rq
, iter
, cpu_rq(cpu
))
1846 print_rt_rq(m
, cpu
, rt_rq
);
1849 #endif /* CONFIG_SCHED_DEBUG */