4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/config.h>
12 #include <linux/syscalls.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/module.h>
20 #include <linux/seq_file.h>
21 #include <linux/namespace.h>
22 #include <linux/namei.h>
23 #include <linux/security.h>
24 #include <linux/mount.h>
25 #include <asm/uaccess.h>
26 #include <asm/unistd.h>
28 extern int __init
init_rootfs(void);
31 extern int __init
sysfs_init(void);
33 static inline int sysfs_init(void)
39 /* spinlock for vfsmount related operations, inplace of dcache_lock */
40 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(vfsmount_lock
);
42 static struct list_head
*mount_hashtable
;
43 static int hash_mask __read_mostly
, hash_bits __read_mostly
;
44 static kmem_cache_t
*mnt_cache
;
46 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
48 unsigned long tmp
= ((unsigned long) mnt
/ L1_CACHE_BYTES
);
49 tmp
+= ((unsigned long) dentry
/ L1_CACHE_BYTES
);
50 tmp
= tmp
+ (tmp
>> hash_bits
);
51 return tmp
& hash_mask
;
54 struct vfsmount
*alloc_vfsmnt(const char *name
)
56 struct vfsmount
*mnt
= kmem_cache_alloc(mnt_cache
, GFP_KERNEL
);
58 memset(mnt
, 0, sizeof(struct vfsmount
));
59 atomic_set(&mnt
->mnt_count
,1);
60 INIT_LIST_HEAD(&mnt
->mnt_hash
);
61 INIT_LIST_HEAD(&mnt
->mnt_child
);
62 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
63 INIT_LIST_HEAD(&mnt
->mnt_list
);
64 INIT_LIST_HEAD(&mnt
->mnt_expire
);
66 int size
= strlen(name
)+1;
67 char *newname
= kmalloc(size
, GFP_KERNEL
);
69 memcpy(newname
, name
, size
);
70 mnt
->mnt_devname
= newname
;
77 void free_vfsmnt(struct vfsmount
*mnt
)
79 kfree(mnt
->mnt_devname
);
80 kmem_cache_free(mnt_cache
, mnt
);
84 * Now, lookup_mnt increments the ref count before returning
85 * the vfsmount struct.
87 struct vfsmount
*lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
89 struct list_head
* head
= mount_hashtable
+ hash(mnt
, dentry
);
90 struct list_head
* tmp
= head
;
91 struct vfsmount
*p
, *found
= NULL
;
93 spin_lock(&vfsmount_lock
);
99 p
= list_entry(tmp
, struct vfsmount
, mnt_hash
);
100 if (p
->mnt_parent
== mnt
&& p
->mnt_mountpoint
== dentry
) {
105 spin_unlock(&vfsmount_lock
);
109 static inline int check_mnt(struct vfsmount
*mnt
)
111 return mnt
->mnt_namespace
== current
->namespace;
114 static void detach_mnt(struct vfsmount
*mnt
, struct nameidata
*old_nd
)
116 old_nd
->dentry
= mnt
->mnt_mountpoint
;
117 old_nd
->mnt
= mnt
->mnt_parent
;
118 mnt
->mnt_parent
= mnt
;
119 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
120 list_del_init(&mnt
->mnt_child
);
121 list_del_init(&mnt
->mnt_hash
);
122 old_nd
->dentry
->d_mounted
--;
125 static void attach_mnt(struct vfsmount
*mnt
, struct nameidata
*nd
)
127 mnt
->mnt_parent
= mntget(nd
->mnt
);
128 mnt
->mnt_mountpoint
= dget(nd
->dentry
);
129 list_add(&mnt
->mnt_hash
, mount_hashtable
+hash(nd
->mnt
, nd
->dentry
));
130 list_add_tail(&mnt
->mnt_child
, &nd
->mnt
->mnt_mounts
);
131 nd
->dentry
->d_mounted
++;
134 static struct vfsmount
*next_mnt(struct vfsmount
*p
, struct vfsmount
*root
)
136 struct list_head
*next
= p
->mnt_mounts
.next
;
137 if (next
== &p
->mnt_mounts
) {
141 next
= p
->mnt_child
.next
;
142 if (next
!= &p
->mnt_parent
->mnt_mounts
)
147 return list_entry(next
, struct vfsmount
, mnt_child
);
150 static struct vfsmount
*
151 clone_mnt(struct vfsmount
*old
, struct dentry
*root
)
153 struct super_block
*sb
= old
->mnt_sb
;
154 struct vfsmount
*mnt
= alloc_vfsmnt(old
->mnt_devname
);
157 mnt
->mnt_flags
= old
->mnt_flags
;
158 atomic_inc(&sb
->s_active
);
160 mnt
->mnt_root
= dget(root
);
161 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
162 mnt
->mnt_parent
= mnt
;
163 mnt
->mnt_namespace
= current
->namespace;
165 /* stick the duplicate mount on the same expiry list
166 * as the original if that was on one */
167 spin_lock(&vfsmount_lock
);
168 if (!list_empty(&old
->mnt_expire
))
169 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
170 spin_unlock(&vfsmount_lock
);
175 void __mntput(struct vfsmount
*mnt
)
177 struct super_block
*sb
= mnt
->mnt_sb
;
180 deactivate_super(sb
);
183 EXPORT_SYMBOL(__mntput
);
186 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
188 struct namespace *n
= m
->private;
193 list_for_each(p
, &n
->list
)
195 return list_entry(p
, struct vfsmount
, mnt_list
);
199 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
201 struct namespace *n
= m
->private;
202 struct list_head
*p
= ((struct vfsmount
*)v
)->mnt_list
.next
;
204 return p
==&n
->list
? NULL
: list_entry(p
, struct vfsmount
, mnt_list
);
207 static void m_stop(struct seq_file
*m
, void *v
)
209 struct namespace *n
= m
->private;
213 static inline void mangle(struct seq_file
*m
, const char *s
)
215 seq_escape(m
, s
, " \t\n\\");
218 static int show_vfsmnt(struct seq_file
*m
, void *v
)
220 struct vfsmount
*mnt
= v
;
222 static struct proc_fs_info
{
226 { MS_SYNCHRONOUS
, ",sync" },
227 { MS_DIRSYNC
, ",dirsync" },
228 { MS_MANDLOCK
, ",mand" },
229 { MS_NOATIME
, ",noatime" },
230 { MS_NODIRATIME
, ",nodiratime" },
233 static struct proc_fs_info mnt_info
[] = {
234 { MNT_NOSUID
, ",nosuid" },
235 { MNT_NODEV
, ",nodev" },
236 { MNT_NOEXEC
, ",noexec" },
239 struct proc_fs_info
*fs_infop
;
241 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
243 seq_path(m
, mnt
, mnt
->mnt_root
, " \t\n\\");
245 mangle(m
, mnt
->mnt_sb
->s_type
->name
);
246 seq_puts(m
, mnt
->mnt_sb
->s_flags
& MS_RDONLY
? " ro" : " rw");
247 for (fs_infop
= fs_info
; fs_infop
->flag
; fs_infop
++) {
248 if (mnt
->mnt_sb
->s_flags
& fs_infop
->flag
)
249 seq_puts(m
, fs_infop
->str
);
251 for (fs_infop
= mnt_info
; fs_infop
->flag
; fs_infop
++) {
252 if (mnt
->mnt_flags
& fs_infop
->flag
)
253 seq_puts(m
, fs_infop
->str
);
255 if (mnt
->mnt_sb
->s_op
->show_options
)
256 err
= mnt
->mnt_sb
->s_op
->show_options(m
, mnt
);
257 seq_puts(m
, " 0 0\n");
261 struct seq_operations mounts_op
= {
269 * may_umount_tree - check if a mount tree is busy
270 * @mnt: root of mount tree
272 * This is called to check if a tree of mounts has any
273 * open files, pwds, chroots or sub mounts that are
276 int may_umount_tree(struct vfsmount
*mnt
)
278 struct list_head
*next
;
279 struct vfsmount
*this_parent
= mnt
;
283 spin_lock(&vfsmount_lock
);
284 actual_refs
= atomic_read(&mnt
->mnt_count
);
287 next
= this_parent
->mnt_mounts
.next
;
289 while (next
!= &this_parent
->mnt_mounts
) {
290 struct vfsmount
*p
= list_entry(next
, struct vfsmount
, mnt_child
);
294 actual_refs
+= atomic_read(&p
->mnt_count
);
297 if (!list_empty(&p
->mnt_mounts
)) {
303 if (this_parent
!= mnt
) {
304 next
= this_parent
->mnt_child
.next
;
305 this_parent
= this_parent
->mnt_parent
;
308 spin_unlock(&vfsmount_lock
);
310 if (actual_refs
> minimum_refs
)
316 EXPORT_SYMBOL(may_umount_tree
);
319 * may_umount - check if a mount point is busy
320 * @mnt: root of mount
322 * This is called to check if a mount point has any
323 * open files, pwds, chroots or sub mounts. If the
324 * mount has sub mounts this will return busy
325 * regardless of whether the sub mounts are busy.
327 * Doesn't take quota and stuff into account. IOW, in some cases it will
328 * give false negatives. The main reason why it's here is that we need
329 * a non-destructive way to look for easily umountable filesystems.
331 int may_umount(struct vfsmount
*mnt
)
333 if (atomic_read(&mnt
->mnt_count
) > 2)
338 EXPORT_SYMBOL(may_umount
);
340 static void umount_tree(struct vfsmount
*mnt
)
345 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
346 list_del(&p
->mnt_list
);
347 list_add(&p
->mnt_list
, &kill
);
348 p
->mnt_namespace
= NULL
;
351 while (!list_empty(&kill
)) {
352 mnt
= list_entry(kill
.next
, struct vfsmount
, mnt_list
);
353 list_del_init(&mnt
->mnt_list
);
354 list_del_init(&mnt
->mnt_expire
);
355 if (mnt
->mnt_parent
== mnt
) {
356 spin_unlock(&vfsmount_lock
);
358 struct nameidata old_nd
;
359 detach_mnt(mnt
, &old_nd
);
360 spin_unlock(&vfsmount_lock
);
361 path_release(&old_nd
);
364 spin_lock(&vfsmount_lock
);
368 static int do_umount(struct vfsmount
*mnt
, int flags
)
370 struct super_block
* sb
= mnt
->mnt_sb
;
373 retval
= security_sb_umount(mnt
, flags
);
378 * Allow userspace to request a mountpoint be expired rather than
379 * unmounting unconditionally. Unmount only happens if:
380 * (1) the mark is already set (the mark is cleared by mntput())
381 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
383 if (flags
& MNT_EXPIRE
) {
384 if (mnt
== current
->fs
->rootmnt
||
385 flags
& (MNT_FORCE
| MNT_DETACH
))
388 if (atomic_read(&mnt
->mnt_count
) != 2)
391 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
396 * If we may have to abort operations to get out of this
397 * mount, and they will themselves hold resources we must
398 * allow the fs to do things. In the Unix tradition of
399 * 'Gee thats tricky lets do it in userspace' the umount_begin
400 * might fail to complete on the first run through as other tasks
401 * must return, and the like. Thats for the mount program to worry
402 * about for the moment.
406 if( (flags
&MNT_FORCE
) && sb
->s_op
->umount_begin
)
407 sb
->s_op
->umount_begin(sb
);
411 * No sense to grab the lock for this test, but test itself looks
412 * somewhat bogus. Suggestions for better replacement?
413 * Ho-hum... In principle, we might treat that as umount + switch
414 * to rootfs. GC would eventually take care of the old vfsmount.
415 * Actually it makes sense, especially if rootfs would contain a
416 * /reboot - static binary that would close all descriptors and
417 * call reboot(9). Then init(8) could umount root and exec /reboot.
419 if (mnt
== current
->fs
->rootmnt
&& !(flags
& MNT_DETACH
)) {
421 * Special case for "unmounting" root ...
422 * we just try to remount it readonly.
424 down_write(&sb
->s_umount
);
425 if (!(sb
->s_flags
& MS_RDONLY
)) {
428 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
431 up_write(&sb
->s_umount
);
435 down_write(¤t
->namespace->sem
);
436 spin_lock(&vfsmount_lock
);
438 if (atomic_read(&sb
->s_active
) == 1) {
439 /* last instance - try to be smart */
440 spin_unlock(&vfsmount_lock
);
445 security_sb_umount_close(mnt
);
446 spin_lock(&vfsmount_lock
);
449 if (atomic_read(&mnt
->mnt_count
) == 2 || flags
& MNT_DETACH
) {
450 if (!list_empty(&mnt
->mnt_list
))
454 spin_unlock(&vfsmount_lock
);
456 security_sb_umount_busy(mnt
);
457 up_write(¤t
->namespace->sem
);
462 * Now umount can handle mount points as well as block devices.
463 * This is important for filesystems which use unnamed block devices.
465 * We now support a flag for forced unmount like the other 'big iron'
466 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
469 asmlinkage
long sys_umount(char __user
* name
, int flags
)
474 retval
= __user_walk(name
, LOOKUP_FOLLOW
, &nd
);
478 if (nd
.dentry
!= nd
.mnt
->mnt_root
)
480 if (!check_mnt(nd
.mnt
))
484 if (!capable(CAP_SYS_ADMIN
))
487 retval
= do_umount(nd
.mnt
, flags
);
489 path_release_on_umount(&nd
);
494 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
497 * The 2.0 compatible umount. No flags.
500 asmlinkage
long sys_oldumount(char __user
* name
)
502 return sys_umount(name
,0);
507 static int mount_is_safe(struct nameidata
*nd
)
509 if (capable(CAP_SYS_ADMIN
))
513 if (S_ISLNK(nd
->dentry
->d_inode
->i_mode
))
515 if (nd
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
516 if (current
->uid
!= nd
->dentry
->d_inode
->i_uid
)
519 if (permission(nd
->dentry
->d_inode
, MAY_WRITE
, nd
))
526 lives_below_in_same_fs(struct dentry
*d
, struct dentry
*dentry
)
531 if (d
== NULL
|| d
== d
->d_parent
)
537 static struct vfsmount
*copy_tree(struct vfsmount
*mnt
, struct dentry
*dentry
)
539 struct vfsmount
*res
, *p
, *q
, *r
, *s
;
542 res
= q
= clone_mnt(mnt
, dentry
);
545 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
548 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
549 if (!lives_below_in_same_fs(r
->mnt_mountpoint
, dentry
))
552 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
553 while (p
!= s
->mnt_parent
) {
559 nd
.dentry
= p
->mnt_mountpoint
;
560 q
= clone_mnt(p
, p
->mnt_root
);
563 spin_lock(&vfsmount_lock
);
564 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
566 spin_unlock(&vfsmount_lock
);
572 spin_lock(&vfsmount_lock
);
574 spin_unlock(&vfsmount_lock
);
579 static int graft_tree(struct vfsmount
*mnt
, struct nameidata
*nd
)
582 if (mnt
->mnt_sb
->s_flags
& MS_NOUSER
)
585 if (S_ISDIR(nd
->dentry
->d_inode
->i_mode
) !=
586 S_ISDIR(mnt
->mnt_root
->d_inode
->i_mode
))
590 down(&nd
->dentry
->d_inode
->i_sem
);
591 if (IS_DEADDIR(nd
->dentry
->d_inode
))
594 err
= security_sb_check_sb(mnt
, nd
);
599 spin_lock(&vfsmount_lock
);
600 if (IS_ROOT(nd
->dentry
) || !d_unhashed(nd
->dentry
)) {
601 struct list_head head
;
604 list_add_tail(&head
, &mnt
->mnt_list
);
605 list_splice(&head
, current
->namespace->list
.prev
);
609 spin_unlock(&vfsmount_lock
);
611 up(&nd
->dentry
->d_inode
->i_sem
);
613 security_sb_post_addmount(mnt
, nd
);
620 static int do_loopback(struct nameidata
*nd
, char *old_name
, int recurse
)
622 struct nameidata old_nd
;
623 struct vfsmount
*mnt
= NULL
;
624 int err
= mount_is_safe(nd
);
627 if (!old_name
|| !*old_name
)
629 err
= path_lookup(old_name
, LOOKUP_FOLLOW
, &old_nd
);
633 down_write(¤t
->namespace->sem
);
635 if (check_mnt(nd
->mnt
) && (!recurse
|| check_mnt(old_nd
.mnt
))) {
638 mnt
= copy_tree(old_nd
.mnt
, old_nd
.dentry
);
640 mnt
= clone_mnt(old_nd
.mnt
, old_nd
.dentry
);
644 /* stop bind mounts from expiring */
645 spin_lock(&vfsmount_lock
);
646 list_del_init(&mnt
->mnt_expire
);
647 spin_unlock(&vfsmount_lock
);
649 err
= graft_tree(mnt
, nd
);
651 spin_lock(&vfsmount_lock
);
653 spin_unlock(&vfsmount_lock
);
658 up_write(¤t
->namespace->sem
);
659 path_release(&old_nd
);
664 * change filesystem flags. dir should be a physical root of filesystem.
665 * If you've mounted a non-root directory somewhere and want to do remount
666 * on it - tough luck.
669 static int do_remount(struct nameidata
*nd
, int flags
, int mnt_flags
,
673 struct super_block
* sb
= nd
->mnt
->mnt_sb
;
675 if (!capable(CAP_SYS_ADMIN
))
678 if (!check_mnt(nd
->mnt
))
681 if (nd
->dentry
!= nd
->mnt
->mnt_root
)
684 down_write(&sb
->s_umount
);
685 err
= do_remount_sb(sb
, flags
, data
, 0);
687 nd
->mnt
->mnt_flags
=mnt_flags
;
688 up_write(&sb
->s_umount
);
690 security_sb_post_remount(nd
->mnt
, flags
, data
);
694 static int do_move_mount(struct nameidata
*nd
, char *old_name
)
696 struct nameidata old_nd
, parent_nd
;
699 if (!capable(CAP_SYS_ADMIN
))
701 if (!old_name
|| !*old_name
)
703 err
= path_lookup(old_name
, LOOKUP_FOLLOW
, &old_nd
);
707 down_write(¤t
->namespace->sem
);
708 while(d_mountpoint(nd
->dentry
) && follow_down(&nd
->mnt
, &nd
->dentry
))
711 if (!check_mnt(nd
->mnt
) || !check_mnt(old_nd
.mnt
))
715 down(&nd
->dentry
->d_inode
->i_sem
);
716 if (IS_DEADDIR(nd
->dentry
->d_inode
))
719 spin_lock(&vfsmount_lock
);
720 if (!IS_ROOT(nd
->dentry
) && d_unhashed(nd
->dentry
))
724 if (old_nd
.dentry
!= old_nd
.mnt
->mnt_root
)
727 if (old_nd
.mnt
== old_nd
.mnt
->mnt_parent
)
730 if (S_ISDIR(nd
->dentry
->d_inode
->i_mode
) !=
731 S_ISDIR(old_nd
.dentry
->d_inode
->i_mode
))
735 for (p
= nd
->mnt
; p
->mnt_parent
!=p
; p
= p
->mnt_parent
)
740 detach_mnt(old_nd
.mnt
, &parent_nd
);
741 attach_mnt(old_nd
.mnt
, nd
);
743 /* if the mount is moved, it should no longer be expire
745 list_del_init(&old_nd
.mnt
->mnt_expire
);
747 spin_unlock(&vfsmount_lock
);
749 up(&nd
->dentry
->d_inode
->i_sem
);
751 up_write(¤t
->namespace->sem
);
753 path_release(&parent_nd
);
754 path_release(&old_nd
);
759 * create a new mount for userspace and request it to be added into the
762 static int do_new_mount(struct nameidata
*nd
, char *type
, int flags
,
763 int mnt_flags
, char *name
, void *data
)
765 struct vfsmount
*mnt
;
767 if (!type
|| !memchr(type
, 0, PAGE_SIZE
))
770 /* we need capabilities... */
771 if (!capable(CAP_SYS_ADMIN
))
774 mnt
= do_kern_mount(type
, flags
, name
, data
);
778 return do_add_mount(mnt
, nd
, mnt_flags
, NULL
);
782 * add a mount into a namespace's mount tree
783 * - provide the option of adding the new mount to an expiration list
785 int do_add_mount(struct vfsmount
*newmnt
, struct nameidata
*nd
,
786 int mnt_flags
, struct list_head
*fslist
)
790 down_write(¤t
->namespace->sem
);
791 /* Something was mounted here while we slept */
792 while(d_mountpoint(nd
->dentry
) && follow_down(&nd
->mnt
, &nd
->dentry
))
795 if (!check_mnt(nd
->mnt
))
798 /* Refuse the same filesystem on the same mount point */
800 if (nd
->mnt
->mnt_sb
== newmnt
->mnt_sb
&&
801 nd
->mnt
->mnt_root
== nd
->dentry
)
805 if (S_ISLNK(newmnt
->mnt_root
->d_inode
->i_mode
))
808 newmnt
->mnt_flags
= mnt_flags
;
809 newmnt
->mnt_namespace
= current
->namespace;
810 err
= graft_tree(newmnt
, nd
);
812 if (err
== 0 && fslist
) {
813 /* add to the specified expiration list */
814 spin_lock(&vfsmount_lock
);
815 list_add_tail(&newmnt
->mnt_expire
, fslist
);
816 spin_unlock(&vfsmount_lock
);
820 up_write(¤t
->namespace->sem
);
825 EXPORT_SYMBOL_GPL(do_add_mount
);
827 static void expire_mount(struct vfsmount
*mnt
, struct list_head
*mounts
)
829 spin_lock(&vfsmount_lock
);
832 * Check if mount is still attached, if not, let whoever holds it deal
835 if (mnt
->mnt_parent
== mnt
) {
836 spin_unlock(&vfsmount_lock
);
841 * Check that it is still dead: the count should now be 2 - as
842 * contributed by the vfsmount parent and the mntget above
844 if (atomic_read(&mnt
->mnt_count
) == 2) {
845 struct nameidata old_nd
;
847 /* delete from the namespace */
848 list_del_init(&mnt
->mnt_list
);
849 mnt
->mnt_namespace
= NULL
;
850 detach_mnt(mnt
, &old_nd
);
851 spin_unlock(&vfsmount_lock
);
852 path_release(&old_nd
);
855 * Now lay it to rest if this was the last ref on the superblock
857 if (atomic_read(&mnt
->mnt_sb
->s_active
) == 1) {
858 /* last instance - try to be smart */
860 DQUOT_OFF(mnt
->mnt_sb
);
861 acct_auto_close(mnt
->mnt_sb
);
867 * Someone brought it back to life whilst we didn't have any
868 * locks held so return it to the expiration list
870 list_add_tail(&mnt
->mnt_expire
, mounts
);
871 spin_unlock(&vfsmount_lock
);
876 * process a list of expirable mountpoints with the intent of discarding any
877 * mountpoints that aren't in use and haven't been touched since last we came
880 void mark_mounts_for_expiry(struct list_head
*mounts
)
882 struct namespace *namespace;
883 struct vfsmount
*mnt
, *next
;
884 LIST_HEAD(graveyard
);
886 if (list_empty(mounts
))
889 spin_lock(&vfsmount_lock
);
891 /* extract from the expiration list every vfsmount that matches the
892 * following criteria:
893 * - only referenced by its parent vfsmount
894 * - still marked for expiry (marked on the last call here; marks are
895 * cleared by mntput())
897 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
898 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
899 atomic_read(&mnt
->mnt_count
) != 1)
903 list_move(&mnt
->mnt_expire
, &graveyard
);
907 * go through the vfsmounts we've just consigned to the graveyard to
908 * - check that they're still dead
909 * - delete the vfsmount from the appropriate namespace under lock
910 * - dispose of the corpse
912 while (!list_empty(&graveyard
)) {
913 mnt
= list_entry(graveyard
.next
, struct vfsmount
, mnt_expire
);
914 list_del_init(&mnt
->mnt_expire
);
916 /* don't do anything if the namespace is dead - all the
917 * vfsmounts from it are going away anyway */
918 namespace = mnt
->mnt_namespace
;
919 if (!namespace || !namespace->root
)
921 get_namespace(namespace);
923 spin_unlock(&vfsmount_lock
);
924 down_write(&namespace->sem
);
925 expire_mount(mnt
, mounts
);
926 up_write(&namespace->sem
);
929 put_namespace(namespace);
931 spin_lock(&vfsmount_lock
);
934 spin_unlock(&vfsmount_lock
);
937 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
940 * Some copy_from_user() implementations do not return the exact number of
941 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
942 * Note that this function differs from copy_from_user() in that it will oops
943 * on bad values of `to', rather than returning a short copy.
946 exact_copy_from_user(void *to
, const void __user
*from
, unsigned long n
)
949 const char __user
*f
= from
;
952 if (!access_ok(VERIFY_READ
, from
, n
))
956 if (__get_user(c
, f
)) {
967 int copy_mount_options(const void __user
*data
, unsigned long *where
)
977 if (!(page
= __get_free_page(GFP_KERNEL
)))
980 /* We only care that *some* data at the address the user
981 * gave us is valid. Just in case, we'll zero
982 * the remainder of the page.
984 /* copy_from_user cannot cross TASK_SIZE ! */
985 size
= TASK_SIZE
- (unsigned long)data
;
986 if (size
> PAGE_SIZE
)
989 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
995 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
1001 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1002 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1004 * data is a (void *) that can point to any structure up to
1005 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1006 * information (or be NULL).
1008 * Pre-0.97 versions of mount() didn't have a flags word.
1009 * When the flags word was introduced its top half was required
1010 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1011 * Therefore, if this magic number is present, it carries no information
1012 * and must be discarded.
1014 long do_mount(char * dev_name
, char * dir_name
, char *type_page
,
1015 unsigned long flags
, void *data_page
)
1017 struct nameidata nd
;
1022 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
1023 flags
&= ~MS_MGC_MSK
;
1025 /* Basic sanity checks */
1027 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
1029 if (dev_name
&& !memchr(dev_name
, 0, PAGE_SIZE
))
1033 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
1035 /* Separate the per-mountpoint flags */
1036 if (flags
& MS_NOSUID
)
1037 mnt_flags
|= MNT_NOSUID
;
1038 if (flags
& MS_NODEV
)
1039 mnt_flags
|= MNT_NODEV
;
1040 if (flags
& MS_NOEXEC
)
1041 mnt_flags
|= MNT_NOEXEC
;
1042 flags
&= ~(MS_NOSUID
|MS_NOEXEC
|MS_NODEV
|MS_ACTIVE
);
1044 /* ... and get the mountpoint */
1045 retval
= path_lookup(dir_name
, LOOKUP_FOLLOW
, &nd
);
1049 retval
= security_sb_mount(dev_name
, &nd
, type_page
, flags
, data_page
);
1053 if (flags
& MS_REMOUNT
)
1054 retval
= do_remount(&nd
, flags
& ~MS_REMOUNT
, mnt_flags
,
1056 else if (flags
& MS_BIND
)
1057 retval
= do_loopback(&nd
, dev_name
, flags
& MS_REC
);
1058 else if (flags
& MS_MOVE
)
1059 retval
= do_move_mount(&nd
, dev_name
);
1061 retval
= do_new_mount(&nd
, type_page
, flags
, mnt_flags
,
1062 dev_name
, data_page
);
1068 int copy_namespace(int flags
, struct task_struct
*tsk
)
1070 struct namespace *namespace = tsk
->namespace;
1071 struct namespace *new_ns
;
1072 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
, *altrootmnt
= NULL
;
1073 struct fs_struct
*fs
= tsk
->fs
;
1074 struct vfsmount
*p
, *q
;
1079 get_namespace(namespace);
1081 if (!(flags
& CLONE_NEWNS
))
1084 if (!capable(CAP_SYS_ADMIN
)) {
1085 put_namespace(namespace);
1089 new_ns
= kmalloc(sizeof(struct namespace), GFP_KERNEL
);
1093 atomic_set(&new_ns
->count
, 1);
1094 init_rwsem(&new_ns
->sem
);
1095 INIT_LIST_HEAD(&new_ns
->list
);
1097 down_write(&tsk
->namespace->sem
);
1098 /* First pass: copy the tree topology */
1099 new_ns
->root
= copy_tree(namespace->root
, namespace->root
->mnt_root
);
1100 if (!new_ns
->root
) {
1101 up_write(&tsk
->namespace->sem
);
1105 spin_lock(&vfsmount_lock
);
1106 list_add_tail(&new_ns
->list
, &new_ns
->root
->mnt_list
);
1107 spin_unlock(&vfsmount_lock
);
1110 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1111 * as belonging to new namespace. We have already acquired a private
1112 * fs_struct, so tsk->fs->lock is not needed.
1114 p
= namespace->root
;
1117 q
->mnt_namespace
= new_ns
;
1119 if (p
== fs
->rootmnt
) {
1121 fs
->rootmnt
= mntget(q
);
1123 if (p
== fs
->pwdmnt
) {
1125 fs
->pwdmnt
= mntget(q
);
1127 if (p
== fs
->altrootmnt
) {
1129 fs
->altrootmnt
= mntget(q
);
1132 p
= next_mnt(p
, namespace->root
);
1133 q
= next_mnt(q
, new_ns
->root
);
1135 up_write(&tsk
->namespace->sem
);
1137 tsk
->namespace = new_ns
;
1146 put_namespace(namespace);
1150 put_namespace(namespace);
1154 asmlinkage
long sys_mount(char __user
* dev_name
, char __user
* dir_name
,
1155 char __user
* type
, unsigned long flags
,
1159 unsigned long data_page
;
1160 unsigned long type_page
;
1161 unsigned long dev_page
;
1164 retval
= copy_mount_options (type
, &type_page
);
1168 dir_page
= getname(dir_name
);
1169 retval
= PTR_ERR(dir_page
);
1170 if (IS_ERR(dir_page
))
1173 retval
= copy_mount_options (dev_name
, &dev_page
);
1177 retval
= copy_mount_options (data
, &data_page
);
1182 retval
= do_mount((char*)dev_page
, dir_page
, (char*)type_page
,
1183 flags
, (void*)data_page
);
1185 free_page(data_page
);
1188 free_page(dev_page
);
1192 free_page(type_page
);
1197 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1198 * It can block. Requires the big lock held.
1200 void set_fs_root(struct fs_struct
*fs
, struct vfsmount
*mnt
,
1201 struct dentry
*dentry
)
1203 struct dentry
*old_root
;
1204 struct vfsmount
*old_rootmnt
;
1205 write_lock(&fs
->lock
);
1206 old_root
= fs
->root
;
1207 old_rootmnt
= fs
->rootmnt
;
1208 fs
->rootmnt
= mntget(mnt
);
1209 fs
->root
= dget(dentry
);
1210 write_unlock(&fs
->lock
);
1213 mntput(old_rootmnt
);
1218 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1219 * It can block. Requires the big lock held.
1221 void set_fs_pwd(struct fs_struct
*fs
, struct vfsmount
*mnt
,
1222 struct dentry
*dentry
)
1224 struct dentry
*old_pwd
;
1225 struct vfsmount
*old_pwdmnt
;
1227 write_lock(&fs
->lock
);
1229 old_pwdmnt
= fs
->pwdmnt
;
1230 fs
->pwdmnt
= mntget(mnt
);
1231 fs
->pwd
= dget(dentry
);
1232 write_unlock(&fs
->lock
);
1240 static void chroot_fs_refs(struct nameidata
*old_nd
, struct nameidata
*new_nd
)
1242 struct task_struct
*g
, *p
;
1243 struct fs_struct
*fs
;
1245 read_lock(&tasklist_lock
);
1246 do_each_thread(g
, p
) {
1250 atomic_inc(&fs
->count
);
1252 if (fs
->root
==old_nd
->dentry
&&fs
->rootmnt
==old_nd
->mnt
)
1253 set_fs_root(fs
, new_nd
->mnt
, new_nd
->dentry
);
1254 if (fs
->pwd
==old_nd
->dentry
&&fs
->pwdmnt
==old_nd
->mnt
)
1255 set_fs_pwd(fs
, new_nd
->mnt
, new_nd
->dentry
);
1259 } while_each_thread(g
, p
);
1260 read_unlock(&tasklist_lock
);
1264 * pivot_root Semantics:
1265 * Moves the root file system of the current process to the directory put_old,
1266 * makes new_root as the new root file system of the current process, and sets
1267 * root/cwd of all processes which had them on the current root to new_root.
1270 * The new_root and put_old must be directories, and must not be on the
1271 * same file system as the current process root. The put_old must be
1272 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1273 * pointed to by put_old must yield the same directory as new_root. No other
1274 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1277 * - we don't move root/cwd if they are not at the root (reason: if something
1278 * cared enough to change them, it's probably wrong to force them elsewhere)
1279 * - it's okay to pick a root that isn't the root of a file system, e.g.
1280 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1281 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1285 asmlinkage
long sys_pivot_root(const char __user
*new_root
, const char __user
*put_old
)
1287 struct vfsmount
*tmp
;
1288 struct nameidata new_nd
, old_nd
, parent_nd
, root_parent
, user_nd
;
1291 if (!capable(CAP_SYS_ADMIN
))
1296 error
= __user_walk(new_root
, LOOKUP_FOLLOW
|LOOKUP_DIRECTORY
, &new_nd
);
1300 if (!check_mnt(new_nd
.mnt
))
1303 error
= __user_walk(put_old
, LOOKUP_FOLLOW
|LOOKUP_DIRECTORY
, &old_nd
);
1307 error
= security_sb_pivotroot(&old_nd
, &new_nd
);
1309 path_release(&old_nd
);
1313 read_lock(¤t
->fs
->lock
);
1314 user_nd
.mnt
= mntget(current
->fs
->rootmnt
);
1315 user_nd
.dentry
= dget(current
->fs
->root
);
1316 read_unlock(¤t
->fs
->lock
);
1317 down_write(¤t
->namespace->sem
);
1318 down(&old_nd
.dentry
->d_inode
->i_sem
);
1320 if (!check_mnt(user_nd
.mnt
))
1323 if (IS_DEADDIR(new_nd
.dentry
->d_inode
))
1325 if (d_unhashed(new_nd
.dentry
) && !IS_ROOT(new_nd
.dentry
))
1327 if (d_unhashed(old_nd
.dentry
) && !IS_ROOT(old_nd
.dentry
))
1330 if (new_nd
.mnt
== user_nd
.mnt
|| old_nd
.mnt
== user_nd
.mnt
)
1331 goto out2
; /* loop, on the same file system */
1333 if (user_nd
.mnt
->mnt_root
!= user_nd
.dentry
)
1334 goto out2
; /* not a mountpoint */
1335 if (user_nd
.mnt
->mnt_parent
== user_nd
.mnt
)
1336 goto out2
; /* not attached */
1337 if (new_nd
.mnt
->mnt_root
!= new_nd
.dentry
)
1338 goto out2
; /* not a mountpoint */
1339 if (new_nd
.mnt
->mnt_parent
== new_nd
.mnt
)
1340 goto out2
; /* not attached */
1341 tmp
= old_nd
.mnt
; /* make sure we can reach put_old from new_root */
1342 spin_lock(&vfsmount_lock
);
1343 if (tmp
!= new_nd
.mnt
) {
1345 if (tmp
->mnt_parent
== tmp
)
1346 goto out3
; /* already mounted on put_old */
1347 if (tmp
->mnt_parent
== new_nd
.mnt
)
1349 tmp
= tmp
->mnt_parent
;
1351 if (!is_subdir(tmp
->mnt_mountpoint
, new_nd
.dentry
))
1353 } else if (!is_subdir(old_nd
.dentry
, new_nd
.dentry
))
1355 detach_mnt(new_nd
.mnt
, &parent_nd
);
1356 detach_mnt(user_nd
.mnt
, &root_parent
);
1357 attach_mnt(user_nd
.mnt
, &old_nd
); /* mount old root on put_old */
1358 attach_mnt(new_nd
.mnt
, &root_parent
); /* mount new_root on / */
1359 spin_unlock(&vfsmount_lock
);
1360 chroot_fs_refs(&user_nd
, &new_nd
);
1361 security_sb_post_pivotroot(&user_nd
, &new_nd
);
1363 path_release(&root_parent
);
1364 path_release(&parent_nd
);
1366 up(&old_nd
.dentry
->d_inode
->i_sem
);
1367 up_write(¤t
->namespace->sem
);
1368 path_release(&user_nd
);
1369 path_release(&old_nd
);
1371 path_release(&new_nd
);
1376 spin_unlock(&vfsmount_lock
);
1380 static void __init
init_mount_tree(void)
1382 struct vfsmount
*mnt
;
1383 struct namespace *namespace;
1384 struct task_struct
*g
, *p
;
1386 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
1388 panic("Can't create rootfs");
1389 namespace = kmalloc(sizeof(*namespace), GFP_KERNEL
);
1391 panic("Can't allocate initial namespace");
1392 atomic_set(&namespace->count
, 1);
1393 INIT_LIST_HEAD(&namespace->list
);
1394 init_rwsem(&namespace->sem
);
1395 list_add(&mnt
->mnt_list
, &namespace->list
);
1396 namespace->root
= mnt
;
1397 mnt
->mnt_namespace
= namespace;
1399 init_task
.namespace = namespace;
1400 read_lock(&tasklist_lock
);
1401 do_each_thread(g
, p
) {
1402 get_namespace(namespace);
1403 p
->namespace = namespace;
1404 } while_each_thread(g
, p
);
1405 read_unlock(&tasklist_lock
);
1407 set_fs_pwd(current
->fs
, namespace->root
, namespace->root
->mnt_root
);
1408 set_fs_root(current
->fs
, namespace->root
, namespace->root
->mnt_root
);
1411 void __init
mnt_init(unsigned long mempages
)
1413 struct list_head
*d
;
1414 unsigned int nr_hash
;
1417 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct vfsmount
),
1418 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1420 mount_hashtable
= (struct list_head
*)
1421 __get_free_page(GFP_ATOMIC
);
1423 if (!mount_hashtable
)
1424 panic("Failed to allocate mount hash table\n");
1427 * Find the power-of-two list-heads that can fit into the allocation..
1428 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1431 nr_hash
= PAGE_SIZE
/ sizeof(struct list_head
);
1435 } while ((nr_hash
>> hash_bits
) != 0);
1439 * Re-calculate the actual number of entries and the mask
1440 * from the number of bits we can fit.
1442 nr_hash
= 1UL << hash_bits
;
1443 hash_mask
= nr_hash
-1;
1445 printk("Mount-cache hash table entries: %d\n", nr_hash
);
1447 /* And initialize the newly allocated array */
1448 d
= mount_hashtable
;
1460 void __put_namespace(struct namespace *namespace)
1462 struct vfsmount
*root
= namespace->root
;
1463 namespace->root
= NULL
;
1464 spin_unlock(&vfsmount_lock
);
1465 down_write(&namespace->sem
);
1466 spin_lock(&vfsmount_lock
);
1468 spin_unlock(&vfsmount_lock
);
1469 up_write(&namespace->sem
);