staging: et131x: Remove file et131x_version.h
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / staging / et131x / et1310_rx.c
blob814922bbff056002be468186f6f65cc090d72152
1 /*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright © 2005 Agere Systems Inc.
6 * All rights reserved.
7 * http://www.agere.com
9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
11 *------------------------------------------------------------------------------
13 * et1310_rx.c - Routines used to perform data reception
15 *------------------------------------------------------------------------------
17 * SOFTWARE LICENSE
19 * This software is provided subject to the following terms and conditions,
20 * which you should read carefully before using the software. Using this
21 * software indicates your acceptance of these terms and conditions. If you do
22 * not agree with these terms and conditions, do not use the software.
24 * Copyright © 2005 Agere Systems Inc.
25 * All rights reserved.
27 * Redistribution and use in source or binary forms, with or without
28 * modifications, are permitted provided that the following conditions are met:
30 * . Redistributions of source code must retain the above copyright notice, this
31 * list of conditions and the following Disclaimer as comments in the code as
32 * well as in the documentation and/or other materials provided with the
33 * distribution.
35 * . Redistributions in binary form must reproduce the above copyright notice,
36 * this list of conditions and the following Disclaimer in the documentation
37 * and/or other materials provided with the distribution.
39 * . Neither the name of Agere Systems Inc. nor the names of the contributors
40 * may be used to endorse or promote products derived from this software
41 * without specific prior written permission.
43 * Disclaimer
45 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
46 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
48 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
49 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
50 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
51 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
52 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
53 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
55 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
56 * DAMAGE.
60 #include "et131x_defs.h"
62 #include <linux/pci.h>
63 #include <linux/init.h>
64 #include <linux/module.h>
65 #include <linux/types.h>
66 #include <linux/kernel.h>
68 #include <linux/sched.h>
69 #include <linux/ptrace.h>
70 #include <linux/slab.h>
71 #include <linux/ctype.h>
72 #include <linux/string.h>
73 #include <linux/timer.h>
74 #include <linux/interrupt.h>
75 #include <linux/in.h>
76 #include <linux/delay.h>
77 #include <linux/io.h>
78 #include <linux/bitops.h>
79 #include <asm/system.h>
81 #include <linux/netdevice.h>
82 #include <linux/etherdevice.h>
83 #include <linux/skbuff.h>
84 #include <linux/if_arp.h>
85 #include <linux/ioport.h>
86 #include <linux/phy.h>
88 #include "et1310_phy.h"
89 #include "et131x_adapter.h"
90 #include "et1310_rx.h"
91 #include "et131x.h"
93 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
95 u32 tmp_free_buff_ring = *free_buff_ring;
96 tmp_free_buff_ring++;
97 /* This works for all cases where limit < 1024. The 1023 case
98 works because 1023++ is 1024 which means the if condition is not
99 taken but the carry of the bit into the wrap bit toggles the wrap
100 value correctly */
101 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
102 tmp_free_buff_ring &= ~ET_DMA10_MASK;
103 tmp_free_buff_ring ^= ET_DMA10_WRAP;
105 /* For the 1023 case */
106 tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
107 *free_buff_ring = tmp_free_buff_ring;
108 return tmp_free_buff_ring;
112 * et131x_rx_dma_memory_alloc
113 * @adapter: pointer to our private adapter structure
115 * Returns 0 on success and errno on failure (as defined in errno.h)
117 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
118 * and the Packet Status Ring.
120 int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
122 u32 i, j;
123 u32 bufsize;
124 u32 pktstat_ringsize, fbr_chunksize;
125 struct rx_ring *rx_ring;
127 /* Setup some convenience pointers */
128 rx_ring = &adapter->rx_ring;
130 /* Alloc memory for the lookup table */
131 #ifdef USE_FBR0
132 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
133 #endif
134 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
136 /* The first thing we will do is configure the sizes of the buffer
137 * rings. These will change based on jumbo packet support. Larger
138 * jumbo packets increases the size of each entry in FBR0, and the
139 * number of entries in FBR0, while at the same time decreasing the
140 * number of entries in FBR1.
142 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
143 * entries are huge in order to accommodate a "jumbo" frame, then it
144 * will have less entries. Conversely, FBR1 will now be relied upon
145 * to carry more "normal" frames, thus it's entry size also increases
146 * and the number of entries goes up too (since it now carries
147 * "small" + "regular" packets.
149 * In this scheme, we try to maintain 512 entries between the two
150 * rings. Also, FBR1 remains a constant size - when it's size doubles
151 * the number of entries halves. FBR0 increases in size, however.
154 if (adapter->registry_jumbo_packet < 2048) {
155 #ifdef USE_FBR0
156 rx_ring->fbr0_buffsize = 256;
157 rx_ring->fbr0_num_entries = 512;
158 #endif
159 rx_ring->fbr1_buffsize = 2048;
160 rx_ring->fbr1_num_entries = 512;
161 } else if (adapter->registry_jumbo_packet < 4096) {
162 #ifdef USE_FBR0
163 rx_ring->fbr0_buffsize = 512;
164 rx_ring->fbr0_num_entries = 1024;
165 #endif
166 rx_ring->fbr1_buffsize = 4096;
167 rx_ring->fbr1_num_entries = 512;
168 } else {
169 #ifdef USE_FBR0
170 rx_ring->fbr0_buffsize = 1024;
171 rx_ring->fbr0_num_entries = 768;
172 #endif
173 rx_ring->fbr1_buffsize = 16384;
174 rx_ring->fbr1_num_entries = 128;
177 #ifdef USE_FBR0
178 adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr0_num_entries +
179 adapter->rx_ring.fbr1_num_entries;
180 #else
181 adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr1_num_entries;
182 #endif
184 /* Allocate an area of memory for Free Buffer Ring 1 */
185 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr1_num_entries) + 0xfff;
186 rx_ring->fbr1_ring_virtaddr = pci_alloc_consistent(adapter->pdev,
187 bufsize,
188 &rx_ring->fbr1_ring_physaddr);
189 if (!rx_ring->fbr1_ring_virtaddr) {
190 dev_err(&adapter->pdev->dev,
191 "Cannot alloc memory for Free Buffer Ring 1\n");
192 return -ENOMEM;
195 /* Save physical address
197 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
198 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
199 * are ever returned, make sure the high part is retrieved here
200 * before storing the adjusted address.
202 rx_ring->fbr1_real_physaddr = rx_ring->fbr1_ring_physaddr;
204 /* Align Free Buffer Ring 1 on a 4K boundary */
205 et131x_align_allocated_memory(adapter,
206 &rx_ring->fbr1_real_physaddr,
207 &rx_ring->fbr1_offset, 0x0FFF);
209 rx_ring->fbr1_ring_virtaddr =
210 (void *)((u8 *) rx_ring->fbr1_ring_virtaddr +
211 rx_ring->fbr1_offset);
213 #ifdef USE_FBR0
214 /* Allocate an area of memory for Free Buffer Ring 0 */
215 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr0_num_entries) + 0xfff;
216 rx_ring->fbr0_ring_virtaddr = pci_alloc_consistent(adapter->pdev,
217 bufsize,
218 &rx_ring->fbr0_ring_physaddr);
219 if (!rx_ring->fbr0_ring_virtaddr) {
220 dev_err(&adapter->pdev->dev,
221 "Cannot alloc memory for Free Buffer Ring 0\n");
222 return -ENOMEM;
225 /* Save physical address
227 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
228 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
229 * are ever returned, make sure the high part is retrieved here before
230 * storing the adjusted address.
232 rx_ring->fbr0_real_physaddr = rx_ring->fbr0_ring_physaddr;
234 /* Align Free Buffer Ring 0 on a 4K boundary */
235 et131x_align_allocated_memory(adapter,
236 &rx_ring->fbr0_real_physaddr,
237 &rx_ring->fbr0_offset, 0x0FFF);
239 rx_ring->fbr0_ring_virtaddr =
240 (void *)((u8 *) rx_ring->fbr0_ring_virtaddr +
241 rx_ring->fbr0_offset);
242 #endif
243 for (i = 0; i < (rx_ring->fbr1_num_entries / FBR_CHUNKS); i++) {
244 u64 fbr1_offset;
245 u64 fbr1_tmp_physaddr;
246 u32 fbr1_align;
248 /* This code allocates an area of memory big enough for N
249 * free buffers + (buffer_size - 1) so that the buffers can
250 * be aligned on 4k boundaries. If each buffer were aligned
251 * to a buffer_size boundary, the effect would be to double
252 * the size of FBR0. By allocating N buffers at once, we
253 * reduce this overhead.
255 if (rx_ring->fbr1_buffsize > 4096)
256 fbr1_align = 4096;
257 else
258 fbr1_align = rx_ring->fbr1_buffsize;
260 fbr_chunksize =
261 (FBR_CHUNKS * rx_ring->fbr1_buffsize) + fbr1_align - 1;
262 rx_ring->fbr1_mem_virtaddrs[i] =
263 pci_alloc_consistent(adapter->pdev, fbr_chunksize,
264 &rx_ring->fbr1_mem_physaddrs[i]);
266 if (!rx_ring->fbr1_mem_virtaddrs[i]) {
267 dev_err(&adapter->pdev->dev,
268 "Could not alloc memory\n");
269 return -ENOMEM;
272 /* See NOTE in "Save Physical Address" comment above */
273 fbr1_tmp_physaddr = rx_ring->fbr1_mem_physaddrs[i];
275 et131x_align_allocated_memory(adapter,
276 &fbr1_tmp_physaddr,
277 &fbr1_offset, (fbr1_align - 1));
279 for (j = 0; j < FBR_CHUNKS; j++) {
280 u32 index = (i * FBR_CHUNKS) + j;
282 /* Save the Virtual address of this index for quick
283 * access later
285 rx_ring->fbr[1]->virt[index] =
286 (u8 *) rx_ring->fbr1_mem_virtaddrs[i] +
287 (j * rx_ring->fbr1_buffsize) + fbr1_offset;
289 /* now store the physical address in the descriptor
290 * so the device can access it
292 rx_ring->fbr[1]->bus_high[index] =
293 (u32) (fbr1_tmp_physaddr >> 32);
294 rx_ring->fbr[1]->bus_low[index] =
295 (u32) fbr1_tmp_physaddr;
297 fbr1_tmp_physaddr += rx_ring->fbr1_buffsize;
299 rx_ring->fbr[1]->buffer1[index] =
300 rx_ring->fbr[1]->virt[index];
301 rx_ring->fbr[1]->buffer2[index] =
302 rx_ring->fbr[1]->virt[index] - 4;
306 #ifdef USE_FBR0
307 /* Same for FBR0 (if in use) */
308 for (i = 0; i < (rx_ring->fbr0_num_entries / FBR_CHUNKS); i++) {
309 u64 fbr0_offset;
310 u64 fbr0_tmp_physaddr;
312 fbr_chunksize =
313 ((FBR_CHUNKS + 1) * rx_ring->fbr0_buffsize) - 1;
314 rx_ring->fbr0_mem_virtaddrs[i] =
315 pci_alloc_consistent(adapter->pdev, fbr_chunksize,
316 &rx_ring->fbr0_mem_physaddrs[i]);
318 if (!rx_ring->fbr0_mem_virtaddrs[i]) {
319 dev_err(&adapter->pdev->dev,
320 "Could not alloc memory\n");
321 return -ENOMEM;
324 /* See NOTE in "Save Physical Address" comment above */
325 fbr0_tmp_physaddr = rx_ring->fbr0_mem_physaddrs[i];
327 et131x_align_allocated_memory(adapter,
328 &fbr0_tmp_physaddr,
329 &fbr0_offset,
330 rx_ring->fbr0_buffsize - 1);
332 for (j = 0; j < FBR_CHUNKS; j++) {
333 u32 index = (i * FBR_CHUNKS) + j;
335 rx_ring->fbr[0]->virt[index] =
336 (u8 *) rx_ring->fbr0_mem_virtaddrs[i] +
337 (j * rx_ring->fbr0_buffsize) + fbr0_offset;
339 rx_ring->fbr[0]->bus_high[index] =
340 (u32) (fbr0_tmp_physaddr >> 32);
341 rx_ring->fbr[0]->bus_low[index] =
342 (u32) fbr0_tmp_physaddr;
344 fbr0_tmp_physaddr += rx_ring->fbr0_buffsize;
346 rx_ring->fbr[0]->buffer1[index] =
347 rx_ring->fbr[0]->virt[index];
348 rx_ring->fbr[0]->buffer2[index] =
349 rx_ring->fbr[0]->virt[index] - 4;
352 #endif
354 /* Allocate an area of memory for FIFO of Packet Status ring entries */
355 pktstat_ringsize =
356 sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
358 rx_ring->ps_ring_virtaddr = pci_alloc_consistent(adapter->pdev,
359 pktstat_ringsize,
360 &rx_ring->ps_ring_physaddr);
362 if (!rx_ring->ps_ring_virtaddr) {
363 dev_err(&adapter->pdev->dev,
364 "Cannot alloc memory for Packet Status Ring\n");
365 return -ENOMEM;
367 printk(KERN_INFO "Packet Status Ring %lx\n",
368 (unsigned long) rx_ring->ps_ring_physaddr);
371 * NOTE : pci_alloc_consistent(), used above to alloc DMA regions,
372 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
373 * are ever returned, make sure the high part is retrieved here before
374 * storing the adjusted address.
377 /* Allocate an area of memory for writeback of status information */
378 rx_ring->rx_status_block = pci_alloc_consistent(adapter->pdev,
379 sizeof(struct rx_status_block),
380 &rx_ring->rx_status_bus);
381 if (!rx_ring->rx_status_block) {
382 dev_err(&adapter->pdev->dev,
383 "Cannot alloc memory for Status Block\n");
384 return -ENOMEM;
386 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
387 printk(KERN_INFO "PRS %lx\n", (unsigned long)rx_ring->rx_status_bus);
389 /* Recv
390 * pci_pool_create initializes a lookaside list. After successful
391 * creation, nonpaged fixed-size blocks can be allocated from and
392 * freed to the lookaside list.
393 * RFDs will be allocated from this pool.
395 rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
396 sizeof(struct rfd),
398 SLAB_CACHE_DMA |
399 SLAB_HWCACHE_ALIGN,
400 NULL);
402 adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
404 /* The RFDs are going to be put on lists later on, so initialize the
405 * lists now.
407 INIT_LIST_HEAD(&rx_ring->recv_list);
408 return 0;
412 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
413 * @adapter: pointer to our private adapter structure
415 void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
417 u32 index;
418 u32 bufsize;
419 u32 pktstat_ringsize;
420 struct rfd *rfd;
421 struct rx_ring *rx_ring;
423 /* Setup some convenience pointers */
424 rx_ring = &adapter->rx_ring;
426 /* Free RFDs and associated packet descriptors */
427 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
429 while (!list_empty(&rx_ring->recv_list)) {
430 rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
431 struct rfd, list_node);
433 list_del(&rfd->list_node);
434 rfd->skb = NULL;
435 kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
438 /* Free Free Buffer Ring 1 */
439 if (rx_ring->fbr1_ring_virtaddr) {
440 /* First the packet memory */
441 for (index = 0; index <
442 (rx_ring->fbr1_num_entries / FBR_CHUNKS); index++) {
443 if (rx_ring->fbr1_mem_virtaddrs[index]) {
444 u32 fbr1_align;
446 if (rx_ring->fbr1_buffsize > 4096)
447 fbr1_align = 4096;
448 else
449 fbr1_align = rx_ring->fbr1_buffsize;
451 bufsize =
452 (rx_ring->fbr1_buffsize * FBR_CHUNKS) +
453 fbr1_align - 1;
455 pci_free_consistent(adapter->pdev,
456 bufsize,
457 rx_ring->fbr1_mem_virtaddrs[index],
458 rx_ring->fbr1_mem_physaddrs[index]);
460 rx_ring->fbr1_mem_virtaddrs[index] = NULL;
464 /* Now the FIFO itself */
465 rx_ring->fbr1_ring_virtaddr = (void *)((u8 *)
466 rx_ring->fbr1_ring_virtaddr - rx_ring->fbr1_offset);
468 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr1_num_entries)
469 + 0xfff;
471 pci_free_consistent(adapter->pdev, bufsize,
472 rx_ring->fbr1_ring_virtaddr,
473 rx_ring->fbr1_ring_physaddr);
475 rx_ring->fbr1_ring_virtaddr = NULL;
478 #ifdef USE_FBR0
479 /* Now the same for Free Buffer Ring 0 */
480 if (rx_ring->fbr0_ring_virtaddr) {
481 /* First the packet memory */
482 for (index = 0; index <
483 (rx_ring->fbr0_num_entries / FBR_CHUNKS); index++) {
484 if (rx_ring->fbr0_mem_virtaddrs[index]) {
485 bufsize =
486 (rx_ring->fbr0_buffsize *
487 (FBR_CHUNKS + 1)) - 1;
489 pci_free_consistent(adapter->pdev,
490 bufsize,
491 rx_ring->fbr0_mem_virtaddrs[index],
492 rx_ring->fbr0_mem_physaddrs[index]);
494 rx_ring->fbr0_mem_virtaddrs[index] = NULL;
498 /* Now the FIFO itself */
499 rx_ring->fbr0_ring_virtaddr = (void *)((u8 *)
500 rx_ring->fbr0_ring_virtaddr - rx_ring->fbr0_offset);
502 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr0_num_entries)
503 + 0xfff;
505 pci_free_consistent(adapter->pdev,
506 bufsize,
507 rx_ring->fbr0_ring_virtaddr,
508 rx_ring->fbr0_ring_physaddr);
510 rx_ring->fbr0_ring_virtaddr = NULL;
512 #endif
514 /* Free Packet Status Ring */
515 if (rx_ring->ps_ring_virtaddr) {
516 pktstat_ringsize =
517 sizeof(struct pkt_stat_desc) *
518 adapter->rx_ring.psr_num_entries;
520 pci_free_consistent(adapter->pdev, pktstat_ringsize,
521 rx_ring->ps_ring_virtaddr,
522 rx_ring->ps_ring_physaddr);
524 rx_ring->ps_ring_virtaddr = NULL;
527 /* Free area of memory for the writeback of status information */
528 if (rx_ring->rx_status_block) {
529 pci_free_consistent(adapter->pdev,
530 sizeof(struct rx_status_block),
531 rx_ring->rx_status_block, rx_ring->rx_status_bus);
532 rx_ring->rx_status_block = NULL;
535 /* Free receive buffer pool */
537 /* Free receive packet pool */
539 /* Destroy the lookaside (RFD) pool */
540 if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
541 kmem_cache_destroy(rx_ring->recv_lookaside);
542 adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
545 /* Free the FBR Lookup Table */
546 #ifdef USE_FBR0
547 kfree(rx_ring->fbr[0]);
548 #endif
550 kfree(rx_ring->fbr[1]);
552 /* Reset Counters */
553 rx_ring->num_ready_recv = 0;
557 * et131x_init_recv - Initialize receive data structures.
558 * @adapter: pointer to our private adapter structure
560 * Returns 0 on success and errno on failure (as defined in errno.h)
562 int et131x_init_recv(struct et131x_adapter *adapter)
564 int status = -ENOMEM;
565 struct rfd *rfd = NULL;
566 u32 rfdct;
567 u32 numrfd = 0;
568 struct rx_ring *rx_ring;
570 /* Setup some convenience pointers */
571 rx_ring = &adapter->rx_ring;
573 /* Setup each RFD */
574 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
575 rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
576 GFP_ATOMIC | GFP_DMA);
578 if (!rfd) {
579 dev_err(&adapter->pdev->dev,
580 "Couldn't alloc RFD out of kmem_cache\n");
581 status = -ENOMEM;
582 continue;
585 rfd->skb = NULL;
587 /* Add this RFD to the recv_list */
588 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
590 /* Increment both the available RFD's, and the total RFD's. */
591 rx_ring->num_ready_recv++;
592 numrfd++;
595 if (numrfd > NIC_MIN_NUM_RFD)
596 status = 0;
598 rx_ring->num_rfd = numrfd;
600 if (status != 0) {
601 kmem_cache_free(rx_ring->recv_lookaside, rfd);
602 dev_err(&adapter->pdev->dev,
603 "Allocation problems in et131x_init_recv\n");
605 return status;
609 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
610 * @adapter: pointer to our adapter structure
612 void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
614 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
615 struct rx_ring *rx_local = &adapter->rx_ring;
616 struct fbr_desc *fbr_entry;
617 u32 entry;
618 u32 psr_num_des;
619 unsigned long flags;
621 /* Halt RXDMA to perform the reconfigure. */
622 et131x_rx_dma_disable(adapter);
624 /* Load the completion writeback physical address
626 * NOTE : pci_alloc_consistent(), used above to alloc DMA regions,
627 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
628 * are ever returned, make sure the high part is retrieved here
629 * before storing the adjusted address.
631 writel((u32) ((u64)rx_local->rx_status_bus >> 32),
632 &rx_dma->dma_wb_base_hi);
633 writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
635 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
637 /* Set the address and parameters of the packet status ring into the
638 * 1310's registers
640 writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
641 &rx_dma->psr_base_hi);
642 writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
643 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
644 writel(0, &rx_dma->psr_full_offset);
646 psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
647 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
648 &rx_dma->psr_min_des);
650 spin_lock_irqsave(&adapter->rcv_lock, flags);
652 /* These local variables track the PSR in the adapter structure */
653 rx_local->local_psr_full = 0;
655 /* Now's the best time to initialize FBR1 contents */
656 fbr_entry = (struct fbr_desc *) rx_local->fbr1_ring_virtaddr;
657 for (entry = 0; entry < rx_local->fbr1_num_entries; entry++) {
658 fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
659 fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
660 fbr_entry->word2 = entry;
661 fbr_entry++;
664 /* Set the address and parameters of Free buffer ring 1 (and 0 if
665 * required) into the 1310's registers
667 writel((u32) (rx_local->fbr1_real_physaddr >> 32),
668 &rx_dma->fbr1_base_hi);
669 writel((u32) rx_local->fbr1_real_physaddr, &rx_dma->fbr1_base_lo);
670 writel(rx_local->fbr1_num_entries - 1, &rx_dma->fbr1_num_des);
671 writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
673 /* This variable tracks the free buffer ring 1 full position, so it
674 * has to match the above.
676 rx_local->local_fbr1_full = ET_DMA10_WRAP;
677 writel(
678 ((rx_local->fbr1_num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
679 &rx_dma->fbr1_min_des);
681 #ifdef USE_FBR0
682 /* Now's the best time to initialize FBR0 contents */
683 fbr_entry = (struct fbr_desc *) rx_local->fbr0_ring_virtaddr;
684 for (entry = 0; entry < rx_local->fbr0_num_entries; entry++) {
685 fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
686 fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
687 fbr_entry->word2 = entry;
688 fbr_entry++;
691 writel((u32) (rx_local->fbr0_real_physaddr >> 32),
692 &rx_dma->fbr0_base_hi);
693 writel((u32) rx_local->fbr0_real_physaddr, &rx_dma->fbr0_base_lo);
694 writel(rx_local->fbr0_num_entries - 1, &rx_dma->fbr0_num_des);
695 writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
697 /* This variable tracks the free buffer ring 0 full position, so it
698 * has to match the above.
700 rx_local->local_fbr0_full = ET_DMA10_WRAP;
701 writel(
702 ((rx_local->fbr0_num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
703 &rx_dma->fbr0_min_des);
704 #endif
706 /* Program the number of packets we will receive before generating an
707 * interrupt.
708 * For version B silicon, this value gets updated once autoneg is
709 *complete.
711 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
713 /* The "time_done" is not working correctly to coalesce interrupts
714 * after a given time period, but rather is giving us an interrupt
715 * regardless of whether we have received packets.
716 * This value gets updated once autoneg is complete.
718 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
720 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
724 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
725 * @adapter: pointer to our adapter structure
727 void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
729 struct phy_device *phydev = adapter->phydev;
731 if (!phydev)
732 return;
734 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
735 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
737 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
738 writel(0, &adapter->regs->rxdma.max_pkt_time);
739 writel(1, &adapter->regs->rxdma.num_pkt_done);
744 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
745 * @adapter: pointer to our adapter
746 * @rfd: pointer to the RFD
748 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
750 struct rx_ring *rx_local = &adapter->rx_ring;
751 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
752 u16 buff_index = rfd->bufferindex;
753 u8 ring_index = rfd->ringindex;
754 unsigned long flags;
756 /* We don't use any of the OOB data besides status. Otherwise, we
757 * need to clean up OOB data
759 if (
760 #ifdef USE_FBR0
761 (ring_index == 0 && buff_index < rx_local->fbr0_num_entries) ||
762 #endif
763 (ring_index == 1 && buff_index < rx_local->fbr1_num_entries)) {
764 spin_lock_irqsave(&adapter->fbr_lock, flags);
766 if (ring_index == 1) {
767 struct fbr_desc *next =
768 (struct fbr_desc *) (rx_local->fbr1_ring_virtaddr) +
769 INDEX10(rx_local->local_fbr1_full);
771 /* Handle the Free Buffer Ring advancement here. Write
772 * the PA / Buffer Index for the returned buffer into
773 * the oldest (next to be freed)FBR entry
775 next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
776 next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
777 next->word2 = buff_index;
779 writel(bump_free_buff_ring(&rx_local->local_fbr1_full,
780 rx_local->fbr1_num_entries - 1),
781 &rx_dma->fbr1_full_offset);
783 #ifdef USE_FBR0
784 else {
785 struct fbr_desc *next = (struct fbr_desc *)
786 rx_local->fbr0_ring_virtaddr +
787 INDEX10(rx_local->local_fbr0_full);
789 /* Handle the Free Buffer Ring advancement here. Write
790 * the PA / Buffer Index for the returned buffer into
791 * the oldest (next to be freed) FBR entry
793 next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
794 next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
795 next->word2 = buff_index;
797 writel(bump_free_buff_ring(&rx_local->local_fbr0_full,
798 rx_local->fbr0_num_entries - 1),
799 &rx_dma->fbr0_full_offset);
801 #endif
802 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
803 } else {
804 dev_err(&adapter->pdev->dev,
805 "%s illegal Buffer Index returned\n", __func__);
808 /* The processing on this RFD is done, so put it back on the tail of
809 * our list
811 spin_lock_irqsave(&adapter->rcv_lock, flags);
812 list_add_tail(&rfd->list_node, &rx_local->recv_list);
813 rx_local->num_ready_recv++;
814 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
816 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
820 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
821 * @adapter: pointer to our adapter structure
823 void et131x_rx_dma_disable(struct et131x_adapter *adapter)
825 u32 csr;
826 /* Setup the receive dma configuration register */
827 writel(0x00002001, &adapter->regs->rxdma.csr);
828 csr = readl(&adapter->regs->rxdma.csr);
829 if ((csr & 0x00020000) == 0) { /* Check halt status (bit 17) */
830 udelay(5);
831 csr = readl(&adapter->regs->rxdma.csr);
832 if ((csr & 0x00020000) == 0)
833 dev_err(&adapter->pdev->dev,
834 "RX Dma failed to enter halt state. CSR 0x%08x\n",
835 csr);
840 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
841 * @adapter: pointer to our adapter structure
843 void et131x_rx_dma_enable(struct et131x_adapter *adapter)
845 /* Setup the receive dma configuration register for normal operation */
846 u32 csr = 0x2000; /* FBR1 enable */
848 if (adapter->rx_ring.fbr1_buffsize == 4096)
849 csr |= 0x0800;
850 else if (adapter->rx_ring.fbr1_buffsize == 8192)
851 csr |= 0x1000;
852 else if (adapter->rx_ring.fbr1_buffsize == 16384)
853 csr |= 0x1800;
854 #ifdef USE_FBR0
855 csr |= 0x0400; /* FBR0 enable */
856 if (adapter->rx_ring.fbr0_buffsize == 256)
857 csr |= 0x0100;
858 else if (adapter->rx_ring.fbr0_buffsize == 512)
859 csr |= 0x0200;
860 else if (adapter->rx_ring.fbr0_buffsize == 1024)
861 csr |= 0x0300;
862 #endif
863 writel(csr, &adapter->regs->rxdma.csr);
865 csr = readl(&adapter->regs->rxdma.csr);
866 if ((csr & 0x00020000) != 0) {
867 udelay(5);
868 csr = readl(&adapter->regs->rxdma.csr);
869 if ((csr & 0x00020000) != 0) {
870 dev_err(&adapter->pdev->dev,
871 "RX Dma failed to exit halt state. CSR 0x%08x\n",
872 csr);
878 * nic_rx_pkts - Checks the hardware for available packets
879 * @adapter: pointer to our adapter
881 * Returns rfd, a pointer to our MPRFD.
883 * Checks the hardware for available packets, using completion ring
884 * If packets are available, it gets an RFD from the recv_list, attaches
885 * the packet to it, puts the RFD in the RecvPendList, and also returns
886 * the pointer to the RFD.
888 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
890 struct rx_ring *rx_local = &adapter->rx_ring;
891 struct rx_status_block *status;
892 struct pkt_stat_desc *psr;
893 struct rfd *rfd;
894 u32 i;
895 u8 *buf;
896 unsigned long flags;
897 struct list_head *element;
898 u8 ring_index;
899 u16 buff_index;
900 u32 len;
901 u32 word0;
902 u32 word1;
904 /* RX Status block is written by the DMA engine prior to every
905 * interrupt. It contains the next to be used entry in the Packet
906 * Status Ring, and also the two Free Buffer rings.
908 status = rx_local->rx_status_block;
909 word1 = status->word1 >> 16; /* Get the useful bits */
911 /* Check the PSR and wrap bits do not match */
912 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
913 /* Looks like this ring is not updated yet */
914 return NULL;
916 /* The packet status ring indicates that data is available. */
917 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
918 (rx_local->local_psr_full & 0xFFF);
920 /* Grab any information that is required once the PSR is
921 * advanced, since we can no longer rely on the memory being
922 * accurate
924 len = psr->word1 & 0xFFFF;
925 ring_index = (psr->word1 >> 26) & 0x03;
926 buff_index = (psr->word1 >> 16) & 0x3FF;
927 word0 = psr->word0;
929 /* Indicate that we have used this PSR entry. */
930 /* FIXME wrap 12 */
931 add_12bit(&rx_local->local_psr_full, 1);
932 if (
933 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
934 /* Clear psr full and toggle the wrap bit */
935 rx_local->local_psr_full &= ~0xFFF;
936 rx_local->local_psr_full ^= 0x1000;
939 writel(rx_local->local_psr_full,
940 &adapter->regs->rxdma.psr_full_offset);
942 #ifndef USE_FBR0
943 if (ring_index != 1)
944 return NULL;
945 #endif
947 #ifdef USE_FBR0
948 if (ring_index > 1 ||
949 (ring_index == 0 &&
950 buff_index > rx_local->fbr0_num_entries - 1) ||
951 (ring_index == 1 &&
952 buff_index > rx_local->fbr1_num_entries - 1))
953 #else
954 if (ring_index != 1 || buff_index > rx_local->fbr1_num_entries - 1)
955 #endif
957 /* Illegal buffer or ring index cannot be used by S/W*/
958 dev_err(&adapter->pdev->dev,
959 "NICRxPkts PSR Entry %d indicates "
960 "length of %d and/or bad bi(%d)\n",
961 rx_local->local_psr_full & 0xFFF,
962 len, buff_index);
963 return NULL;
966 /* Get and fill the RFD. */
967 spin_lock_irqsave(&adapter->rcv_lock, flags);
969 rfd = NULL;
970 element = rx_local->recv_list.next;
971 rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
973 if (rfd == NULL) {
974 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
975 return NULL;
978 list_del(&rfd->list_node);
979 rx_local->num_ready_recv--;
981 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
983 rfd->bufferindex = buff_index;
984 rfd->ringindex = ring_index;
986 /* In V1 silicon, there is a bug which screws up filtering of
987 * runt packets. Therefore runt packet filtering is disabled
988 * in the MAC and the packets are dropped here. They are
989 * also counted here.
991 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
992 adapter->stats.rx_other_errs++;
993 len = 0;
996 if (len) {
997 /* Determine if this is a multicast packet coming in */
998 if ((word0 & ALCATEL_MULTICAST_PKT) &&
999 !(word0 & ALCATEL_BROADCAST_PKT)) {
1000 /* Promiscuous mode and Multicast mode are
1001 * not mutually exclusive as was first
1002 * thought. I guess Promiscuous is just
1003 * considered a super-set of the other
1004 * filters. Generally filter is 0x2b when in
1005 * promiscuous mode.
1007 if ((adapter->packet_filter &
1008 ET131X_PACKET_TYPE_MULTICAST)
1009 && !(adapter->packet_filter &
1010 ET131X_PACKET_TYPE_PROMISCUOUS)
1011 && !(adapter->packet_filter &
1012 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1013 buf = rx_local->fbr[ring_index]->
1014 virt[buff_index];
1016 /* Loop through our list to see if the
1017 * destination address of this packet
1018 * matches one in our list.
1020 for (i = 0; i < adapter->multicast_addr_count;
1021 i++) {
1022 if (buf[0] ==
1023 adapter->multicast_list[i][0]
1024 && buf[1] ==
1025 adapter->multicast_list[i][1]
1026 && buf[2] ==
1027 adapter->multicast_list[i][2]
1028 && buf[3] ==
1029 adapter->multicast_list[i][3]
1030 && buf[4] ==
1031 adapter->multicast_list[i][4]
1032 && buf[5] ==
1033 adapter->multicast_list[i][5]) {
1034 break;
1038 /* If our index is equal to the number
1039 * of Multicast address we have, then
1040 * this means we did not find this
1041 * packet's matching address in our
1042 * list. Set the len to zero,
1043 * so we free our RFD when we return
1044 * from this function.
1046 if (i == adapter->multicast_addr_count)
1047 len = 0;
1050 if (len > 0)
1051 adapter->stats.multicast_pkts_rcvd++;
1052 } else if (word0 & ALCATEL_BROADCAST_PKT)
1053 adapter->stats.broadcast_pkts_rcvd++;
1054 else
1055 /* Not sure what this counter measures in
1056 * promiscuous mode. Perhaps we should check
1057 * the MAC address to see if it is directed
1058 * to us in promiscuous mode.
1060 adapter->stats.unicast_pkts_rcvd++;
1063 if (len > 0) {
1064 struct sk_buff *skb = NULL;
1066 /*rfd->len = len - 4; */
1067 rfd->len = len;
1069 skb = dev_alloc_skb(rfd->len + 2);
1070 if (!skb) {
1071 dev_err(&adapter->pdev->dev,
1072 "Couldn't alloc an SKB for Rx\n");
1073 return NULL;
1076 adapter->net_stats.rx_bytes += rfd->len;
1078 memcpy(skb_put(skb, rfd->len),
1079 rx_local->fbr[ring_index]->virt[buff_index],
1080 rfd->len);
1082 skb->dev = adapter->netdev;
1083 skb->protocol = eth_type_trans(skb, adapter->netdev);
1084 skb->ip_summed = CHECKSUM_NONE;
1086 netif_rx(skb);
1087 } else {
1088 rfd->len = 0;
1091 nic_return_rfd(adapter, rfd);
1092 return rfd;
1096 * et131x_reset_recv - Reset the receive list
1097 * @adapter: pointer to our adapter
1099 * Assumption, Rcv spinlock has been acquired.
1101 void et131x_reset_recv(struct et131x_adapter *adapter)
1103 WARN_ON(list_empty(&adapter->rx_ring.recv_list));
1107 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
1108 * @adapter: pointer to our adapter
1110 * Assumption, Rcv spinlock has been acquired.
1112 void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
1114 struct rfd *rfd = NULL;
1115 u32 count = 0;
1116 bool done = true;
1118 /* Process up to available RFD's */
1119 while (count < NUM_PACKETS_HANDLED) {
1120 if (list_empty(&adapter->rx_ring.recv_list)) {
1121 WARN_ON(adapter->rx_ring.num_ready_recv != 0);
1122 done = false;
1123 break;
1126 rfd = nic_rx_pkts(adapter);
1128 if (rfd == NULL)
1129 break;
1131 /* Do not receive any packets until a filter has been set.
1132 * Do not receive any packets until we have link.
1133 * If length is zero, return the RFD in order to advance the
1134 * Free buffer ring.
1136 if (!adapter->packet_filter ||
1137 !netif_carrier_ok(adapter->netdev) ||
1138 rfd->len == 0)
1139 continue;
1141 /* Increment the number of packets we received */
1142 adapter->net_stats.rx_packets++;
1144 /* Set the status on the packet, either resources or success */
1145 if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
1146 dev_warn(&adapter->pdev->dev,
1147 "RFD's are running out\n");
1149 count++;
1152 if (count == NUM_PACKETS_HANDLED || !done) {
1153 adapter->rx_ring.unfinished_receives = true;
1154 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
1155 &adapter->regs->global.watchdog_timer);
1156 } else
1157 /* Watchdog timer will disable itself if appropriate. */
1158 adapter->rx_ring.unfinished_receives = false;