1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This abstraction carries sctp events to the ULP (sockets).
11 * This SCTP implementation is free software;
12 * you can redistribute it and/or modify it under the terms of
13 * the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This SCTP implementation is distributed in the hope that it
18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19 * ************************
20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21 * See the GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with GNU CC; see the file COPYING. If not, write to
25 * the Free Software Foundation, 59 Temple Place - Suite 330,
26 * Boston, MA 02111-1307, USA.
28 * Please send any bug reports or fixes you make to the
30 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 * Or submit a bug report through the following website:
33 * http://www.sf.net/projects/lksctp
35 * Written or modified by:
36 * Jon Grimm <jgrimm@us.ibm.com>
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Sridhar Samudrala <sri@us.ibm.com>
40 * Any bugs reported given to us we will try to fix... any fixes shared will
41 * be incorporated into the next SCTP release.
44 #include <linux/slab.h>
45 #include <linux/types.h>
46 #include <linux/skbuff.h>
48 #include <net/sctp/structs.h>
49 #include <net/sctp/sctp.h>
50 #include <net/sctp/sm.h>
52 /* Forward declarations for internal helpers. */
53 static struct sctp_ulpevent
* sctp_ulpq_reasm(struct sctp_ulpq
*ulpq
,
54 struct sctp_ulpevent
*);
55 static struct sctp_ulpevent
* sctp_ulpq_order(struct sctp_ulpq
*,
56 struct sctp_ulpevent
*);
57 static void sctp_ulpq_reasm_drain(struct sctp_ulpq
*ulpq
);
59 /* 1st Level Abstractions */
61 /* Initialize a ULP queue from a block of memory. */
62 struct sctp_ulpq
*sctp_ulpq_init(struct sctp_ulpq
*ulpq
,
63 struct sctp_association
*asoc
)
65 memset(ulpq
, 0, sizeof(struct sctp_ulpq
));
68 skb_queue_head_init(&ulpq
->reasm
);
69 skb_queue_head_init(&ulpq
->lobby
);
77 /* Flush the reassembly and ordering queues. */
78 void sctp_ulpq_flush(struct sctp_ulpq
*ulpq
)
81 struct sctp_ulpevent
*event
;
83 while ((skb
= __skb_dequeue(&ulpq
->lobby
)) != NULL
) {
84 event
= sctp_skb2event(skb
);
85 sctp_ulpevent_free(event
);
88 while ((skb
= __skb_dequeue(&ulpq
->reasm
)) != NULL
) {
89 event
= sctp_skb2event(skb
);
90 sctp_ulpevent_free(event
);
95 /* Dispose of a ulpqueue. */
96 void sctp_ulpq_free(struct sctp_ulpq
*ulpq
)
98 sctp_ulpq_flush(ulpq
);
103 /* Process an incoming DATA chunk. */
104 int sctp_ulpq_tail_data(struct sctp_ulpq
*ulpq
, struct sctp_chunk
*chunk
,
107 struct sk_buff_head temp
;
108 struct sctp_ulpevent
*event
;
110 /* Create an event from the incoming chunk. */
111 event
= sctp_ulpevent_make_rcvmsg(chunk
->asoc
, chunk
, gfp
);
115 /* Do reassembly if needed. */
116 event
= sctp_ulpq_reasm(ulpq
, event
);
118 /* Do ordering if needed. */
119 if ((event
) && (event
->msg_flags
& MSG_EOR
)){
120 /* Create a temporary list to collect chunks on. */
121 skb_queue_head_init(&temp
);
122 __skb_queue_tail(&temp
, sctp_event2skb(event
));
124 event
= sctp_ulpq_order(ulpq
, event
);
127 /* Send event to the ULP. 'event' is the sctp_ulpevent for
128 * very first SKB on the 'temp' list.
131 sctp_ulpq_tail_event(ulpq
, event
);
136 /* Add a new event for propagation to the ULP. */
137 /* Clear the partial delivery mode for this socket. Note: This
138 * assumes that no association is currently in partial delivery mode.
140 int sctp_clear_pd(struct sock
*sk
, struct sctp_association
*asoc
)
142 struct sctp_sock
*sp
= sctp_sk(sk
);
144 if (atomic_dec_and_test(&sp
->pd_mode
)) {
145 /* This means there are no other associations in PD, so
146 * we can go ahead and clear out the lobby in one shot
148 if (!skb_queue_empty(&sp
->pd_lobby
)) {
149 struct list_head
*list
;
150 sctp_skb_list_tail(&sp
->pd_lobby
, &sk
->sk_receive_queue
);
151 list
= (struct list_head
*)&sctp_sk(sk
)->pd_lobby
;
152 INIT_LIST_HEAD(list
);
156 /* There are other associations in PD, so we only need to
157 * pull stuff out of the lobby that belongs to the
158 * associations that is exiting PD (all of its notifications
161 if (!skb_queue_empty(&sp
->pd_lobby
) && asoc
) {
162 struct sk_buff
*skb
, *tmp
;
163 struct sctp_ulpevent
*event
;
165 sctp_skb_for_each(skb
, &sp
->pd_lobby
, tmp
) {
166 event
= sctp_skb2event(skb
);
167 if (event
->asoc
== asoc
) {
168 __skb_unlink(skb
, &sp
->pd_lobby
);
169 __skb_queue_tail(&sk
->sk_receive_queue
,
179 /* Set the pd_mode on the socket and ulpq */
180 static void sctp_ulpq_set_pd(struct sctp_ulpq
*ulpq
)
182 struct sctp_sock
*sp
= sctp_sk(ulpq
->asoc
->base
.sk
);
184 atomic_inc(&sp
->pd_mode
);
188 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
189 static int sctp_ulpq_clear_pd(struct sctp_ulpq
*ulpq
)
192 sctp_ulpq_reasm_drain(ulpq
);
193 return sctp_clear_pd(ulpq
->asoc
->base
.sk
, ulpq
->asoc
);
196 /* If the SKB of 'event' is on a list, it is the first such member
199 int sctp_ulpq_tail_event(struct sctp_ulpq
*ulpq
, struct sctp_ulpevent
*event
)
201 struct sock
*sk
= ulpq
->asoc
->base
.sk
;
202 struct sk_buff_head
*queue
, *skb_list
;
203 struct sk_buff
*skb
= sctp_event2skb(event
);
206 skb_list
= (struct sk_buff_head
*) skb
->prev
;
208 /* If the socket is just going to throw this away, do not
209 * even try to deliver it.
211 if (sock_flag(sk
, SOCK_DEAD
) || (sk
->sk_shutdown
& RCV_SHUTDOWN
))
214 /* Check if the user wishes to receive this event. */
215 if (!sctp_ulpevent_is_enabled(event
, &sctp_sk(sk
)->subscribe
))
218 /* If we are in partial delivery mode, post to the lobby until
219 * partial delivery is cleared, unless, of course _this_ is
220 * the association the cause of the partial delivery.
223 if (atomic_read(&sctp_sk(sk
)->pd_mode
) == 0) {
224 queue
= &sk
->sk_receive_queue
;
227 /* If the association is in partial delivery, we
228 * need to finish delivering the partially processed
229 * packet before passing any other data. This is
230 * because we don't truly support stream interleaving.
232 if ((event
->msg_flags
& MSG_NOTIFICATION
) ||
233 (SCTP_DATA_NOT_FRAG
==
234 (event
->msg_flags
& SCTP_DATA_FRAG_MASK
)))
235 queue
= &sctp_sk(sk
)->pd_lobby
;
237 clear_pd
= event
->msg_flags
& MSG_EOR
;
238 queue
= &sk
->sk_receive_queue
;
242 * If fragment interleave is enabled, we
243 * can queue this to the receive queue instead
246 if (sctp_sk(sk
)->frag_interleave
)
247 queue
= &sk
->sk_receive_queue
;
249 queue
= &sctp_sk(sk
)->pd_lobby
;
253 /* If we are harvesting multiple skbs they will be
254 * collected on a list.
257 sctp_skb_list_tail(skb_list
, queue
);
259 __skb_queue_tail(queue
, skb
);
261 /* Did we just complete partial delivery and need to get
262 * rolling again? Move pending data to the receive
266 sctp_ulpq_clear_pd(ulpq
);
268 if (queue
== &sk
->sk_receive_queue
)
269 sk
->sk_data_ready(sk
, 0);
274 sctp_queue_purge_ulpevents(skb_list
);
276 sctp_ulpevent_free(event
);
281 /* 2nd Level Abstractions */
283 /* Helper function to store chunks that need to be reassembled. */
284 static void sctp_ulpq_store_reasm(struct sctp_ulpq
*ulpq
,
285 struct sctp_ulpevent
*event
)
288 struct sctp_ulpevent
*cevent
;
293 /* See if it belongs at the end. */
294 pos
= skb_peek_tail(&ulpq
->reasm
);
296 __skb_queue_tail(&ulpq
->reasm
, sctp_event2skb(event
));
300 /* Short circuit just dropping it at the end. */
301 cevent
= sctp_skb2event(pos
);
303 if (TSN_lt(ctsn
, tsn
)) {
304 __skb_queue_tail(&ulpq
->reasm
, sctp_event2skb(event
));
308 /* Find the right place in this list. We store them by TSN. */
309 skb_queue_walk(&ulpq
->reasm
, pos
) {
310 cevent
= sctp_skb2event(pos
);
313 if (TSN_lt(tsn
, ctsn
))
317 /* Insert before pos. */
318 __skb_queue_before(&ulpq
->reasm
, pos
, sctp_event2skb(event
));
322 /* Helper function to return an event corresponding to the reassembled
324 * This routine creates a re-assembled skb given the first and last skb's
325 * as stored in the reassembly queue. The skb's may be non-linear if the sctp
326 * payload was fragmented on the way and ip had to reassemble them.
327 * We add the rest of skb's to the first skb's fraglist.
329 static struct sctp_ulpevent
*sctp_make_reassembled_event(struct sk_buff_head
*queue
, struct sk_buff
*f_frag
, struct sk_buff
*l_frag
)
332 struct sk_buff
*new = NULL
;
333 struct sctp_ulpevent
*event
;
334 struct sk_buff
*pnext
, *last
;
335 struct sk_buff
*list
= skb_shinfo(f_frag
)->frag_list
;
337 /* Store the pointer to the 2nd skb */
338 if (f_frag
== l_frag
)
343 /* Get the last skb in the f_frag's frag_list if present. */
344 for (last
= list
; list
; last
= list
, list
= list
->next
);
346 /* Add the list of remaining fragments to the first fragments
352 if (skb_cloned(f_frag
)) {
353 /* This is a cloned skb, we can't just modify
354 * the frag_list. We need a new skb to do that.
355 * Instead of calling skb_unshare(), we'll do it
356 * ourselves since we need to delay the free.
358 new = skb_copy(f_frag
, GFP_ATOMIC
);
360 return NULL
; /* try again later */
362 sctp_skb_set_owner_r(new, f_frag
->sk
);
364 skb_shinfo(new)->frag_list
= pos
;
366 skb_shinfo(f_frag
)->frag_list
= pos
;
369 /* Remove the first fragment from the reassembly queue. */
370 __skb_unlink(f_frag
, queue
);
372 /* if we did unshare, then free the old skb and re-assign */
382 /* Update the len and data_len fields of the first fragment. */
383 f_frag
->len
+= pos
->len
;
384 f_frag
->data_len
+= pos
->len
;
386 /* Remove the fragment from the reassembly queue. */
387 __skb_unlink(pos
, queue
);
389 /* Break if we have reached the last fragment. */
396 event
= sctp_skb2event(f_frag
);
397 SCTP_INC_STATS(SCTP_MIB_REASMUSRMSGS
);
403 /* Helper function to check if an incoming chunk has filled up the last
404 * missing fragment in a SCTP datagram and return the corresponding event.
406 static struct sctp_ulpevent
*sctp_ulpq_retrieve_reassembled(struct sctp_ulpq
*ulpq
)
409 struct sctp_ulpevent
*cevent
;
410 struct sk_buff
*first_frag
= NULL
;
411 __u32 ctsn
, next_tsn
;
412 struct sctp_ulpevent
*retval
= NULL
;
413 struct sk_buff
*pd_first
= NULL
;
414 struct sk_buff
*pd_last
= NULL
;
416 struct sctp_association
*asoc
;
419 /* Initialized to 0 just to avoid compiler warning message. Will
420 * never be used with this value. It is referenced only after it
421 * is set when we find the first fragment of a message.
425 /* The chunks are held in the reasm queue sorted by TSN.
426 * Walk through the queue sequentially and look for a sequence of
427 * fragmented chunks that complete a datagram.
428 * 'first_frag' and next_tsn are reset when we find a chunk which
429 * is the first fragment of a datagram. Once these 2 fields are set
430 * we expect to find the remaining middle fragments and the last
431 * fragment in order. If not, first_frag is reset to NULL and we
432 * start the next pass when we find another first fragment.
434 * There is a potential to do partial delivery if user sets
435 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
436 * to see if can do PD.
438 skb_queue_walk(&ulpq
->reasm
, pos
) {
439 cevent
= sctp_skb2event(pos
);
442 switch (cevent
->msg_flags
& SCTP_DATA_FRAG_MASK
) {
443 case SCTP_DATA_FIRST_FRAG
:
444 /* If this "FIRST_FRAG" is the first
445 * element in the queue, then count it towards
448 if (pos
== ulpq
->reasm
.next
) {
462 case SCTP_DATA_MIDDLE_FRAG
:
463 if ((first_frag
) && (ctsn
== next_tsn
)) {
473 case SCTP_DATA_LAST_FRAG
:
474 if (first_frag
&& (ctsn
== next_tsn
))
484 /* Make sure we can enter partial deliver.
485 * We can trigger partial delivery only if framgent
486 * interleave is set, or the socket is not already
487 * in partial delivery.
489 if (!sctp_sk(asoc
->base
.sk
)->frag_interleave
&&
490 atomic_read(&sctp_sk(asoc
->base
.sk
)->pd_mode
))
493 cevent
= sctp_skb2event(pd_first
);
494 pd_point
= sctp_sk(asoc
->base
.sk
)->pd_point
;
495 if (pd_point
&& pd_point
<= pd_len
) {
496 retval
= sctp_make_reassembled_event(&ulpq
->reasm
,
500 sctp_ulpq_set_pd(ulpq
);
506 retval
= sctp_make_reassembled_event(&ulpq
->reasm
, first_frag
, pos
);
508 retval
->msg_flags
|= MSG_EOR
;
512 /* Retrieve the next set of fragments of a partial message. */
513 static struct sctp_ulpevent
*sctp_ulpq_retrieve_partial(struct sctp_ulpq
*ulpq
)
515 struct sk_buff
*pos
, *last_frag
, *first_frag
;
516 struct sctp_ulpevent
*cevent
;
517 __u32 ctsn
, next_tsn
;
519 struct sctp_ulpevent
*retval
;
521 /* The chunks are held in the reasm queue sorted by TSN.
522 * Walk through the queue sequentially and look for the first
523 * sequence of fragmented chunks.
526 if (skb_queue_empty(&ulpq
->reasm
))
529 last_frag
= first_frag
= NULL
;
534 skb_queue_walk(&ulpq
->reasm
, pos
) {
535 cevent
= sctp_skb2event(pos
);
538 switch (cevent
->msg_flags
& SCTP_DATA_FRAG_MASK
) {
539 case SCTP_DATA_MIDDLE_FRAG
:
544 } else if (next_tsn
== ctsn
)
549 case SCTP_DATA_LAST_FRAG
:
552 else if (ctsn
!= next_tsn
)
562 /* We have the reassembled event. There is no need to look
566 retval
= sctp_make_reassembled_event(&ulpq
->reasm
, first_frag
, last_frag
);
567 if (retval
&& is_last
)
568 retval
->msg_flags
|= MSG_EOR
;
574 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that
577 static struct sctp_ulpevent
*sctp_ulpq_reasm(struct sctp_ulpq
*ulpq
,
578 struct sctp_ulpevent
*event
)
580 struct sctp_ulpevent
*retval
= NULL
;
582 /* Check if this is part of a fragmented message. */
583 if (SCTP_DATA_NOT_FRAG
== (event
->msg_flags
& SCTP_DATA_FRAG_MASK
)) {
584 event
->msg_flags
|= MSG_EOR
;
588 sctp_ulpq_store_reasm(ulpq
, event
);
590 retval
= sctp_ulpq_retrieve_reassembled(ulpq
);
594 /* Do not even bother unless this is the next tsn to
598 ctsnap
= sctp_tsnmap_get_ctsn(&ulpq
->asoc
->peer
.tsn_map
);
599 if (TSN_lte(ctsn
, ctsnap
))
600 retval
= sctp_ulpq_retrieve_partial(ulpq
);
606 /* Retrieve the first part (sequential fragments) for partial delivery. */
607 static struct sctp_ulpevent
*sctp_ulpq_retrieve_first(struct sctp_ulpq
*ulpq
)
609 struct sk_buff
*pos
, *last_frag
, *first_frag
;
610 struct sctp_ulpevent
*cevent
;
611 __u32 ctsn
, next_tsn
;
612 struct sctp_ulpevent
*retval
;
614 /* The chunks are held in the reasm queue sorted by TSN.
615 * Walk through the queue sequentially and look for a sequence of
616 * fragmented chunks that start a datagram.
619 if (skb_queue_empty(&ulpq
->reasm
))
622 last_frag
= first_frag
= NULL
;
626 skb_queue_walk(&ulpq
->reasm
, pos
) {
627 cevent
= sctp_skb2event(pos
);
630 switch (cevent
->msg_flags
& SCTP_DATA_FRAG_MASK
) {
631 case SCTP_DATA_FIRST_FRAG
:
640 case SCTP_DATA_MIDDLE_FRAG
:
643 if (ctsn
== next_tsn
) {
654 /* We have the reassembled event. There is no need to look
658 retval
= sctp_make_reassembled_event(&ulpq
->reasm
, first_frag
, last_frag
);
663 * Flush out stale fragments from the reassembly queue when processing
666 * RFC 3758, Section 3.6
668 * After receiving and processing a FORWARD TSN, the data receiver MUST
669 * take cautions in updating its re-assembly queue. The receiver MUST
670 * remove any partially reassembled message, which is still missing one
671 * or more TSNs earlier than or equal to the new cumulative TSN point.
672 * In the event that the receiver has invoked the partial delivery API,
673 * a notification SHOULD also be generated to inform the upper layer API
674 * that the message being partially delivered will NOT be completed.
676 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq
*ulpq
, __u32 fwd_tsn
)
678 struct sk_buff
*pos
, *tmp
;
679 struct sctp_ulpevent
*event
;
682 if (skb_queue_empty(&ulpq
->reasm
))
685 skb_queue_walk_safe(&ulpq
->reasm
, pos
, tmp
) {
686 event
= sctp_skb2event(pos
);
689 /* Since the entire message must be abandoned by the
690 * sender (item A3 in Section 3.5, RFC 3758), we can
691 * free all fragments on the list that are less then
692 * or equal to ctsn_point
694 if (TSN_lte(tsn
, fwd_tsn
)) {
695 __skb_unlink(pos
, &ulpq
->reasm
);
696 sctp_ulpevent_free(event
);
703 * Drain the reassembly queue. If we just cleared parted delivery, it
704 * is possible that the reassembly queue will contain already reassembled
705 * messages. Retrieve any such messages and give them to the user.
707 static void sctp_ulpq_reasm_drain(struct sctp_ulpq
*ulpq
)
709 struct sctp_ulpevent
*event
= NULL
;
710 struct sk_buff_head temp
;
712 if (skb_queue_empty(&ulpq
->reasm
))
715 while ((event
= sctp_ulpq_retrieve_reassembled(ulpq
)) != NULL
) {
716 /* Do ordering if needed. */
717 if ((event
) && (event
->msg_flags
& MSG_EOR
)){
718 skb_queue_head_init(&temp
);
719 __skb_queue_tail(&temp
, sctp_event2skb(event
));
721 event
= sctp_ulpq_order(ulpq
, event
);
724 /* Send event to the ULP. 'event' is the
725 * sctp_ulpevent for very first SKB on the temp' list.
728 sctp_ulpq_tail_event(ulpq
, event
);
733 /* Helper function to gather skbs that have possibly become
734 * ordered by an an incoming chunk.
736 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq
*ulpq
,
737 struct sctp_ulpevent
*event
)
739 struct sk_buff_head
*event_list
;
740 struct sk_buff
*pos
, *tmp
;
741 struct sctp_ulpevent
*cevent
;
742 struct sctp_stream
*in
;
743 __u16 sid
, csid
, cssn
;
746 in
= &ulpq
->asoc
->ssnmap
->in
;
748 event_list
= (struct sk_buff_head
*) sctp_event2skb(event
)->prev
;
750 /* We are holding the chunks by stream, by SSN. */
751 sctp_skb_for_each(pos
, &ulpq
->lobby
, tmp
) {
752 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
753 csid
= cevent
->stream
;
756 /* Have we gone too far? */
760 /* Have we not gone far enough? */
764 if (cssn
!= sctp_ssn_peek(in
, sid
))
767 /* Found it, so mark in the ssnmap. */
768 sctp_ssn_next(in
, sid
);
770 __skb_unlink(pos
, &ulpq
->lobby
);
772 /* Attach all gathered skbs to the event. */
773 __skb_queue_tail(event_list
, pos
);
777 /* Helper function to store chunks needing ordering. */
778 static void sctp_ulpq_store_ordered(struct sctp_ulpq
*ulpq
,
779 struct sctp_ulpevent
*event
)
782 struct sctp_ulpevent
*cevent
;
786 pos
= skb_peek_tail(&ulpq
->lobby
);
788 __skb_queue_tail(&ulpq
->lobby
, sctp_event2skb(event
));
795 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
796 csid
= cevent
->stream
;
799 __skb_queue_tail(&ulpq
->lobby
, sctp_event2skb(event
));
803 if ((sid
== csid
) && SSN_lt(cssn
, ssn
)) {
804 __skb_queue_tail(&ulpq
->lobby
, sctp_event2skb(event
));
808 /* Find the right place in this list. We store them by
809 * stream ID and then by SSN.
811 skb_queue_walk(&ulpq
->lobby
, pos
) {
812 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
813 csid
= cevent
->stream
;
818 if (csid
== sid
&& SSN_lt(ssn
, cssn
))
823 /* Insert before pos. */
824 __skb_queue_before(&ulpq
->lobby
, pos
, sctp_event2skb(event
));
827 static struct sctp_ulpevent
*sctp_ulpq_order(struct sctp_ulpq
*ulpq
,
828 struct sctp_ulpevent
*event
)
831 struct sctp_stream
*in
;
833 /* Check if this message needs ordering. */
834 if (SCTP_DATA_UNORDERED
& event
->msg_flags
)
837 /* Note: The stream ID must be verified before this routine. */
840 in
= &ulpq
->asoc
->ssnmap
->in
;
842 /* Is this the expected SSN for this stream ID? */
843 if (ssn
!= sctp_ssn_peek(in
, sid
)) {
844 /* We've received something out of order, so find where it
845 * needs to be placed. We order by stream and then by SSN.
847 sctp_ulpq_store_ordered(ulpq
, event
);
851 /* Mark that the next chunk has been found. */
852 sctp_ssn_next(in
, sid
);
854 /* Go find any other chunks that were waiting for
857 sctp_ulpq_retrieve_ordered(ulpq
, event
);
862 /* Helper function to gather skbs that have possibly become
863 * ordered by forward tsn skipping their dependencies.
865 static void sctp_ulpq_reap_ordered(struct sctp_ulpq
*ulpq
, __u16 sid
)
867 struct sk_buff
*pos
, *tmp
;
868 struct sctp_ulpevent
*cevent
;
869 struct sctp_ulpevent
*event
;
870 struct sctp_stream
*in
;
871 struct sk_buff_head temp
;
872 struct sk_buff_head
*lobby
= &ulpq
->lobby
;
875 in
= &ulpq
->asoc
->ssnmap
->in
;
877 /* We are holding the chunks by stream, by SSN. */
878 skb_queue_head_init(&temp
);
880 sctp_skb_for_each(pos
, lobby
, tmp
) {
881 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
882 csid
= cevent
->stream
;
885 /* Have we gone too far? */
889 /* Have we not gone far enough? */
893 /* see if this ssn has been marked by skipping */
894 if (!SSN_lt(cssn
, sctp_ssn_peek(in
, csid
)))
897 __skb_unlink(pos
, lobby
);
899 /* Create a temporary list to collect chunks on. */
900 event
= sctp_skb2event(pos
);
902 /* Attach all gathered skbs to the event. */
903 __skb_queue_tail(&temp
, pos
);
906 /* If we didn't reap any data, see if the next expected SSN
907 * is next on the queue and if so, use that.
909 if (event
== NULL
&& pos
!= (struct sk_buff
*)lobby
) {
910 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
911 csid
= cevent
->stream
;
914 if (csid
== sid
&& cssn
== sctp_ssn_peek(in
, csid
)) {
915 sctp_ssn_next(in
, csid
);
916 __skb_unlink(pos
, lobby
);
917 __skb_queue_tail(&temp
, pos
);
918 event
= sctp_skb2event(pos
);
922 /* Send event to the ULP. 'event' is the sctp_ulpevent for
923 * very first SKB on the 'temp' list.
926 /* see if we have more ordered that we can deliver */
927 sctp_ulpq_retrieve_ordered(ulpq
, event
);
928 sctp_ulpq_tail_event(ulpq
, event
);
932 /* Skip over an SSN. This is used during the processing of
933 * Forwared TSN chunk to skip over the abandoned ordered data
935 void sctp_ulpq_skip(struct sctp_ulpq
*ulpq
, __u16 sid
, __u16 ssn
)
937 struct sctp_stream
*in
;
939 /* Note: The stream ID must be verified before this routine. */
940 in
= &ulpq
->asoc
->ssnmap
->in
;
942 /* Is this an old SSN? If so ignore. */
943 if (SSN_lt(ssn
, sctp_ssn_peek(in
, sid
)))
946 /* Mark that we are no longer expecting this SSN or lower. */
947 sctp_ssn_skip(in
, sid
, ssn
);
949 /* Go find any other chunks that were waiting for
950 * ordering and deliver them if needed.
952 sctp_ulpq_reap_ordered(ulpq
, sid
);
955 static __u16
sctp_ulpq_renege_list(struct sctp_ulpq
*ulpq
,
956 struct sk_buff_head
*list
, __u16 needed
)
961 struct sctp_ulpevent
*event
;
962 struct sctp_tsnmap
*tsnmap
;
964 tsnmap
= &ulpq
->asoc
->peer
.tsn_map
;
966 while ((skb
= __skb_dequeue_tail(list
)) != NULL
) {
967 freed
+= skb_headlen(skb
);
968 event
= sctp_skb2event(skb
);
971 sctp_ulpevent_free(event
);
972 sctp_tsnmap_renege(tsnmap
, tsn
);
980 /* Renege 'needed' bytes from the ordering queue. */
981 static __u16
sctp_ulpq_renege_order(struct sctp_ulpq
*ulpq
, __u16 needed
)
983 return sctp_ulpq_renege_list(ulpq
, &ulpq
->lobby
, needed
);
986 /* Renege 'needed' bytes from the reassembly queue. */
987 static __u16
sctp_ulpq_renege_frags(struct sctp_ulpq
*ulpq
, __u16 needed
)
989 return sctp_ulpq_renege_list(ulpq
, &ulpq
->reasm
, needed
);
992 /* Partial deliver the first message as there is pressure on rwnd. */
993 void sctp_ulpq_partial_delivery(struct sctp_ulpq
*ulpq
,
994 struct sctp_chunk
*chunk
,
997 struct sctp_ulpevent
*event
;
998 struct sctp_association
*asoc
;
999 struct sctp_sock
*sp
;
1002 sp
= sctp_sk(asoc
->base
.sk
);
1004 /* If the association is already in Partial Delivery mode
1005 * we have noting to do.
1010 /* If the user enabled fragment interleave socket option,
1011 * multiple associations can enter partial delivery.
1012 * Otherwise, we can only enter partial delivery if the
1013 * socket is not in partial deliver mode.
1015 if (sp
->frag_interleave
|| atomic_read(&sp
->pd_mode
) == 0) {
1016 /* Is partial delivery possible? */
1017 event
= sctp_ulpq_retrieve_first(ulpq
);
1018 /* Send event to the ULP. */
1020 sctp_ulpq_tail_event(ulpq
, event
);
1021 sctp_ulpq_set_pd(ulpq
);
1027 /* Renege some packets to make room for an incoming chunk. */
1028 void sctp_ulpq_renege(struct sctp_ulpq
*ulpq
, struct sctp_chunk
*chunk
,
1031 struct sctp_association
*asoc
;
1032 __u16 needed
, freed
;
1037 needed
= ntohs(chunk
->chunk_hdr
->length
);
1038 needed
-= sizeof(sctp_data_chunk_t
);
1040 needed
= SCTP_DEFAULT_MAXWINDOW
;
1044 if (skb_queue_empty(&asoc
->base
.sk
->sk_receive_queue
)) {
1045 freed
= sctp_ulpq_renege_order(ulpq
, needed
);
1046 if (freed
< needed
) {
1047 freed
+= sctp_ulpq_renege_frags(ulpq
, needed
- freed
);
1050 /* If able to free enough room, accept this chunk. */
1051 if (chunk
&& (freed
>= needed
)) {
1053 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1054 sctp_tsnmap_mark(&asoc
->peer
.tsn_map
, tsn
);
1055 sctp_ulpq_tail_data(ulpq
, chunk
, gfp
);
1057 sctp_ulpq_partial_delivery(ulpq
, chunk
, gfp
);
1060 sk_mem_reclaim(asoc
->base
.sk
);
1065 /* Notify the application if an association is aborted and in
1066 * partial delivery mode. Send up any pending received messages.
1068 void sctp_ulpq_abort_pd(struct sctp_ulpq
*ulpq
, gfp_t gfp
)
1070 struct sctp_ulpevent
*ev
= NULL
;
1076 sk
= ulpq
->asoc
->base
.sk
;
1077 if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT
,
1078 &sctp_sk(sk
)->subscribe
))
1079 ev
= sctp_ulpevent_make_pdapi(ulpq
->asoc
,
1080 SCTP_PARTIAL_DELIVERY_ABORTED
,
1083 __skb_queue_tail(&sk
->sk_receive_queue
, sctp_event2skb(ev
));
1085 /* If there is data waiting, send it up the socket now. */
1086 if (sctp_ulpq_clear_pd(ulpq
) || ev
)
1087 sk
->sk_data_ready(sk
, 0);