Btrfs: reserve sufficient space for ioctl clone
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / ioctl.c
blob6f89bcc4e5554cbf497e149043ab0e02202e8164
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include "compat.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "ioctl.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
55 /* Mask out flags that are inappropriate for the given type of inode. */
56 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
58 if (S_ISDIR(mode))
59 return flags;
60 else if (S_ISREG(mode))
61 return flags & ~FS_DIRSYNC_FL;
62 else
63 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
67 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
69 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
71 unsigned int iflags = 0;
73 if (flags & BTRFS_INODE_SYNC)
74 iflags |= FS_SYNC_FL;
75 if (flags & BTRFS_INODE_IMMUTABLE)
76 iflags |= FS_IMMUTABLE_FL;
77 if (flags & BTRFS_INODE_APPEND)
78 iflags |= FS_APPEND_FL;
79 if (flags & BTRFS_INODE_NODUMP)
80 iflags |= FS_NODUMP_FL;
81 if (flags & BTRFS_INODE_NOATIME)
82 iflags |= FS_NOATIME_FL;
83 if (flags & BTRFS_INODE_DIRSYNC)
84 iflags |= FS_DIRSYNC_FL;
85 if (flags & BTRFS_INODE_NODATACOW)
86 iflags |= FS_NOCOW_FL;
88 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
89 iflags |= FS_COMPR_FL;
90 else if (flags & BTRFS_INODE_NOCOMPRESS)
91 iflags |= FS_NOCOMP_FL;
93 return iflags;
97 * Update inode->i_flags based on the btrfs internal flags.
99 void btrfs_update_iflags(struct inode *inode)
101 struct btrfs_inode *ip = BTRFS_I(inode);
103 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
105 if (ip->flags & BTRFS_INODE_SYNC)
106 inode->i_flags |= S_SYNC;
107 if (ip->flags & BTRFS_INODE_IMMUTABLE)
108 inode->i_flags |= S_IMMUTABLE;
109 if (ip->flags & BTRFS_INODE_APPEND)
110 inode->i_flags |= S_APPEND;
111 if (ip->flags & BTRFS_INODE_NOATIME)
112 inode->i_flags |= S_NOATIME;
113 if (ip->flags & BTRFS_INODE_DIRSYNC)
114 inode->i_flags |= S_DIRSYNC;
118 * Inherit flags from the parent inode.
120 * Unlike extN we don't have any flags we don't want to inherit currently.
122 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
124 unsigned int flags;
126 if (!dir)
127 return;
129 flags = BTRFS_I(dir)->flags;
131 if (S_ISREG(inode->i_mode))
132 flags &= ~BTRFS_INODE_DIRSYNC;
133 else if (!S_ISDIR(inode->i_mode))
134 flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
136 BTRFS_I(inode)->flags = flags;
137 btrfs_update_iflags(inode);
140 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
142 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
143 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
145 if (copy_to_user(arg, &flags, sizeof(flags)))
146 return -EFAULT;
147 return 0;
150 static int check_flags(unsigned int flags)
152 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
153 FS_NOATIME_FL | FS_NODUMP_FL | \
154 FS_SYNC_FL | FS_DIRSYNC_FL | \
155 FS_NOCOMP_FL | FS_COMPR_FL |
156 FS_NOCOW_FL))
157 return -EOPNOTSUPP;
159 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
160 return -EINVAL;
162 return 0;
165 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
167 struct inode *inode = file->f_path.dentry->d_inode;
168 struct btrfs_inode *ip = BTRFS_I(inode);
169 struct btrfs_root *root = ip->root;
170 struct btrfs_trans_handle *trans;
171 unsigned int flags, oldflags;
172 int ret;
174 if (btrfs_root_readonly(root))
175 return -EROFS;
177 if (copy_from_user(&flags, arg, sizeof(flags)))
178 return -EFAULT;
180 ret = check_flags(flags);
181 if (ret)
182 return ret;
184 if (!inode_owner_or_capable(inode))
185 return -EACCES;
187 mutex_lock(&inode->i_mutex);
189 flags = btrfs_mask_flags(inode->i_mode, flags);
190 oldflags = btrfs_flags_to_ioctl(ip->flags);
191 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
192 if (!capable(CAP_LINUX_IMMUTABLE)) {
193 ret = -EPERM;
194 goto out_unlock;
198 ret = mnt_want_write(file->f_path.mnt);
199 if (ret)
200 goto out_unlock;
202 if (flags & FS_SYNC_FL)
203 ip->flags |= BTRFS_INODE_SYNC;
204 else
205 ip->flags &= ~BTRFS_INODE_SYNC;
206 if (flags & FS_IMMUTABLE_FL)
207 ip->flags |= BTRFS_INODE_IMMUTABLE;
208 else
209 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
210 if (flags & FS_APPEND_FL)
211 ip->flags |= BTRFS_INODE_APPEND;
212 else
213 ip->flags &= ~BTRFS_INODE_APPEND;
214 if (flags & FS_NODUMP_FL)
215 ip->flags |= BTRFS_INODE_NODUMP;
216 else
217 ip->flags &= ~BTRFS_INODE_NODUMP;
218 if (flags & FS_NOATIME_FL)
219 ip->flags |= BTRFS_INODE_NOATIME;
220 else
221 ip->flags &= ~BTRFS_INODE_NOATIME;
222 if (flags & FS_DIRSYNC_FL)
223 ip->flags |= BTRFS_INODE_DIRSYNC;
224 else
225 ip->flags &= ~BTRFS_INODE_DIRSYNC;
226 if (flags & FS_NOCOW_FL)
227 ip->flags |= BTRFS_INODE_NODATACOW;
228 else
229 ip->flags &= ~BTRFS_INODE_NODATACOW;
232 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
233 * flag may be changed automatically if compression code won't make
234 * things smaller.
236 if (flags & FS_NOCOMP_FL) {
237 ip->flags &= ~BTRFS_INODE_COMPRESS;
238 ip->flags |= BTRFS_INODE_NOCOMPRESS;
239 } else if (flags & FS_COMPR_FL) {
240 ip->flags |= BTRFS_INODE_COMPRESS;
241 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
242 } else {
243 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
246 trans = btrfs_join_transaction(root);
247 BUG_ON(IS_ERR(trans));
249 ret = btrfs_update_inode(trans, root, inode);
250 BUG_ON(ret);
252 btrfs_update_iflags(inode);
253 inode->i_ctime = CURRENT_TIME;
254 btrfs_end_transaction(trans, root);
256 mnt_drop_write(file->f_path.mnt);
258 ret = 0;
259 out_unlock:
260 mutex_unlock(&inode->i_mutex);
261 return ret;
264 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
266 struct inode *inode = file->f_path.dentry->d_inode;
268 return put_user(inode->i_generation, arg);
271 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
273 struct btrfs_root *root = fdentry(file)->d_sb->s_fs_info;
274 struct btrfs_fs_info *fs_info = root->fs_info;
275 struct btrfs_device *device;
276 struct request_queue *q;
277 struct fstrim_range range;
278 u64 minlen = ULLONG_MAX;
279 u64 num_devices = 0;
280 int ret;
282 if (!capable(CAP_SYS_ADMIN))
283 return -EPERM;
285 rcu_read_lock();
286 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
287 dev_list) {
288 if (!device->bdev)
289 continue;
290 q = bdev_get_queue(device->bdev);
291 if (blk_queue_discard(q)) {
292 num_devices++;
293 minlen = min((u64)q->limits.discard_granularity,
294 minlen);
297 rcu_read_unlock();
298 if (!num_devices)
299 return -EOPNOTSUPP;
301 if (copy_from_user(&range, arg, sizeof(range)))
302 return -EFAULT;
304 range.minlen = max(range.minlen, minlen);
305 ret = btrfs_trim_fs(root, &range);
306 if (ret < 0)
307 return ret;
309 if (copy_to_user(arg, &range, sizeof(range)))
310 return -EFAULT;
312 return 0;
315 static noinline int create_subvol(struct btrfs_root *root,
316 struct dentry *dentry,
317 char *name, int namelen,
318 u64 *async_transid)
320 struct btrfs_trans_handle *trans;
321 struct btrfs_key key;
322 struct btrfs_root_item root_item;
323 struct btrfs_inode_item *inode_item;
324 struct extent_buffer *leaf;
325 struct btrfs_root *new_root;
326 struct dentry *parent = dget_parent(dentry);
327 struct inode *dir;
328 int ret;
329 int err;
330 u64 objectid;
331 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
332 u64 index = 0;
334 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
335 if (ret) {
336 dput(parent);
337 return ret;
340 dir = parent->d_inode;
343 * 1 - inode item
344 * 2 - refs
345 * 1 - root item
346 * 2 - dir items
348 trans = btrfs_start_transaction(root, 6);
349 if (IS_ERR(trans)) {
350 dput(parent);
351 return PTR_ERR(trans);
354 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
355 0, objectid, NULL, 0, 0, 0);
356 if (IS_ERR(leaf)) {
357 ret = PTR_ERR(leaf);
358 goto fail;
361 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
362 btrfs_set_header_bytenr(leaf, leaf->start);
363 btrfs_set_header_generation(leaf, trans->transid);
364 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
365 btrfs_set_header_owner(leaf, objectid);
367 write_extent_buffer(leaf, root->fs_info->fsid,
368 (unsigned long)btrfs_header_fsid(leaf),
369 BTRFS_FSID_SIZE);
370 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
371 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
372 BTRFS_UUID_SIZE);
373 btrfs_mark_buffer_dirty(leaf);
375 inode_item = &root_item.inode;
376 memset(inode_item, 0, sizeof(*inode_item));
377 inode_item->generation = cpu_to_le64(1);
378 inode_item->size = cpu_to_le64(3);
379 inode_item->nlink = cpu_to_le32(1);
380 inode_item->nbytes = cpu_to_le64(root->leafsize);
381 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
383 root_item.flags = 0;
384 root_item.byte_limit = 0;
385 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
387 btrfs_set_root_bytenr(&root_item, leaf->start);
388 btrfs_set_root_generation(&root_item, trans->transid);
389 btrfs_set_root_level(&root_item, 0);
390 btrfs_set_root_refs(&root_item, 1);
391 btrfs_set_root_used(&root_item, leaf->len);
392 btrfs_set_root_last_snapshot(&root_item, 0);
394 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
395 root_item.drop_level = 0;
397 btrfs_tree_unlock(leaf);
398 free_extent_buffer(leaf);
399 leaf = NULL;
401 btrfs_set_root_dirid(&root_item, new_dirid);
403 key.objectid = objectid;
404 key.offset = 0;
405 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
406 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
407 &root_item);
408 if (ret)
409 goto fail;
411 key.offset = (u64)-1;
412 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
413 BUG_ON(IS_ERR(new_root));
415 btrfs_record_root_in_trans(trans, new_root);
417 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
419 * insert the directory item
421 ret = btrfs_set_inode_index(dir, &index);
422 BUG_ON(ret);
424 ret = btrfs_insert_dir_item(trans, root,
425 name, namelen, dir, &key,
426 BTRFS_FT_DIR, index);
427 if (ret)
428 goto fail;
430 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
431 ret = btrfs_update_inode(trans, root, dir);
432 BUG_ON(ret);
434 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
435 objectid, root->root_key.objectid,
436 btrfs_ino(dir), index, name, namelen);
438 BUG_ON(ret);
440 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
441 fail:
442 dput(parent);
443 if (async_transid) {
444 *async_transid = trans->transid;
445 err = btrfs_commit_transaction_async(trans, root, 1);
446 } else {
447 err = btrfs_commit_transaction(trans, root);
449 if (err && !ret)
450 ret = err;
451 return ret;
454 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
455 char *name, int namelen, u64 *async_transid,
456 bool readonly)
458 struct inode *inode;
459 struct dentry *parent;
460 struct btrfs_pending_snapshot *pending_snapshot;
461 struct btrfs_trans_handle *trans;
462 int ret;
464 if (!root->ref_cows)
465 return -EINVAL;
467 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
468 if (!pending_snapshot)
469 return -ENOMEM;
471 btrfs_init_block_rsv(&pending_snapshot->block_rsv);
472 pending_snapshot->dentry = dentry;
473 pending_snapshot->root = root;
474 pending_snapshot->readonly = readonly;
476 trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
477 if (IS_ERR(trans)) {
478 ret = PTR_ERR(trans);
479 goto fail;
482 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
483 BUG_ON(ret);
485 spin_lock(&root->fs_info->trans_lock);
486 list_add(&pending_snapshot->list,
487 &trans->transaction->pending_snapshots);
488 spin_unlock(&root->fs_info->trans_lock);
489 if (async_transid) {
490 *async_transid = trans->transid;
491 ret = btrfs_commit_transaction_async(trans,
492 root->fs_info->extent_root, 1);
493 } else {
494 ret = btrfs_commit_transaction(trans,
495 root->fs_info->extent_root);
497 BUG_ON(ret);
499 ret = pending_snapshot->error;
500 if (ret)
501 goto fail;
503 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
504 if (ret)
505 goto fail;
507 parent = dget_parent(dentry);
508 inode = btrfs_lookup_dentry(parent->d_inode, dentry);
509 dput(parent);
510 if (IS_ERR(inode)) {
511 ret = PTR_ERR(inode);
512 goto fail;
514 BUG_ON(!inode);
515 d_instantiate(dentry, inode);
516 ret = 0;
517 fail:
518 kfree(pending_snapshot);
519 return ret;
522 /* copy of check_sticky in fs/namei.c()
523 * It's inline, so penalty for filesystems that don't use sticky bit is
524 * minimal.
526 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
528 uid_t fsuid = current_fsuid();
530 if (!(dir->i_mode & S_ISVTX))
531 return 0;
532 if (inode->i_uid == fsuid)
533 return 0;
534 if (dir->i_uid == fsuid)
535 return 0;
536 return !capable(CAP_FOWNER);
539 /* copy of may_delete in fs/namei.c()
540 * Check whether we can remove a link victim from directory dir, check
541 * whether the type of victim is right.
542 * 1. We can't do it if dir is read-only (done in permission())
543 * 2. We should have write and exec permissions on dir
544 * 3. We can't remove anything from append-only dir
545 * 4. We can't do anything with immutable dir (done in permission())
546 * 5. If the sticky bit on dir is set we should either
547 * a. be owner of dir, or
548 * b. be owner of victim, or
549 * c. have CAP_FOWNER capability
550 * 6. If the victim is append-only or immutable we can't do antyhing with
551 * links pointing to it.
552 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
553 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
554 * 9. We can't remove a root or mountpoint.
555 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
556 * nfs_async_unlink().
559 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
561 int error;
563 if (!victim->d_inode)
564 return -ENOENT;
566 BUG_ON(victim->d_parent->d_inode != dir);
567 audit_inode_child(victim, dir);
569 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
570 if (error)
571 return error;
572 if (IS_APPEND(dir))
573 return -EPERM;
574 if (btrfs_check_sticky(dir, victim->d_inode)||
575 IS_APPEND(victim->d_inode)||
576 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
577 return -EPERM;
578 if (isdir) {
579 if (!S_ISDIR(victim->d_inode->i_mode))
580 return -ENOTDIR;
581 if (IS_ROOT(victim))
582 return -EBUSY;
583 } else if (S_ISDIR(victim->d_inode->i_mode))
584 return -EISDIR;
585 if (IS_DEADDIR(dir))
586 return -ENOENT;
587 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
588 return -EBUSY;
589 return 0;
592 /* copy of may_create in fs/namei.c() */
593 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
595 if (child->d_inode)
596 return -EEXIST;
597 if (IS_DEADDIR(dir))
598 return -ENOENT;
599 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
603 * Create a new subvolume below @parent. This is largely modeled after
604 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
605 * inside this filesystem so it's quite a bit simpler.
607 static noinline int btrfs_mksubvol(struct path *parent,
608 char *name, int namelen,
609 struct btrfs_root *snap_src,
610 u64 *async_transid, bool readonly)
612 struct inode *dir = parent->dentry->d_inode;
613 struct dentry *dentry;
614 int error;
616 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
618 dentry = lookup_one_len(name, parent->dentry, namelen);
619 error = PTR_ERR(dentry);
620 if (IS_ERR(dentry))
621 goto out_unlock;
623 error = -EEXIST;
624 if (dentry->d_inode)
625 goto out_dput;
627 error = mnt_want_write(parent->mnt);
628 if (error)
629 goto out_dput;
631 error = btrfs_may_create(dir, dentry);
632 if (error)
633 goto out_drop_write;
635 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
637 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
638 goto out_up_read;
640 if (snap_src) {
641 error = create_snapshot(snap_src, dentry,
642 name, namelen, async_transid, readonly);
643 } else {
644 error = create_subvol(BTRFS_I(dir)->root, dentry,
645 name, namelen, async_transid);
647 if (!error)
648 fsnotify_mkdir(dir, dentry);
649 out_up_read:
650 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
651 out_drop_write:
652 mnt_drop_write(parent->mnt);
653 out_dput:
654 dput(dentry);
655 out_unlock:
656 mutex_unlock(&dir->i_mutex);
657 return error;
661 * When we're defragging a range, we don't want to kick it off again
662 * if it is really just waiting for delalloc to send it down.
663 * If we find a nice big extent or delalloc range for the bytes in the
664 * file you want to defrag, we return 0 to let you know to skip this
665 * part of the file
667 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
669 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
670 struct extent_map *em = NULL;
671 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
672 u64 end;
674 read_lock(&em_tree->lock);
675 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
676 read_unlock(&em_tree->lock);
678 if (em) {
679 end = extent_map_end(em);
680 free_extent_map(em);
681 if (end - offset > thresh)
682 return 0;
684 /* if we already have a nice delalloc here, just stop */
685 thresh /= 2;
686 end = count_range_bits(io_tree, &offset, offset + thresh,
687 thresh, EXTENT_DELALLOC, 1);
688 if (end >= thresh)
689 return 0;
690 return 1;
694 * helper function to walk through a file and find extents
695 * newer than a specific transid, and smaller than thresh.
697 * This is used by the defragging code to find new and small
698 * extents
700 static int find_new_extents(struct btrfs_root *root,
701 struct inode *inode, u64 newer_than,
702 u64 *off, int thresh)
704 struct btrfs_path *path;
705 struct btrfs_key min_key;
706 struct btrfs_key max_key;
707 struct extent_buffer *leaf;
708 struct btrfs_file_extent_item *extent;
709 int type;
710 int ret;
711 u64 ino = btrfs_ino(inode);
713 path = btrfs_alloc_path();
714 if (!path)
715 return -ENOMEM;
717 min_key.objectid = ino;
718 min_key.type = BTRFS_EXTENT_DATA_KEY;
719 min_key.offset = *off;
721 max_key.objectid = ino;
722 max_key.type = (u8)-1;
723 max_key.offset = (u64)-1;
725 path->keep_locks = 1;
727 while(1) {
728 ret = btrfs_search_forward(root, &min_key, &max_key,
729 path, 0, newer_than);
730 if (ret != 0)
731 goto none;
732 if (min_key.objectid != ino)
733 goto none;
734 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
735 goto none;
737 leaf = path->nodes[0];
738 extent = btrfs_item_ptr(leaf, path->slots[0],
739 struct btrfs_file_extent_item);
741 type = btrfs_file_extent_type(leaf, extent);
742 if (type == BTRFS_FILE_EXTENT_REG &&
743 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
744 check_defrag_in_cache(inode, min_key.offset, thresh)) {
745 *off = min_key.offset;
746 btrfs_free_path(path);
747 return 0;
750 if (min_key.offset == (u64)-1)
751 goto none;
753 min_key.offset++;
754 btrfs_release_path(path);
756 none:
757 btrfs_free_path(path);
758 return -ENOENT;
761 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
762 int thresh, u64 *last_len, u64 *skip,
763 u64 *defrag_end)
765 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
766 struct extent_map *em = NULL;
767 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
768 int ret = 1;
771 * make sure that once we start defragging and extent, we keep on
772 * defragging it
774 if (start < *defrag_end)
775 return 1;
777 *skip = 0;
780 * hopefully we have this extent in the tree already, try without
781 * the full extent lock
783 read_lock(&em_tree->lock);
784 em = lookup_extent_mapping(em_tree, start, len);
785 read_unlock(&em_tree->lock);
787 if (!em) {
788 /* get the big lock and read metadata off disk */
789 lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
790 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
791 unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
793 if (IS_ERR(em))
794 return 0;
797 /* this will cover holes, and inline extents */
798 if (em->block_start >= EXTENT_MAP_LAST_BYTE)
799 ret = 0;
802 * we hit a real extent, if it is big don't bother defragging it again
804 if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
805 ret = 0;
808 * last_len ends up being a counter of how many bytes we've defragged.
809 * every time we choose not to defrag an extent, we reset *last_len
810 * so that the next tiny extent will force a defrag.
812 * The end result of this is that tiny extents before a single big
813 * extent will force at least part of that big extent to be defragged.
815 if (ret) {
816 *last_len += len;
817 *defrag_end = extent_map_end(em);
818 } else {
819 *last_len = 0;
820 *skip = extent_map_end(em);
821 *defrag_end = 0;
824 free_extent_map(em);
825 return ret;
829 * it doesn't do much good to defrag one or two pages
830 * at a time. This pulls in a nice chunk of pages
831 * to COW and defrag.
833 * It also makes sure the delalloc code has enough
834 * dirty data to avoid making new small extents as part
835 * of the defrag
837 * It's a good idea to start RA on this range
838 * before calling this.
840 static int cluster_pages_for_defrag(struct inode *inode,
841 struct page **pages,
842 unsigned long start_index,
843 int num_pages)
845 unsigned long file_end;
846 u64 isize = i_size_read(inode);
847 u64 page_start;
848 u64 page_end;
849 int ret;
850 int i;
851 int i_done;
852 struct btrfs_ordered_extent *ordered;
853 struct extent_state *cached_state = NULL;
855 if (isize == 0)
856 return 0;
857 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
859 ret = btrfs_delalloc_reserve_space(inode,
860 num_pages << PAGE_CACHE_SHIFT);
861 if (ret)
862 return ret;
863 again:
864 ret = 0;
865 i_done = 0;
867 /* step one, lock all the pages */
868 for (i = 0; i < num_pages; i++) {
869 struct page *page;
870 page = find_or_create_page(inode->i_mapping,
871 start_index + i, GFP_NOFS);
872 if (!page)
873 break;
875 if (!PageUptodate(page)) {
876 btrfs_readpage(NULL, page);
877 lock_page(page);
878 if (!PageUptodate(page)) {
879 unlock_page(page);
880 page_cache_release(page);
881 ret = -EIO;
882 break;
885 isize = i_size_read(inode);
886 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
887 if (!isize || page->index > file_end ||
888 page->mapping != inode->i_mapping) {
889 /* whoops, we blew past eof, skip this page */
890 unlock_page(page);
891 page_cache_release(page);
892 break;
894 pages[i] = page;
895 i_done++;
897 if (!i_done || ret)
898 goto out;
900 if (!(inode->i_sb->s_flags & MS_ACTIVE))
901 goto out;
904 * so now we have a nice long stream of locked
905 * and up to date pages, lets wait on them
907 for (i = 0; i < i_done; i++)
908 wait_on_page_writeback(pages[i]);
910 page_start = page_offset(pages[0]);
911 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
913 lock_extent_bits(&BTRFS_I(inode)->io_tree,
914 page_start, page_end - 1, 0, &cached_state,
915 GFP_NOFS);
916 ordered = btrfs_lookup_first_ordered_extent(inode, page_end - 1);
917 if (ordered &&
918 ordered->file_offset + ordered->len > page_start &&
919 ordered->file_offset < page_end) {
920 btrfs_put_ordered_extent(ordered);
921 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
922 page_start, page_end - 1,
923 &cached_state, GFP_NOFS);
924 for (i = 0; i < i_done; i++) {
925 unlock_page(pages[i]);
926 page_cache_release(pages[i]);
928 btrfs_wait_ordered_range(inode, page_start,
929 page_end - page_start);
930 goto again;
932 if (ordered)
933 btrfs_put_ordered_extent(ordered);
935 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
936 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
937 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
938 GFP_NOFS);
940 if (i_done != num_pages) {
941 spin_lock(&BTRFS_I(inode)->lock);
942 BTRFS_I(inode)->outstanding_extents++;
943 spin_unlock(&BTRFS_I(inode)->lock);
944 btrfs_delalloc_release_space(inode,
945 (num_pages - i_done) << PAGE_CACHE_SHIFT);
949 btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
950 &cached_state);
952 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
953 page_start, page_end - 1, &cached_state,
954 GFP_NOFS);
956 for (i = 0; i < i_done; i++) {
957 clear_page_dirty_for_io(pages[i]);
958 ClearPageChecked(pages[i]);
959 set_page_extent_mapped(pages[i]);
960 set_page_dirty(pages[i]);
961 unlock_page(pages[i]);
962 page_cache_release(pages[i]);
964 return i_done;
965 out:
966 for (i = 0; i < i_done; i++) {
967 unlock_page(pages[i]);
968 page_cache_release(pages[i]);
970 btrfs_delalloc_release_space(inode, num_pages << PAGE_CACHE_SHIFT);
971 return ret;
975 int btrfs_defrag_file(struct inode *inode, struct file *file,
976 struct btrfs_ioctl_defrag_range_args *range,
977 u64 newer_than, unsigned long max_to_defrag)
979 struct btrfs_root *root = BTRFS_I(inode)->root;
980 struct btrfs_super_block *disk_super;
981 struct file_ra_state *ra = NULL;
982 unsigned long last_index;
983 u64 features;
984 u64 last_len = 0;
985 u64 skip = 0;
986 u64 defrag_end = 0;
987 u64 newer_off = range->start;
988 int newer_left = 0;
989 unsigned long i;
990 int ret;
991 int defrag_count = 0;
992 int compress_type = BTRFS_COMPRESS_ZLIB;
993 int extent_thresh = range->extent_thresh;
994 int newer_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
995 u64 new_align = ~((u64)128 * 1024 - 1);
996 struct page **pages = NULL;
998 if (extent_thresh == 0)
999 extent_thresh = 256 * 1024;
1001 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1002 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1003 return -EINVAL;
1004 if (range->compress_type)
1005 compress_type = range->compress_type;
1008 if (inode->i_size == 0)
1009 return 0;
1012 * if we were not given a file, allocate a readahead
1013 * context
1015 if (!file) {
1016 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1017 if (!ra)
1018 return -ENOMEM;
1019 file_ra_state_init(ra, inode->i_mapping);
1020 } else {
1021 ra = &file->f_ra;
1024 pages = kmalloc(sizeof(struct page *) * newer_cluster,
1025 GFP_NOFS);
1026 if (!pages) {
1027 ret = -ENOMEM;
1028 goto out_ra;
1031 /* find the last page to defrag */
1032 if (range->start + range->len > range->start) {
1033 last_index = min_t(u64, inode->i_size - 1,
1034 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1035 } else {
1036 last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
1039 if (newer_than) {
1040 ret = find_new_extents(root, inode, newer_than,
1041 &newer_off, 64 * 1024);
1042 if (!ret) {
1043 range->start = newer_off;
1045 * we always align our defrag to help keep
1046 * the extents in the file evenly spaced
1048 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1049 newer_left = newer_cluster;
1050 } else
1051 goto out_ra;
1052 } else {
1053 i = range->start >> PAGE_CACHE_SHIFT;
1055 if (!max_to_defrag)
1056 max_to_defrag = last_index - 1;
1058 while (i <= last_index && defrag_count < max_to_defrag) {
1060 * make sure we stop running if someone unmounts
1061 * the FS
1063 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1064 break;
1066 if (!newer_than &&
1067 !should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1068 PAGE_CACHE_SIZE,
1069 extent_thresh,
1070 &last_len, &skip,
1071 &defrag_end)) {
1072 unsigned long next;
1074 * the should_defrag function tells us how much to skip
1075 * bump our counter by the suggested amount
1077 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1078 i = max(i + 1, next);
1079 continue;
1081 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1082 BTRFS_I(inode)->force_compress = compress_type;
1084 btrfs_force_ra(inode->i_mapping, ra, file, i, newer_cluster);
1086 ret = cluster_pages_for_defrag(inode, pages, i, newer_cluster);
1087 if (ret < 0)
1088 goto out_ra;
1090 defrag_count += ret;
1091 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1092 i += ret;
1094 if (newer_than) {
1095 if (newer_off == (u64)-1)
1096 break;
1098 newer_off = max(newer_off + 1,
1099 (u64)i << PAGE_CACHE_SHIFT);
1101 ret = find_new_extents(root, inode,
1102 newer_than, &newer_off,
1103 64 * 1024);
1104 if (!ret) {
1105 range->start = newer_off;
1106 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1107 newer_left = newer_cluster;
1108 } else {
1109 break;
1111 } else {
1112 i++;
1116 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1117 filemap_flush(inode->i_mapping);
1119 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1120 /* the filemap_flush will queue IO into the worker threads, but
1121 * we have to make sure the IO is actually started and that
1122 * ordered extents get created before we return
1124 atomic_inc(&root->fs_info->async_submit_draining);
1125 while (atomic_read(&root->fs_info->nr_async_submits) ||
1126 atomic_read(&root->fs_info->async_delalloc_pages)) {
1127 wait_event(root->fs_info->async_submit_wait,
1128 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1129 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1131 atomic_dec(&root->fs_info->async_submit_draining);
1133 mutex_lock(&inode->i_mutex);
1134 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1135 mutex_unlock(&inode->i_mutex);
1138 disk_super = &root->fs_info->super_copy;
1139 features = btrfs_super_incompat_flags(disk_super);
1140 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1141 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1142 btrfs_set_super_incompat_flags(disk_super, features);
1145 if (!file)
1146 kfree(ra);
1147 return defrag_count;
1149 out_ra:
1150 if (!file)
1151 kfree(ra);
1152 kfree(pages);
1153 return ret;
1156 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1157 void __user *arg)
1159 u64 new_size;
1160 u64 old_size;
1161 u64 devid = 1;
1162 struct btrfs_ioctl_vol_args *vol_args;
1163 struct btrfs_trans_handle *trans;
1164 struct btrfs_device *device = NULL;
1165 char *sizestr;
1166 char *devstr = NULL;
1167 int ret = 0;
1168 int mod = 0;
1170 if (root->fs_info->sb->s_flags & MS_RDONLY)
1171 return -EROFS;
1173 if (!capable(CAP_SYS_ADMIN))
1174 return -EPERM;
1176 vol_args = memdup_user(arg, sizeof(*vol_args));
1177 if (IS_ERR(vol_args))
1178 return PTR_ERR(vol_args);
1180 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1182 mutex_lock(&root->fs_info->volume_mutex);
1183 sizestr = vol_args->name;
1184 devstr = strchr(sizestr, ':');
1185 if (devstr) {
1186 char *end;
1187 sizestr = devstr + 1;
1188 *devstr = '\0';
1189 devstr = vol_args->name;
1190 devid = simple_strtoull(devstr, &end, 10);
1191 printk(KERN_INFO "resizing devid %llu\n",
1192 (unsigned long long)devid);
1194 device = btrfs_find_device(root, devid, NULL, NULL);
1195 if (!device) {
1196 printk(KERN_INFO "resizer unable to find device %llu\n",
1197 (unsigned long long)devid);
1198 ret = -EINVAL;
1199 goto out_unlock;
1201 if (!strcmp(sizestr, "max"))
1202 new_size = device->bdev->bd_inode->i_size;
1203 else {
1204 if (sizestr[0] == '-') {
1205 mod = -1;
1206 sizestr++;
1207 } else if (sizestr[0] == '+') {
1208 mod = 1;
1209 sizestr++;
1211 new_size = memparse(sizestr, NULL);
1212 if (new_size == 0) {
1213 ret = -EINVAL;
1214 goto out_unlock;
1218 old_size = device->total_bytes;
1220 if (mod < 0) {
1221 if (new_size > old_size) {
1222 ret = -EINVAL;
1223 goto out_unlock;
1225 new_size = old_size - new_size;
1226 } else if (mod > 0) {
1227 new_size = old_size + new_size;
1230 if (new_size < 256 * 1024 * 1024) {
1231 ret = -EINVAL;
1232 goto out_unlock;
1234 if (new_size > device->bdev->bd_inode->i_size) {
1235 ret = -EFBIG;
1236 goto out_unlock;
1239 do_div(new_size, root->sectorsize);
1240 new_size *= root->sectorsize;
1242 printk(KERN_INFO "new size for %s is %llu\n",
1243 device->name, (unsigned long long)new_size);
1245 if (new_size > old_size) {
1246 trans = btrfs_start_transaction(root, 0);
1247 if (IS_ERR(trans)) {
1248 ret = PTR_ERR(trans);
1249 goto out_unlock;
1251 ret = btrfs_grow_device(trans, device, new_size);
1252 btrfs_commit_transaction(trans, root);
1253 } else {
1254 ret = btrfs_shrink_device(device, new_size);
1257 out_unlock:
1258 mutex_unlock(&root->fs_info->volume_mutex);
1259 kfree(vol_args);
1260 return ret;
1263 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1264 char *name,
1265 unsigned long fd,
1266 int subvol,
1267 u64 *transid,
1268 bool readonly)
1270 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1271 struct file *src_file;
1272 int namelen;
1273 int ret = 0;
1275 if (root->fs_info->sb->s_flags & MS_RDONLY)
1276 return -EROFS;
1278 namelen = strlen(name);
1279 if (strchr(name, '/')) {
1280 ret = -EINVAL;
1281 goto out;
1284 if (subvol) {
1285 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1286 NULL, transid, readonly);
1287 } else {
1288 struct inode *src_inode;
1289 src_file = fget(fd);
1290 if (!src_file) {
1291 ret = -EINVAL;
1292 goto out;
1295 src_inode = src_file->f_path.dentry->d_inode;
1296 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1297 printk(KERN_INFO "btrfs: Snapshot src from "
1298 "another FS\n");
1299 ret = -EINVAL;
1300 fput(src_file);
1301 goto out;
1303 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1304 BTRFS_I(src_inode)->root,
1305 transid, readonly);
1306 fput(src_file);
1308 out:
1309 return ret;
1312 static noinline int btrfs_ioctl_snap_create(struct file *file,
1313 void __user *arg, int subvol)
1315 struct btrfs_ioctl_vol_args *vol_args;
1316 int ret;
1318 vol_args = memdup_user(arg, sizeof(*vol_args));
1319 if (IS_ERR(vol_args))
1320 return PTR_ERR(vol_args);
1321 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1323 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1324 vol_args->fd, subvol,
1325 NULL, false);
1327 kfree(vol_args);
1328 return ret;
1331 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1332 void __user *arg, int subvol)
1334 struct btrfs_ioctl_vol_args_v2 *vol_args;
1335 int ret;
1336 u64 transid = 0;
1337 u64 *ptr = NULL;
1338 bool readonly = false;
1340 vol_args = memdup_user(arg, sizeof(*vol_args));
1341 if (IS_ERR(vol_args))
1342 return PTR_ERR(vol_args);
1343 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1345 if (vol_args->flags &
1346 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1347 ret = -EOPNOTSUPP;
1348 goto out;
1351 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1352 ptr = &transid;
1353 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1354 readonly = true;
1356 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1357 vol_args->fd, subvol,
1358 ptr, readonly);
1360 if (ret == 0 && ptr &&
1361 copy_to_user(arg +
1362 offsetof(struct btrfs_ioctl_vol_args_v2,
1363 transid), ptr, sizeof(*ptr)))
1364 ret = -EFAULT;
1365 out:
1366 kfree(vol_args);
1367 return ret;
1370 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1371 void __user *arg)
1373 struct inode *inode = fdentry(file)->d_inode;
1374 struct btrfs_root *root = BTRFS_I(inode)->root;
1375 int ret = 0;
1376 u64 flags = 0;
1378 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1379 return -EINVAL;
1381 down_read(&root->fs_info->subvol_sem);
1382 if (btrfs_root_readonly(root))
1383 flags |= BTRFS_SUBVOL_RDONLY;
1384 up_read(&root->fs_info->subvol_sem);
1386 if (copy_to_user(arg, &flags, sizeof(flags)))
1387 ret = -EFAULT;
1389 return ret;
1392 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1393 void __user *arg)
1395 struct inode *inode = fdentry(file)->d_inode;
1396 struct btrfs_root *root = BTRFS_I(inode)->root;
1397 struct btrfs_trans_handle *trans;
1398 u64 root_flags;
1399 u64 flags;
1400 int ret = 0;
1402 if (root->fs_info->sb->s_flags & MS_RDONLY)
1403 return -EROFS;
1405 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1406 return -EINVAL;
1408 if (copy_from_user(&flags, arg, sizeof(flags)))
1409 return -EFAULT;
1411 if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1412 return -EINVAL;
1414 if (flags & ~BTRFS_SUBVOL_RDONLY)
1415 return -EOPNOTSUPP;
1417 if (!inode_owner_or_capable(inode))
1418 return -EACCES;
1420 down_write(&root->fs_info->subvol_sem);
1422 /* nothing to do */
1423 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1424 goto out;
1426 root_flags = btrfs_root_flags(&root->root_item);
1427 if (flags & BTRFS_SUBVOL_RDONLY)
1428 btrfs_set_root_flags(&root->root_item,
1429 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1430 else
1431 btrfs_set_root_flags(&root->root_item,
1432 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1434 trans = btrfs_start_transaction(root, 1);
1435 if (IS_ERR(trans)) {
1436 ret = PTR_ERR(trans);
1437 goto out_reset;
1440 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1441 &root->root_key, &root->root_item);
1443 btrfs_commit_transaction(trans, root);
1444 out_reset:
1445 if (ret)
1446 btrfs_set_root_flags(&root->root_item, root_flags);
1447 out:
1448 up_write(&root->fs_info->subvol_sem);
1449 return ret;
1453 * helper to check if the subvolume references other subvolumes
1455 static noinline int may_destroy_subvol(struct btrfs_root *root)
1457 struct btrfs_path *path;
1458 struct btrfs_key key;
1459 int ret;
1461 path = btrfs_alloc_path();
1462 if (!path)
1463 return -ENOMEM;
1465 key.objectid = root->root_key.objectid;
1466 key.type = BTRFS_ROOT_REF_KEY;
1467 key.offset = (u64)-1;
1469 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1470 &key, path, 0, 0);
1471 if (ret < 0)
1472 goto out;
1473 BUG_ON(ret == 0);
1475 ret = 0;
1476 if (path->slots[0] > 0) {
1477 path->slots[0]--;
1478 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1479 if (key.objectid == root->root_key.objectid &&
1480 key.type == BTRFS_ROOT_REF_KEY)
1481 ret = -ENOTEMPTY;
1483 out:
1484 btrfs_free_path(path);
1485 return ret;
1488 static noinline int key_in_sk(struct btrfs_key *key,
1489 struct btrfs_ioctl_search_key *sk)
1491 struct btrfs_key test;
1492 int ret;
1494 test.objectid = sk->min_objectid;
1495 test.type = sk->min_type;
1496 test.offset = sk->min_offset;
1498 ret = btrfs_comp_cpu_keys(key, &test);
1499 if (ret < 0)
1500 return 0;
1502 test.objectid = sk->max_objectid;
1503 test.type = sk->max_type;
1504 test.offset = sk->max_offset;
1506 ret = btrfs_comp_cpu_keys(key, &test);
1507 if (ret > 0)
1508 return 0;
1509 return 1;
1512 static noinline int copy_to_sk(struct btrfs_root *root,
1513 struct btrfs_path *path,
1514 struct btrfs_key *key,
1515 struct btrfs_ioctl_search_key *sk,
1516 char *buf,
1517 unsigned long *sk_offset,
1518 int *num_found)
1520 u64 found_transid;
1521 struct extent_buffer *leaf;
1522 struct btrfs_ioctl_search_header sh;
1523 unsigned long item_off;
1524 unsigned long item_len;
1525 int nritems;
1526 int i;
1527 int slot;
1528 int ret = 0;
1530 leaf = path->nodes[0];
1531 slot = path->slots[0];
1532 nritems = btrfs_header_nritems(leaf);
1534 if (btrfs_header_generation(leaf) > sk->max_transid) {
1535 i = nritems;
1536 goto advance_key;
1538 found_transid = btrfs_header_generation(leaf);
1540 for (i = slot; i < nritems; i++) {
1541 item_off = btrfs_item_ptr_offset(leaf, i);
1542 item_len = btrfs_item_size_nr(leaf, i);
1544 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1545 item_len = 0;
1547 if (sizeof(sh) + item_len + *sk_offset >
1548 BTRFS_SEARCH_ARGS_BUFSIZE) {
1549 ret = 1;
1550 goto overflow;
1553 btrfs_item_key_to_cpu(leaf, key, i);
1554 if (!key_in_sk(key, sk))
1555 continue;
1557 sh.objectid = key->objectid;
1558 sh.offset = key->offset;
1559 sh.type = key->type;
1560 sh.len = item_len;
1561 sh.transid = found_transid;
1563 /* copy search result header */
1564 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1565 *sk_offset += sizeof(sh);
1567 if (item_len) {
1568 char *p = buf + *sk_offset;
1569 /* copy the item */
1570 read_extent_buffer(leaf, p,
1571 item_off, item_len);
1572 *sk_offset += item_len;
1574 (*num_found)++;
1576 if (*num_found >= sk->nr_items)
1577 break;
1579 advance_key:
1580 ret = 0;
1581 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1582 key->offset++;
1583 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1584 key->offset = 0;
1585 key->type++;
1586 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1587 key->offset = 0;
1588 key->type = 0;
1589 key->objectid++;
1590 } else
1591 ret = 1;
1592 overflow:
1593 return ret;
1596 static noinline int search_ioctl(struct inode *inode,
1597 struct btrfs_ioctl_search_args *args)
1599 struct btrfs_root *root;
1600 struct btrfs_key key;
1601 struct btrfs_key max_key;
1602 struct btrfs_path *path;
1603 struct btrfs_ioctl_search_key *sk = &args->key;
1604 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1605 int ret;
1606 int num_found = 0;
1607 unsigned long sk_offset = 0;
1609 path = btrfs_alloc_path();
1610 if (!path)
1611 return -ENOMEM;
1613 if (sk->tree_id == 0) {
1614 /* search the root of the inode that was passed */
1615 root = BTRFS_I(inode)->root;
1616 } else {
1617 key.objectid = sk->tree_id;
1618 key.type = BTRFS_ROOT_ITEM_KEY;
1619 key.offset = (u64)-1;
1620 root = btrfs_read_fs_root_no_name(info, &key);
1621 if (IS_ERR(root)) {
1622 printk(KERN_ERR "could not find root %llu\n",
1623 sk->tree_id);
1624 btrfs_free_path(path);
1625 return -ENOENT;
1629 key.objectid = sk->min_objectid;
1630 key.type = sk->min_type;
1631 key.offset = sk->min_offset;
1633 max_key.objectid = sk->max_objectid;
1634 max_key.type = sk->max_type;
1635 max_key.offset = sk->max_offset;
1637 path->keep_locks = 1;
1639 while(1) {
1640 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1641 sk->min_transid);
1642 if (ret != 0) {
1643 if (ret > 0)
1644 ret = 0;
1645 goto err;
1647 ret = copy_to_sk(root, path, &key, sk, args->buf,
1648 &sk_offset, &num_found);
1649 btrfs_release_path(path);
1650 if (ret || num_found >= sk->nr_items)
1651 break;
1654 ret = 0;
1655 err:
1656 sk->nr_items = num_found;
1657 btrfs_free_path(path);
1658 return ret;
1661 static noinline int btrfs_ioctl_tree_search(struct file *file,
1662 void __user *argp)
1664 struct btrfs_ioctl_search_args *args;
1665 struct inode *inode;
1666 int ret;
1668 if (!capable(CAP_SYS_ADMIN))
1669 return -EPERM;
1671 args = memdup_user(argp, sizeof(*args));
1672 if (IS_ERR(args))
1673 return PTR_ERR(args);
1675 inode = fdentry(file)->d_inode;
1676 ret = search_ioctl(inode, args);
1677 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1678 ret = -EFAULT;
1679 kfree(args);
1680 return ret;
1684 * Search INODE_REFs to identify path name of 'dirid' directory
1685 * in a 'tree_id' tree. and sets path name to 'name'.
1687 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1688 u64 tree_id, u64 dirid, char *name)
1690 struct btrfs_root *root;
1691 struct btrfs_key key;
1692 char *ptr;
1693 int ret = -1;
1694 int slot;
1695 int len;
1696 int total_len = 0;
1697 struct btrfs_inode_ref *iref;
1698 struct extent_buffer *l;
1699 struct btrfs_path *path;
1701 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1702 name[0]='\0';
1703 return 0;
1706 path = btrfs_alloc_path();
1707 if (!path)
1708 return -ENOMEM;
1710 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1712 key.objectid = tree_id;
1713 key.type = BTRFS_ROOT_ITEM_KEY;
1714 key.offset = (u64)-1;
1715 root = btrfs_read_fs_root_no_name(info, &key);
1716 if (IS_ERR(root)) {
1717 printk(KERN_ERR "could not find root %llu\n", tree_id);
1718 ret = -ENOENT;
1719 goto out;
1722 key.objectid = dirid;
1723 key.type = BTRFS_INODE_REF_KEY;
1724 key.offset = (u64)-1;
1726 while(1) {
1727 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1728 if (ret < 0)
1729 goto out;
1731 l = path->nodes[0];
1732 slot = path->slots[0];
1733 if (ret > 0 && slot > 0)
1734 slot--;
1735 btrfs_item_key_to_cpu(l, &key, slot);
1737 if (ret > 0 && (key.objectid != dirid ||
1738 key.type != BTRFS_INODE_REF_KEY)) {
1739 ret = -ENOENT;
1740 goto out;
1743 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1744 len = btrfs_inode_ref_name_len(l, iref);
1745 ptr -= len + 1;
1746 total_len += len + 1;
1747 if (ptr < name)
1748 goto out;
1750 *(ptr + len) = '/';
1751 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1753 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1754 break;
1756 btrfs_release_path(path);
1757 key.objectid = key.offset;
1758 key.offset = (u64)-1;
1759 dirid = key.objectid;
1761 if (ptr < name)
1762 goto out;
1763 memmove(name, ptr, total_len);
1764 name[total_len]='\0';
1765 ret = 0;
1766 out:
1767 btrfs_free_path(path);
1768 return ret;
1771 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1772 void __user *argp)
1774 struct btrfs_ioctl_ino_lookup_args *args;
1775 struct inode *inode;
1776 int ret;
1778 if (!capable(CAP_SYS_ADMIN))
1779 return -EPERM;
1781 args = memdup_user(argp, sizeof(*args));
1782 if (IS_ERR(args))
1783 return PTR_ERR(args);
1785 inode = fdentry(file)->d_inode;
1787 if (args->treeid == 0)
1788 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1790 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1791 args->treeid, args->objectid,
1792 args->name);
1794 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1795 ret = -EFAULT;
1797 kfree(args);
1798 return ret;
1801 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1802 void __user *arg)
1804 struct dentry *parent = fdentry(file);
1805 struct dentry *dentry;
1806 struct inode *dir = parent->d_inode;
1807 struct inode *inode;
1808 struct btrfs_root *root = BTRFS_I(dir)->root;
1809 struct btrfs_root *dest = NULL;
1810 struct btrfs_ioctl_vol_args *vol_args;
1811 struct btrfs_trans_handle *trans;
1812 int namelen;
1813 int ret;
1814 int err = 0;
1816 vol_args = memdup_user(arg, sizeof(*vol_args));
1817 if (IS_ERR(vol_args))
1818 return PTR_ERR(vol_args);
1820 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1821 namelen = strlen(vol_args->name);
1822 if (strchr(vol_args->name, '/') ||
1823 strncmp(vol_args->name, "..", namelen) == 0) {
1824 err = -EINVAL;
1825 goto out;
1828 err = mnt_want_write(file->f_path.mnt);
1829 if (err)
1830 goto out;
1832 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1833 dentry = lookup_one_len(vol_args->name, parent, namelen);
1834 if (IS_ERR(dentry)) {
1835 err = PTR_ERR(dentry);
1836 goto out_unlock_dir;
1839 if (!dentry->d_inode) {
1840 err = -ENOENT;
1841 goto out_dput;
1844 inode = dentry->d_inode;
1845 dest = BTRFS_I(inode)->root;
1846 if (!capable(CAP_SYS_ADMIN)){
1848 * Regular user. Only allow this with a special mount
1849 * option, when the user has write+exec access to the
1850 * subvol root, and when rmdir(2) would have been
1851 * allowed.
1853 * Note that this is _not_ check that the subvol is
1854 * empty or doesn't contain data that we wouldn't
1855 * otherwise be able to delete.
1857 * Users who want to delete empty subvols should try
1858 * rmdir(2).
1860 err = -EPERM;
1861 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1862 goto out_dput;
1865 * Do not allow deletion if the parent dir is the same
1866 * as the dir to be deleted. That means the ioctl
1867 * must be called on the dentry referencing the root
1868 * of the subvol, not a random directory contained
1869 * within it.
1871 err = -EINVAL;
1872 if (root == dest)
1873 goto out_dput;
1875 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1876 if (err)
1877 goto out_dput;
1879 /* check if subvolume may be deleted by a non-root user */
1880 err = btrfs_may_delete(dir, dentry, 1);
1881 if (err)
1882 goto out_dput;
1885 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1886 err = -EINVAL;
1887 goto out_dput;
1890 mutex_lock(&inode->i_mutex);
1891 err = d_invalidate(dentry);
1892 if (err)
1893 goto out_unlock;
1895 down_write(&root->fs_info->subvol_sem);
1897 err = may_destroy_subvol(dest);
1898 if (err)
1899 goto out_up_write;
1901 trans = btrfs_start_transaction(root, 0);
1902 if (IS_ERR(trans)) {
1903 err = PTR_ERR(trans);
1904 goto out_up_write;
1906 trans->block_rsv = &root->fs_info->global_block_rsv;
1908 ret = btrfs_unlink_subvol(trans, root, dir,
1909 dest->root_key.objectid,
1910 dentry->d_name.name,
1911 dentry->d_name.len);
1912 BUG_ON(ret);
1914 btrfs_record_root_in_trans(trans, dest);
1916 memset(&dest->root_item.drop_progress, 0,
1917 sizeof(dest->root_item.drop_progress));
1918 dest->root_item.drop_level = 0;
1919 btrfs_set_root_refs(&dest->root_item, 0);
1921 if (!xchg(&dest->orphan_item_inserted, 1)) {
1922 ret = btrfs_insert_orphan_item(trans,
1923 root->fs_info->tree_root,
1924 dest->root_key.objectid);
1925 BUG_ON(ret);
1928 ret = btrfs_end_transaction(trans, root);
1929 BUG_ON(ret);
1930 inode->i_flags |= S_DEAD;
1931 out_up_write:
1932 up_write(&root->fs_info->subvol_sem);
1933 out_unlock:
1934 mutex_unlock(&inode->i_mutex);
1935 if (!err) {
1936 shrink_dcache_sb(root->fs_info->sb);
1937 btrfs_invalidate_inodes(dest);
1938 d_delete(dentry);
1940 out_dput:
1941 dput(dentry);
1942 out_unlock_dir:
1943 mutex_unlock(&dir->i_mutex);
1944 mnt_drop_write(file->f_path.mnt);
1945 out:
1946 kfree(vol_args);
1947 return err;
1950 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
1952 struct inode *inode = fdentry(file)->d_inode;
1953 struct btrfs_root *root = BTRFS_I(inode)->root;
1954 struct btrfs_ioctl_defrag_range_args *range;
1955 int ret;
1957 if (btrfs_root_readonly(root))
1958 return -EROFS;
1960 ret = mnt_want_write(file->f_path.mnt);
1961 if (ret)
1962 return ret;
1964 switch (inode->i_mode & S_IFMT) {
1965 case S_IFDIR:
1966 if (!capable(CAP_SYS_ADMIN)) {
1967 ret = -EPERM;
1968 goto out;
1970 ret = btrfs_defrag_root(root, 0);
1971 if (ret)
1972 goto out;
1973 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
1974 break;
1975 case S_IFREG:
1976 if (!(file->f_mode & FMODE_WRITE)) {
1977 ret = -EINVAL;
1978 goto out;
1981 range = kzalloc(sizeof(*range), GFP_KERNEL);
1982 if (!range) {
1983 ret = -ENOMEM;
1984 goto out;
1987 if (argp) {
1988 if (copy_from_user(range, argp,
1989 sizeof(*range))) {
1990 ret = -EFAULT;
1991 kfree(range);
1992 goto out;
1994 /* compression requires us to start the IO */
1995 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1996 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
1997 range->extent_thresh = (u32)-1;
1999 } else {
2000 /* the rest are all set to zero by kzalloc */
2001 range->len = (u64)-1;
2003 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2004 range, 0, 0);
2005 if (ret > 0)
2006 ret = 0;
2007 kfree(range);
2008 break;
2009 default:
2010 ret = -EINVAL;
2012 out:
2013 mnt_drop_write(file->f_path.mnt);
2014 return ret;
2017 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2019 struct btrfs_ioctl_vol_args *vol_args;
2020 int ret;
2022 if (!capable(CAP_SYS_ADMIN))
2023 return -EPERM;
2025 vol_args = memdup_user(arg, sizeof(*vol_args));
2026 if (IS_ERR(vol_args))
2027 return PTR_ERR(vol_args);
2029 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2030 ret = btrfs_init_new_device(root, vol_args->name);
2032 kfree(vol_args);
2033 return ret;
2036 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2038 struct btrfs_ioctl_vol_args *vol_args;
2039 int ret;
2041 if (!capable(CAP_SYS_ADMIN))
2042 return -EPERM;
2044 if (root->fs_info->sb->s_flags & MS_RDONLY)
2045 return -EROFS;
2047 vol_args = memdup_user(arg, sizeof(*vol_args));
2048 if (IS_ERR(vol_args))
2049 return PTR_ERR(vol_args);
2051 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2052 ret = btrfs_rm_device(root, vol_args->name);
2054 kfree(vol_args);
2055 return ret;
2058 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2060 struct btrfs_ioctl_fs_info_args *fi_args;
2061 struct btrfs_device *device;
2062 struct btrfs_device *next;
2063 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2064 int ret = 0;
2066 if (!capable(CAP_SYS_ADMIN))
2067 return -EPERM;
2069 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2070 if (!fi_args)
2071 return -ENOMEM;
2073 fi_args->num_devices = fs_devices->num_devices;
2074 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2076 mutex_lock(&fs_devices->device_list_mutex);
2077 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2078 if (device->devid > fi_args->max_id)
2079 fi_args->max_id = device->devid;
2081 mutex_unlock(&fs_devices->device_list_mutex);
2083 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2084 ret = -EFAULT;
2086 kfree(fi_args);
2087 return ret;
2090 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2092 struct btrfs_ioctl_dev_info_args *di_args;
2093 struct btrfs_device *dev;
2094 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2095 int ret = 0;
2096 char *s_uuid = NULL;
2097 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2099 if (!capable(CAP_SYS_ADMIN))
2100 return -EPERM;
2102 di_args = memdup_user(arg, sizeof(*di_args));
2103 if (IS_ERR(di_args))
2104 return PTR_ERR(di_args);
2106 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2107 s_uuid = di_args->uuid;
2109 mutex_lock(&fs_devices->device_list_mutex);
2110 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2111 mutex_unlock(&fs_devices->device_list_mutex);
2113 if (!dev) {
2114 ret = -ENODEV;
2115 goto out;
2118 di_args->devid = dev->devid;
2119 di_args->bytes_used = dev->bytes_used;
2120 di_args->total_bytes = dev->total_bytes;
2121 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2122 strncpy(di_args->path, dev->name, sizeof(di_args->path));
2124 out:
2125 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2126 ret = -EFAULT;
2128 kfree(di_args);
2129 return ret;
2132 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2133 u64 off, u64 olen, u64 destoff)
2135 struct inode *inode = fdentry(file)->d_inode;
2136 struct btrfs_root *root = BTRFS_I(inode)->root;
2137 struct file *src_file;
2138 struct inode *src;
2139 struct btrfs_trans_handle *trans;
2140 struct btrfs_path *path;
2141 struct extent_buffer *leaf;
2142 char *buf;
2143 struct btrfs_key key;
2144 u32 nritems;
2145 int slot;
2146 int ret;
2147 u64 len = olen;
2148 u64 bs = root->fs_info->sb->s_blocksize;
2149 u64 hint_byte;
2152 * TODO:
2153 * - split compressed inline extents. annoying: we need to
2154 * decompress into destination's address_space (the file offset
2155 * may change, so source mapping won't do), then recompress (or
2156 * otherwise reinsert) a subrange.
2157 * - allow ranges within the same file to be cloned (provided
2158 * they don't overlap)?
2161 /* the destination must be opened for writing */
2162 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2163 return -EINVAL;
2165 if (btrfs_root_readonly(root))
2166 return -EROFS;
2168 ret = mnt_want_write(file->f_path.mnt);
2169 if (ret)
2170 return ret;
2172 src_file = fget(srcfd);
2173 if (!src_file) {
2174 ret = -EBADF;
2175 goto out_drop_write;
2178 src = src_file->f_dentry->d_inode;
2180 ret = -EINVAL;
2181 if (src == inode)
2182 goto out_fput;
2184 /* the src must be open for reading */
2185 if (!(src_file->f_mode & FMODE_READ))
2186 goto out_fput;
2188 /* don't make the dst file partly checksummed */
2189 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2190 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2191 goto out_fput;
2193 ret = -EISDIR;
2194 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2195 goto out_fput;
2197 ret = -EXDEV;
2198 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2199 goto out_fput;
2201 ret = -ENOMEM;
2202 buf = vmalloc(btrfs_level_size(root, 0));
2203 if (!buf)
2204 goto out_fput;
2206 path = btrfs_alloc_path();
2207 if (!path) {
2208 vfree(buf);
2209 goto out_fput;
2211 path->reada = 2;
2213 if (inode < src) {
2214 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2215 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2216 } else {
2217 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2218 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2221 /* determine range to clone */
2222 ret = -EINVAL;
2223 if (off + len > src->i_size || off + len < off)
2224 goto out_unlock;
2225 if (len == 0)
2226 olen = len = src->i_size - off;
2227 /* if we extend to eof, continue to block boundary */
2228 if (off + len == src->i_size)
2229 len = ALIGN(src->i_size, bs) - off;
2231 /* verify the end result is block aligned */
2232 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2233 !IS_ALIGNED(destoff, bs))
2234 goto out_unlock;
2236 if (destoff > inode->i_size) {
2237 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2238 if (ret)
2239 goto out_unlock;
2242 /* truncate page cache pages from target inode range */
2243 truncate_inode_pages_range(&inode->i_data, destoff,
2244 PAGE_CACHE_ALIGN(destoff + len) - 1);
2246 /* do any pending delalloc/csum calc on src, one way or
2247 another, and lock file content */
2248 while (1) {
2249 struct btrfs_ordered_extent *ordered;
2250 lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2251 ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2252 if (!ordered &&
2253 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2254 EXTENT_DELALLOC, 0, NULL))
2255 break;
2256 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2257 if (ordered)
2258 btrfs_put_ordered_extent(ordered);
2259 btrfs_wait_ordered_range(src, off, len);
2262 /* clone data */
2263 key.objectid = btrfs_ino(src);
2264 key.type = BTRFS_EXTENT_DATA_KEY;
2265 key.offset = 0;
2267 while (1) {
2269 * note the key will change type as we walk through the
2270 * tree.
2272 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2273 if (ret < 0)
2274 goto out;
2276 nritems = btrfs_header_nritems(path->nodes[0]);
2277 if (path->slots[0] >= nritems) {
2278 ret = btrfs_next_leaf(root, path);
2279 if (ret < 0)
2280 goto out;
2281 if (ret > 0)
2282 break;
2283 nritems = btrfs_header_nritems(path->nodes[0]);
2285 leaf = path->nodes[0];
2286 slot = path->slots[0];
2288 btrfs_item_key_to_cpu(leaf, &key, slot);
2289 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2290 key.objectid != btrfs_ino(src))
2291 break;
2293 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2294 struct btrfs_file_extent_item *extent;
2295 int type;
2296 u32 size;
2297 struct btrfs_key new_key;
2298 u64 disko = 0, diskl = 0;
2299 u64 datao = 0, datal = 0;
2300 u8 comp;
2301 u64 endoff;
2303 size = btrfs_item_size_nr(leaf, slot);
2304 read_extent_buffer(leaf, buf,
2305 btrfs_item_ptr_offset(leaf, slot),
2306 size);
2308 extent = btrfs_item_ptr(leaf, slot,
2309 struct btrfs_file_extent_item);
2310 comp = btrfs_file_extent_compression(leaf, extent);
2311 type = btrfs_file_extent_type(leaf, extent);
2312 if (type == BTRFS_FILE_EXTENT_REG ||
2313 type == BTRFS_FILE_EXTENT_PREALLOC) {
2314 disko = btrfs_file_extent_disk_bytenr(leaf,
2315 extent);
2316 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2317 extent);
2318 datao = btrfs_file_extent_offset(leaf, extent);
2319 datal = btrfs_file_extent_num_bytes(leaf,
2320 extent);
2321 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2322 /* take upper bound, may be compressed */
2323 datal = btrfs_file_extent_ram_bytes(leaf,
2324 extent);
2326 btrfs_release_path(path);
2328 if (key.offset + datal <= off ||
2329 key.offset >= off+len)
2330 goto next;
2332 memcpy(&new_key, &key, sizeof(new_key));
2333 new_key.objectid = btrfs_ino(inode);
2334 if (off <= key.offset)
2335 new_key.offset = key.offset + destoff - off;
2336 else
2337 new_key.offset = destoff;
2340 * 1 - adjusting old extent (we may have to split it)
2341 * 1 - add new extent
2342 * 1 - inode update
2344 trans = btrfs_start_transaction(root, 3);
2345 if (IS_ERR(trans)) {
2346 ret = PTR_ERR(trans);
2347 goto out;
2350 if (type == BTRFS_FILE_EXTENT_REG ||
2351 type == BTRFS_FILE_EXTENT_PREALLOC) {
2353 * a | --- range to clone ---| b
2354 * | ------------- extent ------------- |
2357 /* substract range b */
2358 if (key.offset + datal > off + len)
2359 datal = off + len - key.offset;
2361 /* substract range a */
2362 if (off > key.offset) {
2363 datao += off - key.offset;
2364 datal -= off - key.offset;
2367 ret = btrfs_drop_extents(trans, inode,
2368 new_key.offset,
2369 new_key.offset + datal,
2370 &hint_byte, 1);
2371 BUG_ON(ret);
2373 ret = btrfs_insert_empty_item(trans, root, path,
2374 &new_key, size);
2375 BUG_ON(ret);
2377 leaf = path->nodes[0];
2378 slot = path->slots[0];
2379 write_extent_buffer(leaf, buf,
2380 btrfs_item_ptr_offset(leaf, slot),
2381 size);
2383 extent = btrfs_item_ptr(leaf, slot,
2384 struct btrfs_file_extent_item);
2386 /* disko == 0 means it's a hole */
2387 if (!disko)
2388 datao = 0;
2390 btrfs_set_file_extent_offset(leaf, extent,
2391 datao);
2392 btrfs_set_file_extent_num_bytes(leaf, extent,
2393 datal);
2394 if (disko) {
2395 inode_add_bytes(inode, datal);
2396 ret = btrfs_inc_extent_ref(trans, root,
2397 disko, diskl, 0,
2398 root->root_key.objectid,
2399 btrfs_ino(inode),
2400 new_key.offset - datao);
2401 BUG_ON(ret);
2403 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2404 u64 skip = 0;
2405 u64 trim = 0;
2406 if (off > key.offset) {
2407 skip = off - key.offset;
2408 new_key.offset += skip;
2411 if (key.offset + datal > off+len)
2412 trim = key.offset + datal - (off+len);
2414 if (comp && (skip || trim)) {
2415 ret = -EINVAL;
2416 btrfs_end_transaction(trans, root);
2417 goto out;
2419 size -= skip + trim;
2420 datal -= skip + trim;
2422 ret = btrfs_drop_extents(trans, inode,
2423 new_key.offset,
2424 new_key.offset + datal,
2425 &hint_byte, 1);
2426 BUG_ON(ret);
2428 ret = btrfs_insert_empty_item(trans, root, path,
2429 &new_key, size);
2430 BUG_ON(ret);
2432 if (skip) {
2433 u32 start =
2434 btrfs_file_extent_calc_inline_size(0);
2435 memmove(buf+start, buf+start+skip,
2436 datal);
2439 leaf = path->nodes[0];
2440 slot = path->slots[0];
2441 write_extent_buffer(leaf, buf,
2442 btrfs_item_ptr_offset(leaf, slot),
2443 size);
2444 inode_add_bytes(inode, datal);
2447 btrfs_mark_buffer_dirty(leaf);
2448 btrfs_release_path(path);
2450 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2453 * we round up to the block size at eof when
2454 * determining which extents to clone above,
2455 * but shouldn't round up the file size
2457 endoff = new_key.offset + datal;
2458 if (endoff > destoff+olen)
2459 endoff = destoff+olen;
2460 if (endoff > inode->i_size)
2461 btrfs_i_size_write(inode, endoff);
2463 ret = btrfs_update_inode(trans, root, inode);
2464 BUG_ON(ret);
2465 btrfs_end_transaction(trans, root);
2467 next:
2468 btrfs_release_path(path);
2469 key.offset++;
2471 ret = 0;
2472 out:
2473 btrfs_release_path(path);
2474 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2475 out_unlock:
2476 mutex_unlock(&src->i_mutex);
2477 mutex_unlock(&inode->i_mutex);
2478 vfree(buf);
2479 btrfs_free_path(path);
2480 out_fput:
2481 fput(src_file);
2482 out_drop_write:
2483 mnt_drop_write(file->f_path.mnt);
2484 return ret;
2487 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2489 struct btrfs_ioctl_clone_range_args args;
2491 if (copy_from_user(&args, argp, sizeof(args)))
2492 return -EFAULT;
2493 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2494 args.src_length, args.dest_offset);
2498 * there are many ways the trans_start and trans_end ioctls can lead
2499 * to deadlocks. They should only be used by applications that
2500 * basically own the machine, and have a very in depth understanding
2501 * of all the possible deadlocks and enospc problems.
2503 static long btrfs_ioctl_trans_start(struct file *file)
2505 struct inode *inode = fdentry(file)->d_inode;
2506 struct btrfs_root *root = BTRFS_I(inode)->root;
2507 struct btrfs_trans_handle *trans;
2508 int ret;
2510 ret = -EPERM;
2511 if (!capable(CAP_SYS_ADMIN))
2512 goto out;
2514 ret = -EINPROGRESS;
2515 if (file->private_data)
2516 goto out;
2518 ret = -EROFS;
2519 if (btrfs_root_readonly(root))
2520 goto out;
2522 ret = mnt_want_write(file->f_path.mnt);
2523 if (ret)
2524 goto out;
2526 atomic_inc(&root->fs_info->open_ioctl_trans);
2528 ret = -ENOMEM;
2529 trans = btrfs_start_ioctl_transaction(root);
2530 if (IS_ERR(trans))
2531 goto out_drop;
2533 file->private_data = trans;
2534 return 0;
2536 out_drop:
2537 atomic_dec(&root->fs_info->open_ioctl_trans);
2538 mnt_drop_write(file->f_path.mnt);
2539 out:
2540 return ret;
2543 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2545 struct inode *inode = fdentry(file)->d_inode;
2546 struct btrfs_root *root = BTRFS_I(inode)->root;
2547 struct btrfs_root *new_root;
2548 struct btrfs_dir_item *di;
2549 struct btrfs_trans_handle *trans;
2550 struct btrfs_path *path;
2551 struct btrfs_key location;
2552 struct btrfs_disk_key disk_key;
2553 struct btrfs_super_block *disk_super;
2554 u64 features;
2555 u64 objectid = 0;
2556 u64 dir_id;
2558 if (!capable(CAP_SYS_ADMIN))
2559 return -EPERM;
2561 if (copy_from_user(&objectid, argp, sizeof(objectid)))
2562 return -EFAULT;
2564 if (!objectid)
2565 objectid = root->root_key.objectid;
2567 location.objectid = objectid;
2568 location.type = BTRFS_ROOT_ITEM_KEY;
2569 location.offset = (u64)-1;
2571 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2572 if (IS_ERR(new_root))
2573 return PTR_ERR(new_root);
2575 if (btrfs_root_refs(&new_root->root_item) == 0)
2576 return -ENOENT;
2578 path = btrfs_alloc_path();
2579 if (!path)
2580 return -ENOMEM;
2581 path->leave_spinning = 1;
2583 trans = btrfs_start_transaction(root, 1);
2584 if (IS_ERR(trans)) {
2585 btrfs_free_path(path);
2586 return PTR_ERR(trans);
2589 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
2590 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2591 dir_id, "default", 7, 1);
2592 if (IS_ERR_OR_NULL(di)) {
2593 btrfs_free_path(path);
2594 btrfs_end_transaction(trans, root);
2595 printk(KERN_ERR "Umm, you don't have the default dir item, "
2596 "this isn't going to work\n");
2597 return -ENOENT;
2600 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2601 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2602 btrfs_mark_buffer_dirty(path->nodes[0]);
2603 btrfs_free_path(path);
2605 disk_super = &root->fs_info->super_copy;
2606 features = btrfs_super_incompat_flags(disk_super);
2607 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2608 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2609 btrfs_set_super_incompat_flags(disk_super, features);
2611 btrfs_end_transaction(trans, root);
2613 return 0;
2616 static void get_block_group_info(struct list_head *groups_list,
2617 struct btrfs_ioctl_space_info *space)
2619 struct btrfs_block_group_cache *block_group;
2621 space->total_bytes = 0;
2622 space->used_bytes = 0;
2623 space->flags = 0;
2624 list_for_each_entry(block_group, groups_list, list) {
2625 space->flags = block_group->flags;
2626 space->total_bytes += block_group->key.offset;
2627 space->used_bytes +=
2628 btrfs_block_group_used(&block_group->item);
2632 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2634 struct btrfs_ioctl_space_args space_args;
2635 struct btrfs_ioctl_space_info space;
2636 struct btrfs_ioctl_space_info *dest;
2637 struct btrfs_ioctl_space_info *dest_orig;
2638 struct btrfs_ioctl_space_info __user *user_dest;
2639 struct btrfs_space_info *info;
2640 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2641 BTRFS_BLOCK_GROUP_SYSTEM,
2642 BTRFS_BLOCK_GROUP_METADATA,
2643 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2644 int num_types = 4;
2645 int alloc_size;
2646 int ret = 0;
2647 u64 slot_count = 0;
2648 int i, c;
2650 if (copy_from_user(&space_args,
2651 (struct btrfs_ioctl_space_args __user *)arg,
2652 sizeof(space_args)))
2653 return -EFAULT;
2655 for (i = 0; i < num_types; i++) {
2656 struct btrfs_space_info *tmp;
2658 info = NULL;
2659 rcu_read_lock();
2660 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2661 list) {
2662 if (tmp->flags == types[i]) {
2663 info = tmp;
2664 break;
2667 rcu_read_unlock();
2669 if (!info)
2670 continue;
2672 down_read(&info->groups_sem);
2673 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2674 if (!list_empty(&info->block_groups[c]))
2675 slot_count++;
2677 up_read(&info->groups_sem);
2680 /* space_slots == 0 means they are asking for a count */
2681 if (space_args.space_slots == 0) {
2682 space_args.total_spaces = slot_count;
2683 goto out;
2686 slot_count = min_t(u64, space_args.space_slots, slot_count);
2688 alloc_size = sizeof(*dest) * slot_count;
2690 /* we generally have at most 6 or so space infos, one for each raid
2691 * level. So, a whole page should be more than enough for everyone
2693 if (alloc_size > PAGE_CACHE_SIZE)
2694 return -ENOMEM;
2696 space_args.total_spaces = 0;
2697 dest = kmalloc(alloc_size, GFP_NOFS);
2698 if (!dest)
2699 return -ENOMEM;
2700 dest_orig = dest;
2702 /* now we have a buffer to copy into */
2703 for (i = 0; i < num_types; i++) {
2704 struct btrfs_space_info *tmp;
2706 if (!slot_count)
2707 break;
2709 info = NULL;
2710 rcu_read_lock();
2711 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2712 list) {
2713 if (tmp->flags == types[i]) {
2714 info = tmp;
2715 break;
2718 rcu_read_unlock();
2720 if (!info)
2721 continue;
2722 down_read(&info->groups_sem);
2723 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2724 if (!list_empty(&info->block_groups[c])) {
2725 get_block_group_info(&info->block_groups[c],
2726 &space);
2727 memcpy(dest, &space, sizeof(space));
2728 dest++;
2729 space_args.total_spaces++;
2730 slot_count--;
2732 if (!slot_count)
2733 break;
2735 up_read(&info->groups_sem);
2738 user_dest = (struct btrfs_ioctl_space_info *)
2739 (arg + sizeof(struct btrfs_ioctl_space_args));
2741 if (copy_to_user(user_dest, dest_orig, alloc_size))
2742 ret = -EFAULT;
2744 kfree(dest_orig);
2745 out:
2746 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2747 ret = -EFAULT;
2749 return ret;
2753 * there are many ways the trans_start and trans_end ioctls can lead
2754 * to deadlocks. They should only be used by applications that
2755 * basically own the machine, and have a very in depth understanding
2756 * of all the possible deadlocks and enospc problems.
2758 long btrfs_ioctl_trans_end(struct file *file)
2760 struct inode *inode = fdentry(file)->d_inode;
2761 struct btrfs_root *root = BTRFS_I(inode)->root;
2762 struct btrfs_trans_handle *trans;
2764 trans = file->private_data;
2765 if (!trans)
2766 return -EINVAL;
2767 file->private_data = NULL;
2769 btrfs_end_transaction(trans, root);
2771 atomic_dec(&root->fs_info->open_ioctl_trans);
2773 mnt_drop_write(file->f_path.mnt);
2774 return 0;
2777 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2779 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2780 struct btrfs_trans_handle *trans;
2781 u64 transid;
2782 int ret;
2784 trans = btrfs_start_transaction(root, 0);
2785 if (IS_ERR(trans))
2786 return PTR_ERR(trans);
2787 transid = trans->transid;
2788 ret = btrfs_commit_transaction_async(trans, root, 0);
2789 if (ret) {
2790 btrfs_end_transaction(trans, root);
2791 return ret;
2794 if (argp)
2795 if (copy_to_user(argp, &transid, sizeof(transid)))
2796 return -EFAULT;
2797 return 0;
2800 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
2802 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2803 u64 transid;
2805 if (argp) {
2806 if (copy_from_user(&transid, argp, sizeof(transid)))
2807 return -EFAULT;
2808 } else {
2809 transid = 0; /* current trans */
2811 return btrfs_wait_for_commit(root, transid);
2814 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
2816 int ret;
2817 struct btrfs_ioctl_scrub_args *sa;
2819 if (!capable(CAP_SYS_ADMIN))
2820 return -EPERM;
2822 sa = memdup_user(arg, sizeof(*sa));
2823 if (IS_ERR(sa))
2824 return PTR_ERR(sa);
2826 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
2827 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
2829 if (copy_to_user(arg, sa, sizeof(*sa)))
2830 ret = -EFAULT;
2832 kfree(sa);
2833 return ret;
2836 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
2838 if (!capable(CAP_SYS_ADMIN))
2839 return -EPERM;
2841 return btrfs_scrub_cancel(root);
2844 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
2845 void __user *arg)
2847 struct btrfs_ioctl_scrub_args *sa;
2848 int ret;
2850 if (!capable(CAP_SYS_ADMIN))
2851 return -EPERM;
2853 sa = memdup_user(arg, sizeof(*sa));
2854 if (IS_ERR(sa))
2855 return PTR_ERR(sa);
2857 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
2859 if (copy_to_user(arg, sa, sizeof(*sa)))
2860 ret = -EFAULT;
2862 kfree(sa);
2863 return ret;
2866 long btrfs_ioctl(struct file *file, unsigned int
2867 cmd, unsigned long arg)
2869 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
2870 void __user *argp = (void __user *)arg;
2872 switch (cmd) {
2873 case FS_IOC_GETFLAGS:
2874 return btrfs_ioctl_getflags(file, argp);
2875 case FS_IOC_SETFLAGS:
2876 return btrfs_ioctl_setflags(file, argp);
2877 case FS_IOC_GETVERSION:
2878 return btrfs_ioctl_getversion(file, argp);
2879 case FITRIM:
2880 return btrfs_ioctl_fitrim(file, argp);
2881 case BTRFS_IOC_SNAP_CREATE:
2882 return btrfs_ioctl_snap_create(file, argp, 0);
2883 case BTRFS_IOC_SNAP_CREATE_V2:
2884 return btrfs_ioctl_snap_create_v2(file, argp, 0);
2885 case BTRFS_IOC_SUBVOL_CREATE:
2886 return btrfs_ioctl_snap_create(file, argp, 1);
2887 case BTRFS_IOC_SNAP_DESTROY:
2888 return btrfs_ioctl_snap_destroy(file, argp);
2889 case BTRFS_IOC_SUBVOL_GETFLAGS:
2890 return btrfs_ioctl_subvol_getflags(file, argp);
2891 case BTRFS_IOC_SUBVOL_SETFLAGS:
2892 return btrfs_ioctl_subvol_setflags(file, argp);
2893 case BTRFS_IOC_DEFAULT_SUBVOL:
2894 return btrfs_ioctl_default_subvol(file, argp);
2895 case BTRFS_IOC_DEFRAG:
2896 return btrfs_ioctl_defrag(file, NULL);
2897 case BTRFS_IOC_DEFRAG_RANGE:
2898 return btrfs_ioctl_defrag(file, argp);
2899 case BTRFS_IOC_RESIZE:
2900 return btrfs_ioctl_resize(root, argp);
2901 case BTRFS_IOC_ADD_DEV:
2902 return btrfs_ioctl_add_dev(root, argp);
2903 case BTRFS_IOC_RM_DEV:
2904 return btrfs_ioctl_rm_dev(root, argp);
2905 case BTRFS_IOC_FS_INFO:
2906 return btrfs_ioctl_fs_info(root, argp);
2907 case BTRFS_IOC_DEV_INFO:
2908 return btrfs_ioctl_dev_info(root, argp);
2909 case BTRFS_IOC_BALANCE:
2910 return btrfs_balance(root->fs_info->dev_root);
2911 case BTRFS_IOC_CLONE:
2912 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
2913 case BTRFS_IOC_CLONE_RANGE:
2914 return btrfs_ioctl_clone_range(file, argp);
2915 case BTRFS_IOC_TRANS_START:
2916 return btrfs_ioctl_trans_start(file);
2917 case BTRFS_IOC_TRANS_END:
2918 return btrfs_ioctl_trans_end(file);
2919 case BTRFS_IOC_TREE_SEARCH:
2920 return btrfs_ioctl_tree_search(file, argp);
2921 case BTRFS_IOC_INO_LOOKUP:
2922 return btrfs_ioctl_ino_lookup(file, argp);
2923 case BTRFS_IOC_SPACE_INFO:
2924 return btrfs_ioctl_space_info(root, argp);
2925 case BTRFS_IOC_SYNC:
2926 btrfs_sync_fs(file->f_dentry->d_sb, 1);
2927 return 0;
2928 case BTRFS_IOC_START_SYNC:
2929 return btrfs_ioctl_start_sync(file, argp);
2930 case BTRFS_IOC_WAIT_SYNC:
2931 return btrfs_ioctl_wait_sync(file, argp);
2932 case BTRFS_IOC_SCRUB:
2933 return btrfs_ioctl_scrub(root, argp);
2934 case BTRFS_IOC_SCRUB_CANCEL:
2935 return btrfs_ioctl_scrub_cancel(root, argp);
2936 case BTRFS_IOC_SCRUB_PROGRESS:
2937 return btrfs_ioctl_scrub_progress(root, argp);
2940 return -ENOTTY;