2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
47 #include "transaction.h"
48 #include "btrfs_inode.h"
50 #include "print-tree.h"
53 #include "inode-map.h"
55 /* Mask out flags that are inappropriate for the given type of inode. */
56 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
60 else if (S_ISREG(mode
))
61 return flags
& ~FS_DIRSYNC_FL
;
63 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
67 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
69 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
71 unsigned int iflags
= 0;
73 if (flags
& BTRFS_INODE_SYNC
)
75 if (flags
& BTRFS_INODE_IMMUTABLE
)
76 iflags
|= FS_IMMUTABLE_FL
;
77 if (flags
& BTRFS_INODE_APPEND
)
78 iflags
|= FS_APPEND_FL
;
79 if (flags
& BTRFS_INODE_NODUMP
)
80 iflags
|= FS_NODUMP_FL
;
81 if (flags
& BTRFS_INODE_NOATIME
)
82 iflags
|= FS_NOATIME_FL
;
83 if (flags
& BTRFS_INODE_DIRSYNC
)
84 iflags
|= FS_DIRSYNC_FL
;
85 if (flags
& BTRFS_INODE_NODATACOW
)
86 iflags
|= FS_NOCOW_FL
;
88 if ((flags
& BTRFS_INODE_COMPRESS
) && !(flags
& BTRFS_INODE_NOCOMPRESS
))
89 iflags
|= FS_COMPR_FL
;
90 else if (flags
& BTRFS_INODE_NOCOMPRESS
)
91 iflags
|= FS_NOCOMP_FL
;
97 * Update inode->i_flags based on the btrfs internal flags.
99 void btrfs_update_iflags(struct inode
*inode
)
101 struct btrfs_inode
*ip
= BTRFS_I(inode
);
103 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
105 if (ip
->flags
& BTRFS_INODE_SYNC
)
106 inode
->i_flags
|= S_SYNC
;
107 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
108 inode
->i_flags
|= S_IMMUTABLE
;
109 if (ip
->flags
& BTRFS_INODE_APPEND
)
110 inode
->i_flags
|= S_APPEND
;
111 if (ip
->flags
& BTRFS_INODE_NOATIME
)
112 inode
->i_flags
|= S_NOATIME
;
113 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
114 inode
->i_flags
|= S_DIRSYNC
;
118 * Inherit flags from the parent inode.
120 * Unlike extN we don't have any flags we don't want to inherit currently.
122 void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
129 flags
= BTRFS_I(dir
)->flags
;
131 if (S_ISREG(inode
->i_mode
))
132 flags
&= ~BTRFS_INODE_DIRSYNC
;
133 else if (!S_ISDIR(inode
->i_mode
))
134 flags
&= (BTRFS_INODE_NODUMP
| BTRFS_INODE_NOATIME
);
136 BTRFS_I(inode
)->flags
= flags
;
137 btrfs_update_iflags(inode
);
140 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
142 struct btrfs_inode
*ip
= BTRFS_I(file
->f_path
.dentry
->d_inode
);
143 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
145 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
150 static int check_flags(unsigned int flags
)
152 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
153 FS_NOATIME_FL
| FS_NODUMP_FL
| \
154 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
155 FS_NOCOMP_FL
| FS_COMPR_FL
|
159 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
165 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
167 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
168 struct btrfs_inode
*ip
= BTRFS_I(inode
);
169 struct btrfs_root
*root
= ip
->root
;
170 struct btrfs_trans_handle
*trans
;
171 unsigned int flags
, oldflags
;
174 if (btrfs_root_readonly(root
))
177 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
180 ret
= check_flags(flags
);
184 if (!inode_owner_or_capable(inode
))
187 mutex_lock(&inode
->i_mutex
);
189 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
190 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
191 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
192 if (!capable(CAP_LINUX_IMMUTABLE
)) {
198 ret
= mnt_want_write(file
->f_path
.mnt
);
202 if (flags
& FS_SYNC_FL
)
203 ip
->flags
|= BTRFS_INODE_SYNC
;
205 ip
->flags
&= ~BTRFS_INODE_SYNC
;
206 if (flags
& FS_IMMUTABLE_FL
)
207 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
209 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
210 if (flags
& FS_APPEND_FL
)
211 ip
->flags
|= BTRFS_INODE_APPEND
;
213 ip
->flags
&= ~BTRFS_INODE_APPEND
;
214 if (flags
& FS_NODUMP_FL
)
215 ip
->flags
|= BTRFS_INODE_NODUMP
;
217 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
218 if (flags
& FS_NOATIME_FL
)
219 ip
->flags
|= BTRFS_INODE_NOATIME
;
221 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
222 if (flags
& FS_DIRSYNC_FL
)
223 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
225 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
226 if (flags
& FS_NOCOW_FL
)
227 ip
->flags
|= BTRFS_INODE_NODATACOW
;
229 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
232 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
233 * flag may be changed automatically if compression code won't make
236 if (flags
& FS_NOCOMP_FL
) {
237 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
238 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
239 } else if (flags
& FS_COMPR_FL
) {
240 ip
->flags
|= BTRFS_INODE_COMPRESS
;
241 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
243 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
246 trans
= btrfs_join_transaction(root
);
247 BUG_ON(IS_ERR(trans
));
249 ret
= btrfs_update_inode(trans
, root
, inode
);
252 btrfs_update_iflags(inode
);
253 inode
->i_ctime
= CURRENT_TIME
;
254 btrfs_end_transaction(trans
, root
);
256 mnt_drop_write(file
->f_path
.mnt
);
260 mutex_unlock(&inode
->i_mutex
);
264 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
266 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
268 return put_user(inode
->i_generation
, arg
);
271 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
273 struct btrfs_root
*root
= fdentry(file
)->d_sb
->s_fs_info
;
274 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
275 struct btrfs_device
*device
;
276 struct request_queue
*q
;
277 struct fstrim_range range
;
278 u64 minlen
= ULLONG_MAX
;
282 if (!capable(CAP_SYS_ADMIN
))
286 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
290 q
= bdev_get_queue(device
->bdev
);
291 if (blk_queue_discard(q
)) {
293 minlen
= min((u64
)q
->limits
.discard_granularity
,
301 if (copy_from_user(&range
, arg
, sizeof(range
)))
304 range
.minlen
= max(range
.minlen
, minlen
);
305 ret
= btrfs_trim_fs(root
, &range
);
309 if (copy_to_user(arg
, &range
, sizeof(range
)))
315 static noinline
int create_subvol(struct btrfs_root
*root
,
316 struct dentry
*dentry
,
317 char *name
, int namelen
,
320 struct btrfs_trans_handle
*trans
;
321 struct btrfs_key key
;
322 struct btrfs_root_item root_item
;
323 struct btrfs_inode_item
*inode_item
;
324 struct extent_buffer
*leaf
;
325 struct btrfs_root
*new_root
;
326 struct dentry
*parent
= dget_parent(dentry
);
331 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
334 ret
= btrfs_find_free_objectid(root
->fs_info
->tree_root
, &objectid
);
340 dir
= parent
->d_inode
;
348 trans
= btrfs_start_transaction(root
, 6);
351 return PTR_ERR(trans
);
354 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
355 0, objectid
, NULL
, 0, 0, 0);
361 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
362 btrfs_set_header_bytenr(leaf
, leaf
->start
);
363 btrfs_set_header_generation(leaf
, trans
->transid
);
364 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
365 btrfs_set_header_owner(leaf
, objectid
);
367 write_extent_buffer(leaf
, root
->fs_info
->fsid
,
368 (unsigned long)btrfs_header_fsid(leaf
),
370 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
371 (unsigned long)btrfs_header_chunk_tree_uuid(leaf
),
373 btrfs_mark_buffer_dirty(leaf
);
375 inode_item
= &root_item
.inode
;
376 memset(inode_item
, 0, sizeof(*inode_item
));
377 inode_item
->generation
= cpu_to_le64(1);
378 inode_item
->size
= cpu_to_le64(3);
379 inode_item
->nlink
= cpu_to_le32(1);
380 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
381 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
384 root_item
.byte_limit
= 0;
385 inode_item
->flags
= cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT
);
387 btrfs_set_root_bytenr(&root_item
, leaf
->start
);
388 btrfs_set_root_generation(&root_item
, trans
->transid
);
389 btrfs_set_root_level(&root_item
, 0);
390 btrfs_set_root_refs(&root_item
, 1);
391 btrfs_set_root_used(&root_item
, leaf
->len
);
392 btrfs_set_root_last_snapshot(&root_item
, 0);
394 memset(&root_item
.drop_progress
, 0, sizeof(root_item
.drop_progress
));
395 root_item
.drop_level
= 0;
397 btrfs_tree_unlock(leaf
);
398 free_extent_buffer(leaf
);
401 btrfs_set_root_dirid(&root_item
, new_dirid
);
403 key
.objectid
= objectid
;
405 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
406 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
411 key
.offset
= (u64
)-1;
412 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
413 BUG_ON(IS_ERR(new_root
));
415 btrfs_record_root_in_trans(trans
, new_root
);
417 ret
= btrfs_create_subvol_root(trans
, new_root
, new_dirid
);
419 * insert the directory item
421 ret
= btrfs_set_inode_index(dir
, &index
);
424 ret
= btrfs_insert_dir_item(trans
, root
,
425 name
, namelen
, dir
, &key
,
426 BTRFS_FT_DIR
, index
);
430 btrfs_i_size_write(dir
, dir
->i_size
+ namelen
* 2);
431 ret
= btrfs_update_inode(trans
, root
, dir
);
434 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
435 objectid
, root
->root_key
.objectid
,
436 btrfs_ino(dir
), index
, name
, namelen
);
440 d_instantiate(dentry
, btrfs_lookup_dentry(dir
, dentry
));
444 *async_transid
= trans
->transid
;
445 err
= btrfs_commit_transaction_async(trans
, root
, 1);
447 err
= btrfs_commit_transaction(trans
, root
);
454 static int create_snapshot(struct btrfs_root
*root
, struct dentry
*dentry
,
455 char *name
, int namelen
, u64
*async_transid
,
459 struct dentry
*parent
;
460 struct btrfs_pending_snapshot
*pending_snapshot
;
461 struct btrfs_trans_handle
*trans
;
467 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_NOFS
);
468 if (!pending_snapshot
)
471 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
);
472 pending_snapshot
->dentry
= dentry
;
473 pending_snapshot
->root
= root
;
474 pending_snapshot
->readonly
= readonly
;
476 trans
= btrfs_start_transaction(root
->fs_info
->extent_root
, 5);
478 ret
= PTR_ERR(trans
);
482 ret
= btrfs_snap_reserve_metadata(trans
, pending_snapshot
);
485 spin_lock(&root
->fs_info
->trans_lock
);
486 list_add(&pending_snapshot
->list
,
487 &trans
->transaction
->pending_snapshots
);
488 spin_unlock(&root
->fs_info
->trans_lock
);
490 *async_transid
= trans
->transid
;
491 ret
= btrfs_commit_transaction_async(trans
,
492 root
->fs_info
->extent_root
, 1);
494 ret
= btrfs_commit_transaction(trans
,
495 root
->fs_info
->extent_root
);
499 ret
= pending_snapshot
->error
;
503 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
507 parent
= dget_parent(dentry
);
508 inode
= btrfs_lookup_dentry(parent
->d_inode
, dentry
);
511 ret
= PTR_ERR(inode
);
515 d_instantiate(dentry
, inode
);
518 kfree(pending_snapshot
);
522 /* copy of check_sticky in fs/namei.c()
523 * It's inline, so penalty for filesystems that don't use sticky bit is
526 static inline int btrfs_check_sticky(struct inode
*dir
, struct inode
*inode
)
528 uid_t fsuid
= current_fsuid();
530 if (!(dir
->i_mode
& S_ISVTX
))
532 if (inode
->i_uid
== fsuid
)
534 if (dir
->i_uid
== fsuid
)
536 return !capable(CAP_FOWNER
);
539 /* copy of may_delete in fs/namei.c()
540 * Check whether we can remove a link victim from directory dir, check
541 * whether the type of victim is right.
542 * 1. We can't do it if dir is read-only (done in permission())
543 * 2. We should have write and exec permissions on dir
544 * 3. We can't remove anything from append-only dir
545 * 4. We can't do anything with immutable dir (done in permission())
546 * 5. If the sticky bit on dir is set we should either
547 * a. be owner of dir, or
548 * b. be owner of victim, or
549 * c. have CAP_FOWNER capability
550 * 6. If the victim is append-only or immutable we can't do antyhing with
551 * links pointing to it.
552 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
553 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
554 * 9. We can't remove a root or mountpoint.
555 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
556 * nfs_async_unlink().
559 static int btrfs_may_delete(struct inode
*dir
,struct dentry
*victim
,int isdir
)
563 if (!victim
->d_inode
)
566 BUG_ON(victim
->d_parent
->d_inode
!= dir
);
567 audit_inode_child(victim
, dir
);
569 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
574 if (btrfs_check_sticky(dir
, victim
->d_inode
)||
575 IS_APPEND(victim
->d_inode
)||
576 IS_IMMUTABLE(victim
->d_inode
) || IS_SWAPFILE(victim
->d_inode
))
579 if (!S_ISDIR(victim
->d_inode
->i_mode
))
583 } else if (S_ISDIR(victim
->d_inode
->i_mode
))
587 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
592 /* copy of may_create in fs/namei.c() */
593 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
599 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
603 * Create a new subvolume below @parent. This is largely modeled after
604 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
605 * inside this filesystem so it's quite a bit simpler.
607 static noinline
int btrfs_mksubvol(struct path
*parent
,
608 char *name
, int namelen
,
609 struct btrfs_root
*snap_src
,
610 u64
*async_transid
, bool readonly
)
612 struct inode
*dir
= parent
->dentry
->d_inode
;
613 struct dentry
*dentry
;
616 mutex_lock_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
618 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
619 error
= PTR_ERR(dentry
);
627 error
= mnt_want_write(parent
->mnt
);
631 error
= btrfs_may_create(dir
, dentry
);
635 down_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
637 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
641 error
= create_snapshot(snap_src
, dentry
,
642 name
, namelen
, async_transid
, readonly
);
644 error
= create_subvol(BTRFS_I(dir
)->root
, dentry
,
645 name
, namelen
, async_transid
);
648 fsnotify_mkdir(dir
, dentry
);
650 up_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
652 mnt_drop_write(parent
->mnt
);
656 mutex_unlock(&dir
->i_mutex
);
661 * When we're defragging a range, we don't want to kick it off again
662 * if it is really just waiting for delalloc to send it down.
663 * If we find a nice big extent or delalloc range for the bytes in the
664 * file you want to defrag, we return 0 to let you know to skip this
667 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, int thresh
)
669 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
670 struct extent_map
*em
= NULL
;
671 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
674 read_lock(&em_tree
->lock
);
675 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
676 read_unlock(&em_tree
->lock
);
679 end
= extent_map_end(em
);
681 if (end
- offset
> thresh
)
684 /* if we already have a nice delalloc here, just stop */
686 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
687 thresh
, EXTENT_DELALLOC
, 1);
694 * helper function to walk through a file and find extents
695 * newer than a specific transid, and smaller than thresh.
697 * This is used by the defragging code to find new and small
700 static int find_new_extents(struct btrfs_root
*root
,
701 struct inode
*inode
, u64 newer_than
,
702 u64
*off
, int thresh
)
704 struct btrfs_path
*path
;
705 struct btrfs_key min_key
;
706 struct btrfs_key max_key
;
707 struct extent_buffer
*leaf
;
708 struct btrfs_file_extent_item
*extent
;
711 u64 ino
= btrfs_ino(inode
);
713 path
= btrfs_alloc_path();
717 min_key
.objectid
= ino
;
718 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
719 min_key
.offset
= *off
;
721 max_key
.objectid
= ino
;
722 max_key
.type
= (u8
)-1;
723 max_key
.offset
= (u64
)-1;
725 path
->keep_locks
= 1;
728 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
729 path
, 0, newer_than
);
732 if (min_key
.objectid
!= ino
)
734 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
737 leaf
= path
->nodes
[0];
738 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
739 struct btrfs_file_extent_item
);
741 type
= btrfs_file_extent_type(leaf
, extent
);
742 if (type
== BTRFS_FILE_EXTENT_REG
&&
743 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
744 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
745 *off
= min_key
.offset
;
746 btrfs_free_path(path
);
750 if (min_key
.offset
== (u64
)-1)
754 btrfs_release_path(path
);
757 btrfs_free_path(path
);
761 static int should_defrag_range(struct inode
*inode
, u64 start
, u64 len
,
762 int thresh
, u64
*last_len
, u64
*skip
,
765 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
766 struct extent_map
*em
= NULL
;
767 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
771 * make sure that once we start defragging and extent, we keep on
774 if (start
< *defrag_end
)
780 * hopefully we have this extent in the tree already, try without
781 * the full extent lock
783 read_lock(&em_tree
->lock
);
784 em
= lookup_extent_mapping(em_tree
, start
, len
);
785 read_unlock(&em_tree
->lock
);
788 /* get the big lock and read metadata off disk */
789 lock_extent(io_tree
, start
, start
+ len
- 1, GFP_NOFS
);
790 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
791 unlock_extent(io_tree
, start
, start
+ len
- 1, GFP_NOFS
);
797 /* this will cover holes, and inline extents */
798 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
)
802 * we hit a real extent, if it is big don't bother defragging it again
804 if ((*last_len
== 0 || *last_len
>= thresh
) && em
->len
>= thresh
)
808 * last_len ends up being a counter of how many bytes we've defragged.
809 * every time we choose not to defrag an extent, we reset *last_len
810 * so that the next tiny extent will force a defrag.
812 * The end result of this is that tiny extents before a single big
813 * extent will force at least part of that big extent to be defragged.
817 *defrag_end
= extent_map_end(em
);
820 *skip
= extent_map_end(em
);
829 * it doesn't do much good to defrag one or two pages
830 * at a time. This pulls in a nice chunk of pages
833 * It also makes sure the delalloc code has enough
834 * dirty data to avoid making new small extents as part
837 * It's a good idea to start RA on this range
838 * before calling this.
840 static int cluster_pages_for_defrag(struct inode
*inode
,
842 unsigned long start_index
,
845 unsigned long file_end
;
846 u64 isize
= i_size_read(inode
);
852 struct btrfs_ordered_extent
*ordered
;
853 struct extent_state
*cached_state
= NULL
;
857 file_end
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
859 ret
= btrfs_delalloc_reserve_space(inode
,
860 num_pages
<< PAGE_CACHE_SHIFT
);
867 /* step one, lock all the pages */
868 for (i
= 0; i
< num_pages
; i
++) {
870 page
= find_or_create_page(inode
->i_mapping
,
871 start_index
+ i
, GFP_NOFS
);
875 if (!PageUptodate(page
)) {
876 btrfs_readpage(NULL
, page
);
878 if (!PageUptodate(page
)) {
880 page_cache_release(page
);
885 isize
= i_size_read(inode
);
886 file_end
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
887 if (!isize
|| page
->index
> file_end
||
888 page
->mapping
!= inode
->i_mapping
) {
889 /* whoops, we blew past eof, skip this page */
891 page_cache_release(page
);
900 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
904 * so now we have a nice long stream of locked
905 * and up to date pages, lets wait on them
907 for (i
= 0; i
< i_done
; i
++)
908 wait_on_page_writeback(pages
[i
]);
910 page_start
= page_offset(pages
[0]);
911 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_CACHE_SIZE
;
913 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
914 page_start
, page_end
- 1, 0, &cached_state
,
916 ordered
= btrfs_lookup_first_ordered_extent(inode
, page_end
- 1);
918 ordered
->file_offset
+ ordered
->len
> page_start
&&
919 ordered
->file_offset
< page_end
) {
920 btrfs_put_ordered_extent(ordered
);
921 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
922 page_start
, page_end
- 1,
923 &cached_state
, GFP_NOFS
);
924 for (i
= 0; i
< i_done
; i
++) {
925 unlock_page(pages
[i
]);
926 page_cache_release(pages
[i
]);
928 btrfs_wait_ordered_range(inode
, page_start
,
929 page_end
- page_start
);
933 btrfs_put_ordered_extent(ordered
);
935 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
936 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
937 EXTENT_DO_ACCOUNTING
, 0, 0, &cached_state
,
940 if (i_done
!= num_pages
) {
941 spin_lock(&BTRFS_I(inode
)->lock
);
942 BTRFS_I(inode
)->outstanding_extents
++;
943 spin_unlock(&BTRFS_I(inode
)->lock
);
944 btrfs_delalloc_release_space(inode
,
945 (num_pages
- i_done
) << PAGE_CACHE_SHIFT
);
949 btrfs_set_extent_delalloc(inode
, page_start
, page_end
- 1,
952 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
953 page_start
, page_end
- 1, &cached_state
,
956 for (i
= 0; i
< i_done
; i
++) {
957 clear_page_dirty_for_io(pages
[i
]);
958 ClearPageChecked(pages
[i
]);
959 set_page_extent_mapped(pages
[i
]);
960 set_page_dirty(pages
[i
]);
961 unlock_page(pages
[i
]);
962 page_cache_release(pages
[i
]);
966 for (i
= 0; i
< i_done
; i
++) {
967 unlock_page(pages
[i
]);
968 page_cache_release(pages
[i
]);
970 btrfs_delalloc_release_space(inode
, num_pages
<< PAGE_CACHE_SHIFT
);
975 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
976 struct btrfs_ioctl_defrag_range_args
*range
,
977 u64 newer_than
, unsigned long max_to_defrag
)
979 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
980 struct btrfs_super_block
*disk_super
;
981 struct file_ra_state
*ra
= NULL
;
982 unsigned long last_index
;
987 u64 newer_off
= range
->start
;
991 int defrag_count
= 0;
992 int compress_type
= BTRFS_COMPRESS_ZLIB
;
993 int extent_thresh
= range
->extent_thresh
;
994 int newer_cluster
= (256 * 1024) >> PAGE_CACHE_SHIFT
;
995 u64 new_align
= ~((u64
)128 * 1024 - 1);
996 struct page
**pages
= NULL
;
998 if (extent_thresh
== 0)
999 extent_thresh
= 256 * 1024;
1001 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1002 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1004 if (range
->compress_type
)
1005 compress_type
= range
->compress_type
;
1008 if (inode
->i_size
== 0)
1012 * if we were not given a file, allocate a readahead
1016 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
1019 file_ra_state_init(ra
, inode
->i_mapping
);
1024 pages
= kmalloc(sizeof(struct page
*) * newer_cluster
,
1031 /* find the last page to defrag */
1032 if (range
->start
+ range
->len
> range
->start
) {
1033 last_index
= min_t(u64
, inode
->i_size
- 1,
1034 range
->start
+ range
->len
- 1) >> PAGE_CACHE_SHIFT
;
1036 last_index
= (inode
->i_size
- 1) >> PAGE_CACHE_SHIFT
;
1040 ret
= find_new_extents(root
, inode
, newer_than
,
1041 &newer_off
, 64 * 1024);
1043 range
->start
= newer_off
;
1045 * we always align our defrag to help keep
1046 * the extents in the file evenly spaced
1048 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1049 newer_left
= newer_cluster
;
1053 i
= range
->start
>> PAGE_CACHE_SHIFT
;
1056 max_to_defrag
= last_index
- 1;
1058 while (i
<= last_index
&& defrag_count
< max_to_defrag
) {
1060 * make sure we stop running if someone unmounts
1063 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1067 !should_defrag_range(inode
, (u64
)i
<< PAGE_CACHE_SHIFT
,
1074 * the should_defrag function tells us how much to skip
1075 * bump our counter by the suggested amount
1077 next
= (skip
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1078 i
= max(i
+ 1, next
);
1081 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)
1082 BTRFS_I(inode
)->force_compress
= compress_type
;
1084 btrfs_force_ra(inode
->i_mapping
, ra
, file
, i
, newer_cluster
);
1086 ret
= cluster_pages_for_defrag(inode
, pages
, i
, newer_cluster
);
1090 defrag_count
+= ret
;
1091 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
, ret
);
1095 if (newer_off
== (u64
)-1)
1098 newer_off
= max(newer_off
+ 1,
1099 (u64
)i
<< PAGE_CACHE_SHIFT
);
1101 ret
= find_new_extents(root
, inode
,
1102 newer_than
, &newer_off
,
1105 range
->start
= newer_off
;
1106 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1107 newer_left
= newer_cluster
;
1116 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
))
1117 filemap_flush(inode
->i_mapping
);
1119 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1120 /* the filemap_flush will queue IO into the worker threads, but
1121 * we have to make sure the IO is actually started and that
1122 * ordered extents get created before we return
1124 atomic_inc(&root
->fs_info
->async_submit_draining
);
1125 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
1126 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1127 wait_event(root
->fs_info
->async_submit_wait
,
1128 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
1129 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
1131 atomic_dec(&root
->fs_info
->async_submit_draining
);
1133 mutex_lock(&inode
->i_mutex
);
1134 BTRFS_I(inode
)->force_compress
= BTRFS_COMPRESS_NONE
;
1135 mutex_unlock(&inode
->i_mutex
);
1138 disk_super
= &root
->fs_info
->super_copy
;
1139 features
= btrfs_super_incompat_flags(disk_super
);
1140 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1141 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
1142 btrfs_set_super_incompat_flags(disk_super
, features
);
1147 return defrag_count
;
1156 static noinline
int btrfs_ioctl_resize(struct btrfs_root
*root
,
1162 struct btrfs_ioctl_vol_args
*vol_args
;
1163 struct btrfs_trans_handle
*trans
;
1164 struct btrfs_device
*device
= NULL
;
1166 char *devstr
= NULL
;
1170 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1173 if (!capable(CAP_SYS_ADMIN
))
1176 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1177 if (IS_ERR(vol_args
))
1178 return PTR_ERR(vol_args
);
1180 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1182 mutex_lock(&root
->fs_info
->volume_mutex
);
1183 sizestr
= vol_args
->name
;
1184 devstr
= strchr(sizestr
, ':');
1187 sizestr
= devstr
+ 1;
1189 devstr
= vol_args
->name
;
1190 devid
= simple_strtoull(devstr
, &end
, 10);
1191 printk(KERN_INFO
"resizing devid %llu\n",
1192 (unsigned long long)devid
);
1194 device
= btrfs_find_device(root
, devid
, NULL
, NULL
);
1196 printk(KERN_INFO
"resizer unable to find device %llu\n",
1197 (unsigned long long)devid
);
1201 if (!strcmp(sizestr
, "max"))
1202 new_size
= device
->bdev
->bd_inode
->i_size
;
1204 if (sizestr
[0] == '-') {
1207 } else if (sizestr
[0] == '+') {
1211 new_size
= memparse(sizestr
, NULL
);
1212 if (new_size
== 0) {
1218 old_size
= device
->total_bytes
;
1221 if (new_size
> old_size
) {
1225 new_size
= old_size
- new_size
;
1226 } else if (mod
> 0) {
1227 new_size
= old_size
+ new_size
;
1230 if (new_size
< 256 * 1024 * 1024) {
1234 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1239 do_div(new_size
, root
->sectorsize
);
1240 new_size
*= root
->sectorsize
;
1242 printk(KERN_INFO
"new size for %s is %llu\n",
1243 device
->name
, (unsigned long long)new_size
);
1245 if (new_size
> old_size
) {
1246 trans
= btrfs_start_transaction(root
, 0);
1247 if (IS_ERR(trans
)) {
1248 ret
= PTR_ERR(trans
);
1251 ret
= btrfs_grow_device(trans
, device
, new_size
);
1252 btrfs_commit_transaction(trans
, root
);
1254 ret
= btrfs_shrink_device(device
, new_size
);
1258 mutex_unlock(&root
->fs_info
->volume_mutex
);
1263 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1270 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
1271 struct file
*src_file
;
1275 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1278 namelen
= strlen(name
);
1279 if (strchr(name
, '/')) {
1285 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1286 NULL
, transid
, readonly
);
1288 struct inode
*src_inode
;
1289 src_file
= fget(fd
);
1295 src_inode
= src_file
->f_path
.dentry
->d_inode
;
1296 if (src_inode
->i_sb
!= file
->f_path
.dentry
->d_inode
->i_sb
) {
1297 printk(KERN_INFO
"btrfs: Snapshot src from "
1303 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1304 BTRFS_I(src_inode
)->root
,
1312 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1313 void __user
*arg
, int subvol
)
1315 struct btrfs_ioctl_vol_args
*vol_args
;
1318 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1319 if (IS_ERR(vol_args
))
1320 return PTR_ERR(vol_args
);
1321 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1323 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1324 vol_args
->fd
, subvol
,
1331 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1332 void __user
*arg
, int subvol
)
1334 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1338 bool readonly
= false;
1340 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1341 if (IS_ERR(vol_args
))
1342 return PTR_ERR(vol_args
);
1343 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1345 if (vol_args
->flags
&
1346 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
)) {
1351 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1353 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1356 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1357 vol_args
->fd
, subvol
,
1360 if (ret
== 0 && ptr
&&
1362 offsetof(struct btrfs_ioctl_vol_args_v2
,
1363 transid
), ptr
, sizeof(*ptr
)))
1370 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1373 struct inode
*inode
= fdentry(file
)->d_inode
;
1374 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1378 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1381 down_read(&root
->fs_info
->subvol_sem
);
1382 if (btrfs_root_readonly(root
))
1383 flags
|= BTRFS_SUBVOL_RDONLY
;
1384 up_read(&root
->fs_info
->subvol_sem
);
1386 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1392 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1395 struct inode
*inode
= fdentry(file
)->d_inode
;
1396 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1397 struct btrfs_trans_handle
*trans
;
1402 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1405 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1408 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
1411 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1414 if (flags
& ~BTRFS_SUBVOL_RDONLY
)
1417 if (!inode_owner_or_capable(inode
))
1420 down_write(&root
->fs_info
->subvol_sem
);
1423 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1426 root_flags
= btrfs_root_flags(&root
->root_item
);
1427 if (flags
& BTRFS_SUBVOL_RDONLY
)
1428 btrfs_set_root_flags(&root
->root_item
,
1429 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1431 btrfs_set_root_flags(&root
->root_item
,
1432 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1434 trans
= btrfs_start_transaction(root
, 1);
1435 if (IS_ERR(trans
)) {
1436 ret
= PTR_ERR(trans
);
1440 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
1441 &root
->root_key
, &root
->root_item
);
1443 btrfs_commit_transaction(trans
, root
);
1446 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1448 up_write(&root
->fs_info
->subvol_sem
);
1453 * helper to check if the subvolume references other subvolumes
1455 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1457 struct btrfs_path
*path
;
1458 struct btrfs_key key
;
1461 path
= btrfs_alloc_path();
1465 key
.objectid
= root
->root_key
.objectid
;
1466 key
.type
= BTRFS_ROOT_REF_KEY
;
1467 key
.offset
= (u64
)-1;
1469 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
,
1476 if (path
->slots
[0] > 0) {
1478 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1479 if (key
.objectid
== root
->root_key
.objectid
&&
1480 key
.type
== BTRFS_ROOT_REF_KEY
)
1484 btrfs_free_path(path
);
1488 static noinline
int key_in_sk(struct btrfs_key
*key
,
1489 struct btrfs_ioctl_search_key
*sk
)
1491 struct btrfs_key test
;
1494 test
.objectid
= sk
->min_objectid
;
1495 test
.type
= sk
->min_type
;
1496 test
.offset
= sk
->min_offset
;
1498 ret
= btrfs_comp_cpu_keys(key
, &test
);
1502 test
.objectid
= sk
->max_objectid
;
1503 test
.type
= sk
->max_type
;
1504 test
.offset
= sk
->max_offset
;
1506 ret
= btrfs_comp_cpu_keys(key
, &test
);
1512 static noinline
int copy_to_sk(struct btrfs_root
*root
,
1513 struct btrfs_path
*path
,
1514 struct btrfs_key
*key
,
1515 struct btrfs_ioctl_search_key
*sk
,
1517 unsigned long *sk_offset
,
1521 struct extent_buffer
*leaf
;
1522 struct btrfs_ioctl_search_header sh
;
1523 unsigned long item_off
;
1524 unsigned long item_len
;
1530 leaf
= path
->nodes
[0];
1531 slot
= path
->slots
[0];
1532 nritems
= btrfs_header_nritems(leaf
);
1534 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1538 found_transid
= btrfs_header_generation(leaf
);
1540 for (i
= slot
; i
< nritems
; i
++) {
1541 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1542 item_len
= btrfs_item_size_nr(leaf
, i
);
1544 if (item_len
> BTRFS_SEARCH_ARGS_BUFSIZE
)
1547 if (sizeof(sh
) + item_len
+ *sk_offset
>
1548 BTRFS_SEARCH_ARGS_BUFSIZE
) {
1553 btrfs_item_key_to_cpu(leaf
, key
, i
);
1554 if (!key_in_sk(key
, sk
))
1557 sh
.objectid
= key
->objectid
;
1558 sh
.offset
= key
->offset
;
1559 sh
.type
= key
->type
;
1561 sh
.transid
= found_transid
;
1563 /* copy search result header */
1564 memcpy(buf
+ *sk_offset
, &sh
, sizeof(sh
));
1565 *sk_offset
+= sizeof(sh
);
1568 char *p
= buf
+ *sk_offset
;
1570 read_extent_buffer(leaf
, p
,
1571 item_off
, item_len
);
1572 *sk_offset
+= item_len
;
1576 if (*num_found
>= sk
->nr_items
)
1581 if (key
->offset
< (u64
)-1 && key
->offset
< sk
->max_offset
)
1583 else if (key
->type
< (u8
)-1 && key
->type
< sk
->max_type
) {
1586 } else if (key
->objectid
< (u64
)-1 && key
->objectid
< sk
->max_objectid
) {
1596 static noinline
int search_ioctl(struct inode
*inode
,
1597 struct btrfs_ioctl_search_args
*args
)
1599 struct btrfs_root
*root
;
1600 struct btrfs_key key
;
1601 struct btrfs_key max_key
;
1602 struct btrfs_path
*path
;
1603 struct btrfs_ioctl_search_key
*sk
= &args
->key
;
1604 struct btrfs_fs_info
*info
= BTRFS_I(inode
)->root
->fs_info
;
1607 unsigned long sk_offset
= 0;
1609 path
= btrfs_alloc_path();
1613 if (sk
->tree_id
== 0) {
1614 /* search the root of the inode that was passed */
1615 root
= BTRFS_I(inode
)->root
;
1617 key
.objectid
= sk
->tree_id
;
1618 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1619 key
.offset
= (u64
)-1;
1620 root
= btrfs_read_fs_root_no_name(info
, &key
);
1622 printk(KERN_ERR
"could not find root %llu\n",
1624 btrfs_free_path(path
);
1629 key
.objectid
= sk
->min_objectid
;
1630 key
.type
= sk
->min_type
;
1631 key
.offset
= sk
->min_offset
;
1633 max_key
.objectid
= sk
->max_objectid
;
1634 max_key
.type
= sk
->max_type
;
1635 max_key
.offset
= sk
->max_offset
;
1637 path
->keep_locks
= 1;
1640 ret
= btrfs_search_forward(root
, &key
, &max_key
, path
, 0,
1647 ret
= copy_to_sk(root
, path
, &key
, sk
, args
->buf
,
1648 &sk_offset
, &num_found
);
1649 btrfs_release_path(path
);
1650 if (ret
|| num_found
>= sk
->nr_items
)
1656 sk
->nr_items
= num_found
;
1657 btrfs_free_path(path
);
1661 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
1664 struct btrfs_ioctl_search_args
*args
;
1665 struct inode
*inode
;
1668 if (!capable(CAP_SYS_ADMIN
))
1671 args
= memdup_user(argp
, sizeof(*args
));
1673 return PTR_ERR(args
);
1675 inode
= fdentry(file
)->d_inode
;
1676 ret
= search_ioctl(inode
, args
);
1677 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
1684 * Search INODE_REFs to identify path name of 'dirid' directory
1685 * in a 'tree_id' tree. and sets path name to 'name'.
1687 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
1688 u64 tree_id
, u64 dirid
, char *name
)
1690 struct btrfs_root
*root
;
1691 struct btrfs_key key
;
1697 struct btrfs_inode_ref
*iref
;
1698 struct extent_buffer
*l
;
1699 struct btrfs_path
*path
;
1701 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
1706 path
= btrfs_alloc_path();
1710 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
1712 key
.objectid
= tree_id
;
1713 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1714 key
.offset
= (u64
)-1;
1715 root
= btrfs_read_fs_root_no_name(info
, &key
);
1717 printk(KERN_ERR
"could not find root %llu\n", tree_id
);
1722 key
.objectid
= dirid
;
1723 key
.type
= BTRFS_INODE_REF_KEY
;
1724 key
.offset
= (u64
)-1;
1727 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1732 slot
= path
->slots
[0];
1733 if (ret
> 0 && slot
> 0)
1735 btrfs_item_key_to_cpu(l
, &key
, slot
);
1737 if (ret
> 0 && (key
.objectid
!= dirid
||
1738 key
.type
!= BTRFS_INODE_REF_KEY
)) {
1743 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
1744 len
= btrfs_inode_ref_name_len(l
, iref
);
1746 total_len
+= len
+ 1;
1751 read_extent_buffer(l
, ptr
,(unsigned long)(iref
+ 1), len
);
1753 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
1756 btrfs_release_path(path
);
1757 key
.objectid
= key
.offset
;
1758 key
.offset
= (u64
)-1;
1759 dirid
= key
.objectid
;
1763 memmove(name
, ptr
, total_len
);
1764 name
[total_len
]='\0';
1767 btrfs_free_path(path
);
1771 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
1774 struct btrfs_ioctl_ino_lookup_args
*args
;
1775 struct inode
*inode
;
1778 if (!capable(CAP_SYS_ADMIN
))
1781 args
= memdup_user(argp
, sizeof(*args
));
1783 return PTR_ERR(args
);
1785 inode
= fdentry(file
)->d_inode
;
1787 if (args
->treeid
== 0)
1788 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
1790 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
1791 args
->treeid
, args
->objectid
,
1794 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
1801 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
1804 struct dentry
*parent
= fdentry(file
);
1805 struct dentry
*dentry
;
1806 struct inode
*dir
= parent
->d_inode
;
1807 struct inode
*inode
;
1808 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
1809 struct btrfs_root
*dest
= NULL
;
1810 struct btrfs_ioctl_vol_args
*vol_args
;
1811 struct btrfs_trans_handle
*trans
;
1816 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1817 if (IS_ERR(vol_args
))
1818 return PTR_ERR(vol_args
);
1820 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1821 namelen
= strlen(vol_args
->name
);
1822 if (strchr(vol_args
->name
, '/') ||
1823 strncmp(vol_args
->name
, "..", namelen
) == 0) {
1828 err
= mnt_want_write(file
->f_path
.mnt
);
1832 mutex_lock_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
1833 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
1834 if (IS_ERR(dentry
)) {
1835 err
= PTR_ERR(dentry
);
1836 goto out_unlock_dir
;
1839 if (!dentry
->d_inode
) {
1844 inode
= dentry
->d_inode
;
1845 dest
= BTRFS_I(inode
)->root
;
1846 if (!capable(CAP_SYS_ADMIN
)){
1848 * Regular user. Only allow this with a special mount
1849 * option, when the user has write+exec access to the
1850 * subvol root, and when rmdir(2) would have been
1853 * Note that this is _not_ check that the subvol is
1854 * empty or doesn't contain data that we wouldn't
1855 * otherwise be able to delete.
1857 * Users who want to delete empty subvols should try
1861 if (!btrfs_test_opt(root
, USER_SUBVOL_RM_ALLOWED
))
1865 * Do not allow deletion if the parent dir is the same
1866 * as the dir to be deleted. That means the ioctl
1867 * must be called on the dentry referencing the root
1868 * of the subvol, not a random directory contained
1875 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
1879 /* check if subvolume may be deleted by a non-root user */
1880 err
= btrfs_may_delete(dir
, dentry
, 1);
1885 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
1890 mutex_lock(&inode
->i_mutex
);
1891 err
= d_invalidate(dentry
);
1895 down_write(&root
->fs_info
->subvol_sem
);
1897 err
= may_destroy_subvol(dest
);
1901 trans
= btrfs_start_transaction(root
, 0);
1902 if (IS_ERR(trans
)) {
1903 err
= PTR_ERR(trans
);
1906 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
1908 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
1909 dest
->root_key
.objectid
,
1910 dentry
->d_name
.name
,
1911 dentry
->d_name
.len
);
1914 btrfs_record_root_in_trans(trans
, dest
);
1916 memset(&dest
->root_item
.drop_progress
, 0,
1917 sizeof(dest
->root_item
.drop_progress
));
1918 dest
->root_item
.drop_level
= 0;
1919 btrfs_set_root_refs(&dest
->root_item
, 0);
1921 if (!xchg(&dest
->orphan_item_inserted
, 1)) {
1922 ret
= btrfs_insert_orphan_item(trans
,
1923 root
->fs_info
->tree_root
,
1924 dest
->root_key
.objectid
);
1928 ret
= btrfs_end_transaction(trans
, root
);
1930 inode
->i_flags
|= S_DEAD
;
1932 up_write(&root
->fs_info
->subvol_sem
);
1934 mutex_unlock(&inode
->i_mutex
);
1936 shrink_dcache_sb(root
->fs_info
->sb
);
1937 btrfs_invalidate_inodes(dest
);
1943 mutex_unlock(&dir
->i_mutex
);
1944 mnt_drop_write(file
->f_path
.mnt
);
1950 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
1952 struct inode
*inode
= fdentry(file
)->d_inode
;
1953 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1954 struct btrfs_ioctl_defrag_range_args
*range
;
1957 if (btrfs_root_readonly(root
))
1960 ret
= mnt_want_write(file
->f_path
.mnt
);
1964 switch (inode
->i_mode
& S_IFMT
) {
1966 if (!capable(CAP_SYS_ADMIN
)) {
1970 ret
= btrfs_defrag_root(root
, 0);
1973 ret
= btrfs_defrag_root(root
->fs_info
->extent_root
, 0);
1976 if (!(file
->f_mode
& FMODE_WRITE
)) {
1981 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
1988 if (copy_from_user(range
, argp
,
1994 /* compression requires us to start the IO */
1995 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1996 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
1997 range
->extent_thresh
= (u32
)-1;
2000 /* the rest are all set to zero by kzalloc */
2001 range
->len
= (u64
)-1;
2003 ret
= btrfs_defrag_file(fdentry(file
)->d_inode
, file
,
2013 mnt_drop_write(file
->f_path
.mnt
);
2017 static long btrfs_ioctl_add_dev(struct btrfs_root
*root
, void __user
*arg
)
2019 struct btrfs_ioctl_vol_args
*vol_args
;
2022 if (!capable(CAP_SYS_ADMIN
))
2025 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2026 if (IS_ERR(vol_args
))
2027 return PTR_ERR(vol_args
);
2029 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2030 ret
= btrfs_init_new_device(root
, vol_args
->name
);
2036 static long btrfs_ioctl_rm_dev(struct btrfs_root
*root
, void __user
*arg
)
2038 struct btrfs_ioctl_vol_args
*vol_args
;
2041 if (!capable(CAP_SYS_ADMIN
))
2044 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
2047 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2048 if (IS_ERR(vol_args
))
2049 return PTR_ERR(vol_args
);
2051 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2052 ret
= btrfs_rm_device(root
, vol_args
->name
);
2058 static long btrfs_ioctl_fs_info(struct btrfs_root
*root
, void __user
*arg
)
2060 struct btrfs_ioctl_fs_info_args
*fi_args
;
2061 struct btrfs_device
*device
;
2062 struct btrfs_device
*next
;
2063 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2066 if (!capable(CAP_SYS_ADMIN
))
2069 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2073 fi_args
->num_devices
= fs_devices
->num_devices
;
2074 memcpy(&fi_args
->fsid
, root
->fs_info
->fsid
, sizeof(fi_args
->fsid
));
2076 mutex_lock(&fs_devices
->device_list_mutex
);
2077 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
2078 if (device
->devid
> fi_args
->max_id
)
2079 fi_args
->max_id
= device
->devid
;
2081 mutex_unlock(&fs_devices
->device_list_mutex
);
2083 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2090 static long btrfs_ioctl_dev_info(struct btrfs_root
*root
, void __user
*arg
)
2092 struct btrfs_ioctl_dev_info_args
*di_args
;
2093 struct btrfs_device
*dev
;
2094 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2096 char *s_uuid
= NULL
;
2097 char empty_uuid
[BTRFS_UUID_SIZE
] = {0};
2099 if (!capable(CAP_SYS_ADMIN
))
2102 di_args
= memdup_user(arg
, sizeof(*di_args
));
2103 if (IS_ERR(di_args
))
2104 return PTR_ERR(di_args
);
2106 if (memcmp(empty_uuid
, di_args
->uuid
, BTRFS_UUID_SIZE
) != 0)
2107 s_uuid
= di_args
->uuid
;
2109 mutex_lock(&fs_devices
->device_list_mutex
);
2110 dev
= btrfs_find_device(root
, di_args
->devid
, s_uuid
, NULL
);
2111 mutex_unlock(&fs_devices
->device_list_mutex
);
2118 di_args
->devid
= dev
->devid
;
2119 di_args
->bytes_used
= dev
->bytes_used
;
2120 di_args
->total_bytes
= dev
->total_bytes
;
2121 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2122 strncpy(di_args
->path
, dev
->name
, sizeof(di_args
->path
));
2125 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2132 static noinline
long btrfs_ioctl_clone(struct file
*file
, unsigned long srcfd
,
2133 u64 off
, u64 olen
, u64 destoff
)
2135 struct inode
*inode
= fdentry(file
)->d_inode
;
2136 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2137 struct file
*src_file
;
2139 struct btrfs_trans_handle
*trans
;
2140 struct btrfs_path
*path
;
2141 struct extent_buffer
*leaf
;
2143 struct btrfs_key key
;
2148 u64 bs
= root
->fs_info
->sb
->s_blocksize
;
2153 * - split compressed inline extents. annoying: we need to
2154 * decompress into destination's address_space (the file offset
2155 * may change, so source mapping won't do), then recompress (or
2156 * otherwise reinsert) a subrange.
2157 * - allow ranges within the same file to be cloned (provided
2158 * they don't overlap)?
2161 /* the destination must be opened for writing */
2162 if (!(file
->f_mode
& FMODE_WRITE
) || (file
->f_flags
& O_APPEND
))
2165 if (btrfs_root_readonly(root
))
2168 ret
= mnt_want_write(file
->f_path
.mnt
);
2172 src_file
= fget(srcfd
);
2175 goto out_drop_write
;
2178 src
= src_file
->f_dentry
->d_inode
;
2184 /* the src must be open for reading */
2185 if (!(src_file
->f_mode
& FMODE_READ
))
2188 /* don't make the dst file partly checksummed */
2189 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
2190 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
2194 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
2198 if (src
->i_sb
!= inode
->i_sb
|| BTRFS_I(src
)->root
!= root
)
2202 buf
= vmalloc(btrfs_level_size(root
, 0));
2206 path
= btrfs_alloc_path();
2214 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_PARENT
);
2215 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_CHILD
);
2217 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_PARENT
);
2218 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2221 /* determine range to clone */
2223 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
2226 olen
= len
= src
->i_size
- off
;
2227 /* if we extend to eof, continue to block boundary */
2228 if (off
+ len
== src
->i_size
)
2229 len
= ALIGN(src
->i_size
, bs
) - off
;
2231 /* verify the end result is block aligned */
2232 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
2233 !IS_ALIGNED(destoff
, bs
))
2236 if (destoff
> inode
->i_size
) {
2237 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
2242 /* truncate page cache pages from target inode range */
2243 truncate_inode_pages_range(&inode
->i_data
, destoff
,
2244 PAGE_CACHE_ALIGN(destoff
+ len
) - 1);
2246 /* do any pending delalloc/csum calc on src, one way or
2247 another, and lock file content */
2249 struct btrfs_ordered_extent
*ordered
;
2250 lock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+len
, GFP_NOFS
);
2251 ordered
= btrfs_lookup_first_ordered_extent(src
, off
+len
);
2253 !test_range_bit(&BTRFS_I(src
)->io_tree
, off
, off
+len
,
2254 EXTENT_DELALLOC
, 0, NULL
))
2256 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+len
, GFP_NOFS
);
2258 btrfs_put_ordered_extent(ordered
);
2259 btrfs_wait_ordered_range(src
, off
, len
);
2263 key
.objectid
= btrfs_ino(src
);
2264 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2269 * note the key will change type as we walk through the
2272 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2276 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2277 if (path
->slots
[0] >= nritems
) {
2278 ret
= btrfs_next_leaf(root
, path
);
2283 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2285 leaf
= path
->nodes
[0];
2286 slot
= path
->slots
[0];
2288 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2289 if (btrfs_key_type(&key
) > BTRFS_EXTENT_DATA_KEY
||
2290 key
.objectid
!= btrfs_ino(src
))
2293 if (btrfs_key_type(&key
) == BTRFS_EXTENT_DATA_KEY
) {
2294 struct btrfs_file_extent_item
*extent
;
2297 struct btrfs_key new_key
;
2298 u64 disko
= 0, diskl
= 0;
2299 u64 datao
= 0, datal
= 0;
2303 size
= btrfs_item_size_nr(leaf
, slot
);
2304 read_extent_buffer(leaf
, buf
,
2305 btrfs_item_ptr_offset(leaf
, slot
),
2308 extent
= btrfs_item_ptr(leaf
, slot
,
2309 struct btrfs_file_extent_item
);
2310 comp
= btrfs_file_extent_compression(leaf
, extent
);
2311 type
= btrfs_file_extent_type(leaf
, extent
);
2312 if (type
== BTRFS_FILE_EXTENT_REG
||
2313 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2314 disko
= btrfs_file_extent_disk_bytenr(leaf
,
2316 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
2318 datao
= btrfs_file_extent_offset(leaf
, extent
);
2319 datal
= btrfs_file_extent_num_bytes(leaf
,
2321 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2322 /* take upper bound, may be compressed */
2323 datal
= btrfs_file_extent_ram_bytes(leaf
,
2326 btrfs_release_path(path
);
2328 if (key
.offset
+ datal
<= off
||
2329 key
.offset
>= off
+len
)
2332 memcpy(&new_key
, &key
, sizeof(new_key
));
2333 new_key
.objectid
= btrfs_ino(inode
);
2334 if (off
<= key
.offset
)
2335 new_key
.offset
= key
.offset
+ destoff
- off
;
2337 new_key
.offset
= destoff
;
2340 * 1 - adjusting old extent (we may have to split it)
2341 * 1 - add new extent
2344 trans
= btrfs_start_transaction(root
, 3);
2345 if (IS_ERR(trans
)) {
2346 ret
= PTR_ERR(trans
);
2350 if (type
== BTRFS_FILE_EXTENT_REG
||
2351 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2353 * a | --- range to clone ---| b
2354 * | ------------- extent ------------- |
2357 /* substract range b */
2358 if (key
.offset
+ datal
> off
+ len
)
2359 datal
= off
+ len
- key
.offset
;
2361 /* substract range a */
2362 if (off
> key
.offset
) {
2363 datao
+= off
- key
.offset
;
2364 datal
-= off
- key
.offset
;
2367 ret
= btrfs_drop_extents(trans
, inode
,
2369 new_key
.offset
+ datal
,
2373 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2377 leaf
= path
->nodes
[0];
2378 slot
= path
->slots
[0];
2379 write_extent_buffer(leaf
, buf
,
2380 btrfs_item_ptr_offset(leaf
, slot
),
2383 extent
= btrfs_item_ptr(leaf
, slot
,
2384 struct btrfs_file_extent_item
);
2386 /* disko == 0 means it's a hole */
2390 btrfs_set_file_extent_offset(leaf
, extent
,
2392 btrfs_set_file_extent_num_bytes(leaf
, extent
,
2395 inode_add_bytes(inode
, datal
);
2396 ret
= btrfs_inc_extent_ref(trans
, root
,
2398 root
->root_key
.objectid
,
2400 new_key
.offset
- datao
);
2403 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2406 if (off
> key
.offset
) {
2407 skip
= off
- key
.offset
;
2408 new_key
.offset
+= skip
;
2411 if (key
.offset
+ datal
> off
+len
)
2412 trim
= key
.offset
+ datal
- (off
+len
);
2414 if (comp
&& (skip
|| trim
)) {
2416 btrfs_end_transaction(trans
, root
);
2419 size
-= skip
+ trim
;
2420 datal
-= skip
+ trim
;
2422 ret
= btrfs_drop_extents(trans
, inode
,
2424 new_key
.offset
+ datal
,
2428 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2434 btrfs_file_extent_calc_inline_size(0);
2435 memmove(buf
+start
, buf
+start
+skip
,
2439 leaf
= path
->nodes
[0];
2440 slot
= path
->slots
[0];
2441 write_extent_buffer(leaf
, buf
,
2442 btrfs_item_ptr_offset(leaf
, slot
),
2444 inode_add_bytes(inode
, datal
);
2447 btrfs_mark_buffer_dirty(leaf
);
2448 btrfs_release_path(path
);
2450 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
2453 * we round up to the block size at eof when
2454 * determining which extents to clone above,
2455 * but shouldn't round up the file size
2457 endoff
= new_key
.offset
+ datal
;
2458 if (endoff
> destoff
+olen
)
2459 endoff
= destoff
+olen
;
2460 if (endoff
> inode
->i_size
)
2461 btrfs_i_size_write(inode
, endoff
);
2463 ret
= btrfs_update_inode(trans
, root
, inode
);
2465 btrfs_end_transaction(trans
, root
);
2468 btrfs_release_path(path
);
2473 btrfs_release_path(path
);
2474 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+len
, GFP_NOFS
);
2476 mutex_unlock(&src
->i_mutex
);
2477 mutex_unlock(&inode
->i_mutex
);
2479 btrfs_free_path(path
);
2483 mnt_drop_write(file
->f_path
.mnt
);
2487 static long btrfs_ioctl_clone_range(struct file
*file
, void __user
*argp
)
2489 struct btrfs_ioctl_clone_range_args args
;
2491 if (copy_from_user(&args
, argp
, sizeof(args
)))
2493 return btrfs_ioctl_clone(file
, args
.src_fd
, args
.src_offset
,
2494 args
.src_length
, args
.dest_offset
);
2498 * there are many ways the trans_start and trans_end ioctls can lead
2499 * to deadlocks. They should only be used by applications that
2500 * basically own the machine, and have a very in depth understanding
2501 * of all the possible deadlocks and enospc problems.
2503 static long btrfs_ioctl_trans_start(struct file
*file
)
2505 struct inode
*inode
= fdentry(file
)->d_inode
;
2506 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2507 struct btrfs_trans_handle
*trans
;
2511 if (!capable(CAP_SYS_ADMIN
))
2515 if (file
->private_data
)
2519 if (btrfs_root_readonly(root
))
2522 ret
= mnt_want_write(file
->f_path
.mnt
);
2526 atomic_inc(&root
->fs_info
->open_ioctl_trans
);
2529 trans
= btrfs_start_ioctl_transaction(root
);
2533 file
->private_data
= trans
;
2537 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
2538 mnt_drop_write(file
->f_path
.mnt
);
2543 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
2545 struct inode
*inode
= fdentry(file
)->d_inode
;
2546 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2547 struct btrfs_root
*new_root
;
2548 struct btrfs_dir_item
*di
;
2549 struct btrfs_trans_handle
*trans
;
2550 struct btrfs_path
*path
;
2551 struct btrfs_key location
;
2552 struct btrfs_disk_key disk_key
;
2553 struct btrfs_super_block
*disk_super
;
2558 if (!capable(CAP_SYS_ADMIN
))
2561 if (copy_from_user(&objectid
, argp
, sizeof(objectid
)))
2565 objectid
= root
->root_key
.objectid
;
2567 location
.objectid
= objectid
;
2568 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2569 location
.offset
= (u64
)-1;
2571 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
2572 if (IS_ERR(new_root
))
2573 return PTR_ERR(new_root
);
2575 if (btrfs_root_refs(&new_root
->root_item
) == 0)
2578 path
= btrfs_alloc_path();
2581 path
->leave_spinning
= 1;
2583 trans
= btrfs_start_transaction(root
, 1);
2584 if (IS_ERR(trans
)) {
2585 btrfs_free_path(path
);
2586 return PTR_ERR(trans
);
2589 dir_id
= btrfs_super_root_dir(&root
->fs_info
->super_copy
);
2590 di
= btrfs_lookup_dir_item(trans
, root
->fs_info
->tree_root
, path
,
2591 dir_id
, "default", 7, 1);
2592 if (IS_ERR_OR_NULL(di
)) {
2593 btrfs_free_path(path
);
2594 btrfs_end_transaction(trans
, root
);
2595 printk(KERN_ERR
"Umm, you don't have the default dir item, "
2596 "this isn't going to work\n");
2600 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
2601 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
2602 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2603 btrfs_free_path(path
);
2605 disk_super
= &root
->fs_info
->super_copy
;
2606 features
= btrfs_super_incompat_flags(disk_super
);
2607 if (!(features
& BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL
)) {
2608 features
|= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL
;
2609 btrfs_set_super_incompat_flags(disk_super
, features
);
2611 btrfs_end_transaction(trans
, root
);
2616 static void get_block_group_info(struct list_head
*groups_list
,
2617 struct btrfs_ioctl_space_info
*space
)
2619 struct btrfs_block_group_cache
*block_group
;
2621 space
->total_bytes
= 0;
2622 space
->used_bytes
= 0;
2624 list_for_each_entry(block_group
, groups_list
, list
) {
2625 space
->flags
= block_group
->flags
;
2626 space
->total_bytes
+= block_group
->key
.offset
;
2627 space
->used_bytes
+=
2628 btrfs_block_group_used(&block_group
->item
);
2632 long btrfs_ioctl_space_info(struct btrfs_root
*root
, void __user
*arg
)
2634 struct btrfs_ioctl_space_args space_args
;
2635 struct btrfs_ioctl_space_info space
;
2636 struct btrfs_ioctl_space_info
*dest
;
2637 struct btrfs_ioctl_space_info
*dest_orig
;
2638 struct btrfs_ioctl_space_info __user
*user_dest
;
2639 struct btrfs_space_info
*info
;
2640 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
2641 BTRFS_BLOCK_GROUP_SYSTEM
,
2642 BTRFS_BLOCK_GROUP_METADATA
,
2643 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
2650 if (copy_from_user(&space_args
,
2651 (struct btrfs_ioctl_space_args __user
*)arg
,
2652 sizeof(space_args
)))
2655 for (i
= 0; i
< num_types
; i
++) {
2656 struct btrfs_space_info
*tmp
;
2660 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
2662 if (tmp
->flags
== types
[i
]) {
2672 down_read(&info
->groups_sem
);
2673 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
2674 if (!list_empty(&info
->block_groups
[c
]))
2677 up_read(&info
->groups_sem
);
2680 /* space_slots == 0 means they are asking for a count */
2681 if (space_args
.space_slots
== 0) {
2682 space_args
.total_spaces
= slot_count
;
2686 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
2688 alloc_size
= sizeof(*dest
) * slot_count
;
2690 /* we generally have at most 6 or so space infos, one for each raid
2691 * level. So, a whole page should be more than enough for everyone
2693 if (alloc_size
> PAGE_CACHE_SIZE
)
2696 space_args
.total_spaces
= 0;
2697 dest
= kmalloc(alloc_size
, GFP_NOFS
);
2702 /* now we have a buffer to copy into */
2703 for (i
= 0; i
< num_types
; i
++) {
2704 struct btrfs_space_info
*tmp
;
2711 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
2713 if (tmp
->flags
== types
[i
]) {
2722 down_read(&info
->groups_sem
);
2723 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
2724 if (!list_empty(&info
->block_groups
[c
])) {
2725 get_block_group_info(&info
->block_groups
[c
],
2727 memcpy(dest
, &space
, sizeof(space
));
2729 space_args
.total_spaces
++;
2735 up_read(&info
->groups_sem
);
2738 user_dest
= (struct btrfs_ioctl_space_info
*)
2739 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
2741 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
2746 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
2753 * there are many ways the trans_start and trans_end ioctls can lead
2754 * to deadlocks. They should only be used by applications that
2755 * basically own the machine, and have a very in depth understanding
2756 * of all the possible deadlocks and enospc problems.
2758 long btrfs_ioctl_trans_end(struct file
*file
)
2760 struct inode
*inode
= fdentry(file
)->d_inode
;
2761 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2762 struct btrfs_trans_handle
*trans
;
2764 trans
= file
->private_data
;
2767 file
->private_data
= NULL
;
2769 btrfs_end_transaction(trans
, root
);
2771 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
2773 mnt_drop_write(file
->f_path
.mnt
);
2777 static noinline
long btrfs_ioctl_start_sync(struct file
*file
, void __user
*argp
)
2779 struct btrfs_root
*root
= BTRFS_I(file
->f_dentry
->d_inode
)->root
;
2780 struct btrfs_trans_handle
*trans
;
2784 trans
= btrfs_start_transaction(root
, 0);
2786 return PTR_ERR(trans
);
2787 transid
= trans
->transid
;
2788 ret
= btrfs_commit_transaction_async(trans
, root
, 0);
2790 btrfs_end_transaction(trans
, root
);
2795 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
2800 static noinline
long btrfs_ioctl_wait_sync(struct file
*file
, void __user
*argp
)
2802 struct btrfs_root
*root
= BTRFS_I(file
->f_dentry
->d_inode
)->root
;
2806 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
2809 transid
= 0; /* current trans */
2811 return btrfs_wait_for_commit(root
, transid
);
2814 static long btrfs_ioctl_scrub(struct btrfs_root
*root
, void __user
*arg
)
2817 struct btrfs_ioctl_scrub_args
*sa
;
2819 if (!capable(CAP_SYS_ADMIN
))
2822 sa
= memdup_user(arg
, sizeof(*sa
));
2826 ret
= btrfs_scrub_dev(root
, sa
->devid
, sa
->start
, sa
->end
,
2827 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
);
2829 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
2836 static long btrfs_ioctl_scrub_cancel(struct btrfs_root
*root
, void __user
*arg
)
2838 if (!capable(CAP_SYS_ADMIN
))
2841 return btrfs_scrub_cancel(root
);
2844 static long btrfs_ioctl_scrub_progress(struct btrfs_root
*root
,
2847 struct btrfs_ioctl_scrub_args
*sa
;
2850 if (!capable(CAP_SYS_ADMIN
))
2853 sa
= memdup_user(arg
, sizeof(*sa
));
2857 ret
= btrfs_scrub_progress(root
, sa
->devid
, &sa
->progress
);
2859 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
2866 long btrfs_ioctl(struct file
*file
, unsigned int
2867 cmd
, unsigned long arg
)
2869 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
2870 void __user
*argp
= (void __user
*)arg
;
2873 case FS_IOC_GETFLAGS
:
2874 return btrfs_ioctl_getflags(file
, argp
);
2875 case FS_IOC_SETFLAGS
:
2876 return btrfs_ioctl_setflags(file
, argp
);
2877 case FS_IOC_GETVERSION
:
2878 return btrfs_ioctl_getversion(file
, argp
);
2880 return btrfs_ioctl_fitrim(file
, argp
);
2881 case BTRFS_IOC_SNAP_CREATE
:
2882 return btrfs_ioctl_snap_create(file
, argp
, 0);
2883 case BTRFS_IOC_SNAP_CREATE_V2
:
2884 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
2885 case BTRFS_IOC_SUBVOL_CREATE
:
2886 return btrfs_ioctl_snap_create(file
, argp
, 1);
2887 case BTRFS_IOC_SNAP_DESTROY
:
2888 return btrfs_ioctl_snap_destroy(file
, argp
);
2889 case BTRFS_IOC_SUBVOL_GETFLAGS
:
2890 return btrfs_ioctl_subvol_getflags(file
, argp
);
2891 case BTRFS_IOC_SUBVOL_SETFLAGS
:
2892 return btrfs_ioctl_subvol_setflags(file
, argp
);
2893 case BTRFS_IOC_DEFAULT_SUBVOL
:
2894 return btrfs_ioctl_default_subvol(file
, argp
);
2895 case BTRFS_IOC_DEFRAG
:
2896 return btrfs_ioctl_defrag(file
, NULL
);
2897 case BTRFS_IOC_DEFRAG_RANGE
:
2898 return btrfs_ioctl_defrag(file
, argp
);
2899 case BTRFS_IOC_RESIZE
:
2900 return btrfs_ioctl_resize(root
, argp
);
2901 case BTRFS_IOC_ADD_DEV
:
2902 return btrfs_ioctl_add_dev(root
, argp
);
2903 case BTRFS_IOC_RM_DEV
:
2904 return btrfs_ioctl_rm_dev(root
, argp
);
2905 case BTRFS_IOC_FS_INFO
:
2906 return btrfs_ioctl_fs_info(root
, argp
);
2907 case BTRFS_IOC_DEV_INFO
:
2908 return btrfs_ioctl_dev_info(root
, argp
);
2909 case BTRFS_IOC_BALANCE
:
2910 return btrfs_balance(root
->fs_info
->dev_root
);
2911 case BTRFS_IOC_CLONE
:
2912 return btrfs_ioctl_clone(file
, arg
, 0, 0, 0);
2913 case BTRFS_IOC_CLONE_RANGE
:
2914 return btrfs_ioctl_clone_range(file
, argp
);
2915 case BTRFS_IOC_TRANS_START
:
2916 return btrfs_ioctl_trans_start(file
);
2917 case BTRFS_IOC_TRANS_END
:
2918 return btrfs_ioctl_trans_end(file
);
2919 case BTRFS_IOC_TREE_SEARCH
:
2920 return btrfs_ioctl_tree_search(file
, argp
);
2921 case BTRFS_IOC_INO_LOOKUP
:
2922 return btrfs_ioctl_ino_lookup(file
, argp
);
2923 case BTRFS_IOC_SPACE_INFO
:
2924 return btrfs_ioctl_space_info(root
, argp
);
2925 case BTRFS_IOC_SYNC
:
2926 btrfs_sync_fs(file
->f_dentry
->d_sb
, 1);
2928 case BTRFS_IOC_START_SYNC
:
2929 return btrfs_ioctl_start_sync(file
, argp
);
2930 case BTRFS_IOC_WAIT_SYNC
:
2931 return btrfs_ioctl_wait_sync(file
, argp
);
2932 case BTRFS_IOC_SCRUB
:
2933 return btrfs_ioctl_scrub(root
, argp
);
2934 case BTRFS_IOC_SCRUB_CANCEL
:
2935 return btrfs_ioctl_scrub_cancel(root
, argp
);
2936 case BTRFS_IOC_SCRUB_PROGRESS
:
2937 return btrfs_ioctl_scrub_progress(root
, argp
);