JFS: Corrupted block map should not cause trap
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / nfs / read.c
blob9758ebd49905a704146fffc23443890b38b8e318
1 /*
2 * linux/fs/nfs/read.c
4 * Block I/O for NFS
6 * Partial copy of Linus' read cache modifications to fs/nfs/file.c
7 * modified for async RPC by okir@monad.swb.de
9 * We do an ugly hack here in order to return proper error codes to the
10 * user program when a read request failed: since generic_file_read
11 * only checks the return value of inode->i_op->readpage() which is always 0
12 * for async RPC, we set the error bit of the page to 1 when an error occurs,
13 * and make nfs_readpage transmit requests synchronously when encountering this.
14 * This is only a small problem, though, since we now retry all operations
15 * within the RPC code when root squashing is suspected.
18 #include <linux/config.h>
19 #include <linux/time.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/fcntl.h>
23 #include <linux/stat.h>
24 #include <linux/mm.h>
25 #include <linux/slab.h>
26 #include <linux/pagemap.h>
27 #include <linux/sunrpc/clnt.h>
28 #include <linux/nfs_fs.h>
29 #include <linux/nfs_page.h>
30 #include <linux/smp_lock.h>
32 #include <asm/system.h>
34 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
36 static int nfs_pagein_one(struct list_head *, struct inode *);
37 static void nfs_readpage_result_partial(struct nfs_read_data *, int);
38 static void nfs_readpage_result_full(struct nfs_read_data *, int);
40 static kmem_cache_t *nfs_rdata_cachep;
41 mempool_t *nfs_rdata_mempool;
43 #define MIN_POOL_READ (32)
45 void nfs_readdata_release(struct rpc_task *task)
47 struct nfs_read_data *data = (struct nfs_read_data *)task->tk_calldata;
48 nfs_readdata_free(data);
51 static
52 unsigned int nfs_page_length(struct inode *inode, struct page *page)
54 loff_t i_size = i_size_read(inode);
55 unsigned long idx;
57 if (i_size <= 0)
58 return 0;
59 idx = (i_size - 1) >> PAGE_CACHE_SHIFT;
60 if (page->index > idx)
61 return 0;
62 if (page->index != idx)
63 return PAGE_CACHE_SIZE;
64 return 1 + ((i_size - 1) & (PAGE_CACHE_SIZE - 1));
67 static
68 int nfs_return_empty_page(struct page *page)
70 memclear_highpage_flush(page, 0, PAGE_CACHE_SIZE);
71 SetPageUptodate(page);
72 unlock_page(page);
73 return 0;
77 * Read a page synchronously.
79 static int nfs_readpage_sync(struct nfs_open_context *ctx, struct inode *inode,
80 struct page *page)
82 unsigned int rsize = NFS_SERVER(inode)->rsize;
83 unsigned int count = PAGE_CACHE_SIZE;
84 int result;
85 struct nfs_read_data *rdata;
87 rdata = nfs_readdata_alloc();
88 if (!rdata)
89 return -ENOMEM;
91 memset(rdata, 0, sizeof(*rdata));
92 rdata->flags = (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
93 rdata->cred = ctx->cred;
94 rdata->inode = inode;
95 INIT_LIST_HEAD(&rdata->pages);
96 rdata->args.fh = NFS_FH(inode);
97 rdata->args.context = ctx;
98 rdata->args.pages = &page;
99 rdata->args.pgbase = 0UL;
100 rdata->args.count = rsize;
101 rdata->res.fattr = &rdata->fattr;
103 dprintk("NFS: nfs_readpage_sync(%p)\n", page);
106 * This works now because the socket layer never tries to DMA
107 * into this buffer directly.
109 do {
110 if (count < rsize)
111 rdata->args.count = count;
112 rdata->res.count = rdata->args.count;
113 rdata->args.offset = page_offset(page) + rdata->args.pgbase;
115 dprintk("NFS: nfs_proc_read(%s, (%s/%Ld), %Lu, %u)\n",
116 NFS_SERVER(inode)->hostname,
117 inode->i_sb->s_id,
118 (long long)NFS_FILEID(inode),
119 (unsigned long long)rdata->args.pgbase,
120 rdata->args.count);
122 lock_kernel();
123 result = NFS_PROTO(inode)->read(rdata);
124 unlock_kernel();
127 * Even if we had a partial success we can't mark the page
128 * cache valid.
130 if (result < 0) {
131 if (result == -EISDIR)
132 result = -EINVAL;
133 goto io_error;
135 count -= result;
136 rdata->args.pgbase += result;
137 /* Note: result == 0 should only happen if we're caching
138 * a write that extends the file and punches a hole.
140 if (rdata->res.eof != 0 || result == 0)
141 break;
142 } while (count);
143 spin_lock(&inode->i_lock);
144 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
145 spin_unlock(&inode->i_lock);
147 if (count)
148 memclear_highpage_flush(page, rdata->args.pgbase, count);
149 SetPageUptodate(page);
150 if (PageError(page))
151 ClearPageError(page);
152 result = 0;
154 io_error:
155 unlock_page(page);
156 nfs_readdata_free(rdata);
157 return result;
160 static int nfs_readpage_async(struct nfs_open_context *ctx, struct inode *inode,
161 struct page *page)
163 LIST_HEAD(one_request);
164 struct nfs_page *new;
165 unsigned int len;
167 len = nfs_page_length(inode, page);
168 if (len == 0)
169 return nfs_return_empty_page(page);
170 new = nfs_create_request(ctx, inode, page, 0, len);
171 if (IS_ERR(new)) {
172 unlock_page(page);
173 return PTR_ERR(new);
175 if (len < PAGE_CACHE_SIZE)
176 memclear_highpage_flush(page, len, PAGE_CACHE_SIZE - len);
178 nfs_list_add_request(new, &one_request);
179 nfs_pagein_one(&one_request, inode);
180 return 0;
183 static void nfs_readpage_release(struct nfs_page *req)
185 unlock_page(req->wb_page);
187 dprintk("NFS: read done (%s/%Ld %d@%Ld)\n",
188 req->wb_context->dentry->d_inode->i_sb->s_id,
189 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
190 req->wb_bytes,
191 (long long)req_offset(req));
192 nfs_clear_request(req);
193 nfs_release_request(req);
197 * Set up the NFS read request struct
199 static void nfs_read_rpcsetup(struct nfs_page *req, struct nfs_read_data *data,
200 unsigned int count, unsigned int offset)
202 struct inode *inode;
204 data->req = req;
205 data->inode = inode = req->wb_context->dentry->d_inode;
206 data->cred = req->wb_context->cred;
208 data->args.fh = NFS_FH(inode);
209 data->args.offset = req_offset(req) + offset;
210 data->args.pgbase = req->wb_pgbase + offset;
211 data->args.pages = data->pagevec;
212 data->args.count = count;
213 data->args.context = req->wb_context;
215 data->res.fattr = &data->fattr;
216 data->res.count = count;
217 data->res.eof = 0;
219 NFS_PROTO(inode)->read_setup(data);
221 data->task.tk_cookie = (unsigned long)inode;
222 data->task.tk_calldata = data;
223 /* Release requests */
224 data->task.tk_release = nfs_readdata_release;
226 dprintk("NFS: %4d initiated read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
227 data->task.tk_pid,
228 inode->i_sb->s_id,
229 (long long)NFS_FILEID(inode),
230 count,
231 (unsigned long long)data->args.offset);
234 static void
235 nfs_async_read_error(struct list_head *head)
237 struct nfs_page *req;
239 while (!list_empty(head)) {
240 req = nfs_list_entry(head->next);
241 nfs_list_remove_request(req);
242 SetPageError(req->wb_page);
243 nfs_readpage_release(req);
248 * Start an async read operation
250 static void nfs_execute_read(struct nfs_read_data *data)
252 struct rpc_clnt *clnt = NFS_CLIENT(data->inode);
253 sigset_t oldset;
255 rpc_clnt_sigmask(clnt, &oldset);
256 lock_kernel();
257 rpc_execute(&data->task);
258 unlock_kernel();
259 rpc_clnt_sigunmask(clnt, &oldset);
263 * Generate multiple requests to fill a single page.
265 * We optimize to reduce the number of read operations on the wire. If we
266 * detect that we're reading a page, or an area of a page, that is past the
267 * end of file, we do not generate NFS read operations but just clear the
268 * parts of the page that would have come back zero from the server anyway.
270 * We rely on the cached value of i_size to make this determination; another
271 * client can fill pages on the server past our cached end-of-file, but we
272 * won't see the new data until our attribute cache is updated. This is more
273 * or less conventional NFS client behavior.
275 static int nfs_pagein_multi(struct list_head *head, struct inode *inode)
277 struct nfs_page *req = nfs_list_entry(head->next);
278 struct page *page = req->wb_page;
279 struct nfs_read_data *data;
280 unsigned int rsize = NFS_SERVER(inode)->rsize;
281 unsigned int nbytes, offset;
282 int requests = 0;
283 LIST_HEAD(list);
285 nfs_list_remove_request(req);
287 nbytes = req->wb_bytes;
288 for(;;) {
289 data = nfs_readdata_alloc();
290 if (!data)
291 goto out_bad;
292 INIT_LIST_HEAD(&data->pages);
293 list_add(&data->pages, &list);
294 requests++;
295 if (nbytes <= rsize)
296 break;
297 nbytes -= rsize;
299 atomic_set(&req->wb_complete, requests);
301 ClearPageError(page);
302 offset = 0;
303 nbytes = req->wb_bytes;
304 do {
305 data = list_entry(list.next, struct nfs_read_data, pages);
306 list_del_init(&data->pages);
308 data->pagevec[0] = page;
309 data->complete = nfs_readpage_result_partial;
311 if (nbytes > rsize) {
312 nfs_read_rpcsetup(req, data, rsize, offset);
313 offset += rsize;
314 nbytes -= rsize;
315 } else {
316 nfs_read_rpcsetup(req, data, nbytes, offset);
317 nbytes = 0;
319 nfs_execute_read(data);
320 } while (nbytes != 0);
322 return 0;
324 out_bad:
325 while (!list_empty(&list)) {
326 data = list_entry(list.next, struct nfs_read_data, pages);
327 list_del(&data->pages);
328 nfs_readdata_free(data);
330 SetPageError(page);
331 nfs_readpage_release(req);
332 return -ENOMEM;
335 static int nfs_pagein_one(struct list_head *head, struct inode *inode)
337 struct nfs_page *req;
338 struct page **pages;
339 struct nfs_read_data *data;
340 unsigned int count;
342 if (NFS_SERVER(inode)->rsize < PAGE_CACHE_SIZE)
343 return nfs_pagein_multi(head, inode);
345 data = nfs_readdata_alloc();
346 if (!data)
347 goto out_bad;
349 INIT_LIST_HEAD(&data->pages);
350 pages = data->pagevec;
351 count = 0;
352 while (!list_empty(head)) {
353 req = nfs_list_entry(head->next);
354 nfs_list_remove_request(req);
355 nfs_list_add_request(req, &data->pages);
356 ClearPageError(req->wb_page);
357 *pages++ = req->wb_page;
358 count += req->wb_bytes;
360 req = nfs_list_entry(data->pages.next);
362 data->complete = nfs_readpage_result_full;
363 nfs_read_rpcsetup(req, data, count, 0);
365 nfs_execute_read(data);
366 return 0;
367 out_bad:
368 nfs_async_read_error(head);
369 return -ENOMEM;
372 static int
373 nfs_pagein_list(struct list_head *head, int rpages)
375 LIST_HEAD(one_request);
376 struct nfs_page *req;
377 int error = 0;
378 unsigned int pages = 0;
380 while (!list_empty(head)) {
381 pages += nfs_coalesce_requests(head, &one_request, rpages);
382 req = nfs_list_entry(one_request.next);
383 error = nfs_pagein_one(&one_request, req->wb_context->dentry->d_inode);
384 if (error < 0)
385 break;
387 if (error >= 0)
388 return pages;
390 nfs_async_read_error(head);
391 return error;
395 * Handle a read reply that fills part of a page.
397 static void nfs_readpage_result_partial(struct nfs_read_data *data, int status)
399 struct nfs_page *req = data->req;
400 struct page *page = req->wb_page;
402 if (status >= 0) {
403 unsigned int request = data->args.count;
404 unsigned int result = data->res.count;
406 if (result < request) {
407 memclear_highpage_flush(page,
408 data->args.pgbase + result,
409 request - result);
411 } else
412 SetPageError(page);
414 if (atomic_dec_and_test(&req->wb_complete)) {
415 if (!PageError(page))
416 SetPageUptodate(page);
417 nfs_readpage_release(req);
422 * This is the callback from RPC telling us whether a reply was
423 * received or some error occurred (timeout or socket shutdown).
425 static void nfs_readpage_result_full(struct nfs_read_data *data, int status)
427 unsigned int count = data->res.count;
429 while (!list_empty(&data->pages)) {
430 struct nfs_page *req = nfs_list_entry(data->pages.next);
431 struct page *page = req->wb_page;
432 nfs_list_remove_request(req);
434 if (status >= 0) {
435 if (count < PAGE_CACHE_SIZE) {
436 if (count < req->wb_bytes)
437 memclear_highpage_flush(page,
438 req->wb_pgbase + count,
439 req->wb_bytes - count);
440 count = 0;
441 } else
442 count -= PAGE_CACHE_SIZE;
443 SetPageUptodate(page);
444 } else
445 SetPageError(page);
446 nfs_readpage_release(req);
451 * This is the callback from RPC telling us whether a reply was
452 * received or some error occurred (timeout or socket shutdown).
454 void nfs_readpage_result(struct rpc_task *task)
456 struct nfs_read_data *data = (struct nfs_read_data *)task->tk_calldata;
457 struct nfs_readargs *argp = &data->args;
458 struct nfs_readres *resp = &data->res;
459 int status = task->tk_status;
461 dprintk("NFS: %4d nfs_readpage_result, (status %d)\n",
462 task->tk_pid, status);
464 /* Is this a short read? */
465 if (task->tk_status >= 0 && resp->count < argp->count && !resp->eof) {
466 /* Has the server at least made some progress? */
467 if (resp->count != 0) {
468 /* Yes, so retry the read at the end of the data */
469 argp->offset += resp->count;
470 argp->pgbase += resp->count;
471 argp->count -= resp->count;
472 rpc_restart_call(task);
473 return;
475 task->tk_status = -EIO;
477 spin_lock(&data->inode->i_lock);
478 NFS_I(data->inode)->cache_validity |= NFS_INO_INVALID_ATIME;
479 spin_unlock(&data->inode->i_lock);
480 data->complete(data, status);
484 * Read a page over NFS.
485 * We read the page synchronously in the following case:
486 * - The error flag is set for this page. This happens only when a
487 * previous async read operation failed.
489 int nfs_readpage(struct file *file, struct page *page)
491 struct nfs_open_context *ctx;
492 struct inode *inode = page->mapping->host;
493 int error;
495 dprintk("NFS: nfs_readpage (%p %ld@%lu)\n",
496 page, PAGE_CACHE_SIZE, page->index);
498 * Try to flush any pending writes to the file..
500 * NOTE! Because we own the page lock, there cannot
501 * be any new pending writes generated at this point
502 * for this page (other pages can be written to).
504 error = nfs_wb_page(inode, page);
505 if (error)
506 goto out_error;
508 if (file == NULL) {
509 ctx = nfs_find_open_context(inode, FMODE_READ);
510 if (ctx == NULL)
511 return -EBADF;
512 } else
513 ctx = get_nfs_open_context((struct nfs_open_context *)
514 file->private_data);
515 if (!IS_SYNC(inode)) {
516 error = nfs_readpage_async(ctx, inode, page);
517 goto out;
520 error = nfs_readpage_sync(ctx, inode, page);
521 if (error < 0 && IS_SWAPFILE(inode))
522 printk("Aiee.. nfs swap-in of page failed!\n");
523 out:
524 put_nfs_open_context(ctx);
525 return error;
527 out_error:
528 unlock_page(page);
529 return error;
532 struct nfs_readdesc {
533 struct list_head *head;
534 struct nfs_open_context *ctx;
537 static int
538 readpage_async_filler(void *data, struct page *page)
540 struct nfs_readdesc *desc = (struct nfs_readdesc *)data;
541 struct inode *inode = page->mapping->host;
542 struct nfs_page *new;
543 unsigned int len;
545 nfs_wb_page(inode, page);
546 len = nfs_page_length(inode, page);
547 if (len == 0)
548 return nfs_return_empty_page(page);
549 new = nfs_create_request(desc->ctx, inode, page, 0, len);
550 if (IS_ERR(new)) {
551 SetPageError(page);
552 unlock_page(page);
553 return PTR_ERR(new);
555 if (len < PAGE_CACHE_SIZE)
556 memclear_highpage_flush(page, len, PAGE_CACHE_SIZE - len);
557 nfs_list_add_request(new, desc->head);
558 return 0;
561 int nfs_readpages(struct file *filp, struct address_space *mapping,
562 struct list_head *pages, unsigned nr_pages)
564 LIST_HEAD(head);
565 struct nfs_readdesc desc = {
566 .head = &head,
568 struct inode *inode = mapping->host;
569 struct nfs_server *server = NFS_SERVER(inode);
570 int ret;
572 dprintk("NFS: nfs_readpages (%s/%Ld %d)\n",
573 inode->i_sb->s_id,
574 (long long)NFS_FILEID(inode),
575 nr_pages);
577 if (filp == NULL) {
578 desc.ctx = nfs_find_open_context(inode, FMODE_READ);
579 if (desc.ctx == NULL)
580 return -EBADF;
581 } else
582 desc.ctx = get_nfs_open_context((struct nfs_open_context *)
583 filp->private_data);
584 ret = read_cache_pages(mapping, pages, readpage_async_filler, &desc);
585 if (!list_empty(&head)) {
586 int err = nfs_pagein_list(&head, server->rpages);
587 if (!ret)
588 ret = err;
590 put_nfs_open_context(desc.ctx);
591 return ret;
594 int nfs_init_readpagecache(void)
596 nfs_rdata_cachep = kmem_cache_create("nfs_read_data",
597 sizeof(struct nfs_read_data),
598 0, SLAB_HWCACHE_ALIGN,
599 NULL, NULL);
600 if (nfs_rdata_cachep == NULL)
601 return -ENOMEM;
603 nfs_rdata_mempool = mempool_create(MIN_POOL_READ,
604 mempool_alloc_slab,
605 mempool_free_slab,
606 nfs_rdata_cachep);
607 if (nfs_rdata_mempool == NULL)
608 return -ENOMEM;
610 return 0;
613 void nfs_destroy_readpagecache(void)
615 mempool_destroy(nfs_rdata_mempool);
616 if (kmem_cache_destroy(nfs_rdata_cachep))
617 printk(KERN_INFO "nfs_read_data: not all structures were freed\n");