V4L/DVB (9657): em28xx: add a functio to write on a single register
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / exit.c
blobc7422ca920382b47445ace263bdba0fe6fbf6bf8
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
58 DEFINE_TRACE(sched_process_free);
59 DEFINE_TRACE(sched_process_exit);
60 DEFINE_TRACE(sched_process_wait);
62 static void exit_mm(struct task_struct * tsk);
64 static inline int task_detached(struct task_struct *p)
66 return p->exit_signal == -1;
69 static void __unhash_process(struct task_struct *p)
71 nr_threads--;
72 detach_pid(p, PIDTYPE_PID);
73 if (thread_group_leader(p)) {
74 detach_pid(p, PIDTYPE_PGID);
75 detach_pid(p, PIDTYPE_SID);
77 list_del_rcu(&p->tasks);
78 __get_cpu_var(process_counts)--;
80 list_del_rcu(&p->thread_group);
81 list_del_init(&p->sibling);
85 * This function expects the tasklist_lock write-locked.
87 static void __exit_signal(struct task_struct *tsk)
89 struct signal_struct *sig = tsk->signal;
90 struct sighand_struct *sighand;
92 BUG_ON(!sig);
93 BUG_ON(!atomic_read(&sig->count));
95 sighand = rcu_dereference(tsk->sighand);
96 spin_lock(&sighand->siglock);
98 posix_cpu_timers_exit(tsk);
99 if (atomic_dec_and_test(&sig->count))
100 posix_cpu_timers_exit_group(tsk);
101 else {
103 * If there is any task waiting for the group exit
104 * then notify it:
106 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
107 wake_up_process(sig->group_exit_task);
109 if (tsk == sig->curr_target)
110 sig->curr_target = next_thread(tsk);
112 * Accumulate here the counters for all threads but the
113 * group leader as they die, so they can be added into
114 * the process-wide totals when those are taken.
115 * The group leader stays around as a zombie as long
116 * as there are other threads. When it gets reaped,
117 * the exit.c code will add its counts into these totals.
118 * We won't ever get here for the group leader, since it
119 * will have been the last reference on the signal_struct.
121 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
122 sig->min_flt += tsk->min_flt;
123 sig->maj_flt += tsk->maj_flt;
124 sig->nvcsw += tsk->nvcsw;
125 sig->nivcsw += tsk->nivcsw;
126 sig->inblock += task_io_get_inblock(tsk);
127 sig->oublock += task_io_get_oublock(tsk);
128 task_io_accounting_add(&sig->ioac, &tsk->ioac);
129 sig = NULL; /* Marker for below. */
132 __unhash_process(tsk);
135 * Do this under ->siglock, we can race with another thread
136 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
138 flush_sigqueue(&tsk->pending);
140 tsk->signal = NULL;
141 tsk->sighand = NULL;
142 spin_unlock(&sighand->siglock);
144 __cleanup_sighand(sighand);
145 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
146 if (sig) {
147 flush_sigqueue(&sig->shared_pending);
148 taskstats_tgid_free(sig);
150 * Make sure ->signal can't go away under rq->lock,
151 * see account_group_exec_runtime().
153 task_rq_unlock_wait(tsk);
154 __cleanup_signal(sig);
158 static void delayed_put_task_struct(struct rcu_head *rhp)
160 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
162 trace_sched_process_free(tsk);
163 put_task_struct(tsk);
167 void release_task(struct task_struct * p)
169 struct task_struct *leader;
170 int zap_leader;
171 repeat:
172 tracehook_prepare_release_task(p);
173 /* don't need to get the RCU readlock here - the process is dead and
174 * can't be modifying its own credentials */
175 atomic_dec(&__task_cred(p)->user->processes);
177 proc_flush_task(p);
178 write_lock_irq(&tasklist_lock);
179 tracehook_finish_release_task(p);
180 __exit_signal(p);
183 * If we are the last non-leader member of the thread
184 * group, and the leader is zombie, then notify the
185 * group leader's parent process. (if it wants notification.)
187 zap_leader = 0;
188 leader = p->group_leader;
189 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
190 BUG_ON(task_detached(leader));
191 do_notify_parent(leader, leader->exit_signal);
193 * If we were the last child thread and the leader has
194 * exited already, and the leader's parent ignores SIGCHLD,
195 * then we are the one who should release the leader.
197 * do_notify_parent() will have marked it self-reaping in
198 * that case.
200 zap_leader = task_detached(leader);
203 * This maintains the invariant that release_task()
204 * only runs on a task in EXIT_DEAD, just for sanity.
206 if (zap_leader)
207 leader->exit_state = EXIT_DEAD;
210 write_unlock_irq(&tasklist_lock);
211 release_thread(p);
212 call_rcu(&p->rcu, delayed_put_task_struct);
214 p = leader;
215 if (unlikely(zap_leader))
216 goto repeat;
220 * This checks not only the pgrp, but falls back on the pid if no
221 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
222 * without this...
224 * The caller must hold rcu lock or the tasklist lock.
226 struct pid *session_of_pgrp(struct pid *pgrp)
228 struct task_struct *p;
229 struct pid *sid = NULL;
231 p = pid_task(pgrp, PIDTYPE_PGID);
232 if (p == NULL)
233 p = pid_task(pgrp, PIDTYPE_PID);
234 if (p != NULL)
235 sid = task_session(p);
237 return sid;
241 * Determine if a process group is "orphaned", according to the POSIX
242 * definition in 2.2.2.52. Orphaned process groups are not to be affected
243 * by terminal-generated stop signals. Newly orphaned process groups are
244 * to receive a SIGHUP and a SIGCONT.
246 * "I ask you, have you ever known what it is to be an orphan?"
248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
250 struct task_struct *p;
252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253 if ((p == ignored_task) ||
254 (p->exit_state && thread_group_empty(p)) ||
255 is_global_init(p->real_parent))
256 continue;
258 if (task_pgrp(p->real_parent) != pgrp &&
259 task_session(p->real_parent) == task_session(p))
260 return 0;
261 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
263 return 1;
266 int is_current_pgrp_orphaned(void)
268 int retval;
270 read_lock(&tasklist_lock);
271 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
272 read_unlock(&tasklist_lock);
274 return retval;
277 static int has_stopped_jobs(struct pid *pgrp)
279 int retval = 0;
280 struct task_struct *p;
282 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
283 if (!task_is_stopped(p))
284 continue;
285 retval = 1;
286 break;
287 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
288 return retval;
292 * Check to see if any process groups have become orphaned as
293 * a result of our exiting, and if they have any stopped jobs,
294 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
296 static void
297 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
299 struct pid *pgrp = task_pgrp(tsk);
300 struct task_struct *ignored_task = tsk;
302 if (!parent)
303 /* exit: our father is in a different pgrp than
304 * we are and we were the only connection outside.
306 parent = tsk->real_parent;
307 else
308 /* reparent: our child is in a different pgrp than
309 * we are, and it was the only connection outside.
311 ignored_task = NULL;
313 if (task_pgrp(parent) != pgrp &&
314 task_session(parent) == task_session(tsk) &&
315 will_become_orphaned_pgrp(pgrp, ignored_task) &&
316 has_stopped_jobs(pgrp)) {
317 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
318 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
323 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
325 * If a kernel thread is launched as a result of a system call, or if
326 * it ever exits, it should generally reparent itself to kthreadd so it
327 * isn't in the way of other processes and is correctly cleaned up on exit.
329 * The various task state such as scheduling policy and priority may have
330 * been inherited from a user process, so we reset them to sane values here.
332 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
334 static void reparent_to_kthreadd(void)
336 write_lock_irq(&tasklist_lock);
338 ptrace_unlink(current);
339 /* Reparent to init */
340 current->real_parent = current->parent = kthreadd_task;
341 list_move_tail(&current->sibling, &current->real_parent->children);
343 /* Set the exit signal to SIGCHLD so we signal init on exit */
344 current->exit_signal = SIGCHLD;
346 if (task_nice(current) < 0)
347 set_user_nice(current, 0);
348 /* cpus_allowed? */
349 /* rt_priority? */
350 /* signals? */
351 memcpy(current->signal->rlim, init_task.signal->rlim,
352 sizeof(current->signal->rlim));
354 atomic_inc(&init_cred.usage);
355 commit_creds(&init_cred);
356 write_unlock_irq(&tasklist_lock);
359 void __set_special_pids(struct pid *pid)
361 struct task_struct *curr = current->group_leader;
362 pid_t nr = pid_nr(pid);
364 if (task_session(curr) != pid) {
365 change_pid(curr, PIDTYPE_SID, pid);
366 set_task_session(curr, nr);
368 if (task_pgrp(curr) != pid) {
369 change_pid(curr, PIDTYPE_PGID, pid);
370 set_task_pgrp(curr, nr);
374 static void set_special_pids(struct pid *pid)
376 write_lock_irq(&tasklist_lock);
377 __set_special_pids(pid);
378 write_unlock_irq(&tasklist_lock);
382 * Let kernel threads use this to say that they
383 * allow a certain signal (since daemonize() will
384 * have disabled all of them by default).
386 int allow_signal(int sig)
388 if (!valid_signal(sig) || sig < 1)
389 return -EINVAL;
391 spin_lock_irq(&current->sighand->siglock);
392 sigdelset(&current->blocked, sig);
393 if (!current->mm) {
394 /* Kernel threads handle their own signals.
395 Let the signal code know it'll be handled, so
396 that they don't get converted to SIGKILL or
397 just silently dropped */
398 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
400 recalc_sigpending();
401 spin_unlock_irq(&current->sighand->siglock);
402 return 0;
405 EXPORT_SYMBOL(allow_signal);
407 int disallow_signal(int sig)
409 if (!valid_signal(sig) || sig < 1)
410 return -EINVAL;
412 spin_lock_irq(&current->sighand->siglock);
413 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
414 recalc_sigpending();
415 spin_unlock_irq(&current->sighand->siglock);
416 return 0;
419 EXPORT_SYMBOL(disallow_signal);
422 * Put all the gunge required to become a kernel thread without
423 * attached user resources in one place where it belongs.
426 void daemonize(const char *name, ...)
428 va_list args;
429 struct fs_struct *fs;
430 sigset_t blocked;
432 va_start(args, name);
433 vsnprintf(current->comm, sizeof(current->comm), name, args);
434 va_end(args);
437 * If we were started as result of loading a module, close all of the
438 * user space pages. We don't need them, and if we didn't close them
439 * they would be locked into memory.
441 exit_mm(current);
443 * We don't want to have TIF_FREEZE set if the system-wide hibernation
444 * or suspend transition begins right now.
446 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
448 if (current->nsproxy != &init_nsproxy) {
449 get_nsproxy(&init_nsproxy);
450 switch_task_namespaces(current, &init_nsproxy);
452 set_special_pids(&init_struct_pid);
453 proc_clear_tty(current);
455 /* Block and flush all signals */
456 sigfillset(&blocked);
457 sigprocmask(SIG_BLOCK, &blocked, NULL);
458 flush_signals(current);
460 /* Become as one with the init task */
462 exit_fs(current); /* current->fs->count--; */
463 fs = init_task.fs;
464 current->fs = fs;
465 atomic_inc(&fs->count);
467 exit_files(current);
468 current->files = init_task.files;
469 atomic_inc(&current->files->count);
471 reparent_to_kthreadd();
474 EXPORT_SYMBOL(daemonize);
476 static void close_files(struct files_struct * files)
478 int i, j;
479 struct fdtable *fdt;
481 j = 0;
484 * It is safe to dereference the fd table without RCU or
485 * ->file_lock because this is the last reference to the
486 * files structure.
488 fdt = files_fdtable(files);
489 for (;;) {
490 unsigned long set;
491 i = j * __NFDBITS;
492 if (i >= fdt->max_fds)
493 break;
494 set = fdt->open_fds->fds_bits[j++];
495 while (set) {
496 if (set & 1) {
497 struct file * file = xchg(&fdt->fd[i], NULL);
498 if (file) {
499 filp_close(file, files);
500 cond_resched();
503 i++;
504 set >>= 1;
509 struct files_struct *get_files_struct(struct task_struct *task)
511 struct files_struct *files;
513 task_lock(task);
514 files = task->files;
515 if (files)
516 atomic_inc(&files->count);
517 task_unlock(task);
519 return files;
522 void put_files_struct(struct files_struct *files)
524 struct fdtable *fdt;
526 if (atomic_dec_and_test(&files->count)) {
527 close_files(files);
529 * Free the fd and fdset arrays if we expanded them.
530 * If the fdtable was embedded, pass files for freeing
531 * at the end of the RCU grace period. Otherwise,
532 * you can free files immediately.
534 fdt = files_fdtable(files);
535 if (fdt != &files->fdtab)
536 kmem_cache_free(files_cachep, files);
537 free_fdtable(fdt);
541 void reset_files_struct(struct files_struct *files)
543 struct task_struct *tsk = current;
544 struct files_struct *old;
546 old = tsk->files;
547 task_lock(tsk);
548 tsk->files = files;
549 task_unlock(tsk);
550 put_files_struct(old);
553 void exit_files(struct task_struct *tsk)
555 struct files_struct * files = tsk->files;
557 if (files) {
558 task_lock(tsk);
559 tsk->files = NULL;
560 task_unlock(tsk);
561 put_files_struct(files);
565 void put_fs_struct(struct fs_struct *fs)
567 /* No need to hold fs->lock if we are killing it */
568 if (atomic_dec_and_test(&fs->count)) {
569 path_put(&fs->root);
570 path_put(&fs->pwd);
571 kmem_cache_free(fs_cachep, fs);
575 void exit_fs(struct task_struct *tsk)
577 struct fs_struct * fs = tsk->fs;
579 if (fs) {
580 task_lock(tsk);
581 tsk->fs = NULL;
582 task_unlock(tsk);
583 put_fs_struct(fs);
587 EXPORT_SYMBOL_GPL(exit_fs);
589 #ifdef CONFIG_MM_OWNER
591 * Task p is exiting and it owned mm, lets find a new owner for it
593 static inline int
594 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
597 * If there are other users of the mm and the owner (us) is exiting
598 * we need to find a new owner to take on the responsibility.
600 if (atomic_read(&mm->mm_users) <= 1)
601 return 0;
602 if (mm->owner != p)
603 return 0;
604 return 1;
607 void mm_update_next_owner(struct mm_struct *mm)
609 struct task_struct *c, *g, *p = current;
611 retry:
612 if (!mm_need_new_owner(mm, p))
613 return;
615 read_lock(&tasklist_lock);
617 * Search in the children
619 list_for_each_entry(c, &p->children, sibling) {
620 if (c->mm == mm)
621 goto assign_new_owner;
625 * Search in the siblings
627 list_for_each_entry(c, &p->parent->children, sibling) {
628 if (c->mm == mm)
629 goto assign_new_owner;
633 * Search through everything else. We should not get
634 * here often
636 do_each_thread(g, c) {
637 if (c->mm == mm)
638 goto assign_new_owner;
639 } while_each_thread(g, c);
641 read_unlock(&tasklist_lock);
643 * We found no owner yet mm_users > 1: this implies that we are
644 * most likely racing with swapoff (try_to_unuse()) or /proc or
645 * ptrace or page migration (get_task_mm()). Mark owner as NULL,
646 * so that subsystems can understand the callback and take action.
648 down_write(&mm->mmap_sem);
649 cgroup_mm_owner_callbacks(mm->owner, NULL);
650 mm->owner = NULL;
651 up_write(&mm->mmap_sem);
652 return;
654 assign_new_owner:
655 BUG_ON(c == p);
656 get_task_struct(c);
657 read_unlock(&tasklist_lock);
658 down_write(&mm->mmap_sem);
660 * The task_lock protects c->mm from changing.
661 * We always want mm->owner->mm == mm
663 task_lock(c);
664 if (c->mm != mm) {
665 task_unlock(c);
666 up_write(&mm->mmap_sem);
667 put_task_struct(c);
668 goto retry;
670 cgroup_mm_owner_callbacks(mm->owner, c);
671 mm->owner = c;
672 task_unlock(c);
673 up_write(&mm->mmap_sem);
674 put_task_struct(c);
676 #endif /* CONFIG_MM_OWNER */
679 * Turn us into a lazy TLB process if we
680 * aren't already..
682 static void exit_mm(struct task_struct * tsk)
684 struct mm_struct *mm = tsk->mm;
685 struct core_state *core_state;
687 mm_release(tsk, mm);
688 if (!mm)
689 return;
691 * Serialize with any possible pending coredump.
692 * We must hold mmap_sem around checking core_state
693 * and clearing tsk->mm. The core-inducing thread
694 * will increment ->nr_threads for each thread in the
695 * group with ->mm != NULL.
697 down_read(&mm->mmap_sem);
698 core_state = mm->core_state;
699 if (core_state) {
700 struct core_thread self;
701 up_read(&mm->mmap_sem);
703 self.task = tsk;
704 self.next = xchg(&core_state->dumper.next, &self);
706 * Implies mb(), the result of xchg() must be visible
707 * to core_state->dumper.
709 if (atomic_dec_and_test(&core_state->nr_threads))
710 complete(&core_state->startup);
712 for (;;) {
713 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
714 if (!self.task) /* see coredump_finish() */
715 break;
716 schedule();
718 __set_task_state(tsk, TASK_RUNNING);
719 down_read(&mm->mmap_sem);
721 atomic_inc(&mm->mm_count);
722 BUG_ON(mm != tsk->active_mm);
723 /* more a memory barrier than a real lock */
724 task_lock(tsk);
725 tsk->mm = NULL;
726 up_read(&mm->mmap_sem);
727 enter_lazy_tlb(mm, current);
728 /* We don't want this task to be frozen prematurely */
729 clear_freeze_flag(tsk);
730 task_unlock(tsk);
731 mm_update_next_owner(mm);
732 mmput(mm);
736 * Return nonzero if @parent's children should reap themselves.
738 * Called with write_lock_irq(&tasklist_lock) held.
740 static int ignoring_children(struct task_struct *parent)
742 int ret;
743 struct sighand_struct *psig = parent->sighand;
744 unsigned long flags;
745 spin_lock_irqsave(&psig->siglock, flags);
746 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
747 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
748 spin_unlock_irqrestore(&psig->siglock, flags);
749 return ret;
753 * Detach all tasks we were using ptrace on.
754 * Any that need to be release_task'd are put on the @dead list.
756 * Called with write_lock(&tasklist_lock) held.
758 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
760 struct task_struct *p, *n;
761 int ign = -1;
763 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
764 __ptrace_unlink(p);
766 if (p->exit_state != EXIT_ZOMBIE)
767 continue;
770 * If it's a zombie, our attachedness prevented normal
771 * parent notification or self-reaping. Do notification
772 * now if it would have happened earlier. If it should
773 * reap itself, add it to the @dead list. We can't call
774 * release_task() here because we already hold tasklist_lock.
776 * If it's our own child, there is no notification to do.
777 * But if our normal children self-reap, then this child
778 * was prevented by ptrace and we must reap it now.
780 if (!task_detached(p) && thread_group_empty(p)) {
781 if (!same_thread_group(p->real_parent, parent))
782 do_notify_parent(p, p->exit_signal);
783 else {
784 if (ign < 0)
785 ign = ignoring_children(parent);
786 if (ign)
787 p->exit_signal = -1;
791 if (task_detached(p)) {
793 * Mark it as in the process of being reaped.
795 p->exit_state = EXIT_DEAD;
796 list_add(&p->ptrace_entry, dead);
802 * Finish up exit-time ptrace cleanup.
804 * Called without locks.
806 static void ptrace_exit_finish(struct task_struct *parent,
807 struct list_head *dead)
809 struct task_struct *p, *n;
811 BUG_ON(!list_empty(&parent->ptraced));
813 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
814 list_del_init(&p->ptrace_entry);
815 release_task(p);
819 static void reparent_thread(struct task_struct *p, struct task_struct *father)
821 if (p->pdeath_signal)
822 /* We already hold the tasklist_lock here. */
823 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
825 list_move_tail(&p->sibling, &p->real_parent->children);
827 /* If this is a threaded reparent there is no need to
828 * notify anyone anything has happened.
830 if (same_thread_group(p->real_parent, father))
831 return;
833 /* We don't want people slaying init. */
834 if (!task_detached(p))
835 p->exit_signal = SIGCHLD;
837 /* If we'd notified the old parent about this child's death,
838 * also notify the new parent.
840 if (!ptrace_reparented(p) &&
841 p->exit_state == EXIT_ZOMBIE &&
842 !task_detached(p) && thread_group_empty(p))
843 do_notify_parent(p, p->exit_signal);
845 kill_orphaned_pgrp(p, father);
849 * When we die, we re-parent all our children.
850 * Try to give them to another thread in our thread
851 * group, and if no such member exists, give it to
852 * the child reaper process (ie "init") in our pid
853 * space.
855 static struct task_struct *find_new_reaper(struct task_struct *father)
857 struct pid_namespace *pid_ns = task_active_pid_ns(father);
858 struct task_struct *thread;
860 thread = father;
861 while_each_thread(father, thread) {
862 if (thread->flags & PF_EXITING)
863 continue;
864 if (unlikely(pid_ns->child_reaper == father))
865 pid_ns->child_reaper = thread;
866 return thread;
869 if (unlikely(pid_ns->child_reaper == father)) {
870 write_unlock_irq(&tasklist_lock);
871 if (unlikely(pid_ns == &init_pid_ns))
872 panic("Attempted to kill init!");
874 zap_pid_ns_processes(pid_ns);
875 write_lock_irq(&tasklist_lock);
877 * We can not clear ->child_reaper or leave it alone.
878 * There may by stealth EXIT_DEAD tasks on ->children,
879 * forget_original_parent() must move them somewhere.
881 pid_ns->child_reaper = init_pid_ns.child_reaper;
884 return pid_ns->child_reaper;
887 static void forget_original_parent(struct task_struct *father)
889 struct task_struct *p, *n, *reaper;
890 LIST_HEAD(ptrace_dead);
892 write_lock_irq(&tasklist_lock);
893 reaper = find_new_reaper(father);
895 * First clean up ptrace if we were using it.
897 ptrace_exit(father, &ptrace_dead);
899 list_for_each_entry_safe(p, n, &father->children, sibling) {
900 p->real_parent = reaper;
901 if (p->parent == father) {
902 BUG_ON(p->ptrace);
903 p->parent = p->real_parent;
905 reparent_thread(p, father);
908 write_unlock_irq(&tasklist_lock);
909 BUG_ON(!list_empty(&father->children));
911 ptrace_exit_finish(father, &ptrace_dead);
915 * Send signals to all our closest relatives so that they know
916 * to properly mourn us..
918 static void exit_notify(struct task_struct *tsk, int group_dead)
920 int signal;
921 void *cookie;
924 * This does two things:
926 * A. Make init inherit all the child processes
927 * B. Check to see if any process groups have become orphaned
928 * as a result of our exiting, and if they have any stopped
929 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
931 forget_original_parent(tsk);
932 exit_task_namespaces(tsk);
934 write_lock_irq(&tasklist_lock);
935 if (group_dead)
936 kill_orphaned_pgrp(tsk->group_leader, NULL);
938 /* Let father know we died
940 * Thread signals are configurable, but you aren't going to use
941 * that to send signals to arbitary processes.
942 * That stops right now.
944 * If the parent exec id doesn't match the exec id we saved
945 * when we started then we know the parent has changed security
946 * domain.
948 * If our self_exec id doesn't match our parent_exec_id then
949 * we have changed execution domain as these two values started
950 * the same after a fork.
952 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
953 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
954 tsk->self_exec_id != tsk->parent_exec_id) &&
955 !capable(CAP_KILL))
956 tsk->exit_signal = SIGCHLD;
958 signal = tracehook_notify_death(tsk, &cookie, group_dead);
959 if (signal >= 0)
960 signal = do_notify_parent(tsk, signal);
962 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
964 /* mt-exec, de_thread() is waiting for us */
965 if (thread_group_leader(tsk) &&
966 tsk->signal->group_exit_task &&
967 tsk->signal->notify_count < 0)
968 wake_up_process(tsk->signal->group_exit_task);
970 write_unlock_irq(&tasklist_lock);
972 tracehook_report_death(tsk, signal, cookie, group_dead);
974 /* If the process is dead, release it - nobody will wait for it */
975 if (signal == DEATH_REAP)
976 release_task(tsk);
979 #ifdef CONFIG_DEBUG_STACK_USAGE
980 static void check_stack_usage(void)
982 static DEFINE_SPINLOCK(low_water_lock);
983 static int lowest_to_date = THREAD_SIZE;
984 unsigned long *n = end_of_stack(current);
985 unsigned long free;
987 while (*n == 0)
988 n++;
989 free = (unsigned long)n - (unsigned long)end_of_stack(current);
991 if (free >= lowest_to_date)
992 return;
994 spin_lock(&low_water_lock);
995 if (free < lowest_to_date) {
996 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
997 "left\n",
998 current->comm, free);
999 lowest_to_date = free;
1001 spin_unlock(&low_water_lock);
1003 #else
1004 static inline void check_stack_usage(void) {}
1005 #endif
1007 NORET_TYPE void do_exit(long code)
1009 struct task_struct *tsk = current;
1010 int group_dead;
1012 profile_task_exit(tsk);
1014 WARN_ON(atomic_read(&tsk->fs_excl));
1016 if (unlikely(in_interrupt()))
1017 panic("Aiee, killing interrupt handler!");
1018 if (unlikely(!tsk->pid))
1019 panic("Attempted to kill the idle task!");
1021 tracehook_report_exit(&code);
1024 * We're taking recursive faults here in do_exit. Safest is to just
1025 * leave this task alone and wait for reboot.
1027 if (unlikely(tsk->flags & PF_EXITING)) {
1028 printk(KERN_ALERT
1029 "Fixing recursive fault but reboot is needed!\n");
1031 * We can do this unlocked here. The futex code uses
1032 * this flag just to verify whether the pi state
1033 * cleanup has been done or not. In the worst case it
1034 * loops once more. We pretend that the cleanup was
1035 * done as there is no way to return. Either the
1036 * OWNER_DIED bit is set by now or we push the blocked
1037 * task into the wait for ever nirwana as well.
1039 tsk->flags |= PF_EXITPIDONE;
1040 if (tsk->io_context)
1041 exit_io_context();
1042 set_current_state(TASK_UNINTERRUPTIBLE);
1043 schedule();
1046 exit_signals(tsk); /* sets PF_EXITING */
1048 * tsk->flags are checked in the futex code to protect against
1049 * an exiting task cleaning up the robust pi futexes.
1051 smp_mb();
1052 spin_unlock_wait(&tsk->pi_lock);
1054 if (unlikely(in_atomic()))
1055 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1056 current->comm, task_pid_nr(current),
1057 preempt_count());
1059 acct_update_integrals(tsk);
1060 if (tsk->mm) {
1061 update_hiwater_rss(tsk->mm);
1062 update_hiwater_vm(tsk->mm);
1064 group_dead = atomic_dec_and_test(&tsk->signal->live);
1065 if (group_dead) {
1066 hrtimer_cancel(&tsk->signal->real_timer);
1067 exit_itimers(tsk->signal);
1069 acct_collect(code, group_dead);
1070 if (group_dead)
1071 tty_audit_exit();
1072 if (unlikely(tsk->audit_context))
1073 audit_free(tsk);
1075 tsk->exit_code = code;
1076 taskstats_exit(tsk, group_dead);
1078 exit_mm(tsk);
1080 if (group_dead)
1081 acct_process();
1082 trace_sched_process_exit(tsk);
1084 exit_sem(tsk);
1085 exit_files(tsk);
1086 exit_fs(tsk);
1087 check_stack_usage();
1088 exit_thread();
1089 cgroup_exit(tsk, 1);
1091 if (group_dead && tsk->signal->leader)
1092 disassociate_ctty(1);
1094 module_put(task_thread_info(tsk)->exec_domain->module);
1095 if (tsk->binfmt)
1096 module_put(tsk->binfmt->module);
1098 proc_exit_connector(tsk);
1099 exit_notify(tsk, group_dead);
1100 #ifdef CONFIG_NUMA
1101 mpol_put(tsk->mempolicy);
1102 tsk->mempolicy = NULL;
1103 #endif
1104 #ifdef CONFIG_FUTEX
1106 * This must happen late, after the PID is not
1107 * hashed anymore:
1109 if (unlikely(!list_empty(&tsk->pi_state_list)))
1110 exit_pi_state_list(tsk);
1111 if (unlikely(current->pi_state_cache))
1112 kfree(current->pi_state_cache);
1113 #endif
1115 * Make sure we are holding no locks:
1117 debug_check_no_locks_held(tsk);
1119 * We can do this unlocked here. The futex code uses this flag
1120 * just to verify whether the pi state cleanup has been done
1121 * or not. In the worst case it loops once more.
1123 tsk->flags |= PF_EXITPIDONE;
1125 if (tsk->io_context)
1126 exit_io_context();
1128 if (tsk->splice_pipe)
1129 __free_pipe_info(tsk->splice_pipe);
1131 preempt_disable();
1132 /* causes final put_task_struct in finish_task_switch(). */
1133 tsk->state = TASK_DEAD;
1134 schedule();
1135 BUG();
1136 /* Avoid "noreturn function does return". */
1137 for (;;)
1138 cpu_relax(); /* For when BUG is null */
1141 EXPORT_SYMBOL_GPL(do_exit);
1143 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1145 if (comp)
1146 complete(comp);
1148 do_exit(code);
1151 EXPORT_SYMBOL(complete_and_exit);
1153 asmlinkage long sys_exit(int error_code)
1155 do_exit((error_code&0xff)<<8);
1159 * Take down every thread in the group. This is called by fatal signals
1160 * as well as by sys_exit_group (below).
1162 NORET_TYPE void
1163 do_group_exit(int exit_code)
1165 struct signal_struct *sig = current->signal;
1167 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1169 if (signal_group_exit(sig))
1170 exit_code = sig->group_exit_code;
1171 else if (!thread_group_empty(current)) {
1172 struct sighand_struct *const sighand = current->sighand;
1173 spin_lock_irq(&sighand->siglock);
1174 if (signal_group_exit(sig))
1175 /* Another thread got here before we took the lock. */
1176 exit_code = sig->group_exit_code;
1177 else {
1178 sig->group_exit_code = exit_code;
1179 sig->flags = SIGNAL_GROUP_EXIT;
1180 zap_other_threads(current);
1182 spin_unlock_irq(&sighand->siglock);
1185 do_exit(exit_code);
1186 /* NOTREACHED */
1190 * this kills every thread in the thread group. Note that any externally
1191 * wait4()-ing process will get the correct exit code - even if this
1192 * thread is not the thread group leader.
1194 asmlinkage void sys_exit_group(int error_code)
1196 do_group_exit((error_code & 0xff) << 8);
1199 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1201 struct pid *pid = NULL;
1202 if (type == PIDTYPE_PID)
1203 pid = task->pids[type].pid;
1204 else if (type < PIDTYPE_MAX)
1205 pid = task->group_leader->pids[type].pid;
1206 return pid;
1209 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1210 struct task_struct *p)
1212 int err;
1214 if (type < PIDTYPE_MAX) {
1215 if (task_pid_type(p, type) != pid)
1216 return 0;
1219 /* Wait for all children (clone and not) if __WALL is set;
1220 * otherwise, wait for clone children *only* if __WCLONE is
1221 * set; otherwise, wait for non-clone children *only*. (Note:
1222 * A "clone" child here is one that reports to its parent
1223 * using a signal other than SIGCHLD.) */
1224 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1225 && !(options & __WALL))
1226 return 0;
1228 err = security_task_wait(p);
1229 if (err)
1230 return err;
1232 return 1;
1235 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1236 int why, int status,
1237 struct siginfo __user *infop,
1238 struct rusage __user *rusagep)
1240 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1242 put_task_struct(p);
1243 if (!retval)
1244 retval = put_user(SIGCHLD, &infop->si_signo);
1245 if (!retval)
1246 retval = put_user(0, &infop->si_errno);
1247 if (!retval)
1248 retval = put_user((short)why, &infop->si_code);
1249 if (!retval)
1250 retval = put_user(pid, &infop->si_pid);
1251 if (!retval)
1252 retval = put_user(uid, &infop->si_uid);
1253 if (!retval)
1254 retval = put_user(status, &infop->si_status);
1255 if (!retval)
1256 retval = pid;
1257 return retval;
1261 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1262 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1263 * the lock and this task is uninteresting. If we return nonzero, we have
1264 * released the lock and the system call should return.
1266 static int wait_task_zombie(struct task_struct *p, int options,
1267 struct siginfo __user *infop,
1268 int __user *stat_addr, struct rusage __user *ru)
1270 unsigned long state;
1271 int retval, status, traced;
1272 pid_t pid = task_pid_vnr(p);
1273 uid_t uid = __task_cred(p)->uid;
1275 if (!likely(options & WEXITED))
1276 return 0;
1278 if (unlikely(options & WNOWAIT)) {
1279 int exit_code = p->exit_code;
1280 int why, status;
1282 get_task_struct(p);
1283 read_unlock(&tasklist_lock);
1284 if ((exit_code & 0x7f) == 0) {
1285 why = CLD_EXITED;
1286 status = exit_code >> 8;
1287 } else {
1288 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1289 status = exit_code & 0x7f;
1291 return wait_noreap_copyout(p, pid, uid, why,
1292 status, infop, ru);
1296 * Try to move the task's state to DEAD
1297 * only one thread is allowed to do this:
1299 state = xchg(&p->exit_state, EXIT_DEAD);
1300 if (state != EXIT_ZOMBIE) {
1301 BUG_ON(state != EXIT_DEAD);
1302 return 0;
1305 traced = ptrace_reparented(p);
1307 if (likely(!traced)) {
1308 struct signal_struct *psig;
1309 struct signal_struct *sig;
1310 struct task_cputime cputime;
1313 * The resource counters for the group leader are in its
1314 * own task_struct. Those for dead threads in the group
1315 * are in its signal_struct, as are those for the child
1316 * processes it has previously reaped. All these
1317 * accumulate in the parent's signal_struct c* fields.
1319 * We don't bother to take a lock here to protect these
1320 * p->signal fields, because they are only touched by
1321 * __exit_signal, which runs with tasklist_lock
1322 * write-locked anyway, and so is excluded here. We do
1323 * need to protect the access to p->parent->signal fields,
1324 * as other threads in the parent group can be right
1325 * here reaping other children at the same time.
1327 * We use thread_group_cputime() to get times for the thread
1328 * group, which consolidates times for all threads in the
1329 * group including the group leader.
1331 spin_lock_irq(&p->parent->sighand->siglock);
1332 psig = p->parent->signal;
1333 sig = p->signal;
1334 thread_group_cputime(p, &cputime);
1335 psig->cutime =
1336 cputime_add(psig->cutime,
1337 cputime_add(cputime.utime,
1338 sig->cutime));
1339 psig->cstime =
1340 cputime_add(psig->cstime,
1341 cputime_add(cputime.stime,
1342 sig->cstime));
1343 psig->cgtime =
1344 cputime_add(psig->cgtime,
1345 cputime_add(p->gtime,
1346 cputime_add(sig->gtime,
1347 sig->cgtime)));
1348 psig->cmin_flt +=
1349 p->min_flt + sig->min_flt + sig->cmin_flt;
1350 psig->cmaj_flt +=
1351 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1352 psig->cnvcsw +=
1353 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1354 psig->cnivcsw +=
1355 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1356 psig->cinblock +=
1357 task_io_get_inblock(p) +
1358 sig->inblock + sig->cinblock;
1359 psig->coublock +=
1360 task_io_get_oublock(p) +
1361 sig->oublock + sig->coublock;
1362 task_io_accounting_add(&psig->ioac, &p->ioac);
1363 task_io_accounting_add(&psig->ioac, &sig->ioac);
1364 spin_unlock_irq(&p->parent->sighand->siglock);
1368 * Now we are sure this task is interesting, and no other
1369 * thread can reap it because we set its state to EXIT_DEAD.
1371 read_unlock(&tasklist_lock);
1373 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1374 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1375 ? p->signal->group_exit_code : p->exit_code;
1376 if (!retval && stat_addr)
1377 retval = put_user(status, stat_addr);
1378 if (!retval && infop)
1379 retval = put_user(SIGCHLD, &infop->si_signo);
1380 if (!retval && infop)
1381 retval = put_user(0, &infop->si_errno);
1382 if (!retval && infop) {
1383 int why;
1385 if ((status & 0x7f) == 0) {
1386 why = CLD_EXITED;
1387 status >>= 8;
1388 } else {
1389 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1390 status &= 0x7f;
1392 retval = put_user((short)why, &infop->si_code);
1393 if (!retval)
1394 retval = put_user(status, &infop->si_status);
1396 if (!retval && infop)
1397 retval = put_user(pid, &infop->si_pid);
1398 if (!retval && infop)
1399 retval = put_user(uid, &infop->si_uid);
1400 if (!retval)
1401 retval = pid;
1403 if (traced) {
1404 write_lock_irq(&tasklist_lock);
1405 /* We dropped tasklist, ptracer could die and untrace */
1406 ptrace_unlink(p);
1408 * If this is not a detached task, notify the parent.
1409 * If it's still not detached after that, don't release
1410 * it now.
1412 if (!task_detached(p)) {
1413 do_notify_parent(p, p->exit_signal);
1414 if (!task_detached(p)) {
1415 p->exit_state = EXIT_ZOMBIE;
1416 p = NULL;
1419 write_unlock_irq(&tasklist_lock);
1421 if (p != NULL)
1422 release_task(p);
1424 return retval;
1428 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1429 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1430 * the lock and this task is uninteresting. If we return nonzero, we have
1431 * released the lock and the system call should return.
1433 static int wait_task_stopped(int ptrace, struct task_struct *p,
1434 int options, struct siginfo __user *infop,
1435 int __user *stat_addr, struct rusage __user *ru)
1437 int retval, exit_code, why;
1438 uid_t uid = 0; /* unneeded, required by compiler */
1439 pid_t pid;
1441 if (!(options & WUNTRACED))
1442 return 0;
1444 exit_code = 0;
1445 spin_lock_irq(&p->sighand->siglock);
1447 if (unlikely(!task_is_stopped_or_traced(p)))
1448 goto unlock_sig;
1450 if (!ptrace && p->signal->group_stop_count > 0)
1452 * A group stop is in progress and this is the group leader.
1453 * We won't report until all threads have stopped.
1455 goto unlock_sig;
1457 exit_code = p->exit_code;
1458 if (!exit_code)
1459 goto unlock_sig;
1461 if (!unlikely(options & WNOWAIT))
1462 p->exit_code = 0;
1464 /* don't need the RCU readlock here as we're holding a spinlock */
1465 uid = __task_cred(p)->uid;
1466 unlock_sig:
1467 spin_unlock_irq(&p->sighand->siglock);
1468 if (!exit_code)
1469 return 0;
1472 * Now we are pretty sure this task is interesting.
1473 * Make sure it doesn't get reaped out from under us while we
1474 * give up the lock and then examine it below. We don't want to
1475 * keep holding onto the tasklist_lock while we call getrusage and
1476 * possibly take page faults for user memory.
1478 get_task_struct(p);
1479 pid = task_pid_vnr(p);
1480 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1481 read_unlock(&tasklist_lock);
1483 if (unlikely(options & WNOWAIT))
1484 return wait_noreap_copyout(p, pid, uid,
1485 why, exit_code,
1486 infop, ru);
1488 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1489 if (!retval && stat_addr)
1490 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1491 if (!retval && infop)
1492 retval = put_user(SIGCHLD, &infop->si_signo);
1493 if (!retval && infop)
1494 retval = put_user(0, &infop->si_errno);
1495 if (!retval && infop)
1496 retval = put_user((short)why, &infop->si_code);
1497 if (!retval && infop)
1498 retval = put_user(exit_code, &infop->si_status);
1499 if (!retval && infop)
1500 retval = put_user(pid, &infop->si_pid);
1501 if (!retval && infop)
1502 retval = put_user(uid, &infop->si_uid);
1503 if (!retval)
1504 retval = pid;
1505 put_task_struct(p);
1507 BUG_ON(!retval);
1508 return retval;
1512 * Handle do_wait work for one task in a live, non-stopped state.
1513 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1514 * the lock and this task is uninteresting. If we return nonzero, we have
1515 * released the lock and the system call should return.
1517 static int wait_task_continued(struct task_struct *p, int options,
1518 struct siginfo __user *infop,
1519 int __user *stat_addr, struct rusage __user *ru)
1521 int retval;
1522 pid_t pid;
1523 uid_t uid;
1525 if (!unlikely(options & WCONTINUED))
1526 return 0;
1528 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1529 return 0;
1531 spin_lock_irq(&p->sighand->siglock);
1532 /* Re-check with the lock held. */
1533 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1534 spin_unlock_irq(&p->sighand->siglock);
1535 return 0;
1537 if (!unlikely(options & WNOWAIT))
1538 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1539 uid = __task_cred(p)->uid;
1540 spin_unlock_irq(&p->sighand->siglock);
1542 pid = task_pid_vnr(p);
1543 get_task_struct(p);
1544 read_unlock(&tasklist_lock);
1546 if (!infop) {
1547 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1548 put_task_struct(p);
1549 if (!retval && stat_addr)
1550 retval = put_user(0xffff, stat_addr);
1551 if (!retval)
1552 retval = pid;
1553 } else {
1554 retval = wait_noreap_copyout(p, pid, uid,
1555 CLD_CONTINUED, SIGCONT,
1556 infop, ru);
1557 BUG_ON(retval == 0);
1560 return retval;
1564 * Consider @p for a wait by @parent.
1566 * -ECHILD should be in *@notask_error before the first call.
1567 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1568 * Returns zero if the search for a child should continue;
1569 * then *@notask_error is 0 if @p is an eligible child,
1570 * or another error from security_task_wait(), or still -ECHILD.
1572 static int wait_consider_task(struct task_struct *parent, int ptrace,
1573 struct task_struct *p, int *notask_error,
1574 enum pid_type type, struct pid *pid, int options,
1575 struct siginfo __user *infop,
1576 int __user *stat_addr, struct rusage __user *ru)
1578 int ret = eligible_child(type, pid, options, p);
1579 if (!ret)
1580 return ret;
1582 if (unlikely(ret < 0)) {
1584 * If we have not yet seen any eligible child,
1585 * then let this error code replace -ECHILD.
1586 * A permission error will give the user a clue
1587 * to look for security policy problems, rather
1588 * than for mysterious wait bugs.
1590 if (*notask_error)
1591 *notask_error = ret;
1594 if (likely(!ptrace) && unlikely(p->ptrace)) {
1596 * This child is hidden by ptrace.
1597 * We aren't allowed to see it now, but eventually we will.
1599 *notask_error = 0;
1600 return 0;
1603 if (p->exit_state == EXIT_DEAD)
1604 return 0;
1607 * We don't reap group leaders with subthreads.
1609 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1610 return wait_task_zombie(p, options, infop, stat_addr, ru);
1613 * It's stopped or running now, so it might
1614 * later continue, exit, or stop again.
1616 *notask_error = 0;
1618 if (task_is_stopped_or_traced(p))
1619 return wait_task_stopped(ptrace, p, options,
1620 infop, stat_addr, ru);
1622 return wait_task_continued(p, options, infop, stat_addr, ru);
1626 * Do the work of do_wait() for one thread in the group, @tsk.
1628 * -ECHILD should be in *@notask_error before the first call.
1629 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1630 * Returns zero if the search for a child should continue; then
1631 * *@notask_error is 0 if there were any eligible children,
1632 * or another error from security_task_wait(), or still -ECHILD.
1634 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1635 enum pid_type type, struct pid *pid, int options,
1636 struct siginfo __user *infop, int __user *stat_addr,
1637 struct rusage __user *ru)
1639 struct task_struct *p;
1641 list_for_each_entry(p, &tsk->children, sibling) {
1643 * Do not consider detached threads.
1645 if (!task_detached(p)) {
1646 int ret = wait_consider_task(tsk, 0, p, notask_error,
1647 type, pid, options,
1648 infop, stat_addr, ru);
1649 if (ret)
1650 return ret;
1654 return 0;
1657 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1658 enum pid_type type, struct pid *pid, int options,
1659 struct siginfo __user *infop, int __user *stat_addr,
1660 struct rusage __user *ru)
1662 struct task_struct *p;
1665 * Traditionally we see ptrace'd stopped tasks regardless of options.
1667 options |= WUNTRACED;
1669 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1670 int ret = wait_consider_task(tsk, 1, p, notask_error,
1671 type, pid, options,
1672 infop, stat_addr, ru);
1673 if (ret)
1674 return ret;
1677 return 0;
1680 static long do_wait(enum pid_type type, struct pid *pid, int options,
1681 struct siginfo __user *infop, int __user *stat_addr,
1682 struct rusage __user *ru)
1684 DECLARE_WAITQUEUE(wait, current);
1685 struct task_struct *tsk;
1686 int retval;
1688 trace_sched_process_wait(pid);
1690 add_wait_queue(&current->signal->wait_chldexit,&wait);
1691 repeat:
1693 * If there is nothing that can match our critiera just get out.
1694 * We will clear @retval to zero if we see any child that might later
1695 * match our criteria, even if we are not able to reap it yet.
1697 retval = -ECHILD;
1698 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1699 goto end;
1701 current->state = TASK_INTERRUPTIBLE;
1702 read_lock(&tasklist_lock);
1703 tsk = current;
1704 do {
1705 int tsk_result = do_wait_thread(tsk, &retval,
1706 type, pid, options,
1707 infop, stat_addr, ru);
1708 if (!tsk_result)
1709 tsk_result = ptrace_do_wait(tsk, &retval,
1710 type, pid, options,
1711 infop, stat_addr, ru);
1712 if (tsk_result) {
1714 * tasklist_lock is unlocked and we have a final result.
1716 retval = tsk_result;
1717 goto end;
1720 if (options & __WNOTHREAD)
1721 break;
1722 tsk = next_thread(tsk);
1723 BUG_ON(tsk->signal != current->signal);
1724 } while (tsk != current);
1725 read_unlock(&tasklist_lock);
1727 if (!retval && !(options & WNOHANG)) {
1728 retval = -ERESTARTSYS;
1729 if (!signal_pending(current)) {
1730 schedule();
1731 goto repeat;
1735 end:
1736 current->state = TASK_RUNNING;
1737 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1738 if (infop) {
1739 if (retval > 0)
1740 retval = 0;
1741 else {
1743 * For a WNOHANG return, clear out all the fields
1744 * we would set so the user can easily tell the
1745 * difference.
1747 if (!retval)
1748 retval = put_user(0, &infop->si_signo);
1749 if (!retval)
1750 retval = put_user(0, &infop->si_errno);
1751 if (!retval)
1752 retval = put_user(0, &infop->si_code);
1753 if (!retval)
1754 retval = put_user(0, &infop->si_pid);
1755 if (!retval)
1756 retval = put_user(0, &infop->si_uid);
1757 if (!retval)
1758 retval = put_user(0, &infop->si_status);
1761 return retval;
1764 asmlinkage long sys_waitid(int which, pid_t upid,
1765 struct siginfo __user *infop, int options,
1766 struct rusage __user *ru)
1768 struct pid *pid = NULL;
1769 enum pid_type type;
1770 long ret;
1772 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1773 return -EINVAL;
1774 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1775 return -EINVAL;
1777 switch (which) {
1778 case P_ALL:
1779 type = PIDTYPE_MAX;
1780 break;
1781 case P_PID:
1782 type = PIDTYPE_PID;
1783 if (upid <= 0)
1784 return -EINVAL;
1785 break;
1786 case P_PGID:
1787 type = PIDTYPE_PGID;
1788 if (upid <= 0)
1789 return -EINVAL;
1790 break;
1791 default:
1792 return -EINVAL;
1795 if (type < PIDTYPE_MAX)
1796 pid = find_get_pid(upid);
1797 ret = do_wait(type, pid, options, infop, NULL, ru);
1798 put_pid(pid);
1800 /* avoid REGPARM breakage on x86: */
1801 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1802 return ret;
1805 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1806 int options, struct rusage __user *ru)
1808 struct pid *pid = NULL;
1809 enum pid_type type;
1810 long ret;
1812 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1813 __WNOTHREAD|__WCLONE|__WALL))
1814 return -EINVAL;
1816 if (upid == -1)
1817 type = PIDTYPE_MAX;
1818 else if (upid < 0) {
1819 type = PIDTYPE_PGID;
1820 pid = find_get_pid(-upid);
1821 } else if (upid == 0) {
1822 type = PIDTYPE_PGID;
1823 pid = get_pid(task_pgrp(current));
1824 } else /* upid > 0 */ {
1825 type = PIDTYPE_PID;
1826 pid = find_get_pid(upid);
1829 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1830 put_pid(pid);
1832 /* avoid REGPARM breakage on x86: */
1833 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1834 return ret;
1837 #ifdef __ARCH_WANT_SYS_WAITPID
1840 * sys_waitpid() remains for compatibility. waitpid() should be
1841 * implemented by calling sys_wait4() from libc.a.
1843 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1845 return sys_wait4(pid, stat_addr, options, NULL);
1848 #endif