2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
13 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
15 void update_rlimit_cpu(unsigned long rlim_new
)
19 cputime
= secs_to_cputime(rlim_new
);
20 if (cputime_eq(current
->signal
->it_prof_expires
, cputime_zero
) ||
21 cputime_lt(current
->signal
->it_prof_expires
, cputime
)) {
22 spin_lock_irq(¤t
->sighand
->siglock
);
23 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
24 spin_unlock_irq(¤t
->sighand
->siglock
);
28 static int check_clock(const clockid_t which_clock
)
31 struct task_struct
*p
;
32 const pid_t pid
= CPUCLOCK_PID(which_clock
);
34 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
40 read_lock(&tasklist_lock
);
41 p
= find_task_by_vpid(pid
);
42 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
43 same_thread_group(p
, current
) : thread_group_leader(p
))) {
46 read_unlock(&tasklist_lock
);
51 static inline union cpu_time_count
52 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
54 union cpu_time_count ret
;
55 ret
.sched
= 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
57 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
59 ret
.cpu
= timespec_to_cputime(tp
);
64 static void sample_to_timespec(const clockid_t which_clock
,
65 union cpu_time_count cpu
,
68 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
69 *tp
= ns_to_timespec(cpu
.sched
);
71 cputime_to_timespec(cpu
.cpu
, tp
);
74 static inline int cpu_time_before(const clockid_t which_clock
,
75 union cpu_time_count now
,
76 union cpu_time_count then
)
78 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
79 return now
.sched
< then
.sched
;
81 return cputime_lt(now
.cpu
, then
.cpu
);
84 static inline void cpu_time_add(const clockid_t which_clock
,
85 union cpu_time_count
*acc
,
86 union cpu_time_count val
)
88 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
89 acc
->sched
+= val
.sched
;
91 acc
->cpu
= cputime_add(acc
->cpu
, val
.cpu
);
94 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
95 union cpu_time_count a
,
96 union cpu_time_count b
)
98 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
101 a
.cpu
= cputime_sub(a
.cpu
, b
.cpu
);
107 * Divide and limit the result to res >= 1
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
112 static inline cputime_t
cputime_div_non_zero(cputime_t time
, unsigned long div
)
114 cputime_t res
= cputime_div(time
, div
);
116 return max_t(cputime_t
, res
, 1);
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
123 static void bump_cpu_timer(struct k_itimer
*timer
,
124 union cpu_time_count now
)
128 if (timer
->it
.cpu
.incr
.sched
== 0)
131 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
132 unsigned long long delta
, incr
;
134 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
136 incr
= timer
->it
.cpu
.incr
.sched
;
137 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i
= 0; incr
< delta
- incr
; i
++)
141 for (; i
>= 0; incr
>>= 1, i
--) {
144 timer
->it
.cpu
.expires
.sched
+= incr
;
145 timer
->it_overrun
+= 1 << i
;
149 cputime_t delta
, incr
;
151 if (cputime_lt(now
.cpu
, timer
->it
.cpu
.expires
.cpu
))
153 incr
= timer
->it
.cpu
.incr
.cpu
;
154 delta
= cputime_sub(cputime_add(now
.cpu
, incr
),
155 timer
->it
.cpu
.expires
.cpu
);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i
= 0; cputime_lt(incr
, cputime_sub(delta
, incr
)); i
++)
158 incr
= cputime_add(incr
, incr
);
159 for (; i
>= 0; incr
= cputime_halve(incr
), i
--) {
160 if (cputime_lt(delta
, incr
))
162 timer
->it
.cpu
.expires
.cpu
=
163 cputime_add(timer
->it
.cpu
.expires
.cpu
, incr
);
164 timer
->it_overrun
+= 1 << i
;
165 delta
= cputime_sub(delta
, incr
);
170 static inline cputime_t
prof_ticks(struct task_struct
*p
)
172 return cputime_add(p
->utime
, p
->stime
);
174 static inline cputime_t
virt_ticks(struct task_struct
*p
)
179 int posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
181 int error
= check_clock(which_clock
);
184 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
185 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
197 int posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
203 int error
= check_clock(which_clock
);
212 * Sample a per-thread clock for the given task.
214 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
215 union cpu_time_count
*cpu
)
217 switch (CPUCLOCK_WHICH(which_clock
)) {
221 cpu
->cpu
= prof_ticks(p
);
224 cpu
->cpu
= virt_ticks(p
);
227 cpu
->sched
= p
->se
.sum_exec_runtime
+ task_delta_exec(p
);
233 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
)
235 struct sighand_struct
*sighand
;
236 struct signal_struct
*sig
;
237 struct task_struct
*t
;
239 *times
= INIT_CPUTIME
;
242 sighand
= rcu_dereference(tsk
->sighand
);
250 times
->utime
= cputime_add(times
->utime
, t
->utime
);
251 times
->stime
= cputime_add(times
->stime
, t
->stime
);
252 times
->sum_exec_runtime
+= t
->se
.sum_exec_runtime
;
257 times
->utime
= cputime_add(times
->utime
, sig
->utime
);
258 times
->stime
= cputime_add(times
->stime
, sig
->stime
);
259 times
->sum_exec_runtime
+= sig
->sum_sched_runtime
;
264 static void update_gt_cputime(struct task_cputime
*a
, struct task_cputime
*b
)
266 if (cputime_gt(b
->utime
, a
->utime
))
269 if (cputime_gt(b
->stime
, a
->stime
))
272 if (b
->sum_exec_runtime
> a
->sum_exec_runtime
)
273 a
->sum_exec_runtime
= b
->sum_exec_runtime
;
276 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
278 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
279 struct task_cputime sum
;
282 spin_lock_irqsave(&cputimer
->lock
, flags
);
283 if (!cputimer
->running
) {
284 cputimer
->running
= 1;
286 * The POSIX timer interface allows for absolute time expiry
287 * values through the TIMER_ABSTIME flag, therefore we have
288 * to synchronize the timer to the clock every time we start
291 thread_group_cputime(tsk
, &sum
);
292 update_gt_cputime(&cputimer
->cputime
, &sum
);
294 *times
= cputimer
->cputime
;
295 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
299 * Sample a process (thread group) clock for the given group_leader task.
300 * Must be called with tasklist_lock held for reading.
302 static int cpu_clock_sample_group(const clockid_t which_clock
,
303 struct task_struct
*p
,
304 union cpu_time_count
*cpu
)
306 struct task_cputime cputime
;
308 thread_group_cputime(p
, &cputime
);
309 switch (CPUCLOCK_WHICH(which_clock
)) {
313 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
316 cpu
->cpu
= cputime
.utime
;
319 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
326 int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
328 const pid_t pid
= CPUCLOCK_PID(which_clock
);
330 union cpu_time_count rtn
;
334 * Special case constant value for our own clocks.
335 * We don't have to do any lookup to find ourselves.
337 if (CPUCLOCK_PERTHREAD(which_clock
)) {
339 * Sampling just ourselves we can do with no locking.
341 error
= cpu_clock_sample(which_clock
,
344 read_lock(&tasklist_lock
);
345 error
= cpu_clock_sample_group(which_clock
,
347 read_unlock(&tasklist_lock
);
351 * Find the given PID, and validate that the caller
352 * should be able to see it.
354 struct task_struct
*p
;
356 p
= find_task_by_vpid(pid
);
358 if (CPUCLOCK_PERTHREAD(which_clock
)) {
359 if (same_thread_group(p
, current
)) {
360 error
= cpu_clock_sample(which_clock
,
364 read_lock(&tasklist_lock
);
365 if (thread_group_leader(p
) && p
->signal
) {
367 cpu_clock_sample_group(which_clock
,
370 read_unlock(&tasklist_lock
);
378 sample_to_timespec(which_clock
, rtn
, tp
);
384 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
385 * This is called from sys_timer_create with the new timer already locked.
387 int posix_cpu_timer_create(struct k_itimer
*new_timer
)
390 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
391 struct task_struct
*p
;
393 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
396 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
397 new_timer
->it
.cpu
.incr
.sched
= 0;
398 new_timer
->it
.cpu
.expires
.sched
= 0;
400 read_lock(&tasklist_lock
);
401 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
405 p
= find_task_by_vpid(pid
);
406 if (p
&& !same_thread_group(p
, current
))
411 p
= current
->group_leader
;
413 p
= find_task_by_vpid(pid
);
414 if (p
&& !thread_group_leader(p
))
418 new_timer
->it
.cpu
.task
= p
;
424 read_unlock(&tasklist_lock
);
430 * Clean up a CPU-clock timer that is about to be destroyed.
431 * This is called from timer deletion with the timer already locked.
432 * If we return TIMER_RETRY, it's necessary to release the timer's lock
433 * and try again. (This happens when the timer is in the middle of firing.)
435 int posix_cpu_timer_del(struct k_itimer
*timer
)
437 struct task_struct
*p
= timer
->it
.cpu
.task
;
440 if (likely(p
!= NULL
)) {
441 read_lock(&tasklist_lock
);
442 if (unlikely(p
->signal
== NULL
)) {
444 * We raced with the reaping of the task.
445 * The deletion should have cleared us off the list.
447 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
449 spin_lock(&p
->sighand
->siglock
);
450 if (timer
->it
.cpu
.firing
)
453 list_del(&timer
->it
.cpu
.entry
);
454 spin_unlock(&p
->sighand
->siglock
);
456 read_unlock(&tasklist_lock
);
466 * Clean out CPU timers still ticking when a thread exited. The task
467 * pointer is cleared, and the expiry time is replaced with the residual
468 * time for later timer_gettime calls to return.
469 * This must be called with the siglock held.
471 static void cleanup_timers(struct list_head
*head
,
472 cputime_t utime
, cputime_t stime
,
473 unsigned long long sum_exec_runtime
)
475 struct cpu_timer_list
*timer
, *next
;
476 cputime_t ptime
= cputime_add(utime
, stime
);
478 list_for_each_entry_safe(timer
, next
, head
, entry
) {
479 list_del_init(&timer
->entry
);
480 if (cputime_lt(timer
->expires
.cpu
, ptime
)) {
481 timer
->expires
.cpu
= cputime_zero
;
483 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
489 list_for_each_entry_safe(timer
, next
, head
, entry
) {
490 list_del_init(&timer
->entry
);
491 if (cputime_lt(timer
->expires
.cpu
, utime
)) {
492 timer
->expires
.cpu
= cputime_zero
;
494 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
500 list_for_each_entry_safe(timer
, next
, head
, entry
) {
501 list_del_init(&timer
->entry
);
502 if (timer
->expires
.sched
< sum_exec_runtime
) {
503 timer
->expires
.sched
= 0;
505 timer
->expires
.sched
-= sum_exec_runtime
;
511 * These are both called with the siglock held, when the current thread
512 * is being reaped. When the final (leader) thread in the group is reaped,
513 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
515 void posix_cpu_timers_exit(struct task_struct
*tsk
)
517 cleanup_timers(tsk
->cpu_timers
,
518 tsk
->utime
, tsk
->stime
, tsk
->se
.sum_exec_runtime
);
521 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
523 struct task_cputime cputime
;
525 thread_group_cputimer(tsk
, &cputime
);
526 cleanup_timers(tsk
->signal
->cpu_timers
,
527 cputime
.utime
, cputime
.stime
, cputime
.sum_exec_runtime
);
530 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
533 * That's all for this thread or process.
534 * We leave our residual in expires to be reported.
536 put_task_struct(timer
->it
.cpu
.task
);
537 timer
->it
.cpu
.task
= NULL
;
538 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
539 timer
->it
.cpu
.expires
,
544 * Insert the timer on the appropriate list before any timers that
545 * expire later. This must be called with the tasklist_lock held
546 * for reading, and interrupts disabled.
548 static void arm_timer(struct k_itimer
*timer
, union cpu_time_count now
)
550 struct task_struct
*p
= timer
->it
.cpu
.task
;
551 struct list_head
*head
, *listpos
;
552 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
553 struct cpu_timer_list
*next
;
556 head
= (CPUCLOCK_PERTHREAD(timer
->it_clock
) ?
557 p
->cpu_timers
: p
->signal
->cpu_timers
);
558 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
560 BUG_ON(!irqs_disabled());
561 spin_lock(&p
->sighand
->siglock
);
564 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
565 list_for_each_entry(next
, head
, entry
) {
566 if (next
->expires
.sched
> nt
->expires
.sched
)
568 listpos
= &next
->entry
;
571 list_for_each_entry(next
, head
, entry
) {
572 if (cputime_gt(next
->expires
.cpu
, nt
->expires
.cpu
))
574 listpos
= &next
->entry
;
577 list_add(&nt
->entry
, listpos
);
579 if (listpos
== head
) {
581 * We are the new earliest-expiring timer.
582 * If we are a thread timer, there can always
583 * be a process timer telling us to stop earlier.
586 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
587 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
591 if (cputime_eq(p
->cputime_expires
.prof_exp
,
593 cputime_gt(p
->cputime_expires
.prof_exp
,
595 p
->cputime_expires
.prof_exp
=
599 if (cputime_eq(p
->cputime_expires
.virt_exp
,
601 cputime_gt(p
->cputime_expires
.virt_exp
,
603 p
->cputime_expires
.virt_exp
=
607 if (p
->cputime_expires
.sched_exp
== 0 ||
608 p
->cputime_expires
.sched_exp
>
610 p
->cputime_expires
.sched_exp
=
616 * For a process timer, set the cached expiration time.
618 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
622 if (!cputime_eq(p
->signal
->it_virt_expires
,
624 cputime_lt(p
->signal
->it_virt_expires
,
625 timer
->it
.cpu
.expires
.cpu
))
627 p
->signal
->cputime_expires
.virt_exp
=
628 timer
->it
.cpu
.expires
.cpu
;
631 if (!cputime_eq(p
->signal
->it_prof_expires
,
633 cputime_lt(p
->signal
->it_prof_expires
,
634 timer
->it
.cpu
.expires
.cpu
))
636 i
= p
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
;
637 if (i
!= RLIM_INFINITY
&&
638 i
<= cputime_to_secs(timer
->it
.cpu
.expires
.cpu
))
640 p
->signal
->cputime_expires
.prof_exp
=
641 timer
->it
.cpu
.expires
.cpu
;
644 p
->signal
->cputime_expires
.sched_exp
=
645 timer
->it
.cpu
.expires
.sched
;
651 spin_unlock(&p
->sighand
->siglock
);
655 * The timer is locked, fire it and arrange for its reload.
657 static void cpu_timer_fire(struct k_itimer
*timer
)
659 if (unlikely(timer
->sigq
== NULL
)) {
661 * This a special case for clock_nanosleep,
662 * not a normal timer from sys_timer_create.
664 wake_up_process(timer
->it_process
);
665 timer
->it
.cpu
.expires
.sched
= 0;
666 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
668 * One-shot timer. Clear it as soon as it's fired.
670 posix_timer_event(timer
, 0);
671 timer
->it
.cpu
.expires
.sched
= 0;
672 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
674 * The signal did not get queued because the signal
675 * was ignored, so we won't get any callback to
676 * reload the timer. But we need to keep it
677 * ticking in case the signal is deliverable next time.
679 posix_cpu_timer_schedule(timer
);
684 * Guts of sys_timer_settime for CPU timers.
685 * This is called with the timer locked and interrupts disabled.
686 * If we return TIMER_RETRY, it's necessary to release the timer's lock
687 * and try again. (This happens when the timer is in the middle of firing.)
689 int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
690 struct itimerspec
*new, struct itimerspec
*old
)
692 struct task_struct
*p
= timer
->it
.cpu
.task
;
693 union cpu_time_count old_expires
, new_expires
, val
;
696 if (unlikely(p
== NULL
)) {
698 * Timer refers to a dead task's clock.
703 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
705 read_lock(&tasklist_lock
);
707 * We need the tasklist_lock to protect against reaping that
708 * clears p->signal. If p has just been reaped, we can no
709 * longer get any information about it at all.
711 if (unlikely(p
->signal
== NULL
)) {
712 read_unlock(&tasklist_lock
);
714 timer
->it
.cpu
.task
= NULL
;
719 * Disarm any old timer after extracting its expiry time.
721 BUG_ON(!irqs_disabled());
724 spin_lock(&p
->sighand
->siglock
);
725 old_expires
= timer
->it
.cpu
.expires
;
726 if (unlikely(timer
->it
.cpu
.firing
)) {
727 timer
->it
.cpu
.firing
= -1;
730 list_del_init(&timer
->it
.cpu
.entry
);
731 spin_unlock(&p
->sighand
->siglock
);
734 * We need to sample the current value to convert the new
735 * value from to relative and absolute, and to convert the
736 * old value from absolute to relative. To set a process
737 * timer, we need a sample to balance the thread expiry
738 * times (in arm_timer). With an absolute time, we must
739 * check if it's already passed. In short, we need a sample.
741 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
742 cpu_clock_sample(timer
->it_clock
, p
, &val
);
744 cpu_clock_sample_group(timer
->it_clock
, p
, &val
);
748 if (old_expires
.sched
== 0) {
749 old
->it_value
.tv_sec
= 0;
750 old
->it_value
.tv_nsec
= 0;
753 * Update the timer in case it has
754 * overrun already. If it has,
755 * we'll report it as having overrun
756 * and with the next reloaded timer
757 * already ticking, though we are
758 * swallowing that pending
759 * notification here to install the
762 bump_cpu_timer(timer
, val
);
763 if (cpu_time_before(timer
->it_clock
, val
,
764 timer
->it
.cpu
.expires
)) {
765 old_expires
= cpu_time_sub(
767 timer
->it
.cpu
.expires
, val
);
768 sample_to_timespec(timer
->it_clock
,
772 old
->it_value
.tv_nsec
= 1;
773 old
->it_value
.tv_sec
= 0;
780 * We are colliding with the timer actually firing.
781 * Punt after filling in the timer's old value, and
782 * disable this firing since we are already reporting
783 * it as an overrun (thanks to bump_cpu_timer above).
785 read_unlock(&tasklist_lock
);
789 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
790 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
794 * Install the new expiry time (or zero).
795 * For a timer with no notification action, we don't actually
796 * arm the timer (we'll just fake it for timer_gettime).
798 timer
->it
.cpu
.expires
= new_expires
;
799 if (new_expires
.sched
!= 0 &&
800 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
801 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
802 arm_timer(timer
, val
);
805 read_unlock(&tasklist_lock
);
808 * Install the new reload setting, and
809 * set up the signal and overrun bookkeeping.
811 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
815 * This acts as a modification timestamp for the timer,
816 * so any automatic reload attempt will punt on seeing
817 * that we have reset the timer manually.
819 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
821 timer
->it_overrun_last
= 0;
822 timer
->it_overrun
= -1;
824 if (new_expires
.sched
!= 0 &&
825 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
826 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
828 * The designated time already passed, so we notify
829 * immediately, even if the thread never runs to
830 * accumulate more time on this clock.
832 cpu_timer_fire(timer
);
838 sample_to_timespec(timer
->it_clock
,
839 timer
->it
.cpu
.incr
, &old
->it_interval
);
844 void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
846 union cpu_time_count now
;
847 struct task_struct
*p
= timer
->it
.cpu
.task
;
851 * Easy part: convert the reload time.
853 sample_to_timespec(timer
->it_clock
,
854 timer
->it
.cpu
.incr
, &itp
->it_interval
);
856 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
857 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
861 if (unlikely(p
== NULL
)) {
863 * This task already died and the timer will never fire.
864 * In this case, expires is actually the dead value.
867 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
873 * Sample the clock to take the difference with the expiry time.
875 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
876 cpu_clock_sample(timer
->it_clock
, p
, &now
);
877 clear_dead
= p
->exit_state
;
879 read_lock(&tasklist_lock
);
880 if (unlikely(p
->signal
== NULL
)) {
882 * The process has been reaped.
883 * We can't even collect a sample any more.
884 * Call the timer disarmed, nothing else to do.
887 timer
->it
.cpu
.task
= NULL
;
888 timer
->it
.cpu
.expires
.sched
= 0;
889 read_unlock(&tasklist_lock
);
892 cpu_clock_sample_group(timer
->it_clock
, p
, &now
);
893 clear_dead
= (unlikely(p
->exit_state
) &&
894 thread_group_empty(p
));
896 read_unlock(&tasklist_lock
);
899 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
900 if (timer
->it
.cpu
.incr
.sched
== 0 &&
901 cpu_time_before(timer
->it_clock
,
902 timer
->it
.cpu
.expires
, now
)) {
904 * Do-nothing timer expired and has no reload,
905 * so it's as if it was never set.
907 timer
->it
.cpu
.expires
.sched
= 0;
908 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
912 * Account for any expirations and reloads that should
915 bump_cpu_timer(timer
, now
);
918 if (unlikely(clear_dead
)) {
920 * We've noticed that the thread is dead, but
921 * not yet reaped. Take this opportunity to
924 clear_dead_task(timer
, now
);
928 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
929 sample_to_timespec(timer
->it_clock
,
930 cpu_time_sub(timer
->it_clock
,
931 timer
->it
.cpu
.expires
, now
),
935 * The timer should have expired already, but the firing
936 * hasn't taken place yet. Say it's just about to expire.
938 itp
->it_value
.tv_nsec
= 1;
939 itp
->it_value
.tv_sec
= 0;
944 * Check for any per-thread CPU timers that have fired and move them off
945 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
946 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
948 static void check_thread_timers(struct task_struct
*tsk
,
949 struct list_head
*firing
)
952 struct list_head
*timers
= tsk
->cpu_timers
;
953 struct signal_struct
*const sig
= tsk
->signal
;
956 tsk
->cputime_expires
.prof_exp
= cputime_zero
;
957 while (!list_empty(timers
)) {
958 struct cpu_timer_list
*t
= list_first_entry(timers
,
959 struct cpu_timer_list
,
961 if (!--maxfire
|| cputime_lt(prof_ticks(tsk
), t
->expires
.cpu
)) {
962 tsk
->cputime_expires
.prof_exp
= t
->expires
.cpu
;
966 list_move_tail(&t
->entry
, firing
);
971 tsk
->cputime_expires
.virt_exp
= cputime_zero
;
972 while (!list_empty(timers
)) {
973 struct cpu_timer_list
*t
= list_first_entry(timers
,
974 struct cpu_timer_list
,
976 if (!--maxfire
|| cputime_lt(virt_ticks(tsk
), t
->expires
.cpu
)) {
977 tsk
->cputime_expires
.virt_exp
= t
->expires
.cpu
;
981 list_move_tail(&t
->entry
, firing
);
986 tsk
->cputime_expires
.sched_exp
= 0;
987 while (!list_empty(timers
)) {
988 struct cpu_timer_list
*t
= list_first_entry(timers
,
989 struct cpu_timer_list
,
991 if (!--maxfire
|| tsk
->se
.sum_exec_runtime
< t
->expires
.sched
) {
992 tsk
->cputime_expires
.sched_exp
= t
->expires
.sched
;
996 list_move_tail(&t
->entry
, firing
);
1000 * Check for the special case thread timers.
1002 if (sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
!= RLIM_INFINITY
) {
1003 unsigned long hard
= sig
->rlim
[RLIMIT_RTTIME
].rlim_max
;
1004 unsigned long *soft
= &sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
;
1006 if (hard
!= RLIM_INFINITY
&&
1007 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
1009 * At the hard limit, we just die.
1010 * No need to calculate anything else now.
1012 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1015 if (tsk
->rt
.timeout
> DIV_ROUND_UP(*soft
, USEC_PER_SEC
/HZ
)) {
1017 * At the soft limit, send a SIGXCPU every second.
1019 if (sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
1020 < sig
->rlim
[RLIMIT_RTTIME
].rlim_max
) {
1021 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
+=
1025 "RT Watchdog Timeout: %s[%d]\n",
1026 tsk
->comm
, task_pid_nr(tsk
));
1027 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1032 static void stop_process_timers(struct task_struct
*tsk
)
1034 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
1035 unsigned long flags
;
1037 if (!cputimer
->running
)
1040 spin_lock_irqsave(&cputimer
->lock
, flags
);
1041 cputimer
->running
= 0;
1042 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
1046 * Check for any per-thread CPU timers that have fired and move them
1047 * off the tsk->*_timers list onto the firing list. Per-thread timers
1048 * have already been taken off.
1050 static void check_process_timers(struct task_struct
*tsk
,
1051 struct list_head
*firing
)
1054 struct signal_struct
*const sig
= tsk
->signal
;
1055 cputime_t utime
, ptime
, virt_expires
, prof_expires
;
1056 unsigned long long sum_sched_runtime
, sched_expires
;
1057 struct list_head
*timers
= sig
->cpu_timers
;
1058 struct task_cputime cputime
;
1061 * Don't sample the current process CPU clocks if there are no timers.
1063 if (list_empty(&timers
[CPUCLOCK_PROF
]) &&
1064 cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1065 sig
->rlim
[RLIMIT_CPU
].rlim_cur
== RLIM_INFINITY
&&
1066 list_empty(&timers
[CPUCLOCK_VIRT
]) &&
1067 cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1068 list_empty(&timers
[CPUCLOCK_SCHED
])) {
1069 stop_process_timers(tsk
);
1074 * Collect the current process totals.
1076 thread_group_cputimer(tsk
, &cputime
);
1077 utime
= cputime
.utime
;
1078 ptime
= cputime_add(utime
, cputime
.stime
);
1079 sum_sched_runtime
= cputime
.sum_exec_runtime
;
1081 prof_expires
= cputime_zero
;
1082 while (!list_empty(timers
)) {
1083 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1084 struct cpu_timer_list
,
1086 if (!--maxfire
|| cputime_lt(ptime
, tl
->expires
.cpu
)) {
1087 prof_expires
= tl
->expires
.cpu
;
1091 list_move_tail(&tl
->entry
, firing
);
1096 virt_expires
= cputime_zero
;
1097 while (!list_empty(timers
)) {
1098 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1099 struct cpu_timer_list
,
1101 if (!--maxfire
|| cputime_lt(utime
, tl
->expires
.cpu
)) {
1102 virt_expires
= tl
->expires
.cpu
;
1106 list_move_tail(&tl
->entry
, firing
);
1112 while (!list_empty(timers
)) {
1113 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1114 struct cpu_timer_list
,
1116 if (!--maxfire
|| sum_sched_runtime
< tl
->expires
.sched
) {
1117 sched_expires
= tl
->expires
.sched
;
1121 list_move_tail(&tl
->entry
, firing
);
1125 * Check for the special case process timers.
1127 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1128 if (cputime_ge(ptime
, sig
->it_prof_expires
)) {
1129 /* ITIMER_PROF fires and reloads. */
1130 sig
->it_prof_expires
= sig
->it_prof_incr
;
1131 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1132 sig
->it_prof_expires
= cputime_add(
1133 sig
->it_prof_expires
, ptime
);
1135 __group_send_sig_info(SIGPROF
, SEND_SIG_PRIV
, tsk
);
1137 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1138 (cputime_eq(prof_expires
, cputime_zero
) ||
1139 cputime_lt(sig
->it_prof_expires
, prof_expires
))) {
1140 prof_expires
= sig
->it_prof_expires
;
1143 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1144 if (cputime_ge(utime
, sig
->it_virt_expires
)) {
1145 /* ITIMER_VIRTUAL fires and reloads. */
1146 sig
->it_virt_expires
= sig
->it_virt_incr
;
1147 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1148 sig
->it_virt_expires
= cputime_add(
1149 sig
->it_virt_expires
, utime
);
1151 __group_send_sig_info(SIGVTALRM
, SEND_SIG_PRIV
, tsk
);
1153 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1154 (cputime_eq(virt_expires
, cputime_zero
) ||
1155 cputime_lt(sig
->it_virt_expires
, virt_expires
))) {
1156 virt_expires
= sig
->it_virt_expires
;
1159 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1160 unsigned long psecs
= cputime_to_secs(ptime
);
1162 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1164 * At the hard limit, we just die.
1165 * No need to calculate anything else now.
1167 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1170 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_cur
) {
1172 * At the soft limit, send a SIGXCPU every second.
1174 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1175 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
1176 < sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1177 sig
->rlim
[RLIMIT_CPU
].rlim_cur
++;
1180 x
= secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1181 if (cputime_eq(prof_expires
, cputime_zero
) ||
1182 cputime_lt(x
, prof_expires
)) {
1187 if (!cputime_eq(prof_expires
, cputime_zero
) &&
1188 (cputime_eq(sig
->cputime_expires
.prof_exp
, cputime_zero
) ||
1189 cputime_gt(sig
->cputime_expires
.prof_exp
, prof_expires
)))
1190 sig
->cputime_expires
.prof_exp
= prof_expires
;
1191 if (!cputime_eq(virt_expires
, cputime_zero
) &&
1192 (cputime_eq(sig
->cputime_expires
.virt_exp
, cputime_zero
) ||
1193 cputime_gt(sig
->cputime_expires
.virt_exp
, virt_expires
)))
1194 sig
->cputime_expires
.virt_exp
= virt_expires
;
1195 if (sched_expires
!= 0 &&
1196 (sig
->cputime_expires
.sched_exp
== 0 ||
1197 sig
->cputime_expires
.sched_exp
> sched_expires
))
1198 sig
->cputime_expires
.sched_exp
= sched_expires
;
1202 * This is called from the signal code (via do_schedule_next_timer)
1203 * when the last timer signal was delivered and we have to reload the timer.
1205 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1207 struct task_struct
*p
= timer
->it
.cpu
.task
;
1208 union cpu_time_count now
;
1210 if (unlikely(p
== NULL
))
1212 * The task was cleaned up already, no future firings.
1217 * Fetch the current sample and update the timer's expiry time.
1219 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1220 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1221 bump_cpu_timer(timer
, now
);
1222 if (unlikely(p
->exit_state
)) {
1223 clear_dead_task(timer
, now
);
1226 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1228 read_lock(&tasklist_lock
);
1229 if (unlikely(p
->signal
== NULL
)) {
1231 * The process has been reaped.
1232 * We can't even collect a sample any more.
1235 timer
->it
.cpu
.task
= p
= NULL
;
1236 timer
->it
.cpu
.expires
.sched
= 0;
1238 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1240 * We've noticed that the thread is dead, but
1241 * not yet reaped. Take this opportunity to
1242 * drop our task ref.
1244 clear_dead_task(timer
, now
);
1247 cpu_clock_sample_group(timer
->it_clock
, p
, &now
);
1248 bump_cpu_timer(timer
, now
);
1249 /* Leave the tasklist_lock locked for the call below. */
1253 * Now re-arm for the new expiry time.
1255 arm_timer(timer
, now
);
1258 read_unlock(&tasklist_lock
);
1261 timer
->it_overrun_last
= timer
->it_overrun
;
1262 timer
->it_overrun
= -1;
1263 ++timer
->it_requeue_pending
;
1267 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1269 * @cputime: The struct to compare.
1271 * Checks @cputime to see if all fields are zero. Returns true if all fields
1272 * are zero, false if any field is nonzero.
1274 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
1276 if (cputime_eq(cputime
->utime
, cputime_zero
) &&
1277 cputime_eq(cputime
->stime
, cputime_zero
) &&
1278 cputime
->sum_exec_runtime
== 0)
1284 * task_cputime_expired - Compare two task_cputime entities.
1286 * @sample: The task_cputime structure to be checked for expiration.
1287 * @expires: Expiration times, against which @sample will be checked.
1289 * Checks @sample against @expires to see if any field of @sample has expired.
1290 * Returns true if any field of the former is greater than the corresponding
1291 * field of the latter if the latter field is set. Otherwise returns false.
1293 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1294 const struct task_cputime
*expires
)
1296 if (!cputime_eq(expires
->utime
, cputime_zero
) &&
1297 cputime_ge(sample
->utime
, expires
->utime
))
1299 if (!cputime_eq(expires
->stime
, cputime_zero
) &&
1300 cputime_ge(cputime_add(sample
->utime
, sample
->stime
),
1303 if (expires
->sum_exec_runtime
!= 0 &&
1304 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1310 * fastpath_timer_check - POSIX CPU timers fast path.
1312 * @tsk: The task (thread) being checked.
1314 * Check the task and thread group timers. If both are zero (there are no
1315 * timers set) return false. Otherwise snapshot the task and thread group
1316 * timers and compare them with the corresponding expiration times. Return
1317 * true if a timer has expired, else return false.
1319 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1321 struct signal_struct
*sig
;
1323 /* tsk == current, ensure it is safe to use ->signal/sighand */
1324 if (unlikely(tsk
->exit_state
))
1327 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1328 struct task_cputime task_sample
= {
1329 .utime
= tsk
->utime
,
1330 .stime
= tsk
->stime
,
1331 .sum_exec_runtime
= tsk
->se
.sum_exec_runtime
1334 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1339 if (!task_cputime_zero(&sig
->cputime_expires
)) {
1340 struct task_cputime group_sample
;
1342 thread_group_cputimer(tsk
, &group_sample
);
1343 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1350 * This is called from the timer interrupt handler. The irq handler has
1351 * already updated our counts. We need to check if any timers fire now.
1352 * Interrupts are disabled.
1354 void run_posix_cpu_timers(struct task_struct
*tsk
)
1357 struct k_itimer
*timer
, *next
;
1359 BUG_ON(!irqs_disabled());
1362 * The fast path checks that there are no expired thread or thread
1363 * group timers. If that's so, just return.
1365 if (!fastpath_timer_check(tsk
))
1368 spin_lock(&tsk
->sighand
->siglock
);
1370 * Here we take off tsk->signal->cpu_timers[N] and
1371 * tsk->cpu_timers[N] all the timers that are firing, and
1372 * put them on the firing list.
1374 check_thread_timers(tsk
, &firing
);
1375 check_process_timers(tsk
, &firing
);
1378 * We must release these locks before taking any timer's lock.
1379 * There is a potential race with timer deletion here, as the
1380 * siglock now protects our private firing list. We have set
1381 * the firing flag in each timer, so that a deletion attempt
1382 * that gets the timer lock before we do will give it up and
1383 * spin until we've taken care of that timer below.
1385 spin_unlock(&tsk
->sighand
->siglock
);
1388 * Now that all the timers on our list have the firing flag,
1389 * noone will touch their list entries but us. We'll take
1390 * each timer's lock before clearing its firing flag, so no
1391 * timer call will interfere.
1393 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1395 spin_lock(&timer
->it_lock
);
1396 list_del_init(&timer
->it
.cpu
.entry
);
1397 firing
= timer
->it
.cpu
.firing
;
1398 timer
->it
.cpu
.firing
= 0;
1400 * The firing flag is -1 if we collided with a reset
1401 * of the timer, which already reported this
1402 * almost-firing as an overrun. So don't generate an event.
1404 if (likely(firing
>= 0)) {
1405 cpu_timer_fire(timer
);
1407 spin_unlock(&timer
->it_lock
);
1412 * Sample a process (thread group) timer for the given group_leader task.
1413 * Must be called with tasklist_lock held for reading.
1415 static int cpu_timer_sample_group(const clockid_t which_clock
,
1416 struct task_struct
*p
,
1417 union cpu_time_count
*cpu
)
1419 struct task_cputime cputime
;
1421 thread_group_cputimer(p
, &cputime
);
1422 switch (CPUCLOCK_WHICH(which_clock
)) {
1426 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
1429 cpu
->cpu
= cputime
.utime
;
1431 case CPUCLOCK_SCHED
:
1432 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
1439 * Set one of the process-wide special case CPU timers.
1440 * The tsk->sighand->siglock must be held by the caller.
1441 * The *newval argument is relative and we update it to be absolute, *oldval
1442 * is absolute and we update it to be relative.
1444 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1445 cputime_t
*newval
, cputime_t
*oldval
)
1447 union cpu_time_count now
;
1448 struct list_head
*head
;
1450 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1451 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1454 if (!cputime_eq(*oldval
, cputime_zero
)) {
1455 if (cputime_le(*oldval
, now
.cpu
)) {
1456 /* Just about to fire. */
1457 *oldval
= jiffies_to_cputime(1);
1459 *oldval
= cputime_sub(*oldval
, now
.cpu
);
1463 if (cputime_eq(*newval
, cputime_zero
))
1465 *newval
= cputime_add(*newval
, now
.cpu
);
1468 * If the RLIMIT_CPU timer will expire before the
1469 * ITIMER_PROF timer, we have nothing else to do.
1471 if (tsk
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
1472 < cputime_to_secs(*newval
))
1477 * Check whether there are any process timers already set to fire
1478 * before this one. If so, we don't have anything more to do.
1480 head
= &tsk
->signal
->cpu_timers
[clock_idx
];
1481 if (list_empty(head
) ||
1482 cputime_ge(list_first_entry(head
,
1483 struct cpu_timer_list
, entry
)->expires
.cpu
,
1485 switch (clock_idx
) {
1487 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1490 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1496 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1497 struct timespec
*rqtp
, struct itimerspec
*it
)
1499 struct k_itimer timer
;
1503 * Set up a temporary timer and then wait for it to go off.
1505 memset(&timer
, 0, sizeof timer
);
1506 spin_lock_init(&timer
.it_lock
);
1507 timer
.it_clock
= which_clock
;
1508 timer
.it_overrun
= -1;
1509 error
= posix_cpu_timer_create(&timer
);
1510 timer
.it_process
= current
;
1512 static struct itimerspec zero_it
;
1514 memset(it
, 0, sizeof *it
);
1515 it
->it_value
= *rqtp
;
1517 spin_lock_irq(&timer
.it_lock
);
1518 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1520 spin_unlock_irq(&timer
.it_lock
);
1524 while (!signal_pending(current
)) {
1525 if (timer
.it
.cpu
.expires
.sched
== 0) {
1527 * Our timer fired and was reset.
1529 spin_unlock_irq(&timer
.it_lock
);
1534 * Block until cpu_timer_fire (or a signal) wakes us.
1536 __set_current_state(TASK_INTERRUPTIBLE
);
1537 spin_unlock_irq(&timer
.it_lock
);
1539 spin_lock_irq(&timer
.it_lock
);
1543 * We were interrupted by a signal.
1545 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1546 posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1547 spin_unlock_irq(&timer
.it_lock
);
1549 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1551 * It actually did fire already.
1556 error
= -ERESTART_RESTARTBLOCK
;
1562 int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1563 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1565 struct restart_block
*restart_block
=
1566 ¤t_thread_info()->restart_block
;
1567 struct itimerspec it
;
1571 * Diagnose required errors first.
1573 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1574 (CPUCLOCK_PID(which_clock
) == 0 ||
1575 CPUCLOCK_PID(which_clock
) == current
->pid
))
1578 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1580 if (error
== -ERESTART_RESTARTBLOCK
) {
1582 if (flags
& TIMER_ABSTIME
)
1583 return -ERESTARTNOHAND
;
1585 * Report back to the user the time still remaining.
1587 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1590 restart_block
->fn
= posix_cpu_nsleep_restart
;
1591 restart_block
->arg0
= which_clock
;
1592 restart_block
->arg1
= (unsigned long) rmtp
;
1593 restart_block
->arg2
= rqtp
->tv_sec
;
1594 restart_block
->arg3
= rqtp
->tv_nsec
;
1599 long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1601 clockid_t which_clock
= restart_block
->arg0
;
1602 struct timespec __user
*rmtp
;
1604 struct itimerspec it
;
1607 rmtp
= (struct timespec __user
*) restart_block
->arg1
;
1608 t
.tv_sec
= restart_block
->arg2
;
1609 t
.tv_nsec
= restart_block
->arg3
;
1611 restart_block
->fn
= do_no_restart_syscall
;
1612 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1614 if (error
== -ERESTART_RESTARTBLOCK
) {
1616 * Report back to the user the time still remaining.
1618 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1621 restart_block
->fn
= posix_cpu_nsleep_restart
;
1622 restart_block
->arg0
= which_clock
;
1623 restart_block
->arg1
= (unsigned long) rmtp
;
1624 restart_block
->arg2
= t
.tv_sec
;
1625 restart_block
->arg3
= t
.tv_nsec
;
1632 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1633 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1635 static int process_cpu_clock_getres(const clockid_t which_clock
,
1636 struct timespec
*tp
)
1638 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1640 static int process_cpu_clock_get(const clockid_t which_clock
,
1641 struct timespec
*tp
)
1643 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1645 static int process_cpu_timer_create(struct k_itimer
*timer
)
1647 timer
->it_clock
= PROCESS_CLOCK
;
1648 return posix_cpu_timer_create(timer
);
1650 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1651 struct timespec
*rqtp
,
1652 struct timespec __user
*rmtp
)
1654 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1656 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1660 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1661 struct timespec
*tp
)
1663 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1665 static int thread_cpu_clock_get(const clockid_t which_clock
,
1666 struct timespec
*tp
)
1668 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1670 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1672 timer
->it_clock
= THREAD_CLOCK
;
1673 return posix_cpu_timer_create(timer
);
1675 static int thread_cpu_nsleep(const clockid_t which_clock
, int flags
,
1676 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1680 static long thread_cpu_nsleep_restart(struct restart_block
*restart_block
)
1685 static __init
int init_posix_cpu_timers(void)
1687 struct k_clock process
= {
1688 .clock_getres
= process_cpu_clock_getres
,
1689 .clock_get
= process_cpu_clock_get
,
1690 .clock_set
= do_posix_clock_nosettime
,
1691 .timer_create
= process_cpu_timer_create
,
1692 .nsleep
= process_cpu_nsleep
,
1693 .nsleep_restart
= process_cpu_nsleep_restart
,
1695 struct k_clock thread
= {
1696 .clock_getres
= thread_cpu_clock_getres
,
1697 .clock_get
= thread_cpu_clock_get
,
1698 .clock_set
= do_posix_clock_nosettime
,
1699 .timer_create
= thread_cpu_timer_create
,
1700 .nsleep
= thread_cpu_nsleep
,
1701 .nsleep_restart
= thread_cpu_nsleep_restart
,
1704 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1705 register_posix_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1709 __initcall(init_posix_cpu_timers
);