2 * mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be eqaul to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
46 * To use this allocator, arch code should do the followings.
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
71 #include <asm/cacheflush.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
76 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
77 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
80 #ifndef __addr_to_pcpu_ptr
81 #define __addr_to_pcpu_ptr(addr) \
82 (void __percpu *)((unsigned long)(addr) - \
83 (unsigned long)pcpu_base_addr + \
84 (unsigned long)__per_cpu_start)
86 #ifndef __pcpu_ptr_to_addr
87 #define __pcpu_ptr_to_addr(ptr) \
88 (void __force *)((unsigned long)(ptr) + \
89 (unsigned long)pcpu_base_addr - \
90 (unsigned long)__per_cpu_start)
94 struct list_head list
; /* linked to pcpu_slot lists */
95 int free_size
; /* free bytes in the chunk */
96 int contig_hint
; /* max contiguous size hint */
97 void *base_addr
; /* base address of this chunk */
98 int map_used
; /* # of map entries used */
99 int map_alloc
; /* # of map entries allocated */
100 int *map
; /* allocation map */
101 void *data
; /* chunk data */
102 bool immutable
; /* no [de]population allowed */
103 unsigned long populated
[]; /* populated bitmap */
106 static int pcpu_unit_pages __read_mostly
;
107 static int pcpu_unit_size __read_mostly
;
108 static int pcpu_nr_units __read_mostly
;
109 static int pcpu_atom_size __read_mostly
;
110 static int pcpu_nr_slots __read_mostly
;
111 static size_t pcpu_chunk_struct_size __read_mostly
;
113 /* cpus with the lowest and highest unit numbers */
114 static unsigned int pcpu_first_unit_cpu __read_mostly
;
115 static unsigned int pcpu_last_unit_cpu __read_mostly
;
117 /* the address of the first chunk which starts with the kernel static area */
118 void *pcpu_base_addr __read_mostly
;
119 EXPORT_SYMBOL_GPL(pcpu_base_addr
);
121 static const int *pcpu_unit_map __read_mostly
; /* cpu -> unit */
122 const unsigned long *pcpu_unit_offsets __read_mostly
; /* cpu -> unit offset */
124 /* group information, used for vm allocation */
125 static int pcpu_nr_groups __read_mostly
;
126 static const unsigned long *pcpu_group_offsets __read_mostly
;
127 static const size_t *pcpu_group_sizes __read_mostly
;
130 * The first chunk which always exists. Note that unlike other
131 * chunks, this one can be allocated and mapped in several different
132 * ways and thus often doesn't live in the vmalloc area.
134 static struct pcpu_chunk
*pcpu_first_chunk
;
137 * Optional reserved chunk. This chunk reserves part of the first
138 * chunk and serves it for reserved allocations. The amount of
139 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
140 * area doesn't exist, the following variables contain NULL and 0
143 static struct pcpu_chunk
*pcpu_reserved_chunk
;
144 static int pcpu_reserved_chunk_limit
;
147 * Synchronization rules.
149 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
150 * protects allocation/reclaim paths, chunks, populated bitmap and
151 * vmalloc mapping. The latter is a spinlock and protects the index
152 * data structures - chunk slots, chunks and area maps in chunks.
154 * During allocation, pcpu_alloc_mutex is kept locked all the time and
155 * pcpu_lock is grabbed and released as necessary. All actual memory
156 * allocations are done using GFP_KERNEL with pcpu_lock released. In
157 * general, percpu memory can't be allocated with irq off but
158 * irqsave/restore are still used in alloc path so that it can be used
159 * from early init path - sched_init() specifically.
161 * Free path accesses and alters only the index data structures, so it
162 * can be safely called from atomic context. When memory needs to be
163 * returned to the system, free path schedules reclaim_work which
164 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
165 * reclaimed, release both locks and frees the chunks. Note that it's
166 * necessary to grab both locks to remove a chunk from circulation as
167 * allocation path might be referencing the chunk with only
168 * pcpu_alloc_mutex locked.
170 static DEFINE_MUTEX(pcpu_alloc_mutex
); /* protects whole alloc and reclaim */
171 static DEFINE_SPINLOCK(pcpu_lock
); /* protects index data structures */
173 static struct list_head
*pcpu_slot __read_mostly
; /* chunk list slots */
175 /* reclaim work to release fully free chunks, scheduled from free path */
176 static void pcpu_reclaim(struct work_struct
*work
);
177 static DECLARE_WORK(pcpu_reclaim_work
, pcpu_reclaim
);
179 static bool pcpu_addr_in_first_chunk(void *addr
)
181 void *first_start
= pcpu_first_chunk
->base_addr
;
183 return addr
>= first_start
&& addr
< first_start
+ pcpu_unit_size
;
186 static bool pcpu_addr_in_reserved_chunk(void *addr
)
188 void *first_start
= pcpu_first_chunk
->base_addr
;
190 return addr
>= first_start
&&
191 addr
< first_start
+ pcpu_reserved_chunk_limit
;
194 static int __pcpu_size_to_slot(int size
)
196 int highbit
= fls(size
); /* size is in bytes */
197 return max(highbit
- PCPU_SLOT_BASE_SHIFT
+ 2, 1);
200 static int pcpu_size_to_slot(int size
)
202 if (size
== pcpu_unit_size
)
203 return pcpu_nr_slots
- 1;
204 return __pcpu_size_to_slot(size
);
207 static int pcpu_chunk_slot(const struct pcpu_chunk
*chunk
)
209 if (chunk
->free_size
< sizeof(int) || chunk
->contig_hint
< sizeof(int))
212 return pcpu_size_to_slot(chunk
->free_size
);
215 /* set the pointer to a chunk in a page struct */
216 static void pcpu_set_page_chunk(struct page
*page
, struct pcpu_chunk
*pcpu
)
218 page
->index
= (unsigned long)pcpu
;
221 /* obtain pointer to a chunk from a page struct */
222 static struct pcpu_chunk
*pcpu_get_page_chunk(struct page
*page
)
224 return (struct pcpu_chunk
*)page
->index
;
227 static int __maybe_unused
pcpu_page_idx(unsigned int cpu
, int page_idx
)
229 return pcpu_unit_map
[cpu
] * pcpu_unit_pages
+ page_idx
;
232 static unsigned long pcpu_chunk_addr(struct pcpu_chunk
*chunk
,
233 unsigned int cpu
, int page_idx
)
235 return (unsigned long)chunk
->base_addr
+ pcpu_unit_offsets
[cpu
] +
236 (page_idx
<< PAGE_SHIFT
);
239 static void __maybe_unused
pcpu_next_unpop(struct pcpu_chunk
*chunk
,
240 int *rs
, int *re
, int end
)
242 *rs
= find_next_zero_bit(chunk
->populated
, end
, *rs
);
243 *re
= find_next_bit(chunk
->populated
, end
, *rs
+ 1);
246 static void __maybe_unused
pcpu_next_pop(struct pcpu_chunk
*chunk
,
247 int *rs
, int *re
, int end
)
249 *rs
= find_next_bit(chunk
->populated
, end
, *rs
);
250 *re
= find_next_zero_bit(chunk
->populated
, end
, *rs
+ 1);
254 * (Un)populated page region iterators. Iterate over (un)populated
255 * page regions betwen @start and @end in @chunk. @rs and @re should
256 * be integer variables and will be set to start and end page index of
257 * the current region.
259 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
260 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
262 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
264 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
265 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
267 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
270 * pcpu_mem_alloc - allocate memory
271 * @size: bytes to allocate
273 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
274 * kzalloc() is used; otherwise, vmalloc() is used. The returned
275 * memory is always zeroed.
278 * Does GFP_KERNEL allocation.
281 * Pointer to the allocated area on success, NULL on failure.
283 static void *pcpu_mem_alloc(size_t size
)
285 if (WARN_ON_ONCE(!slab_is_available()))
288 if (size
<= PAGE_SIZE
)
289 return kzalloc(size
, GFP_KERNEL
);
291 void *ptr
= vmalloc(size
);
293 memset(ptr
, 0, size
);
299 * pcpu_mem_free - free memory
300 * @ptr: memory to free
301 * @size: size of the area
303 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
305 static void pcpu_mem_free(void *ptr
, size_t size
)
307 if (size
<= PAGE_SIZE
)
314 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
315 * @chunk: chunk of interest
316 * @oslot: the previous slot it was on
318 * This function is called after an allocation or free changed @chunk.
319 * New slot according to the changed state is determined and @chunk is
320 * moved to the slot. Note that the reserved chunk is never put on
326 static void pcpu_chunk_relocate(struct pcpu_chunk
*chunk
, int oslot
)
328 int nslot
= pcpu_chunk_slot(chunk
);
330 if (chunk
!= pcpu_reserved_chunk
&& oslot
!= nslot
) {
332 list_move(&chunk
->list
, &pcpu_slot
[nslot
]);
334 list_move_tail(&chunk
->list
, &pcpu_slot
[nslot
]);
339 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
340 * @chunk: chunk of interest
342 * Determine whether area map of @chunk needs to be extended to
343 * accomodate a new allocation.
349 * New target map allocation length if extension is necessary, 0
352 static int pcpu_need_to_extend(struct pcpu_chunk
*chunk
)
356 if (chunk
->map_alloc
>= chunk
->map_used
+ 2)
359 new_alloc
= PCPU_DFL_MAP_ALLOC
;
360 while (new_alloc
< chunk
->map_used
+ 2)
367 * pcpu_extend_area_map - extend area map of a chunk
368 * @chunk: chunk of interest
369 * @new_alloc: new target allocation length of the area map
371 * Extend area map of @chunk to have @new_alloc entries.
374 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
377 * 0 on success, -errno on failure.
379 static int pcpu_extend_area_map(struct pcpu_chunk
*chunk
, int new_alloc
)
381 int *old
= NULL
, *new = NULL
;
382 size_t old_size
= 0, new_size
= new_alloc
* sizeof(new[0]);
385 new = pcpu_mem_alloc(new_size
);
389 /* acquire pcpu_lock and switch to new area map */
390 spin_lock_irqsave(&pcpu_lock
, flags
);
392 if (new_alloc
<= chunk
->map_alloc
)
395 old_size
= chunk
->map_alloc
* sizeof(chunk
->map
[0]);
398 memcpy(new, old
, old_size
);
400 chunk
->map_alloc
= new_alloc
;
405 spin_unlock_irqrestore(&pcpu_lock
, flags
);
408 * pcpu_mem_free() might end up calling vfree() which uses
409 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
411 pcpu_mem_free(old
, old_size
);
412 pcpu_mem_free(new, new_size
);
418 * pcpu_split_block - split a map block
419 * @chunk: chunk of interest
420 * @i: index of map block to split
421 * @head: head size in bytes (can be 0)
422 * @tail: tail size in bytes (can be 0)
424 * Split the @i'th map block into two or three blocks. If @head is
425 * non-zero, @head bytes block is inserted before block @i moving it
426 * to @i+1 and reducing its size by @head bytes.
428 * If @tail is non-zero, the target block, which can be @i or @i+1
429 * depending on @head, is reduced by @tail bytes and @tail byte block
430 * is inserted after the target block.
432 * @chunk->map must have enough free slots to accomodate the split.
437 static void pcpu_split_block(struct pcpu_chunk
*chunk
, int i
,
440 int nr_extra
= !!head
+ !!tail
;
442 BUG_ON(chunk
->map_alloc
< chunk
->map_used
+ nr_extra
);
444 /* insert new subblocks */
445 memmove(&chunk
->map
[i
+ nr_extra
], &chunk
->map
[i
],
446 sizeof(chunk
->map
[0]) * (chunk
->map_used
- i
));
447 chunk
->map_used
+= nr_extra
;
450 chunk
->map
[i
+ 1] = chunk
->map
[i
] - head
;
451 chunk
->map
[i
++] = head
;
454 chunk
->map
[i
++] -= tail
;
455 chunk
->map
[i
] = tail
;
460 * pcpu_alloc_area - allocate area from a pcpu_chunk
461 * @chunk: chunk of interest
462 * @size: wanted size in bytes
463 * @align: wanted align
465 * Try to allocate @size bytes area aligned at @align from @chunk.
466 * Note that this function only allocates the offset. It doesn't
467 * populate or map the area.
469 * @chunk->map must have at least two free slots.
475 * Allocated offset in @chunk on success, -1 if no matching area is
478 static int pcpu_alloc_area(struct pcpu_chunk
*chunk
, int size
, int align
)
480 int oslot
= pcpu_chunk_slot(chunk
);
484 for (i
= 0, off
= 0; i
< chunk
->map_used
; off
+= abs(chunk
->map
[i
++])) {
485 bool is_last
= i
+ 1 == chunk
->map_used
;
488 /* extra for alignment requirement */
489 head
= ALIGN(off
, align
) - off
;
490 BUG_ON(i
== 0 && head
!= 0);
492 if (chunk
->map
[i
] < 0)
494 if (chunk
->map
[i
] < head
+ size
) {
495 max_contig
= max(chunk
->map
[i
], max_contig
);
500 * If head is small or the previous block is free,
501 * merge'em. Note that 'small' is defined as smaller
502 * than sizeof(int), which is very small but isn't too
503 * uncommon for percpu allocations.
505 if (head
&& (head
< sizeof(int) || chunk
->map
[i
- 1] > 0)) {
506 if (chunk
->map
[i
- 1] > 0)
507 chunk
->map
[i
- 1] += head
;
509 chunk
->map
[i
- 1] -= head
;
510 chunk
->free_size
-= head
;
512 chunk
->map
[i
] -= head
;
517 /* if tail is small, just keep it around */
518 tail
= chunk
->map
[i
] - head
- size
;
519 if (tail
< sizeof(int))
522 /* split if warranted */
524 pcpu_split_block(chunk
, i
, head
, tail
);
528 max_contig
= max(chunk
->map
[i
- 1], max_contig
);
531 max_contig
= max(chunk
->map
[i
+ 1], max_contig
);
534 /* update hint and mark allocated */
536 chunk
->contig_hint
= max_contig
; /* fully scanned */
538 chunk
->contig_hint
= max(chunk
->contig_hint
,
541 chunk
->free_size
-= chunk
->map
[i
];
542 chunk
->map
[i
] = -chunk
->map
[i
];
544 pcpu_chunk_relocate(chunk
, oslot
);
548 chunk
->contig_hint
= max_contig
; /* fully scanned */
549 pcpu_chunk_relocate(chunk
, oslot
);
551 /* tell the upper layer that this chunk has no matching area */
556 * pcpu_free_area - free area to a pcpu_chunk
557 * @chunk: chunk of interest
558 * @freeme: offset of area to free
560 * Free area starting from @freeme to @chunk. Note that this function
561 * only modifies the allocation map. It doesn't depopulate or unmap
567 static void pcpu_free_area(struct pcpu_chunk
*chunk
, int freeme
)
569 int oslot
= pcpu_chunk_slot(chunk
);
572 for (i
= 0, off
= 0; i
< chunk
->map_used
; off
+= abs(chunk
->map
[i
++]))
575 BUG_ON(off
!= freeme
);
576 BUG_ON(chunk
->map
[i
] > 0);
578 chunk
->map
[i
] = -chunk
->map
[i
];
579 chunk
->free_size
+= chunk
->map
[i
];
581 /* merge with previous? */
582 if (i
> 0 && chunk
->map
[i
- 1] >= 0) {
583 chunk
->map
[i
- 1] += chunk
->map
[i
];
585 memmove(&chunk
->map
[i
], &chunk
->map
[i
+ 1],
586 (chunk
->map_used
- i
) * sizeof(chunk
->map
[0]));
589 /* merge with next? */
590 if (i
+ 1 < chunk
->map_used
&& chunk
->map
[i
+ 1] >= 0) {
591 chunk
->map
[i
] += chunk
->map
[i
+ 1];
593 memmove(&chunk
->map
[i
+ 1], &chunk
->map
[i
+ 2],
594 (chunk
->map_used
- (i
+ 1)) * sizeof(chunk
->map
[0]));
597 chunk
->contig_hint
= max(chunk
->map
[i
], chunk
->contig_hint
);
598 pcpu_chunk_relocate(chunk
, oslot
);
601 static struct pcpu_chunk
*pcpu_alloc_chunk(void)
603 struct pcpu_chunk
*chunk
;
605 chunk
= pcpu_mem_alloc(pcpu_chunk_struct_size
);
609 chunk
->map
= pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC
* sizeof(chunk
->map
[0]));
615 chunk
->map_alloc
= PCPU_DFL_MAP_ALLOC
;
616 chunk
->map
[chunk
->map_used
++] = pcpu_unit_size
;
618 INIT_LIST_HEAD(&chunk
->list
);
619 chunk
->free_size
= pcpu_unit_size
;
620 chunk
->contig_hint
= pcpu_unit_size
;
625 static void pcpu_free_chunk(struct pcpu_chunk
*chunk
)
629 pcpu_mem_free(chunk
->map
, chunk
->map_alloc
* sizeof(chunk
->map
[0]));
634 * Chunk management implementation.
636 * To allow different implementations, chunk alloc/free and
637 * [de]population are implemented in a separate file which is pulled
638 * into this file and compiled together. The following functions
639 * should be implemented.
641 * pcpu_populate_chunk - populate the specified range of a chunk
642 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
643 * pcpu_create_chunk - create a new chunk
644 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
645 * pcpu_addr_to_page - translate address to physical address
646 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
648 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
);
649 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
);
650 static struct pcpu_chunk
*pcpu_create_chunk(void);
651 static void pcpu_destroy_chunk(struct pcpu_chunk
*chunk
);
652 static struct page
*pcpu_addr_to_page(void *addr
);
653 static int __init
pcpu_verify_alloc_info(const struct pcpu_alloc_info
*ai
);
655 #ifdef CONFIG_NEED_PER_CPU_KM
656 #include "percpu-km.c"
658 #include "percpu-vm.c"
662 * pcpu_chunk_addr_search - determine chunk containing specified address
663 * @addr: address for which the chunk needs to be determined.
666 * The address of the found chunk.
668 static struct pcpu_chunk
*pcpu_chunk_addr_search(void *addr
)
670 /* is it in the first chunk? */
671 if (pcpu_addr_in_first_chunk(addr
)) {
672 /* is it in the reserved area? */
673 if (pcpu_addr_in_reserved_chunk(addr
))
674 return pcpu_reserved_chunk
;
675 return pcpu_first_chunk
;
679 * The address is relative to unit0 which might be unused and
680 * thus unmapped. Offset the address to the unit space of the
681 * current processor before looking it up in the vmalloc
682 * space. Note that any possible cpu id can be used here, so
683 * there's no need to worry about preemption or cpu hotplug.
685 addr
+= pcpu_unit_offsets
[raw_smp_processor_id()];
686 return pcpu_get_page_chunk(pcpu_addr_to_page(addr
));
690 * pcpu_alloc - the percpu allocator
691 * @size: size of area to allocate in bytes
692 * @align: alignment of area (max PAGE_SIZE)
693 * @reserved: allocate from the reserved chunk if available
695 * Allocate percpu area of @size bytes aligned at @align.
698 * Does GFP_KERNEL allocation.
701 * Percpu pointer to the allocated area on success, NULL on failure.
703 static void __percpu
*pcpu_alloc(size_t size
, size_t align
, bool reserved
)
705 static int warn_limit
= 10;
706 struct pcpu_chunk
*chunk
;
708 int slot
, off
, new_alloc
;
711 if (unlikely(!size
|| size
> PCPU_MIN_UNIT_SIZE
|| align
> PAGE_SIZE
)) {
712 WARN(true, "illegal size (%zu) or align (%zu) for "
713 "percpu allocation\n", size
, align
);
717 mutex_lock(&pcpu_alloc_mutex
);
718 spin_lock_irqsave(&pcpu_lock
, flags
);
720 /* serve reserved allocations from the reserved chunk if available */
721 if (reserved
&& pcpu_reserved_chunk
) {
722 chunk
= pcpu_reserved_chunk
;
724 if (size
> chunk
->contig_hint
) {
725 err
= "alloc from reserved chunk failed";
729 while ((new_alloc
= pcpu_need_to_extend(chunk
))) {
730 spin_unlock_irqrestore(&pcpu_lock
, flags
);
731 if (pcpu_extend_area_map(chunk
, new_alloc
) < 0) {
732 err
= "failed to extend area map of reserved chunk";
733 goto fail_unlock_mutex
;
735 spin_lock_irqsave(&pcpu_lock
, flags
);
738 off
= pcpu_alloc_area(chunk
, size
, align
);
742 err
= "alloc from reserved chunk failed";
747 /* search through normal chunks */
748 for (slot
= pcpu_size_to_slot(size
); slot
< pcpu_nr_slots
; slot
++) {
749 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
750 if (size
> chunk
->contig_hint
)
753 new_alloc
= pcpu_need_to_extend(chunk
);
755 spin_unlock_irqrestore(&pcpu_lock
, flags
);
756 if (pcpu_extend_area_map(chunk
,
758 err
= "failed to extend area map";
759 goto fail_unlock_mutex
;
761 spin_lock_irqsave(&pcpu_lock
, flags
);
763 * pcpu_lock has been dropped, need to
764 * restart cpu_slot list walking.
769 off
= pcpu_alloc_area(chunk
, size
, align
);
775 /* hmmm... no space left, create a new chunk */
776 spin_unlock_irqrestore(&pcpu_lock
, flags
);
778 chunk
= pcpu_create_chunk();
780 err
= "failed to allocate new chunk";
781 goto fail_unlock_mutex
;
784 spin_lock_irqsave(&pcpu_lock
, flags
);
785 pcpu_chunk_relocate(chunk
, -1);
789 spin_unlock_irqrestore(&pcpu_lock
, flags
);
791 /* populate, map and clear the area */
792 if (pcpu_populate_chunk(chunk
, off
, size
)) {
793 spin_lock_irqsave(&pcpu_lock
, flags
);
794 pcpu_free_area(chunk
, off
);
795 err
= "failed to populate";
799 mutex_unlock(&pcpu_alloc_mutex
);
801 /* return address relative to base address */
802 return __addr_to_pcpu_ptr(chunk
->base_addr
+ off
);
805 spin_unlock_irqrestore(&pcpu_lock
, flags
);
807 mutex_unlock(&pcpu_alloc_mutex
);
809 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
810 "%s\n", size
, align
, err
);
813 pr_info("PERCPU: limit reached, disable warning\n");
819 * __alloc_percpu - allocate dynamic percpu area
820 * @size: size of area to allocate in bytes
821 * @align: alignment of area (max PAGE_SIZE)
823 * Allocate percpu area of @size bytes aligned at @align. Might
824 * sleep. Might trigger writeouts.
827 * Does GFP_KERNEL allocation.
830 * Percpu pointer to the allocated area on success, NULL on failure.
832 void __percpu
*__alloc_percpu(size_t size
, size_t align
)
834 return pcpu_alloc(size
, align
, false);
836 EXPORT_SYMBOL_GPL(__alloc_percpu
);
839 * __alloc_reserved_percpu - allocate reserved percpu area
840 * @size: size of area to allocate in bytes
841 * @align: alignment of area (max PAGE_SIZE)
843 * Allocate percpu area of @size bytes aligned at @align from reserved
844 * percpu area if arch has set it up; otherwise, allocation is served
845 * from the same dynamic area. Might sleep. Might trigger writeouts.
848 * Does GFP_KERNEL allocation.
851 * Percpu pointer to the allocated area on success, NULL on failure.
853 void __percpu
*__alloc_reserved_percpu(size_t size
, size_t align
)
855 return pcpu_alloc(size
, align
, true);
859 * pcpu_reclaim - reclaim fully free chunks, workqueue function
862 * Reclaim all fully free chunks except for the first one.
867 static void pcpu_reclaim(struct work_struct
*work
)
870 struct list_head
*head
= &pcpu_slot
[pcpu_nr_slots
- 1];
871 struct pcpu_chunk
*chunk
, *next
;
873 mutex_lock(&pcpu_alloc_mutex
);
874 spin_lock_irq(&pcpu_lock
);
876 list_for_each_entry_safe(chunk
, next
, head
, list
) {
877 WARN_ON(chunk
->immutable
);
879 /* spare the first one */
880 if (chunk
== list_first_entry(head
, struct pcpu_chunk
, list
))
883 list_move(&chunk
->list
, &todo
);
886 spin_unlock_irq(&pcpu_lock
);
888 list_for_each_entry_safe(chunk
, next
, &todo
, list
) {
889 pcpu_depopulate_chunk(chunk
, 0, pcpu_unit_size
);
890 pcpu_destroy_chunk(chunk
);
893 mutex_unlock(&pcpu_alloc_mutex
);
897 * free_percpu - free percpu area
898 * @ptr: pointer to area to free
900 * Free percpu area @ptr.
903 * Can be called from atomic context.
905 void free_percpu(void __percpu
*ptr
)
908 struct pcpu_chunk
*chunk
;
915 addr
= __pcpu_ptr_to_addr(ptr
);
917 spin_lock_irqsave(&pcpu_lock
, flags
);
919 chunk
= pcpu_chunk_addr_search(addr
);
920 off
= addr
- chunk
->base_addr
;
922 pcpu_free_area(chunk
, off
);
924 /* if there are more than one fully free chunks, wake up grim reaper */
925 if (chunk
->free_size
== pcpu_unit_size
) {
926 struct pcpu_chunk
*pos
;
928 list_for_each_entry(pos
, &pcpu_slot
[pcpu_nr_slots
- 1], list
)
930 schedule_work(&pcpu_reclaim_work
);
935 spin_unlock_irqrestore(&pcpu_lock
, flags
);
937 EXPORT_SYMBOL_GPL(free_percpu
);
940 * is_kernel_percpu_address - test whether address is from static percpu area
941 * @addr: address to test
943 * Test whether @addr belongs to in-kernel static percpu area. Module
944 * static percpu areas are not considered. For those, use
945 * is_module_percpu_address().
948 * %true if @addr is from in-kernel static percpu area, %false otherwise.
950 bool is_kernel_percpu_address(unsigned long addr
)
952 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
953 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
956 for_each_possible_cpu(cpu
) {
957 void *start
= per_cpu_ptr(base
, cpu
);
959 if ((void *)addr
>= start
&& (void *)addr
< start
+ static_size
)
966 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
967 * @addr: the address to be converted to physical address
969 * Given @addr which is dereferenceable address obtained via one of
970 * percpu access macros, this function translates it into its physical
971 * address. The caller is responsible for ensuring @addr stays valid
972 * until this function finishes.
975 * The physical address for @addr.
977 phys_addr_t
per_cpu_ptr_to_phys(void *addr
)
979 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
980 bool in_first_chunk
= false;
981 unsigned long first_start
, first_end
;
985 * The following test on first_start/end isn't strictly
986 * necessary but will speed up lookups of addresses which
987 * aren't in the first chunk.
989 first_start
= pcpu_chunk_addr(pcpu_first_chunk
, pcpu_first_unit_cpu
, 0);
990 first_end
= pcpu_chunk_addr(pcpu_first_chunk
, pcpu_last_unit_cpu
,
992 if ((unsigned long)addr
>= first_start
&&
993 (unsigned long)addr
< first_end
) {
994 for_each_possible_cpu(cpu
) {
995 void *start
= per_cpu_ptr(base
, cpu
);
997 if (addr
>= start
&& addr
< start
+ pcpu_unit_size
) {
998 in_first_chunk
= true;
1004 if (in_first_chunk
) {
1005 if ((unsigned long)addr
< VMALLOC_START
||
1006 (unsigned long)addr
>= VMALLOC_END
)
1009 return page_to_phys(vmalloc_to_page(addr
));
1011 return page_to_phys(pcpu_addr_to_page(addr
));
1015 * pcpu_alloc_alloc_info - allocate percpu allocation info
1016 * @nr_groups: the number of groups
1017 * @nr_units: the number of units
1019 * Allocate ai which is large enough for @nr_groups groups containing
1020 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1021 * cpu_map array which is long enough for @nr_units and filled with
1022 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1023 * pointer of other groups.
1026 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1029 struct pcpu_alloc_info
* __init
pcpu_alloc_alloc_info(int nr_groups
,
1032 struct pcpu_alloc_info
*ai
;
1033 size_t base_size
, ai_size
;
1037 base_size
= ALIGN(sizeof(*ai
) + nr_groups
* sizeof(ai
->groups
[0]),
1038 __alignof__(ai
->groups
[0].cpu_map
[0]));
1039 ai_size
= base_size
+ nr_units
* sizeof(ai
->groups
[0].cpu_map
[0]);
1041 ptr
= alloc_bootmem_nopanic(PFN_ALIGN(ai_size
));
1047 ai
->groups
[0].cpu_map
= ptr
;
1049 for (unit
= 0; unit
< nr_units
; unit
++)
1050 ai
->groups
[0].cpu_map
[unit
] = NR_CPUS
;
1052 ai
->nr_groups
= nr_groups
;
1053 ai
->__ai_size
= PFN_ALIGN(ai_size
);
1059 * pcpu_free_alloc_info - free percpu allocation info
1060 * @ai: pcpu_alloc_info to free
1062 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1064 void __init
pcpu_free_alloc_info(struct pcpu_alloc_info
*ai
)
1066 free_bootmem(__pa(ai
), ai
->__ai_size
);
1070 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1071 * @reserved_size: the size of reserved percpu area in bytes
1072 * @dyn_size: minimum free size for dynamic allocation in bytes
1073 * @atom_size: allocation atom size
1074 * @cpu_distance_fn: callback to determine distance between cpus, optional
1076 * This function determines grouping of units, their mappings to cpus
1077 * and other parameters considering needed percpu size, allocation
1078 * atom size and distances between CPUs.
1080 * Groups are always mutliples of atom size and CPUs which are of
1081 * LOCAL_DISTANCE both ways are grouped together and share space for
1082 * units in the same group. The returned configuration is guaranteed
1083 * to have CPUs on different nodes on different groups and >=75% usage
1084 * of allocated virtual address space.
1087 * On success, pointer to the new allocation_info is returned. On
1088 * failure, ERR_PTR value is returned.
1090 static struct pcpu_alloc_info
* __init
pcpu_build_alloc_info(
1091 size_t reserved_size
, size_t dyn_size
,
1093 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
)
1095 static int group_map
[NR_CPUS
] __initdata
;
1096 static int group_cnt
[NR_CPUS
] __initdata
;
1097 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
1098 int nr_groups
= 1, nr_units
= 0;
1099 size_t size_sum
, min_unit_size
, alloc_size
;
1100 int upa
, max_upa
, uninitialized_var(best_upa
); /* units_per_alloc */
1101 int last_allocs
, group
, unit
;
1102 unsigned int cpu
, tcpu
;
1103 struct pcpu_alloc_info
*ai
;
1104 unsigned int *cpu_map
;
1106 /* this function may be called multiple times */
1107 memset(group_map
, 0, sizeof(group_map
));
1108 memset(group_cnt
, 0, sizeof(group_cnt
));
1110 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1111 size_sum
= PFN_ALIGN(static_size
+ reserved_size
+
1112 max_t(size_t, dyn_size
, PERCPU_DYNAMIC_EARLY_SIZE
));
1113 dyn_size
= size_sum
- static_size
- reserved_size
;
1116 * Determine min_unit_size, alloc_size and max_upa such that
1117 * alloc_size is multiple of atom_size and is the smallest
1118 * which can accomodate 4k aligned segments which are equal to
1119 * or larger than min_unit_size.
1121 min_unit_size
= max_t(size_t, size_sum
, PCPU_MIN_UNIT_SIZE
);
1123 alloc_size
= roundup(min_unit_size
, atom_size
);
1124 upa
= alloc_size
/ min_unit_size
;
1125 while (alloc_size
% upa
|| ((alloc_size
/ upa
) & ~PAGE_MASK
))
1129 /* group cpus according to their proximity */
1130 for_each_possible_cpu(cpu
) {
1133 for_each_possible_cpu(tcpu
) {
1136 if (group_map
[tcpu
] == group
&& cpu_distance_fn
&&
1137 (cpu_distance_fn(cpu
, tcpu
) > LOCAL_DISTANCE
||
1138 cpu_distance_fn(tcpu
, cpu
) > LOCAL_DISTANCE
)) {
1140 nr_groups
= max(nr_groups
, group
+ 1);
1144 group_map
[cpu
] = group
;
1149 * Expand unit size until address space usage goes over 75%
1150 * and then as much as possible without using more address
1153 last_allocs
= INT_MAX
;
1154 for (upa
= max_upa
; upa
; upa
--) {
1155 int allocs
= 0, wasted
= 0;
1157 if (alloc_size
% upa
|| ((alloc_size
/ upa
) & ~PAGE_MASK
))
1160 for (group
= 0; group
< nr_groups
; group
++) {
1161 int this_allocs
= DIV_ROUND_UP(group_cnt
[group
], upa
);
1162 allocs
+= this_allocs
;
1163 wasted
+= this_allocs
* upa
- group_cnt
[group
];
1167 * Don't accept if wastage is over 1/3. The
1168 * greater-than comparison ensures upa==1 always
1169 * passes the following check.
1171 if (wasted
> num_possible_cpus() / 3)
1174 /* and then don't consume more memory */
1175 if (allocs
> last_allocs
)
1177 last_allocs
= allocs
;
1182 /* allocate and fill alloc_info */
1183 for (group
= 0; group
< nr_groups
; group
++)
1184 nr_units
+= roundup(group_cnt
[group
], upa
);
1186 ai
= pcpu_alloc_alloc_info(nr_groups
, nr_units
);
1188 return ERR_PTR(-ENOMEM
);
1189 cpu_map
= ai
->groups
[0].cpu_map
;
1191 for (group
= 0; group
< nr_groups
; group
++) {
1192 ai
->groups
[group
].cpu_map
= cpu_map
;
1193 cpu_map
+= roundup(group_cnt
[group
], upa
);
1196 ai
->static_size
= static_size
;
1197 ai
->reserved_size
= reserved_size
;
1198 ai
->dyn_size
= dyn_size
;
1199 ai
->unit_size
= alloc_size
/ upa
;
1200 ai
->atom_size
= atom_size
;
1201 ai
->alloc_size
= alloc_size
;
1203 for (group
= 0, unit
= 0; group_cnt
[group
]; group
++) {
1204 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1207 * Initialize base_offset as if all groups are located
1208 * back-to-back. The caller should update this to
1209 * reflect actual allocation.
1211 gi
->base_offset
= unit
* ai
->unit_size
;
1213 for_each_possible_cpu(cpu
)
1214 if (group_map
[cpu
] == group
)
1215 gi
->cpu_map
[gi
->nr_units
++] = cpu
;
1216 gi
->nr_units
= roundup(gi
->nr_units
, upa
);
1217 unit
+= gi
->nr_units
;
1219 BUG_ON(unit
!= nr_units
);
1225 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1227 * @ai: allocation info to dump
1229 * Print out information about @ai using loglevel @lvl.
1231 static void pcpu_dump_alloc_info(const char *lvl
,
1232 const struct pcpu_alloc_info
*ai
)
1234 int group_width
= 1, cpu_width
= 1, width
;
1235 char empty_str
[] = "--------";
1236 int alloc
= 0, alloc_end
= 0;
1238 int upa
, apl
; /* units per alloc, allocs per line */
1244 v
= num_possible_cpus();
1247 empty_str
[min_t(int, cpu_width
, sizeof(empty_str
) - 1)] = '\0';
1249 upa
= ai
->alloc_size
/ ai
->unit_size
;
1250 width
= upa
* (cpu_width
+ 1) + group_width
+ 3;
1251 apl
= rounddown_pow_of_two(max(60 / width
, 1));
1253 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1254 lvl
, ai
->static_size
, ai
->reserved_size
, ai
->dyn_size
,
1255 ai
->unit_size
, ai
->alloc_size
/ ai
->atom_size
, ai
->atom_size
);
1257 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1258 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1259 int unit
= 0, unit_end
= 0;
1261 BUG_ON(gi
->nr_units
% upa
);
1262 for (alloc_end
+= gi
->nr_units
/ upa
;
1263 alloc
< alloc_end
; alloc
++) {
1264 if (!(alloc
% apl
)) {
1266 printk("%spcpu-alloc: ", lvl
);
1268 printk("[%0*d] ", group_width
, group
);
1270 for (unit_end
+= upa
; unit
< unit_end
; unit
++)
1271 if (gi
->cpu_map
[unit
] != NR_CPUS
)
1272 printk("%0*d ", cpu_width
,
1275 printk("%s ", empty_str
);
1282 * pcpu_setup_first_chunk - initialize the first percpu chunk
1283 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1284 * @base_addr: mapped address
1286 * Initialize the first percpu chunk which contains the kernel static
1287 * perpcu area. This function is to be called from arch percpu area
1290 * @ai contains all information necessary to initialize the first
1291 * chunk and prime the dynamic percpu allocator.
1293 * @ai->static_size is the size of static percpu area.
1295 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1296 * reserve after the static area in the first chunk. This reserves
1297 * the first chunk such that it's available only through reserved
1298 * percpu allocation. This is primarily used to serve module percpu
1299 * static areas on architectures where the addressing model has
1300 * limited offset range for symbol relocations to guarantee module
1301 * percpu symbols fall inside the relocatable range.
1303 * @ai->dyn_size determines the number of bytes available for dynamic
1304 * allocation in the first chunk. The area between @ai->static_size +
1305 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1307 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1308 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1311 * @ai->atom_size is the allocation atom size and used as alignment
1314 * @ai->alloc_size is the allocation size and always multiple of
1315 * @ai->atom_size. This is larger than @ai->atom_size if
1316 * @ai->unit_size is larger than @ai->atom_size.
1318 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1319 * percpu areas. Units which should be colocated are put into the
1320 * same group. Dynamic VM areas will be allocated according to these
1321 * groupings. If @ai->nr_groups is zero, a single group containing
1322 * all units is assumed.
1324 * The caller should have mapped the first chunk at @base_addr and
1325 * copied static data to each unit.
1327 * If the first chunk ends up with both reserved and dynamic areas, it
1328 * is served by two chunks - one to serve the core static and reserved
1329 * areas and the other for the dynamic area. They share the same vm
1330 * and page map but uses different area allocation map to stay away
1331 * from each other. The latter chunk is circulated in the chunk slots
1332 * and available for dynamic allocation like any other chunks.
1335 * 0 on success, -errno on failure.
1337 int __init
pcpu_setup_first_chunk(const struct pcpu_alloc_info
*ai
,
1340 static char cpus_buf
[4096] __initdata
;
1341 static int smap
[PERCPU_DYNAMIC_EARLY_SLOTS
] __initdata
;
1342 static int dmap
[PERCPU_DYNAMIC_EARLY_SLOTS
] __initdata
;
1343 size_t dyn_size
= ai
->dyn_size
;
1344 size_t size_sum
= ai
->static_size
+ ai
->reserved_size
+ dyn_size
;
1345 struct pcpu_chunk
*schunk
, *dchunk
= NULL
;
1346 unsigned long *group_offsets
;
1347 size_t *group_sizes
;
1348 unsigned long *unit_off
;
1353 cpumask_scnprintf(cpus_buf
, sizeof(cpus_buf
), cpu_possible_mask
);
1355 #define PCPU_SETUP_BUG_ON(cond) do { \
1356 if (unlikely(cond)) { \
1357 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1358 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1359 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1365 PCPU_SETUP_BUG_ON(ai
->nr_groups
<= 0);
1366 PCPU_SETUP_BUG_ON(!ai
->static_size
);
1367 PCPU_SETUP_BUG_ON(!base_addr
);
1368 PCPU_SETUP_BUG_ON(ai
->unit_size
< size_sum
);
1369 PCPU_SETUP_BUG_ON(ai
->unit_size
& ~PAGE_MASK
);
1370 PCPU_SETUP_BUG_ON(ai
->unit_size
< PCPU_MIN_UNIT_SIZE
);
1371 PCPU_SETUP_BUG_ON(ai
->dyn_size
< PERCPU_DYNAMIC_EARLY_SIZE
);
1372 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai
) < 0);
1374 /* process group information and build config tables accordingly */
1375 group_offsets
= alloc_bootmem(ai
->nr_groups
* sizeof(group_offsets
[0]));
1376 group_sizes
= alloc_bootmem(ai
->nr_groups
* sizeof(group_sizes
[0]));
1377 unit_map
= alloc_bootmem(nr_cpu_ids
* sizeof(unit_map
[0]));
1378 unit_off
= alloc_bootmem(nr_cpu_ids
* sizeof(unit_off
[0]));
1380 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++)
1381 unit_map
[cpu
] = UINT_MAX
;
1382 pcpu_first_unit_cpu
= NR_CPUS
;
1384 for (group
= 0, unit
= 0; group
< ai
->nr_groups
; group
++, unit
+= i
) {
1385 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1387 group_offsets
[group
] = gi
->base_offset
;
1388 group_sizes
[group
] = gi
->nr_units
* ai
->unit_size
;
1390 for (i
= 0; i
< gi
->nr_units
; i
++) {
1391 cpu
= gi
->cpu_map
[i
];
1395 PCPU_SETUP_BUG_ON(cpu
> nr_cpu_ids
);
1396 PCPU_SETUP_BUG_ON(!cpu_possible(cpu
));
1397 PCPU_SETUP_BUG_ON(unit_map
[cpu
] != UINT_MAX
);
1399 unit_map
[cpu
] = unit
+ i
;
1400 unit_off
[cpu
] = gi
->base_offset
+ i
* ai
->unit_size
;
1402 if (pcpu_first_unit_cpu
== NR_CPUS
)
1403 pcpu_first_unit_cpu
= cpu
;
1406 pcpu_last_unit_cpu
= cpu
;
1407 pcpu_nr_units
= unit
;
1409 for_each_possible_cpu(cpu
)
1410 PCPU_SETUP_BUG_ON(unit_map
[cpu
] == UINT_MAX
);
1412 /* we're done parsing the input, undefine BUG macro and dump config */
1413 #undef PCPU_SETUP_BUG_ON
1414 pcpu_dump_alloc_info(KERN_INFO
, ai
);
1416 pcpu_nr_groups
= ai
->nr_groups
;
1417 pcpu_group_offsets
= group_offsets
;
1418 pcpu_group_sizes
= group_sizes
;
1419 pcpu_unit_map
= unit_map
;
1420 pcpu_unit_offsets
= unit_off
;
1422 /* determine basic parameters */
1423 pcpu_unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
1424 pcpu_unit_size
= pcpu_unit_pages
<< PAGE_SHIFT
;
1425 pcpu_atom_size
= ai
->atom_size
;
1426 pcpu_chunk_struct_size
= sizeof(struct pcpu_chunk
) +
1427 BITS_TO_LONGS(pcpu_unit_pages
) * sizeof(unsigned long);
1430 * Allocate chunk slots. The additional last slot is for
1433 pcpu_nr_slots
= __pcpu_size_to_slot(pcpu_unit_size
) + 2;
1434 pcpu_slot
= alloc_bootmem(pcpu_nr_slots
* sizeof(pcpu_slot
[0]));
1435 for (i
= 0; i
< pcpu_nr_slots
; i
++)
1436 INIT_LIST_HEAD(&pcpu_slot
[i
]);
1439 * Initialize static chunk. If reserved_size is zero, the
1440 * static chunk covers static area + dynamic allocation area
1441 * in the first chunk. If reserved_size is not zero, it
1442 * covers static area + reserved area (mostly used for module
1443 * static percpu allocation).
1445 schunk
= alloc_bootmem(pcpu_chunk_struct_size
);
1446 INIT_LIST_HEAD(&schunk
->list
);
1447 schunk
->base_addr
= base_addr
;
1449 schunk
->map_alloc
= ARRAY_SIZE(smap
);
1450 schunk
->immutable
= true;
1451 bitmap_fill(schunk
->populated
, pcpu_unit_pages
);
1453 if (ai
->reserved_size
) {
1454 schunk
->free_size
= ai
->reserved_size
;
1455 pcpu_reserved_chunk
= schunk
;
1456 pcpu_reserved_chunk_limit
= ai
->static_size
+ ai
->reserved_size
;
1458 schunk
->free_size
= dyn_size
;
1459 dyn_size
= 0; /* dynamic area covered */
1461 schunk
->contig_hint
= schunk
->free_size
;
1463 schunk
->map
[schunk
->map_used
++] = -ai
->static_size
;
1464 if (schunk
->free_size
)
1465 schunk
->map
[schunk
->map_used
++] = schunk
->free_size
;
1467 /* init dynamic chunk if necessary */
1469 dchunk
= alloc_bootmem(pcpu_chunk_struct_size
);
1470 INIT_LIST_HEAD(&dchunk
->list
);
1471 dchunk
->base_addr
= base_addr
;
1473 dchunk
->map_alloc
= ARRAY_SIZE(dmap
);
1474 dchunk
->immutable
= true;
1475 bitmap_fill(dchunk
->populated
, pcpu_unit_pages
);
1477 dchunk
->contig_hint
= dchunk
->free_size
= dyn_size
;
1478 dchunk
->map
[dchunk
->map_used
++] = -pcpu_reserved_chunk_limit
;
1479 dchunk
->map
[dchunk
->map_used
++] = dchunk
->free_size
;
1482 /* link the first chunk in */
1483 pcpu_first_chunk
= dchunk
?: schunk
;
1484 pcpu_chunk_relocate(pcpu_first_chunk
, -1);
1487 pcpu_base_addr
= base_addr
;
1491 const char *pcpu_fc_names
[PCPU_FC_NR
] __initdata
= {
1492 [PCPU_FC_AUTO
] = "auto",
1493 [PCPU_FC_EMBED
] = "embed",
1494 [PCPU_FC_PAGE
] = "page",
1497 enum pcpu_fc pcpu_chosen_fc __initdata
= PCPU_FC_AUTO
;
1499 static int __init
percpu_alloc_setup(char *str
)
1503 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1504 else if (!strcmp(str
, "embed"))
1505 pcpu_chosen_fc
= PCPU_FC_EMBED
;
1507 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1508 else if (!strcmp(str
, "page"))
1509 pcpu_chosen_fc
= PCPU_FC_PAGE
;
1512 pr_warning("PERCPU: unknown allocator %s specified\n", str
);
1516 early_param("percpu_alloc", percpu_alloc_setup
);
1518 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1519 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1521 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1522 * @reserved_size: the size of reserved percpu area in bytes
1523 * @dyn_size: minimum free size for dynamic allocation in bytes
1524 * @atom_size: allocation atom size
1525 * @cpu_distance_fn: callback to determine distance between cpus, optional
1526 * @alloc_fn: function to allocate percpu page
1527 * @free_fn: funtion to free percpu page
1529 * This is a helper to ease setting up embedded first percpu chunk and
1530 * can be called where pcpu_setup_first_chunk() is expected.
1532 * If this function is used to setup the first chunk, it is allocated
1533 * by calling @alloc_fn and used as-is without being mapped into
1534 * vmalloc area. Allocations are always whole multiples of @atom_size
1535 * aligned to @atom_size.
1537 * This enables the first chunk to piggy back on the linear physical
1538 * mapping which often uses larger page size. Please note that this
1539 * can result in very sparse cpu->unit mapping on NUMA machines thus
1540 * requiring large vmalloc address space. Don't use this allocator if
1541 * vmalloc space is not orders of magnitude larger than distances
1542 * between node memory addresses (ie. 32bit NUMA machines).
1544 * @dyn_size specifies the minimum dynamic area size.
1546 * If the needed size is smaller than the minimum or specified unit
1547 * size, the leftover is returned using @free_fn.
1550 * 0 on success, -errno on failure.
1552 int __init
pcpu_embed_first_chunk(size_t reserved_size
, size_t dyn_size
,
1554 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
,
1555 pcpu_fc_alloc_fn_t alloc_fn
,
1556 pcpu_fc_free_fn_t free_fn
)
1558 void *base
= (void *)ULONG_MAX
;
1559 void **areas
= NULL
;
1560 struct pcpu_alloc_info
*ai
;
1561 size_t size_sum
, areas_size
, max_distance
;
1564 ai
= pcpu_build_alloc_info(reserved_size
, dyn_size
, atom_size
,
1569 size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
1570 areas_size
= PFN_ALIGN(ai
->nr_groups
* sizeof(void *));
1572 areas
= alloc_bootmem_nopanic(areas_size
);
1578 /* allocate, copy and determine base address */
1579 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1580 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1581 unsigned int cpu
= NR_CPUS
;
1584 for (i
= 0; i
< gi
->nr_units
&& cpu
== NR_CPUS
; i
++)
1585 cpu
= gi
->cpu_map
[i
];
1586 BUG_ON(cpu
== NR_CPUS
);
1588 /* allocate space for the whole group */
1589 ptr
= alloc_fn(cpu
, gi
->nr_units
* ai
->unit_size
, atom_size
);
1592 goto out_free_areas
;
1596 base
= min(ptr
, base
);
1598 for (i
= 0; i
< gi
->nr_units
; i
++, ptr
+= ai
->unit_size
) {
1599 if (gi
->cpu_map
[i
] == NR_CPUS
) {
1600 /* unused unit, free whole */
1601 free_fn(ptr
, ai
->unit_size
);
1604 /* copy and return the unused part */
1605 memcpy(ptr
, __per_cpu_load
, ai
->static_size
);
1606 free_fn(ptr
+ size_sum
, ai
->unit_size
- size_sum
);
1610 /* base address is now known, determine group base offsets */
1612 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1613 ai
->groups
[group
].base_offset
= areas
[group
] - base
;
1614 max_distance
= max_t(size_t, max_distance
,
1615 ai
->groups
[group
].base_offset
);
1617 max_distance
+= ai
->unit_size
;
1619 /* warn if maximum distance is further than 75% of vmalloc space */
1620 if (max_distance
> (VMALLOC_END
- VMALLOC_START
) * 3 / 4) {
1621 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1623 max_distance
, VMALLOC_END
- VMALLOC_START
);
1624 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1625 /* and fail if we have fallback */
1631 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1632 PFN_DOWN(size_sum
), base
, ai
->static_size
, ai
->reserved_size
,
1633 ai
->dyn_size
, ai
->unit_size
);
1635 rc
= pcpu_setup_first_chunk(ai
, base
);
1639 for (group
= 0; group
< ai
->nr_groups
; group
++)
1640 free_fn(areas
[group
],
1641 ai
->groups
[group
].nr_units
* ai
->unit_size
);
1643 pcpu_free_alloc_info(ai
);
1645 free_bootmem(__pa(areas
), areas_size
);
1648 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1649 !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1651 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1653 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1654 * @reserved_size: the size of reserved percpu area in bytes
1655 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1656 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1657 * @populate_pte_fn: function to populate pte
1659 * This is a helper to ease setting up page-remapped first percpu
1660 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1662 * This is the basic allocator. Static percpu area is allocated
1663 * page-by-page into vmalloc area.
1666 * 0 on success, -errno on failure.
1668 int __init
pcpu_page_first_chunk(size_t reserved_size
,
1669 pcpu_fc_alloc_fn_t alloc_fn
,
1670 pcpu_fc_free_fn_t free_fn
,
1671 pcpu_fc_populate_pte_fn_t populate_pte_fn
)
1673 static struct vm_struct vm
;
1674 struct pcpu_alloc_info
*ai
;
1678 struct page
**pages
;
1681 snprintf(psize_str
, sizeof(psize_str
), "%luK", PAGE_SIZE
>> 10);
1683 ai
= pcpu_build_alloc_info(reserved_size
, 0, PAGE_SIZE
, NULL
);
1686 BUG_ON(ai
->nr_groups
!= 1);
1687 BUG_ON(ai
->groups
[0].nr_units
!= num_possible_cpus());
1689 unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
1691 /* unaligned allocations can't be freed, round up to page size */
1692 pages_size
= PFN_ALIGN(unit_pages
* num_possible_cpus() *
1694 pages
= alloc_bootmem(pages_size
);
1696 /* allocate pages */
1698 for (unit
= 0; unit
< num_possible_cpus(); unit
++)
1699 for (i
= 0; i
< unit_pages
; i
++) {
1700 unsigned int cpu
= ai
->groups
[0].cpu_map
[unit
];
1703 ptr
= alloc_fn(cpu
, PAGE_SIZE
, PAGE_SIZE
);
1705 pr_warning("PERCPU: failed to allocate %s page "
1706 "for cpu%u\n", psize_str
, cpu
);
1709 pages
[j
++] = virt_to_page(ptr
);
1712 /* allocate vm area, map the pages and copy static data */
1713 vm
.flags
= VM_ALLOC
;
1714 vm
.size
= num_possible_cpus() * ai
->unit_size
;
1715 vm_area_register_early(&vm
, PAGE_SIZE
);
1717 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
1718 unsigned long unit_addr
=
1719 (unsigned long)vm
.addr
+ unit
* ai
->unit_size
;
1721 for (i
= 0; i
< unit_pages
; i
++)
1722 populate_pte_fn(unit_addr
+ (i
<< PAGE_SHIFT
));
1724 /* pte already populated, the following shouldn't fail */
1725 rc
= __pcpu_map_pages(unit_addr
, &pages
[unit
* unit_pages
],
1728 panic("failed to map percpu area, err=%d\n", rc
);
1731 * FIXME: Archs with virtual cache should flush local
1732 * cache for the linear mapping here - something
1733 * equivalent to flush_cache_vmap() on the local cpu.
1734 * flush_cache_vmap() can't be used as most supporting
1735 * data structures are not set up yet.
1738 /* copy static data */
1739 memcpy((void *)unit_addr
, __per_cpu_load
, ai
->static_size
);
1742 /* we're ready, commit */
1743 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1744 unit_pages
, psize_str
, vm
.addr
, ai
->static_size
,
1745 ai
->reserved_size
, ai
->dyn_size
);
1747 rc
= pcpu_setup_first_chunk(ai
, vm
.addr
);
1752 free_fn(page_address(pages
[j
]), PAGE_SIZE
);
1755 free_bootmem(__pa(pages
), pages_size
);
1756 pcpu_free_alloc_info(ai
);
1759 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
1762 * Generic percpu area setup.
1764 * The embedding helper is used because its behavior closely resembles
1765 * the original non-dynamic generic percpu area setup. This is
1766 * important because many archs have addressing restrictions and might
1767 * fail if the percpu area is located far away from the previous
1768 * location. As an added bonus, in non-NUMA cases, embedding is
1769 * generally a good idea TLB-wise because percpu area can piggy back
1770 * on the physical linear memory mapping which uses large page
1771 * mappings on applicable archs.
1773 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1774 unsigned long __per_cpu_offset
[NR_CPUS
] __read_mostly
;
1775 EXPORT_SYMBOL(__per_cpu_offset
);
1777 static void * __init
pcpu_dfl_fc_alloc(unsigned int cpu
, size_t size
,
1780 return __alloc_bootmem_nopanic(size
, align
, __pa(MAX_DMA_ADDRESS
));
1783 static void __init
pcpu_dfl_fc_free(void *ptr
, size_t size
)
1785 free_bootmem(__pa(ptr
), size
);
1788 void __init
setup_per_cpu_areas(void)
1790 unsigned long delta
;
1795 * Always reserve area for module percpu variables. That's
1796 * what the legacy allocator did.
1798 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
,
1799 PERCPU_DYNAMIC_RESERVE
, PAGE_SIZE
, NULL
,
1800 pcpu_dfl_fc_alloc
, pcpu_dfl_fc_free
);
1802 panic("Failed to initialized percpu areas.");
1804 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
1805 for_each_possible_cpu(cpu
)
1806 __per_cpu_offset
[cpu
] = delta
+ pcpu_unit_offsets
[cpu
];
1808 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1811 * First and reserved chunks are initialized with temporary allocation
1812 * map in initdata so that they can be used before slab is online.
1813 * This function is called after slab is brought up and replaces those
1814 * with properly allocated maps.
1816 void __init
percpu_init_late(void)
1818 struct pcpu_chunk
*target_chunks
[] =
1819 { pcpu_first_chunk
, pcpu_reserved_chunk
, NULL
};
1820 struct pcpu_chunk
*chunk
;
1821 unsigned long flags
;
1824 for (i
= 0; (chunk
= target_chunks
[i
]); i
++) {
1826 const size_t size
= PERCPU_DYNAMIC_EARLY_SLOTS
* sizeof(map
[0]);
1828 BUILD_BUG_ON(size
> PAGE_SIZE
);
1830 map
= pcpu_mem_alloc(size
);
1833 spin_lock_irqsave(&pcpu_lock
, flags
);
1834 memcpy(map
, chunk
->map
, size
);
1836 spin_unlock_irqrestore(&pcpu_lock
, flags
);