[PATCH] swsusp: i386 mark special saveable/unsaveable pages
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / i386 / kernel / setup.c
blobe6023970aa405c11a9b8112fe2ba7c6b8e26bd3b
1 /*
2 * linux/arch/i386/kernel/setup.c
4 * Copyright (C) 1995 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
8 * Memory region support
9 * David Parsons <orc@pell.chi.il.us>, July-August 1999
11 * Added E820 sanitization routine (removes overlapping memory regions);
12 * Brian Moyle <bmoyle@mvista.com>, February 2001
14 * Moved CPU detection code to cpu/${cpu}.c
15 * Patrick Mochel <mochel@osdl.org>, March 2002
17 * Provisions for empty E820 memory regions (reported by certain BIOSes).
18 * Alex Achenbach <xela@slit.de>, December 2002.
23 * This file handles the architecture-dependent parts of initialization
26 #include <linux/config.h>
27 #include <linux/sched.h>
28 #include <linux/mm.h>
29 #include <linux/mmzone.h>
30 #include <linux/tty.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/apm_bios.h>
34 #include <linux/initrd.h>
35 #include <linux/bootmem.h>
36 #include <linux/seq_file.h>
37 #include <linux/platform_device.h>
38 #include <linux/console.h>
39 #include <linux/mca.h>
40 #include <linux/root_dev.h>
41 #include <linux/highmem.h>
42 #include <linux/module.h>
43 #include <linux/efi.h>
44 #include <linux/init.h>
45 #include <linux/edd.h>
46 #include <linux/nodemask.h>
47 #include <linux/kexec.h>
48 #include <linux/crash_dump.h>
49 #include <linux/dmi.h>
50 #include <linux/pfn.h>
51 #include <linux/suspend.h>
53 #include <video/edid.h>
55 #include <asm/apic.h>
56 #include <asm/e820.h>
57 #include <asm/mpspec.h>
58 #include <asm/setup.h>
59 #include <asm/arch_hooks.h>
60 #include <asm/sections.h>
61 #include <asm/io_apic.h>
62 #include <asm/ist.h>
63 #include <asm/io.h>
64 #include "setup_arch_pre.h"
65 #include <bios_ebda.h>
67 /* Forward Declaration. */
68 void __init find_max_pfn(void);
70 /* This value is set up by the early boot code to point to the value
71 immediately after the boot time page tables. It contains a *physical*
72 address, and must not be in the .bss segment! */
73 unsigned long init_pg_tables_end __initdata = ~0UL;
75 int disable_pse __devinitdata = 0;
78 * Machine setup..
81 #ifdef CONFIG_EFI
82 int efi_enabled = 0;
83 EXPORT_SYMBOL(efi_enabled);
84 #endif
86 /* cpu data as detected by the assembly code in head.S */
87 struct cpuinfo_x86 new_cpu_data __initdata = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
88 /* common cpu data for all cpus */
89 struct cpuinfo_x86 boot_cpu_data __read_mostly = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
90 EXPORT_SYMBOL(boot_cpu_data);
92 unsigned long mmu_cr4_features;
94 #ifdef CONFIG_ACPI
95 int acpi_disabled = 0;
96 #else
97 int acpi_disabled = 1;
98 #endif
99 EXPORT_SYMBOL(acpi_disabled);
101 #ifdef CONFIG_ACPI
102 int __initdata acpi_force = 0;
103 extern acpi_interrupt_flags acpi_sci_flags;
104 #endif
106 /* for MCA, but anyone else can use it if they want */
107 unsigned int machine_id;
108 #ifdef CONFIG_MCA
109 EXPORT_SYMBOL(machine_id);
110 #endif
111 unsigned int machine_submodel_id;
112 unsigned int BIOS_revision;
113 unsigned int mca_pentium_flag;
115 /* For PCI or other memory-mapped resources */
116 unsigned long pci_mem_start = 0x10000000;
117 #ifdef CONFIG_PCI
118 EXPORT_SYMBOL(pci_mem_start);
119 #endif
121 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
122 int bootloader_type;
124 /* user-defined highmem size */
125 static unsigned int highmem_pages = -1;
128 * Setup options
130 struct drive_info_struct { char dummy[32]; } drive_info;
131 #if defined(CONFIG_BLK_DEV_IDE) || defined(CONFIG_BLK_DEV_HD) || \
132 defined(CONFIG_BLK_DEV_IDE_MODULE) || defined(CONFIG_BLK_DEV_HD_MODULE)
133 EXPORT_SYMBOL(drive_info);
134 #endif
135 struct screen_info screen_info;
136 EXPORT_SYMBOL(screen_info);
137 struct apm_info apm_info;
138 EXPORT_SYMBOL(apm_info);
139 struct sys_desc_table_struct {
140 unsigned short length;
141 unsigned char table[0];
143 struct edid_info edid_info;
144 EXPORT_SYMBOL_GPL(edid_info);
145 struct ist_info ist_info;
146 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
147 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
148 EXPORT_SYMBOL(ist_info);
149 #endif
150 struct e820map e820;
152 extern void early_cpu_init(void);
153 extern void generic_apic_probe(char *);
154 extern int root_mountflags;
156 unsigned long saved_videomode;
158 #define RAMDISK_IMAGE_START_MASK 0x07FF
159 #define RAMDISK_PROMPT_FLAG 0x8000
160 #define RAMDISK_LOAD_FLAG 0x4000
162 static char command_line[COMMAND_LINE_SIZE];
164 unsigned char __initdata boot_params[PARAM_SIZE];
166 static struct resource data_resource = {
167 .name = "Kernel data",
168 .start = 0,
169 .end = 0,
170 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
173 static struct resource code_resource = {
174 .name = "Kernel code",
175 .start = 0,
176 .end = 0,
177 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
180 static struct resource system_rom_resource = {
181 .name = "System ROM",
182 .start = 0xf0000,
183 .end = 0xfffff,
184 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
187 static struct resource extension_rom_resource = {
188 .name = "Extension ROM",
189 .start = 0xe0000,
190 .end = 0xeffff,
191 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
194 static struct resource adapter_rom_resources[] = { {
195 .name = "Adapter ROM",
196 .start = 0xc8000,
197 .end = 0,
198 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
199 }, {
200 .name = "Adapter ROM",
201 .start = 0,
202 .end = 0,
203 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
204 }, {
205 .name = "Adapter ROM",
206 .start = 0,
207 .end = 0,
208 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
209 }, {
210 .name = "Adapter ROM",
211 .start = 0,
212 .end = 0,
213 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
214 }, {
215 .name = "Adapter ROM",
216 .start = 0,
217 .end = 0,
218 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
219 }, {
220 .name = "Adapter ROM",
221 .start = 0,
222 .end = 0,
223 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
224 } };
226 #define ADAPTER_ROM_RESOURCES \
227 (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
229 static struct resource video_rom_resource = {
230 .name = "Video ROM",
231 .start = 0xc0000,
232 .end = 0xc7fff,
233 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
236 static struct resource video_ram_resource = {
237 .name = "Video RAM area",
238 .start = 0xa0000,
239 .end = 0xbffff,
240 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
243 static struct resource standard_io_resources[] = { {
244 .name = "dma1",
245 .start = 0x0000,
246 .end = 0x001f,
247 .flags = IORESOURCE_BUSY | IORESOURCE_IO
248 }, {
249 .name = "pic1",
250 .start = 0x0020,
251 .end = 0x0021,
252 .flags = IORESOURCE_BUSY | IORESOURCE_IO
253 }, {
254 .name = "timer0",
255 .start = 0x0040,
256 .end = 0x0043,
257 .flags = IORESOURCE_BUSY | IORESOURCE_IO
258 }, {
259 .name = "timer1",
260 .start = 0x0050,
261 .end = 0x0053,
262 .flags = IORESOURCE_BUSY | IORESOURCE_IO
263 }, {
264 .name = "keyboard",
265 .start = 0x0060,
266 .end = 0x006f,
267 .flags = IORESOURCE_BUSY | IORESOURCE_IO
268 }, {
269 .name = "dma page reg",
270 .start = 0x0080,
271 .end = 0x008f,
272 .flags = IORESOURCE_BUSY | IORESOURCE_IO
273 }, {
274 .name = "pic2",
275 .start = 0x00a0,
276 .end = 0x00a1,
277 .flags = IORESOURCE_BUSY | IORESOURCE_IO
278 }, {
279 .name = "dma2",
280 .start = 0x00c0,
281 .end = 0x00df,
282 .flags = IORESOURCE_BUSY | IORESOURCE_IO
283 }, {
284 .name = "fpu",
285 .start = 0x00f0,
286 .end = 0x00ff,
287 .flags = IORESOURCE_BUSY | IORESOURCE_IO
288 } };
290 #define STANDARD_IO_RESOURCES \
291 (sizeof standard_io_resources / sizeof standard_io_resources[0])
293 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
295 static int __init romchecksum(unsigned char *rom, unsigned long length)
297 unsigned char *p, sum = 0;
299 for (p = rom; p < rom + length; p++)
300 sum += *p;
301 return sum == 0;
304 static void __init probe_roms(void)
306 unsigned long start, length, upper;
307 unsigned char *rom;
308 int i;
310 /* video rom */
311 upper = adapter_rom_resources[0].start;
312 for (start = video_rom_resource.start; start < upper; start += 2048) {
313 rom = isa_bus_to_virt(start);
314 if (!romsignature(rom))
315 continue;
317 video_rom_resource.start = start;
319 /* 0 < length <= 0x7f * 512, historically */
320 length = rom[2] * 512;
322 /* if checksum okay, trust length byte */
323 if (length && romchecksum(rom, length))
324 video_rom_resource.end = start + length - 1;
326 request_resource(&iomem_resource, &video_rom_resource);
327 break;
330 start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
331 if (start < upper)
332 start = upper;
334 /* system rom */
335 request_resource(&iomem_resource, &system_rom_resource);
336 upper = system_rom_resource.start;
338 /* check for extension rom (ignore length byte!) */
339 rom = isa_bus_to_virt(extension_rom_resource.start);
340 if (romsignature(rom)) {
341 length = extension_rom_resource.end - extension_rom_resource.start + 1;
342 if (romchecksum(rom, length)) {
343 request_resource(&iomem_resource, &extension_rom_resource);
344 upper = extension_rom_resource.start;
348 /* check for adapter roms on 2k boundaries */
349 for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
350 rom = isa_bus_to_virt(start);
351 if (!romsignature(rom))
352 continue;
354 /* 0 < length <= 0x7f * 512, historically */
355 length = rom[2] * 512;
357 /* but accept any length that fits if checksum okay */
358 if (!length || start + length > upper || !romchecksum(rom, length))
359 continue;
361 adapter_rom_resources[i].start = start;
362 adapter_rom_resources[i].end = start + length - 1;
363 request_resource(&iomem_resource, &adapter_rom_resources[i]);
365 start = adapter_rom_resources[i++].end & ~2047UL;
369 static void __init limit_regions(unsigned long long size)
371 unsigned long long current_addr = 0;
372 int i;
374 if (efi_enabled) {
375 efi_memory_desc_t *md;
376 void *p;
378 for (p = memmap.map, i = 0; p < memmap.map_end;
379 p += memmap.desc_size, i++) {
380 md = p;
381 current_addr = md->phys_addr + (md->num_pages << 12);
382 if (md->type == EFI_CONVENTIONAL_MEMORY) {
383 if (current_addr >= size) {
384 md->num_pages -=
385 (((current_addr-size) + PAGE_SIZE-1) >> PAGE_SHIFT);
386 memmap.nr_map = i + 1;
387 return;
392 for (i = 0; i < e820.nr_map; i++) {
393 current_addr = e820.map[i].addr + e820.map[i].size;
394 if (current_addr < size)
395 continue;
397 if (e820.map[i].type != E820_RAM)
398 continue;
400 if (e820.map[i].addr >= size) {
402 * This region starts past the end of the
403 * requested size, skip it completely.
405 e820.nr_map = i;
406 } else {
407 e820.nr_map = i + 1;
408 e820.map[i].size -= current_addr - size;
410 return;
414 static void __init add_memory_region(unsigned long long start,
415 unsigned long long size, int type)
417 int x;
419 if (!efi_enabled) {
420 x = e820.nr_map;
422 if (x == E820MAX) {
423 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
424 return;
427 e820.map[x].addr = start;
428 e820.map[x].size = size;
429 e820.map[x].type = type;
430 e820.nr_map++;
432 } /* add_memory_region */
434 #define E820_DEBUG 1
436 static void __init print_memory_map(char *who)
438 int i;
440 for (i = 0; i < e820.nr_map; i++) {
441 printk(" %s: %016Lx - %016Lx ", who,
442 e820.map[i].addr,
443 e820.map[i].addr + e820.map[i].size);
444 switch (e820.map[i].type) {
445 case E820_RAM: printk("(usable)\n");
446 break;
447 case E820_RESERVED:
448 printk("(reserved)\n");
449 break;
450 case E820_ACPI:
451 printk("(ACPI data)\n");
452 break;
453 case E820_NVS:
454 printk("(ACPI NVS)\n");
455 break;
456 default: printk("type %lu\n", e820.map[i].type);
457 break;
463 * Sanitize the BIOS e820 map.
465 * Some e820 responses include overlapping entries. The following
466 * replaces the original e820 map with a new one, removing overlaps.
469 struct change_member {
470 struct e820entry *pbios; /* pointer to original bios entry */
471 unsigned long long addr; /* address for this change point */
473 static struct change_member change_point_list[2*E820MAX] __initdata;
474 static struct change_member *change_point[2*E820MAX] __initdata;
475 static struct e820entry *overlap_list[E820MAX] __initdata;
476 static struct e820entry new_bios[E820MAX] __initdata;
478 static int __init sanitize_e820_map(struct e820entry * biosmap, char * pnr_map)
480 struct change_member *change_tmp;
481 unsigned long current_type, last_type;
482 unsigned long long last_addr;
483 int chgidx, still_changing;
484 int overlap_entries;
485 int new_bios_entry;
486 int old_nr, new_nr, chg_nr;
487 int i;
490 Visually we're performing the following (1,2,3,4 = memory types)...
492 Sample memory map (w/overlaps):
493 ____22__________________
494 ______________________4_
495 ____1111________________
496 _44_____________________
497 11111111________________
498 ____________________33__
499 ___________44___________
500 __________33333_________
501 ______________22________
502 ___________________2222_
503 _________111111111______
504 _____________________11_
505 _________________4______
507 Sanitized equivalent (no overlap):
508 1_______________________
509 _44_____________________
510 ___1____________________
511 ____22__________________
512 ______11________________
513 _________1______________
514 __________3_____________
515 ___________44___________
516 _____________33_________
517 _______________2________
518 ________________1_______
519 _________________4______
520 ___________________2____
521 ____________________33__
522 ______________________4_
525 /* if there's only one memory region, don't bother */
526 if (*pnr_map < 2)
527 return -1;
529 old_nr = *pnr_map;
531 /* bail out if we find any unreasonable addresses in bios map */
532 for (i=0; i<old_nr; i++)
533 if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
534 return -1;
536 /* create pointers for initial change-point information (for sorting) */
537 for (i=0; i < 2*old_nr; i++)
538 change_point[i] = &change_point_list[i];
540 /* record all known change-points (starting and ending addresses),
541 omitting those that are for empty memory regions */
542 chgidx = 0;
543 for (i=0; i < old_nr; i++) {
544 if (biosmap[i].size != 0) {
545 change_point[chgidx]->addr = biosmap[i].addr;
546 change_point[chgidx++]->pbios = &biosmap[i];
547 change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size;
548 change_point[chgidx++]->pbios = &biosmap[i];
551 chg_nr = chgidx; /* true number of change-points */
553 /* sort change-point list by memory addresses (low -> high) */
554 still_changing = 1;
555 while (still_changing) {
556 still_changing = 0;
557 for (i=1; i < chg_nr; i++) {
558 /* if <current_addr> > <last_addr>, swap */
559 /* or, if current=<start_addr> & last=<end_addr>, swap */
560 if ((change_point[i]->addr < change_point[i-1]->addr) ||
561 ((change_point[i]->addr == change_point[i-1]->addr) &&
562 (change_point[i]->addr == change_point[i]->pbios->addr) &&
563 (change_point[i-1]->addr != change_point[i-1]->pbios->addr))
566 change_tmp = change_point[i];
567 change_point[i] = change_point[i-1];
568 change_point[i-1] = change_tmp;
569 still_changing=1;
574 /* create a new bios memory map, removing overlaps */
575 overlap_entries=0; /* number of entries in the overlap table */
576 new_bios_entry=0; /* index for creating new bios map entries */
577 last_type = 0; /* start with undefined memory type */
578 last_addr = 0; /* start with 0 as last starting address */
579 /* loop through change-points, determining affect on the new bios map */
580 for (chgidx=0; chgidx < chg_nr; chgidx++)
582 /* keep track of all overlapping bios entries */
583 if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr)
585 /* add map entry to overlap list (> 1 entry implies an overlap) */
586 overlap_list[overlap_entries++]=change_point[chgidx]->pbios;
588 else
590 /* remove entry from list (order independent, so swap with last) */
591 for (i=0; i<overlap_entries; i++)
593 if (overlap_list[i] == change_point[chgidx]->pbios)
594 overlap_list[i] = overlap_list[overlap_entries-1];
596 overlap_entries--;
598 /* if there are overlapping entries, decide which "type" to use */
599 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
600 current_type = 0;
601 for (i=0; i<overlap_entries; i++)
602 if (overlap_list[i]->type > current_type)
603 current_type = overlap_list[i]->type;
604 /* continue building up new bios map based on this information */
605 if (current_type != last_type) {
606 if (last_type != 0) {
607 new_bios[new_bios_entry].size =
608 change_point[chgidx]->addr - last_addr;
609 /* move forward only if the new size was non-zero */
610 if (new_bios[new_bios_entry].size != 0)
611 if (++new_bios_entry >= E820MAX)
612 break; /* no more space left for new bios entries */
614 if (current_type != 0) {
615 new_bios[new_bios_entry].addr = change_point[chgidx]->addr;
616 new_bios[new_bios_entry].type = current_type;
617 last_addr=change_point[chgidx]->addr;
619 last_type = current_type;
622 new_nr = new_bios_entry; /* retain count for new bios entries */
624 /* copy new bios mapping into original location */
625 memcpy(biosmap, new_bios, new_nr*sizeof(struct e820entry));
626 *pnr_map = new_nr;
628 return 0;
632 * Copy the BIOS e820 map into a safe place.
634 * Sanity-check it while we're at it..
636 * If we're lucky and live on a modern system, the setup code
637 * will have given us a memory map that we can use to properly
638 * set up memory. If we aren't, we'll fake a memory map.
640 * We check to see that the memory map contains at least 2 elements
641 * before we'll use it, because the detection code in setup.S may
642 * not be perfect and most every PC known to man has two memory
643 * regions: one from 0 to 640k, and one from 1mb up. (The IBM
644 * thinkpad 560x, for example, does not cooperate with the memory
645 * detection code.)
647 static int __init copy_e820_map(struct e820entry * biosmap, int nr_map)
649 /* Only one memory region (or negative)? Ignore it */
650 if (nr_map < 2)
651 return -1;
653 do {
654 unsigned long long start = biosmap->addr;
655 unsigned long long size = biosmap->size;
656 unsigned long long end = start + size;
657 unsigned long type = biosmap->type;
659 /* Overflow in 64 bits? Ignore the memory map. */
660 if (start > end)
661 return -1;
664 * Some BIOSes claim RAM in the 640k - 1M region.
665 * Not right. Fix it up.
667 if (type == E820_RAM) {
668 if (start < 0x100000ULL && end > 0xA0000ULL) {
669 if (start < 0xA0000ULL)
670 add_memory_region(start, 0xA0000ULL-start, type);
671 if (end <= 0x100000ULL)
672 continue;
673 start = 0x100000ULL;
674 size = end - start;
677 add_memory_region(start, size, type);
678 } while (biosmap++,--nr_map);
679 return 0;
682 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
683 struct edd edd;
684 #ifdef CONFIG_EDD_MODULE
685 EXPORT_SYMBOL(edd);
686 #endif
688 * copy_edd() - Copy the BIOS EDD information
689 * from boot_params into a safe place.
692 static inline void copy_edd(void)
694 memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
695 memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
696 edd.mbr_signature_nr = EDD_MBR_SIG_NR;
697 edd.edd_info_nr = EDD_NR;
699 #else
700 static inline void copy_edd(void)
703 #endif
706 * Do NOT EVER look at the BIOS memory size location.
707 * It does not work on many machines.
709 #define LOWMEMSIZE() (0x9f000)
711 static void __init parse_cmdline_early (char ** cmdline_p)
713 char c = ' ', *to = command_line, *from = saved_command_line;
714 int len = 0;
715 int userdef = 0;
717 /* Save unparsed command line copy for /proc/cmdline */
718 saved_command_line[COMMAND_LINE_SIZE-1] = '\0';
720 for (;;) {
721 if (c != ' ')
722 goto next_char;
724 * "mem=nopentium" disables the 4MB page tables.
725 * "mem=XXX[kKmM]" defines a memory region from HIGH_MEM
726 * to <mem>, overriding the bios size.
727 * "memmap=XXX[KkmM]@XXX[KkmM]" defines a memory region from
728 * <start> to <start>+<mem>, overriding the bios size.
730 * HPA tells me bootloaders need to parse mem=, so no new
731 * option should be mem= [also see Documentation/i386/boot.txt]
733 if (!memcmp(from, "mem=", 4)) {
734 if (to != command_line)
735 to--;
736 if (!memcmp(from+4, "nopentium", 9)) {
737 from += 9+4;
738 clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
739 disable_pse = 1;
740 } else {
741 /* If the user specifies memory size, we
742 * limit the BIOS-provided memory map to
743 * that size. exactmap can be used to specify
744 * the exact map. mem=number can be used to
745 * trim the existing memory map.
747 unsigned long long mem_size;
749 mem_size = memparse(from+4, &from);
750 limit_regions(mem_size);
751 userdef=1;
755 else if (!memcmp(from, "memmap=", 7)) {
756 if (to != command_line)
757 to--;
758 if (!memcmp(from+7, "exactmap", 8)) {
759 #ifdef CONFIG_CRASH_DUMP
760 /* If we are doing a crash dump, we
761 * still need to know the real mem
762 * size before original memory map is
763 * reset.
765 find_max_pfn();
766 saved_max_pfn = max_pfn;
767 #endif
768 from += 8+7;
769 e820.nr_map = 0;
770 userdef = 1;
771 } else {
772 /* If the user specifies memory size, we
773 * limit the BIOS-provided memory map to
774 * that size. exactmap can be used to specify
775 * the exact map. mem=number can be used to
776 * trim the existing memory map.
778 unsigned long long start_at, mem_size;
780 mem_size = memparse(from+7, &from);
781 if (*from == '@') {
782 start_at = memparse(from+1, &from);
783 add_memory_region(start_at, mem_size, E820_RAM);
784 } else if (*from == '#') {
785 start_at = memparse(from+1, &from);
786 add_memory_region(start_at, mem_size, E820_ACPI);
787 } else if (*from == '$') {
788 start_at = memparse(from+1, &from);
789 add_memory_region(start_at, mem_size, E820_RESERVED);
790 } else {
791 limit_regions(mem_size);
792 userdef=1;
797 else if (!memcmp(from, "noexec=", 7))
798 noexec_setup(from + 7);
801 #ifdef CONFIG_X86_SMP
803 * If the BIOS enumerates physical processors before logical,
804 * maxcpus=N at enumeration-time can be used to disable HT.
806 else if (!memcmp(from, "maxcpus=", 8)) {
807 extern unsigned int maxcpus;
809 maxcpus = simple_strtoul(from + 8, NULL, 0);
811 #endif
813 #ifdef CONFIG_ACPI
814 /* "acpi=off" disables both ACPI table parsing and interpreter */
815 else if (!memcmp(from, "acpi=off", 8)) {
816 disable_acpi();
819 /* acpi=force to over-ride black-list */
820 else if (!memcmp(from, "acpi=force", 10)) {
821 acpi_force = 1;
822 acpi_ht = 1;
823 acpi_disabled = 0;
826 /* acpi=strict disables out-of-spec workarounds */
827 else if (!memcmp(from, "acpi=strict", 11)) {
828 acpi_strict = 1;
831 /* Limit ACPI just to boot-time to enable HT */
832 else if (!memcmp(from, "acpi=ht", 7)) {
833 if (!acpi_force)
834 disable_acpi();
835 acpi_ht = 1;
838 /* "pci=noacpi" disable ACPI IRQ routing and PCI scan */
839 else if (!memcmp(from, "pci=noacpi", 10)) {
840 acpi_disable_pci();
842 /* "acpi=noirq" disables ACPI interrupt routing */
843 else if (!memcmp(from, "acpi=noirq", 10)) {
844 acpi_noirq_set();
847 else if (!memcmp(from, "acpi_sci=edge", 13))
848 acpi_sci_flags.trigger = 1;
850 else if (!memcmp(from, "acpi_sci=level", 14))
851 acpi_sci_flags.trigger = 3;
853 else if (!memcmp(from, "acpi_sci=high", 13))
854 acpi_sci_flags.polarity = 1;
856 else if (!memcmp(from, "acpi_sci=low", 12))
857 acpi_sci_flags.polarity = 3;
859 #ifdef CONFIG_X86_IO_APIC
860 else if (!memcmp(from, "acpi_skip_timer_override", 24))
861 acpi_skip_timer_override = 1;
863 if (!memcmp(from, "disable_timer_pin_1", 19))
864 disable_timer_pin_1 = 1;
865 if (!memcmp(from, "enable_timer_pin_1", 18))
866 disable_timer_pin_1 = -1;
868 /* disable IO-APIC */
869 else if (!memcmp(from, "noapic", 6))
870 disable_ioapic_setup();
871 #endif /* CONFIG_X86_IO_APIC */
872 #endif /* CONFIG_ACPI */
874 #ifdef CONFIG_X86_LOCAL_APIC
875 /* enable local APIC */
876 else if (!memcmp(from, "lapic", 5))
877 lapic_enable();
879 /* disable local APIC */
880 else if (!memcmp(from, "nolapic", 6))
881 lapic_disable();
882 #endif /* CONFIG_X86_LOCAL_APIC */
884 #ifdef CONFIG_KEXEC
885 /* crashkernel=size@addr specifies the location to reserve for
886 * a crash kernel. By reserving this memory we guarantee
887 * that linux never set's it up as a DMA target.
888 * Useful for holding code to do something appropriate
889 * after a kernel panic.
891 else if (!memcmp(from, "crashkernel=", 12)) {
892 unsigned long size, base;
893 size = memparse(from+12, &from);
894 if (*from == '@') {
895 base = memparse(from+1, &from);
896 /* FIXME: Do I want a sanity check
897 * to validate the memory range?
899 crashk_res.start = base;
900 crashk_res.end = base + size - 1;
903 #endif
904 #ifdef CONFIG_PROC_VMCORE
905 /* elfcorehdr= specifies the location of elf core header
906 * stored by the crashed kernel.
908 else if (!memcmp(from, "elfcorehdr=", 11))
909 elfcorehdr_addr = memparse(from+11, &from);
910 #endif
913 * highmem=size forces highmem to be exactly 'size' bytes.
914 * This works even on boxes that have no highmem otherwise.
915 * This also works to reduce highmem size on bigger boxes.
917 else if (!memcmp(from, "highmem=", 8))
918 highmem_pages = memparse(from+8, &from) >> PAGE_SHIFT;
921 * vmalloc=size forces the vmalloc area to be exactly 'size'
922 * bytes. This can be used to increase (or decrease) the
923 * vmalloc area - the default is 128m.
925 else if (!memcmp(from, "vmalloc=", 8))
926 __VMALLOC_RESERVE = memparse(from+8, &from);
928 next_char:
929 c = *(from++);
930 if (!c)
931 break;
932 if (COMMAND_LINE_SIZE <= ++len)
933 break;
934 *(to++) = c;
936 *to = '\0';
937 *cmdline_p = command_line;
938 if (userdef) {
939 printk(KERN_INFO "user-defined physical RAM map:\n");
940 print_memory_map("user");
945 * Callback for efi_memory_walk.
947 static int __init
948 efi_find_max_pfn(unsigned long start, unsigned long end, void *arg)
950 unsigned long *max_pfn = arg, pfn;
952 if (start < end) {
953 pfn = PFN_UP(end -1);
954 if (pfn > *max_pfn)
955 *max_pfn = pfn;
957 return 0;
960 static int __init
961 efi_memory_present_wrapper(unsigned long start, unsigned long end, void *arg)
963 memory_present(0, start, end);
964 return 0;
968 * This function checks if the entire range <start,end> is mapped with type.
970 * Note: this function only works correct if the e820 table is sorted and
971 * not-overlapping, which is the case
973 int __init
974 e820_all_mapped(unsigned long s, unsigned long e, unsigned type)
976 u64 start = s;
977 u64 end = e;
978 int i;
979 for (i = 0; i < e820.nr_map; i++) {
980 struct e820entry *ei = &e820.map[i];
981 if (type && ei->type != type)
982 continue;
983 /* is the region (part) in overlap with the current region ?*/
984 if (ei->addr >= end || ei->addr + ei->size <= start)
985 continue;
986 /* if the region is at the beginning of <start,end> we move
987 * start to the end of the region since it's ok until there
989 if (ei->addr <= start)
990 start = ei->addr + ei->size;
991 /* if start is now at or beyond end, we're done, full
992 * coverage */
993 if (start >= end)
994 return 1; /* we're done */
996 return 0;
1000 * Find the highest page frame number we have available
1002 void __init find_max_pfn(void)
1004 int i;
1006 max_pfn = 0;
1007 if (efi_enabled) {
1008 efi_memmap_walk(efi_find_max_pfn, &max_pfn);
1009 efi_memmap_walk(efi_memory_present_wrapper, NULL);
1010 return;
1013 for (i = 0; i < e820.nr_map; i++) {
1014 unsigned long start, end;
1015 /* RAM? */
1016 if (e820.map[i].type != E820_RAM)
1017 continue;
1018 start = PFN_UP(e820.map[i].addr);
1019 end = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
1020 if (start >= end)
1021 continue;
1022 if (end > max_pfn)
1023 max_pfn = end;
1024 memory_present(0, start, end);
1029 * Determine low and high memory ranges:
1031 unsigned long __init find_max_low_pfn(void)
1033 unsigned long max_low_pfn;
1035 max_low_pfn = max_pfn;
1036 if (max_low_pfn > MAXMEM_PFN) {
1037 if (highmem_pages == -1)
1038 highmem_pages = max_pfn - MAXMEM_PFN;
1039 if (highmem_pages + MAXMEM_PFN < max_pfn)
1040 max_pfn = MAXMEM_PFN + highmem_pages;
1041 if (highmem_pages + MAXMEM_PFN > max_pfn) {
1042 printk("only %luMB highmem pages available, ignoring highmem size of %uMB.\n", pages_to_mb(max_pfn - MAXMEM_PFN), pages_to_mb(highmem_pages));
1043 highmem_pages = 0;
1045 max_low_pfn = MAXMEM_PFN;
1046 #ifndef CONFIG_HIGHMEM
1047 /* Maximum memory usable is what is directly addressable */
1048 printk(KERN_WARNING "Warning only %ldMB will be used.\n",
1049 MAXMEM>>20);
1050 if (max_pfn > MAX_NONPAE_PFN)
1051 printk(KERN_WARNING "Use a PAE enabled kernel.\n");
1052 else
1053 printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
1054 max_pfn = MAXMEM_PFN;
1055 #else /* !CONFIG_HIGHMEM */
1056 #ifndef CONFIG_X86_PAE
1057 if (max_pfn > MAX_NONPAE_PFN) {
1058 max_pfn = MAX_NONPAE_PFN;
1059 printk(KERN_WARNING "Warning only 4GB will be used.\n");
1060 printk(KERN_WARNING "Use a PAE enabled kernel.\n");
1062 #endif /* !CONFIG_X86_PAE */
1063 #endif /* !CONFIG_HIGHMEM */
1064 } else {
1065 if (highmem_pages == -1)
1066 highmem_pages = 0;
1067 #ifdef CONFIG_HIGHMEM
1068 if (highmem_pages >= max_pfn) {
1069 printk(KERN_ERR "highmem size specified (%uMB) is bigger than pages available (%luMB)!.\n", pages_to_mb(highmem_pages), pages_to_mb(max_pfn));
1070 highmem_pages = 0;
1072 if (highmem_pages) {
1073 if (max_low_pfn-highmem_pages < 64*1024*1024/PAGE_SIZE){
1074 printk(KERN_ERR "highmem size %uMB results in smaller than 64MB lowmem, ignoring it.\n", pages_to_mb(highmem_pages));
1075 highmem_pages = 0;
1077 max_low_pfn -= highmem_pages;
1079 #else
1080 if (highmem_pages)
1081 printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n");
1082 #endif
1084 return max_low_pfn;
1088 * Free all available memory for boot time allocation. Used
1089 * as a callback function by efi_memory_walk()
1092 static int __init
1093 free_available_memory(unsigned long start, unsigned long end, void *arg)
1095 /* check max_low_pfn */
1096 if (start >= (max_low_pfn << PAGE_SHIFT))
1097 return 0;
1098 if (end >= (max_low_pfn << PAGE_SHIFT))
1099 end = max_low_pfn << PAGE_SHIFT;
1100 if (start < end)
1101 free_bootmem(start, end - start);
1103 return 0;
1106 * Register fully available low RAM pages with the bootmem allocator.
1108 static void __init register_bootmem_low_pages(unsigned long max_low_pfn)
1110 int i;
1112 if (efi_enabled) {
1113 efi_memmap_walk(free_available_memory, NULL);
1114 return;
1116 for (i = 0; i < e820.nr_map; i++) {
1117 unsigned long curr_pfn, last_pfn, size;
1119 * Reserve usable low memory
1121 if (e820.map[i].type != E820_RAM)
1122 continue;
1124 * We are rounding up the start address of usable memory:
1126 curr_pfn = PFN_UP(e820.map[i].addr);
1127 if (curr_pfn >= max_low_pfn)
1128 continue;
1130 * ... and at the end of the usable range downwards:
1132 last_pfn = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
1134 if (last_pfn > max_low_pfn)
1135 last_pfn = max_low_pfn;
1138 * .. finally, did all the rounding and playing
1139 * around just make the area go away?
1141 if (last_pfn <= curr_pfn)
1142 continue;
1144 size = last_pfn - curr_pfn;
1145 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
1150 * workaround for Dell systems that neglect to reserve EBDA
1152 static void __init reserve_ebda_region(void)
1154 unsigned int addr;
1155 addr = get_bios_ebda();
1156 if (addr)
1157 reserve_bootmem(addr, PAGE_SIZE);
1160 #ifndef CONFIG_NEED_MULTIPLE_NODES
1161 void __init setup_bootmem_allocator(void);
1162 static unsigned long __init setup_memory(void)
1165 * partially used pages are not usable - thus
1166 * we are rounding upwards:
1168 min_low_pfn = PFN_UP(init_pg_tables_end);
1170 find_max_pfn();
1172 max_low_pfn = find_max_low_pfn();
1174 #ifdef CONFIG_HIGHMEM
1175 highstart_pfn = highend_pfn = max_pfn;
1176 if (max_pfn > max_low_pfn) {
1177 highstart_pfn = max_low_pfn;
1179 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
1180 pages_to_mb(highend_pfn - highstart_pfn));
1181 #endif
1182 printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
1183 pages_to_mb(max_low_pfn));
1185 setup_bootmem_allocator();
1187 return max_low_pfn;
1190 void __init zone_sizes_init(void)
1192 unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
1193 unsigned int max_dma, low;
1195 max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
1196 low = max_low_pfn;
1198 if (low < max_dma)
1199 zones_size[ZONE_DMA] = low;
1200 else {
1201 zones_size[ZONE_DMA] = max_dma;
1202 zones_size[ZONE_NORMAL] = low - max_dma;
1203 #ifdef CONFIG_HIGHMEM
1204 zones_size[ZONE_HIGHMEM] = highend_pfn - low;
1205 #endif
1207 free_area_init(zones_size);
1209 #else
1210 extern unsigned long __init setup_memory(void);
1211 extern void zone_sizes_init(void);
1212 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
1214 void __init setup_bootmem_allocator(void)
1216 unsigned long bootmap_size;
1218 * Initialize the boot-time allocator (with low memory only):
1220 bootmap_size = init_bootmem(min_low_pfn, max_low_pfn);
1222 register_bootmem_low_pages(max_low_pfn);
1225 * Reserve the bootmem bitmap itself as well. We do this in two
1226 * steps (first step was init_bootmem()) because this catches
1227 * the (very unlikely) case of us accidentally initializing the
1228 * bootmem allocator with an invalid RAM area.
1230 reserve_bootmem(__PHYSICAL_START, (PFN_PHYS(min_low_pfn) +
1231 bootmap_size + PAGE_SIZE-1) - (__PHYSICAL_START));
1234 * reserve physical page 0 - it's a special BIOS page on many boxes,
1235 * enabling clean reboots, SMP operation, laptop functions.
1237 reserve_bootmem(0, PAGE_SIZE);
1239 /* reserve EBDA region, it's a 4K region */
1240 reserve_ebda_region();
1242 /* could be an AMD 768MPX chipset. Reserve a page before VGA to prevent
1243 PCI prefetch into it (errata #56). Usually the page is reserved anyways,
1244 unless you have no PS/2 mouse plugged in. */
1245 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
1246 boot_cpu_data.x86 == 6)
1247 reserve_bootmem(0xa0000 - 4096, 4096);
1249 #ifdef CONFIG_SMP
1251 * But first pinch a few for the stack/trampoline stuff
1252 * FIXME: Don't need the extra page at 4K, but need to fix
1253 * trampoline before removing it. (see the GDT stuff)
1255 reserve_bootmem(PAGE_SIZE, PAGE_SIZE);
1256 #endif
1257 #ifdef CONFIG_ACPI_SLEEP
1259 * Reserve low memory region for sleep support.
1261 acpi_reserve_bootmem();
1262 #endif
1263 #ifdef CONFIG_X86_FIND_SMP_CONFIG
1265 * Find and reserve possible boot-time SMP configuration:
1267 find_smp_config();
1268 #endif
1270 #ifdef CONFIG_BLK_DEV_INITRD
1271 if (LOADER_TYPE && INITRD_START) {
1272 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
1273 reserve_bootmem(INITRD_START, INITRD_SIZE);
1274 initrd_start =
1275 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
1276 initrd_end = initrd_start+INITRD_SIZE;
1278 else {
1279 printk(KERN_ERR "initrd extends beyond end of memory "
1280 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
1281 INITRD_START + INITRD_SIZE,
1282 max_low_pfn << PAGE_SHIFT);
1283 initrd_start = 0;
1286 #endif
1287 #ifdef CONFIG_KEXEC
1288 if (crashk_res.start != crashk_res.end)
1289 reserve_bootmem(crashk_res.start,
1290 crashk_res.end - crashk_res.start + 1);
1291 #endif
1295 * The node 0 pgdat is initialized before all of these because
1296 * it's needed for bootmem. node>0 pgdats have their virtual
1297 * space allocated before the pagetables are in place to access
1298 * them, so they can't be cleared then.
1300 * This should all compile down to nothing when NUMA is off.
1302 void __init remapped_pgdat_init(void)
1304 int nid;
1306 for_each_online_node(nid) {
1307 if (nid != 0)
1308 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1313 * Request address space for all standard RAM and ROM resources
1314 * and also for regions reported as reserved by the e820.
1316 static void __init
1317 legacy_init_iomem_resources(struct resource *code_resource, struct resource *data_resource)
1319 int i;
1321 probe_roms();
1322 for (i = 0; i < e820.nr_map; i++) {
1323 struct resource *res;
1324 if (e820.map[i].addr + e820.map[i].size > 0x100000000ULL)
1325 continue;
1326 res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
1327 switch (e820.map[i].type) {
1328 case E820_RAM: res->name = "System RAM"; break;
1329 case E820_ACPI: res->name = "ACPI Tables"; break;
1330 case E820_NVS: res->name = "ACPI Non-volatile Storage"; break;
1331 default: res->name = "reserved";
1333 res->start = e820.map[i].addr;
1334 res->end = res->start + e820.map[i].size - 1;
1335 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1336 request_resource(&iomem_resource, res);
1337 if (e820.map[i].type == E820_RAM) {
1339 * We don't know which RAM region contains kernel data,
1340 * so we try it repeatedly and let the resource manager
1341 * test it.
1343 request_resource(res, code_resource);
1344 request_resource(res, data_resource);
1345 #ifdef CONFIG_KEXEC
1346 request_resource(res, &crashk_res);
1347 #endif
1353 * Request address space for all standard resources
1355 * This is called just before pcibios_init(), which is also a
1356 * subsys_initcall, but is linked in later (in arch/i386/pci/common.c).
1358 static int __init request_standard_resources(void)
1360 int i;
1362 printk("Setting up standard PCI resources\n");
1363 if (efi_enabled)
1364 efi_initialize_iomem_resources(&code_resource, &data_resource);
1365 else
1366 legacy_init_iomem_resources(&code_resource, &data_resource);
1368 /* EFI systems may still have VGA */
1369 request_resource(&iomem_resource, &video_ram_resource);
1371 /* request I/O space for devices used on all i[345]86 PCs */
1372 for (i = 0; i < STANDARD_IO_RESOURCES; i++)
1373 request_resource(&ioport_resource, &standard_io_resources[i]);
1374 return 0;
1377 subsys_initcall(request_standard_resources);
1379 static void __init register_memory(void)
1381 unsigned long gapstart, gapsize, round;
1382 unsigned long long last;
1383 int i;
1386 * Search for the bigest gap in the low 32 bits of the e820
1387 * memory space.
1389 last = 0x100000000ull;
1390 gapstart = 0x10000000;
1391 gapsize = 0x400000;
1392 i = e820.nr_map;
1393 while (--i >= 0) {
1394 unsigned long long start = e820.map[i].addr;
1395 unsigned long long end = start + e820.map[i].size;
1398 * Since "last" is at most 4GB, we know we'll
1399 * fit in 32 bits if this condition is true
1401 if (last > end) {
1402 unsigned long gap = last - end;
1404 if (gap > gapsize) {
1405 gapsize = gap;
1406 gapstart = end;
1409 if (start < last)
1410 last = start;
1414 * See how much we want to round up: start off with
1415 * rounding to the next 1MB area.
1417 round = 0x100000;
1418 while ((gapsize >> 4) > round)
1419 round += round;
1420 /* Fun with two's complement */
1421 pci_mem_start = (gapstart + round) & -round;
1423 printk("Allocating PCI resources starting at %08lx (gap: %08lx:%08lx)\n",
1424 pci_mem_start, gapstart, gapsize);
1427 static char * __init machine_specific_memory_setup(void);
1429 #ifdef CONFIG_MCA
1430 static void set_mca_bus(int x)
1432 MCA_bus = x;
1434 #else
1435 static void set_mca_bus(int x) { }
1436 #endif
1438 #ifdef CONFIG_SOFTWARE_SUSPEND
1439 static void __init mark_nosave_page_range(unsigned long start, unsigned long end)
1441 struct page *page;
1442 while (start <= end) {
1443 page = pfn_to_page(start);
1444 SetPageNosave(page);
1445 start++;
1449 static void __init e820_nosave_reserved_pages(void)
1451 int i;
1452 unsigned long r_start = 0, r_end = 0;
1454 /* Assume e820 map is sorted */
1455 for (i = 0; i < e820.nr_map; i++) {
1456 struct e820entry *ei = &e820.map[i];
1457 unsigned long start, end;
1459 start = PFN_DOWN(ei->addr);
1460 end = PFN_UP(ei->addr + ei->size);
1461 if (start >= end)
1462 continue;
1463 if (ei->type == E820_RESERVED)
1464 continue;
1465 r_end = start;
1467 * Highmem 'Reserved' pages are marked as reserved, swsusp
1468 * will not save/restore them, so we ignore these pages here.
1470 if (r_end > max_low_pfn)
1471 r_end = max_low_pfn;
1472 if (r_end > r_start)
1473 mark_nosave_page_range(r_start, r_end-1);
1474 if (r_end >= max_low_pfn)
1475 break;
1476 r_start = end;
1480 static void __init e820_save_acpi_pages(void)
1482 int i;
1484 /* Assume e820 map is sorted */
1485 for (i = 0; i < e820.nr_map; i++) {
1486 struct e820entry *ei = &e820.map[i];
1487 unsigned long start, end;
1489 start = ei->addr;
1490 end = ei->addr + ei->size;
1491 if (start >= end)
1492 continue;
1493 if (ei->type != E820_ACPI && ei->type != E820_NVS)
1494 continue;
1496 * If the region is below max_low_pfn, it will be
1497 * saved/restored by swsusp follow 'RAM' type.
1499 if (start < (max_low_pfn << PAGE_SHIFT))
1500 start = max_low_pfn << PAGE_SHIFT;
1502 * Highmem pages (ACPI NVS/Data) are reserved, but swsusp
1503 * highmem save/restore will not save/restore them. We marked
1504 * them as arch saveable pages here
1506 if (end > start)
1507 swsusp_add_arch_pages(start, end);
1511 extern char __start_rodata, __end_rodata;
1513 * BIOS reserved region/hole - no save/restore
1514 * ACPI NVS - save/restore
1515 * ACPI Data - this is a little tricky, the mem could be used by OS after OS
1516 * reads tables from the region, but anyway save/restore the memory hasn't any
1517 * side effect and Linux runtime module load/unload might use it.
1518 * kernel rodata - no save/restore (kernel rodata isn't changed)
1520 static int __init mark_nosave_pages(void)
1522 unsigned long pfn_start, pfn_end;
1524 /* FIXME: provide a version for efi BIOS */
1525 if (efi_enabled)
1526 return 0;
1527 /* BIOS reserved regions & holes */
1528 e820_nosave_reserved_pages();
1530 /* kernel rodata */
1531 pfn_start = PFN_UP(virt_to_phys(&__start_rodata));
1532 pfn_end = PFN_DOWN(virt_to_phys(&__end_rodata));
1533 mark_nosave_page_range(pfn_start, pfn_end-1);
1535 /* record ACPI Data/NVS as saveable */
1536 e820_save_acpi_pages();
1538 return 0;
1540 core_initcall(mark_nosave_pages);
1541 #endif
1544 * Determine if we were loaded by an EFI loader. If so, then we have also been
1545 * passed the efi memmap, systab, etc., so we should use these data structures
1546 * for initialization. Note, the efi init code path is determined by the
1547 * global efi_enabled. This allows the same kernel image to be used on existing
1548 * systems (with a traditional BIOS) as well as on EFI systems.
1550 void __init setup_arch(char **cmdline_p)
1552 unsigned long max_low_pfn;
1554 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
1555 pre_setup_arch_hook();
1556 early_cpu_init();
1559 * FIXME: This isn't an official loader_type right
1560 * now but does currently work with elilo.
1561 * If we were configured as an EFI kernel, check to make
1562 * sure that we were loaded correctly from elilo and that
1563 * the system table is valid. If not, then initialize normally.
1565 #ifdef CONFIG_EFI
1566 if ((LOADER_TYPE == 0x50) && EFI_SYSTAB)
1567 efi_enabled = 1;
1568 #endif
1570 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
1571 drive_info = DRIVE_INFO;
1572 screen_info = SCREEN_INFO;
1573 edid_info = EDID_INFO;
1574 apm_info.bios = APM_BIOS_INFO;
1575 ist_info = IST_INFO;
1576 saved_videomode = VIDEO_MODE;
1577 if( SYS_DESC_TABLE.length != 0 ) {
1578 set_mca_bus(SYS_DESC_TABLE.table[3] & 0x2);
1579 machine_id = SYS_DESC_TABLE.table[0];
1580 machine_submodel_id = SYS_DESC_TABLE.table[1];
1581 BIOS_revision = SYS_DESC_TABLE.table[2];
1583 bootloader_type = LOADER_TYPE;
1585 #ifdef CONFIG_BLK_DEV_RAM
1586 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
1587 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
1588 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
1589 #endif
1590 ARCH_SETUP
1591 if (efi_enabled)
1592 efi_init();
1593 else {
1594 printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1595 print_memory_map(machine_specific_memory_setup());
1598 copy_edd();
1600 if (!MOUNT_ROOT_RDONLY)
1601 root_mountflags &= ~MS_RDONLY;
1602 init_mm.start_code = (unsigned long) _text;
1603 init_mm.end_code = (unsigned long) _etext;
1604 init_mm.end_data = (unsigned long) _edata;
1605 init_mm.brk = init_pg_tables_end + PAGE_OFFSET;
1607 code_resource.start = virt_to_phys(_text);
1608 code_resource.end = virt_to_phys(_etext)-1;
1609 data_resource.start = virt_to_phys(_etext);
1610 data_resource.end = virt_to_phys(_edata)-1;
1612 parse_cmdline_early(cmdline_p);
1614 #ifdef CONFIG_EARLY_PRINTK
1616 char *s = strstr(*cmdline_p, "earlyprintk=");
1617 if (s) {
1618 setup_early_printk(strchr(s, '=') + 1);
1619 printk("early console enabled\n");
1622 #endif
1624 max_low_pfn = setup_memory();
1627 * NOTE: before this point _nobody_ is allowed to allocate
1628 * any memory using the bootmem allocator. Although the
1629 * alloctor is now initialised only the first 8Mb of the kernel
1630 * virtual address space has been mapped. All allocations before
1631 * paging_init() has completed must use the alloc_bootmem_low_pages()
1632 * variant (which allocates DMA'able memory) and care must be taken
1633 * not to exceed the 8Mb limit.
1636 #ifdef CONFIG_SMP
1637 smp_alloc_memory(); /* AP processor realmode stacks in low memory*/
1638 #endif
1639 paging_init();
1640 remapped_pgdat_init();
1641 sparse_init();
1642 zone_sizes_init();
1645 * NOTE: at this point the bootmem allocator is fully available.
1648 dmi_scan_machine();
1650 #ifdef CONFIG_X86_GENERICARCH
1651 generic_apic_probe(*cmdline_p);
1652 #endif
1653 if (efi_enabled)
1654 efi_map_memmap();
1656 #ifdef CONFIG_ACPI
1658 * Parse the ACPI tables for possible boot-time SMP configuration.
1660 acpi_boot_table_init();
1661 #endif
1663 #ifdef CONFIG_X86_IO_APIC
1664 check_acpi_pci(); /* Checks more than just ACPI actually */
1665 #endif
1667 #ifdef CONFIG_ACPI
1668 acpi_boot_init();
1670 #if defined(CONFIG_SMP) && defined(CONFIG_X86_PC)
1671 if (def_to_bigsmp)
1672 printk(KERN_WARNING "More than 8 CPUs detected and "
1673 "CONFIG_X86_PC cannot handle it.\nUse "
1674 "CONFIG_X86_GENERICARCH or CONFIG_X86_BIGSMP.\n");
1675 #endif
1676 #endif
1677 #ifdef CONFIG_X86_LOCAL_APIC
1678 if (smp_found_config)
1679 get_smp_config();
1680 #endif
1682 register_memory();
1684 #ifdef CONFIG_VT
1685 #if defined(CONFIG_VGA_CONSOLE)
1686 if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1687 conswitchp = &vga_con;
1688 #elif defined(CONFIG_DUMMY_CONSOLE)
1689 conswitchp = &dummy_con;
1690 #endif
1691 #endif
1694 static __init int add_pcspkr(void)
1696 struct platform_device *pd;
1697 int ret;
1699 pd = platform_device_alloc("pcspkr", -1);
1700 if (!pd)
1701 return -ENOMEM;
1703 ret = platform_device_add(pd);
1704 if (ret)
1705 platform_device_put(pd);
1707 return ret;
1709 device_initcall(add_pcspkr);
1711 #include "setup_arch_post.h"
1713 * Local Variables:
1714 * mode:c
1715 * c-file-style:"k&r"
1716 * c-basic-offset:8
1717 * End: