ide: move command related fields from ide_hwif_t to struct ide_cmd
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ide / ide-io.c
blob7917fa09bf15e2109c9b30b18599db6071ff4135
1 /*
2 * IDE I/O functions
4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
61 int ret = 1;
62 int error = 0;
64 if (uptodate <= 0)
65 error = uptodate ? uptodate : -EIO;
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
74 if (!blk_fs_request(rq) && error && !rq->errors)
75 rq->errors = -EIO;
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 drive->retry_pio <= 3) {
83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84 ide_dma_on(drive);
87 if (!blk_end_request(rq, error, nr_bytes))
88 ret = 0;
90 if (ret == 0 && dequeue)
91 drive->hwif->rq = NULL;
93 return ret;
96 /**
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
99 * @uptodate:
100 * @nr_sectors: number of sectors completed
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
109 unsigned int nr_bytes = nr_sectors << 9;
110 struct request *rq = drive->hwif->rq;
112 if (!nr_bytes) {
113 if (blk_pc_request(rq))
114 nr_bytes = rq->data_len;
115 else
116 nr_bytes = rq->hard_cur_sectors << 9;
119 return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
121 EXPORT_SYMBOL(ide_end_request);
124 * ide_end_dequeued_request - complete an IDE I/O
125 * @drive: IDE device for the I/O
126 * @uptodate:
127 * @nr_sectors: number of sectors completed
129 * Complete an I/O that is no longer on the request queue. This
130 * typically occurs when we pull the request and issue a REQUEST_SENSE.
131 * We must still finish the old request but we must not tamper with the
132 * queue in the meantime.
134 * NOTE: This path does not handle barrier, but barrier is not supported
135 * on ide-cd anyway.
138 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139 int uptodate, int nr_sectors)
141 BUG_ON(!blk_rq_started(rq));
143 return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
145 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
147 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
149 struct ide_taskfile *tf = &cmd->tf;
150 struct request *rq = cmd->rq;
152 tf->error = err;
153 tf->status = stat;
155 drive->hwif->tp_ops->tf_read(drive, cmd);
157 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
158 memcpy(rq->special, cmd, sizeof(*cmd));
160 if (cmd->tf_flags & IDE_TFLAG_DYN)
161 kfree(cmd);
164 void ide_complete_rq(ide_drive_t *drive, u8 err)
166 ide_hwif_t *hwif = drive->hwif;
167 struct request *rq = hwif->rq;
169 hwif->rq = NULL;
171 rq->errors = err;
173 if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
174 blk_rq_bytes(rq))))
175 BUG();
177 EXPORT_SYMBOL(ide_complete_rq);
179 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
181 u8 drv_req = blk_special_request(rq) && rq->rq_disk;
182 u8 media = drive->media;
184 drive->failed_pc = NULL;
186 if ((media == ide_floppy && drv_req) || media == ide_tape)
187 rq->errors = IDE_DRV_ERROR_GENERAL;
189 if ((media == ide_floppy || media == ide_tape) && drv_req)
190 ide_complete_rq(drive, 0);
191 else
192 ide_end_request(drive, 0, 0);
195 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
197 tf->nsect = drive->sect;
198 tf->lbal = drive->sect;
199 tf->lbam = drive->cyl;
200 tf->lbah = drive->cyl >> 8;
201 tf->device = (drive->head - 1) | drive->select;
202 tf->command = ATA_CMD_INIT_DEV_PARAMS;
205 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
207 tf->nsect = drive->sect;
208 tf->command = ATA_CMD_RESTORE;
211 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
213 tf->nsect = drive->mult_req;
214 tf->command = ATA_CMD_SET_MULTI;
217 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
219 special_t *s = &drive->special;
220 struct ide_cmd cmd;
222 memset(&cmd, 0, sizeof(cmd));
223 cmd.data_phase = TASKFILE_NO_DATA;
225 if (s->b.set_geometry) {
226 s->b.set_geometry = 0;
227 ide_tf_set_specify_cmd(drive, &cmd.tf);
228 } else if (s->b.recalibrate) {
229 s->b.recalibrate = 0;
230 ide_tf_set_restore_cmd(drive, &cmd.tf);
231 } else if (s->b.set_multmode) {
232 s->b.set_multmode = 0;
233 ide_tf_set_setmult_cmd(drive, &cmd.tf);
234 } else if (s->all) {
235 int special = s->all;
236 s->all = 0;
237 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
238 return ide_stopped;
241 cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
242 IDE_TFLAG_CUSTOM_HANDLER;
244 do_rw_taskfile(drive, &cmd);
246 return ide_started;
250 * do_special - issue some special commands
251 * @drive: drive the command is for
253 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
254 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
256 * It used to do much more, but has been scaled back.
259 static ide_startstop_t do_special (ide_drive_t *drive)
261 special_t *s = &drive->special;
263 #ifdef DEBUG
264 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
265 #endif
266 if (drive->media == ide_disk)
267 return ide_disk_special(drive);
269 s->all = 0;
270 drive->mult_req = 0;
271 return ide_stopped;
274 void ide_map_sg(ide_drive_t *drive, struct request *rq)
276 ide_hwif_t *hwif = drive->hwif;
277 struct ide_cmd *cmd = &hwif->cmd;
278 struct scatterlist *sg = hwif->sg_table;
280 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
281 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
282 cmd->sg_nents = 1;
283 } else if (!rq->bio) {
284 sg_init_one(sg, rq->data, rq->data_len);
285 cmd->sg_nents = 1;
286 } else
287 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
289 EXPORT_SYMBOL_GPL(ide_map_sg);
291 void ide_init_sg_cmd(struct ide_cmd *cmd, int nsect)
293 cmd->nsect = cmd->nleft = nsect;
294 cmd->cursg_ofs = 0;
295 cmd->cursg = NULL;
297 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
300 * execute_drive_command - issue special drive command
301 * @drive: the drive to issue the command on
302 * @rq: the request structure holding the command
304 * execute_drive_cmd() issues a special drive command, usually
305 * initiated by ioctl() from the external hdparm program. The
306 * command can be a drive command, drive task or taskfile
307 * operation. Weirdly you can call it with NULL to wait for
308 * all commands to finish. Don't do this as that is due to change
311 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
312 struct request *rq)
314 struct ide_cmd *cmd = rq->special;
316 if (cmd) {
317 switch (cmd->data_phase) {
318 case TASKFILE_MULTI_OUT:
319 case TASKFILE_OUT:
320 case TASKFILE_MULTI_IN:
321 case TASKFILE_IN:
322 ide_init_sg_cmd(cmd, rq->nr_sectors);
323 ide_map_sg(drive, rq);
324 default:
325 break;
328 return do_rw_taskfile(drive, cmd);
332 * NULL is actually a valid way of waiting for
333 * all current requests to be flushed from the queue.
335 #ifdef DEBUG
336 printk("%s: DRIVE_CMD (null)\n", drive->name);
337 #endif
338 ide_complete_rq(drive, 0);
340 return ide_stopped;
343 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
345 u8 cmd = rq->cmd[0];
347 switch (cmd) {
348 case REQ_PARK_HEADS:
349 case REQ_UNPARK_HEADS:
350 return ide_do_park_unpark(drive, rq);
351 case REQ_DEVSET_EXEC:
352 return ide_do_devset(drive, rq);
353 case REQ_DRIVE_RESET:
354 return ide_do_reset(drive);
355 default:
356 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
357 ide_end_request(drive, 0, 0);
358 return ide_stopped;
363 * start_request - start of I/O and command issuing for IDE
365 * start_request() initiates handling of a new I/O request. It
366 * accepts commands and I/O (read/write) requests.
368 * FIXME: this function needs a rename
371 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
373 ide_startstop_t startstop;
375 BUG_ON(!blk_rq_started(rq));
377 #ifdef DEBUG
378 printk("%s: start_request: current=0x%08lx\n",
379 drive->hwif->name, (unsigned long) rq);
380 #endif
382 /* bail early if we've exceeded max_failures */
383 if (drive->max_failures && (drive->failures > drive->max_failures)) {
384 rq->cmd_flags |= REQ_FAILED;
385 goto kill_rq;
388 if (blk_pm_request(rq))
389 ide_check_pm_state(drive, rq);
391 SELECT_DRIVE(drive);
392 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
393 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
394 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
395 return startstop;
397 if (!drive->special.all) {
398 struct ide_driver *drv;
401 * We reset the drive so we need to issue a SETFEATURES.
402 * Do it _after_ do_special() restored device parameters.
404 if (drive->current_speed == 0xff)
405 ide_config_drive_speed(drive, drive->desired_speed);
407 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
408 return execute_drive_cmd(drive, rq);
409 else if (blk_pm_request(rq)) {
410 struct request_pm_state *pm = rq->data;
411 #ifdef DEBUG_PM
412 printk("%s: start_power_step(step: %d)\n",
413 drive->name, pm->pm_step);
414 #endif
415 startstop = ide_start_power_step(drive, rq);
416 if (startstop == ide_stopped &&
417 pm->pm_step == IDE_PM_COMPLETED)
418 ide_complete_pm_rq(drive, rq);
419 return startstop;
420 } else if (!rq->rq_disk && blk_special_request(rq))
422 * TODO: Once all ULDs have been modified to
423 * check for specific op codes rather than
424 * blindly accepting any special request, the
425 * check for ->rq_disk above may be replaced
426 * by a more suitable mechanism or even
427 * dropped entirely.
429 return ide_special_rq(drive, rq);
431 drv = *(struct ide_driver **)rq->rq_disk->private_data;
433 return drv->do_request(drive, rq, rq->sector);
435 return do_special(drive);
436 kill_rq:
437 ide_kill_rq(drive, rq);
438 return ide_stopped;
442 * ide_stall_queue - pause an IDE device
443 * @drive: drive to stall
444 * @timeout: time to stall for (jiffies)
446 * ide_stall_queue() can be used by a drive to give excess bandwidth back
447 * to the port by sleeping for timeout jiffies.
450 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
452 if (timeout > WAIT_WORSTCASE)
453 timeout = WAIT_WORSTCASE;
454 drive->sleep = timeout + jiffies;
455 drive->dev_flags |= IDE_DFLAG_SLEEPING;
457 EXPORT_SYMBOL(ide_stall_queue);
459 static inline int ide_lock_port(ide_hwif_t *hwif)
461 if (hwif->busy)
462 return 1;
464 hwif->busy = 1;
466 return 0;
469 static inline void ide_unlock_port(ide_hwif_t *hwif)
471 hwif->busy = 0;
474 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
476 int rc = 0;
478 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
479 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
480 if (rc == 0) {
481 if (host->get_lock)
482 host->get_lock(ide_intr, hwif);
485 return rc;
488 static inline void ide_unlock_host(struct ide_host *host)
490 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
491 if (host->release_lock)
492 host->release_lock();
493 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
498 * Issue a new request to a device.
500 void do_ide_request(struct request_queue *q)
502 ide_drive_t *drive = q->queuedata;
503 ide_hwif_t *hwif = drive->hwif;
504 struct ide_host *host = hwif->host;
505 struct request *rq = NULL;
506 ide_startstop_t startstop;
509 * drive is doing pre-flush, ordered write, post-flush sequence. even
510 * though that is 3 requests, it must be seen as a single transaction.
511 * we must not preempt this drive until that is complete
513 if (blk_queue_flushing(q))
515 * small race where queue could get replugged during
516 * the 3-request flush cycle, just yank the plug since
517 * we want it to finish asap
519 blk_remove_plug(q);
521 spin_unlock_irq(q->queue_lock);
523 if (ide_lock_host(host, hwif))
524 goto plug_device_2;
526 spin_lock_irq(&hwif->lock);
528 if (!ide_lock_port(hwif)) {
529 ide_hwif_t *prev_port;
530 repeat:
531 prev_port = hwif->host->cur_port;
532 hwif->rq = NULL;
534 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
535 if (time_before(drive->sleep, jiffies)) {
536 ide_unlock_port(hwif);
537 goto plug_device;
541 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
542 hwif != prev_port) {
544 * set nIEN for previous port, drives in the
545 * quirk_list may not like intr setups/cleanups
547 if (prev_port && prev_port->cur_dev->quirk_list == 0)
548 prev_port->tp_ops->set_irq(prev_port, 0);
550 hwif->host->cur_port = hwif;
552 hwif->cur_dev = drive;
553 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
555 spin_unlock_irq(&hwif->lock);
556 spin_lock_irq(q->queue_lock);
558 * we know that the queue isn't empty, but this can happen
559 * if the q->prep_rq_fn() decides to kill a request
561 rq = elv_next_request(drive->queue);
562 spin_unlock_irq(q->queue_lock);
563 spin_lock_irq(&hwif->lock);
565 if (!rq) {
566 ide_unlock_port(hwif);
567 goto out;
571 * Sanity: don't accept a request that isn't a PM request
572 * if we are currently power managed. This is very important as
573 * blk_stop_queue() doesn't prevent the elv_next_request()
574 * above to return us whatever is in the queue. Since we call
575 * ide_do_request() ourselves, we end up taking requests while
576 * the queue is blocked...
578 * We let requests forced at head of queue with ide-preempt
579 * though. I hope that doesn't happen too much, hopefully not
580 * unless the subdriver triggers such a thing in its own PM
581 * state machine.
583 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
584 blk_pm_request(rq) == 0 &&
585 (rq->cmd_flags & REQ_PREEMPT) == 0) {
586 /* there should be no pending command at this point */
587 ide_unlock_port(hwif);
588 goto plug_device;
591 hwif->rq = rq;
593 spin_unlock_irq(&hwif->lock);
594 startstop = start_request(drive, rq);
595 spin_lock_irq(&hwif->lock);
597 if (startstop == ide_stopped)
598 goto repeat;
599 } else
600 goto plug_device;
601 out:
602 spin_unlock_irq(&hwif->lock);
603 if (rq == NULL)
604 ide_unlock_host(host);
605 spin_lock_irq(q->queue_lock);
606 return;
608 plug_device:
609 spin_unlock_irq(&hwif->lock);
610 ide_unlock_host(host);
611 plug_device_2:
612 spin_lock_irq(q->queue_lock);
614 if (!elv_queue_empty(q))
615 blk_plug_device(q);
618 static void ide_plug_device(ide_drive_t *drive)
620 struct request_queue *q = drive->queue;
621 unsigned long flags;
623 spin_lock_irqsave(q->queue_lock, flags);
624 if (!elv_queue_empty(q))
625 blk_plug_device(q);
626 spin_unlock_irqrestore(q->queue_lock, flags);
629 static int drive_is_ready(ide_drive_t *drive)
631 ide_hwif_t *hwif = drive->hwif;
632 u8 stat = 0;
634 if (drive->waiting_for_dma)
635 return hwif->dma_ops->dma_test_irq(drive);
637 if (hwif->io_ports.ctl_addr &&
638 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
639 stat = hwif->tp_ops->read_altstatus(hwif);
640 else
641 /* Note: this may clear a pending IRQ!! */
642 stat = hwif->tp_ops->read_status(hwif);
644 if (stat & ATA_BUSY)
645 /* drive busy: definitely not interrupting */
646 return 0;
648 /* drive ready: *might* be interrupting */
649 return 1;
653 * ide_timer_expiry - handle lack of an IDE interrupt
654 * @data: timer callback magic (hwif)
656 * An IDE command has timed out before the expected drive return
657 * occurred. At this point we attempt to clean up the current
658 * mess. If the current handler includes an expiry handler then
659 * we invoke the expiry handler, and providing it is happy the
660 * work is done. If that fails we apply generic recovery rules
661 * invoking the handler and checking the drive DMA status. We
662 * have an excessively incestuous relationship with the DMA
663 * logic that wants cleaning up.
666 void ide_timer_expiry (unsigned long data)
668 ide_hwif_t *hwif = (ide_hwif_t *)data;
669 ide_drive_t *uninitialized_var(drive);
670 ide_handler_t *handler;
671 unsigned long flags;
672 int wait = -1;
673 int plug_device = 0;
675 spin_lock_irqsave(&hwif->lock, flags);
677 handler = hwif->handler;
679 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
681 * Either a marginal timeout occurred
682 * (got the interrupt just as timer expired),
683 * or we were "sleeping" to give other devices a chance.
684 * Either way, we don't really want to complain about anything.
686 } else {
687 ide_expiry_t *expiry = hwif->expiry;
688 ide_startstop_t startstop = ide_stopped;
690 drive = hwif->cur_dev;
692 if (expiry) {
693 wait = expiry(drive);
694 if (wait > 0) { /* continue */
695 /* reset timer */
696 hwif->timer.expires = jiffies + wait;
697 hwif->req_gen_timer = hwif->req_gen;
698 add_timer(&hwif->timer);
699 spin_unlock_irqrestore(&hwif->lock, flags);
700 return;
703 hwif->handler = NULL;
705 * We need to simulate a real interrupt when invoking
706 * the handler() function, which means we need to
707 * globally mask the specific IRQ:
709 spin_unlock(&hwif->lock);
710 /* disable_irq_nosync ?? */
711 disable_irq(hwif->irq);
712 /* local CPU only, as if we were handling an interrupt */
713 local_irq_disable();
714 if (hwif->polling) {
715 startstop = handler(drive);
716 } else if (drive_is_ready(drive)) {
717 if (drive->waiting_for_dma)
718 hwif->dma_ops->dma_lost_irq(drive);
719 if (hwif->ack_intr)
720 hwif->ack_intr(hwif);
721 printk(KERN_WARNING "%s: lost interrupt\n",
722 drive->name);
723 startstop = handler(drive);
724 } else {
725 if (drive->waiting_for_dma)
726 startstop = ide_dma_timeout_retry(drive, wait);
727 else
728 startstop = ide_error(drive, "irq timeout",
729 hwif->tp_ops->read_status(hwif));
731 spin_lock_irq(&hwif->lock);
732 enable_irq(hwif->irq);
733 if (startstop == ide_stopped) {
734 ide_unlock_port(hwif);
735 plug_device = 1;
738 spin_unlock_irqrestore(&hwif->lock, flags);
740 if (plug_device) {
741 ide_unlock_host(hwif->host);
742 ide_plug_device(drive);
747 * unexpected_intr - handle an unexpected IDE interrupt
748 * @irq: interrupt line
749 * @hwif: port being processed
751 * There's nothing really useful we can do with an unexpected interrupt,
752 * other than reading the status register (to clear it), and logging it.
753 * There should be no way that an irq can happen before we're ready for it,
754 * so we needn't worry much about losing an "important" interrupt here.
756 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
757 * the drive enters "idle", "standby", or "sleep" mode, so if the status
758 * looks "good", we just ignore the interrupt completely.
760 * This routine assumes __cli() is in effect when called.
762 * If an unexpected interrupt happens on irq15 while we are handling irq14
763 * and if the two interfaces are "serialized" (CMD640), then it looks like
764 * we could screw up by interfering with a new request being set up for
765 * irq15.
767 * In reality, this is a non-issue. The new command is not sent unless
768 * the drive is ready to accept one, in which case we know the drive is
769 * not trying to interrupt us. And ide_set_handler() is always invoked
770 * before completing the issuance of any new drive command, so we will not
771 * be accidentally invoked as a result of any valid command completion
772 * interrupt.
775 static void unexpected_intr(int irq, ide_hwif_t *hwif)
777 u8 stat = hwif->tp_ops->read_status(hwif);
779 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
780 /* Try to not flood the console with msgs */
781 static unsigned long last_msgtime, count;
782 ++count;
784 if (time_after(jiffies, last_msgtime + HZ)) {
785 last_msgtime = jiffies;
786 printk(KERN_ERR "%s: unexpected interrupt, "
787 "status=0x%02x, count=%ld\n",
788 hwif->name, stat, count);
794 * ide_intr - default IDE interrupt handler
795 * @irq: interrupt number
796 * @dev_id: hwif
797 * @regs: unused weirdness from the kernel irq layer
799 * This is the default IRQ handler for the IDE layer. You should
800 * not need to override it. If you do be aware it is subtle in
801 * places
803 * hwif is the interface in the group currently performing
804 * a command. hwif->cur_dev is the drive and hwif->handler is
805 * the IRQ handler to call. As we issue a command the handlers
806 * step through multiple states, reassigning the handler to the
807 * next step in the process. Unlike a smart SCSI controller IDE
808 * expects the main processor to sequence the various transfer
809 * stages. We also manage a poll timer to catch up with most
810 * timeout situations. There are still a few where the handlers
811 * don't ever decide to give up.
813 * The handler eventually returns ide_stopped to indicate the
814 * request completed. At this point we issue the next request
815 * on the port and the process begins again.
818 irqreturn_t ide_intr (int irq, void *dev_id)
820 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
821 struct ide_host *host = hwif->host;
822 ide_drive_t *uninitialized_var(drive);
823 ide_handler_t *handler;
824 unsigned long flags;
825 ide_startstop_t startstop;
826 irqreturn_t irq_ret = IRQ_NONE;
827 int plug_device = 0;
829 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
830 if (hwif != host->cur_port)
831 goto out_early;
834 spin_lock_irqsave(&hwif->lock, flags);
836 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
837 goto out;
839 handler = hwif->handler;
841 if (handler == NULL || hwif->polling) {
843 * Not expecting an interrupt from this drive.
844 * That means this could be:
845 * (1) an interrupt from another PCI device
846 * sharing the same PCI INT# as us.
847 * or (2) a drive just entered sleep or standby mode,
848 * and is interrupting to let us know.
849 * or (3) a spurious interrupt of unknown origin.
851 * For PCI, we cannot tell the difference,
852 * so in that case we just ignore it and hope it goes away.
854 if ((host->irq_flags & IRQF_SHARED) == 0) {
856 * Probably not a shared PCI interrupt,
857 * so we can safely try to do something about it:
859 unexpected_intr(irq, hwif);
860 } else {
862 * Whack the status register, just in case
863 * we have a leftover pending IRQ.
865 (void)hwif->tp_ops->read_status(hwif);
867 goto out;
870 drive = hwif->cur_dev;
872 if (!drive_is_ready(drive))
874 * This happens regularly when we share a PCI IRQ with
875 * another device. Unfortunately, it can also happen
876 * with some buggy drives that trigger the IRQ before
877 * their status register is up to date. Hopefully we have
878 * enough advance overhead that the latter isn't a problem.
880 goto out;
882 hwif->handler = NULL;
883 hwif->req_gen++;
884 del_timer(&hwif->timer);
885 spin_unlock(&hwif->lock);
887 if (hwif->port_ops && hwif->port_ops->clear_irq)
888 hwif->port_ops->clear_irq(drive);
890 if (drive->dev_flags & IDE_DFLAG_UNMASK)
891 local_irq_enable_in_hardirq();
893 /* service this interrupt, may set handler for next interrupt */
894 startstop = handler(drive);
896 spin_lock_irq(&hwif->lock);
898 * Note that handler() may have set things up for another
899 * interrupt to occur soon, but it cannot happen until
900 * we exit from this routine, because it will be the
901 * same irq as is currently being serviced here, and Linux
902 * won't allow another of the same (on any CPU) until we return.
904 if (startstop == ide_stopped) {
905 BUG_ON(hwif->handler);
906 ide_unlock_port(hwif);
907 plug_device = 1;
909 irq_ret = IRQ_HANDLED;
910 out:
911 spin_unlock_irqrestore(&hwif->lock, flags);
912 out_early:
913 if (plug_device) {
914 ide_unlock_host(hwif->host);
915 ide_plug_device(drive);
918 return irq_ret;
920 EXPORT_SYMBOL_GPL(ide_intr);
922 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
924 ide_hwif_t *hwif = drive->hwif;
925 u8 buf[4] = { 0 };
927 while (len > 0) {
928 if (write)
929 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
930 else
931 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
932 len -= 4;
935 EXPORT_SYMBOL_GPL(ide_pad_transfer);