2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #define UBIFS_DBG_PRESERVE_UBI
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37 #include <linux/slab.h>
39 #ifdef CONFIG_UBIFS_FS_DEBUG
41 DEFINE_SPINLOCK(dbg_lock
);
43 static char dbg_key_buf0
[128];
44 static char dbg_key_buf1
[128];
46 unsigned int ubifs_msg_flags
;
47 unsigned int ubifs_chk_flags
;
48 unsigned int ubifs_tst_flags
;
50 module_param_named(debug_msgs
, ubifs_msg_flags
, uint
, S_IRUGO
| S_IWUSR
);
51 module_param_named(debug_chks
, ubifs_chk_flags
, uint
, S_IRUGO
| S_IWUSR
);
52 module_param_named(debug_tsts
, ubifs_tst_flags
, uint
, S_IRUGO
| S_IWUSR
);
54 MODULE_PARM_DESC(debug_msgs
, "Debug message type flags");
55 MODULE_PARM_DESC(debug_chks
, "Debug check flags");
56 MODULE_PARM_DESC(debug_tsts
, "Debug special test flags");
58 static const char *get_key_fmt(int fmt
)
61 case UBIFS_SIMPLE_KEY_FMT
:
64 return "unknown/invalid format";
68 static const char *get_key_hash(int hash
)
71 case UBIFS_KEY_HASH_R5
:
73 case UBIFS_KEY_HASH_TEST
:
76 return "unknown/invalid name hash";
80 static const char *get_key_type(int type
)
94 return "unknown/invalid key";
98 static void sprintf_key(const struct ubifs_info
*c
, const union ubifs_key
*key
,
102 int type
= key_type(c
, key
);
104 if (c
->key_fmt
== UBIFS_SIMPLE_KEY_FMT
) {
107 sprintf(p
, "(%lu, %s)", (unsigned long)key_inum(c
, key
),
112 sprintf(p
, "(%lu, %s, %#08x)",
113 (unsigned long)key_inum(c
, key
),
114 get_key_type(type
), key_hash(c
, key
));
117 sprintf(p
, "(%lu, %s, %u)",
118 (unsigned long)key_inum(c
, key
),
119 get_key_type(type
), key_block(c
, key
));
122 sprintf(p
, "(%lu, %s)",
123 (unsigned long)key_inum(c
, key
),
127 sprintf(p
, "(bad key type: %#08x, %#08x)",
128 key
->u32
[0], key
->u32
[1]);
131 sprintf(p
, "bad key format %d", c
->key_fmt
);
134 const char *dbg_key_str0(const struct ubifs_info
*c
, const union ubifs_key
*key
)
136 /* dbg_lock must be held */
137 sprintf_key(c
, key
, dbg_key_buf0
);
141 const char *dbg_key_str1(const struct ubifs_info
*c
, const union ubifs_key
*key
)
143 /* dbg_lock must be held */
144 sprintf_key(c
, key
, dbg_key_buf1
);
148 const char *dbg_ntype(int type
)
152 return "padding node";
154 return "superblock node";
156 return "master node";
158 return "reference node";
161 case UBIFS_DENT_NODE
:
162 return "direntry node";
163 case UBIFS_XENT_NODE
:
164 return "xentry node";
165 case UBIFS_DATA_NODE
:
167 case UBIFS_TRUN_NODE
:
168 return "truncate node";
170 return "indexing node";
172 return "commit start node";
173 case UBIFS_ORPH_NODE
:
174 return "orphan node";
176 return "unknown node";
180 static const char *dbg_gtype(int type
)
183 case UBIFS_NO_NODE_GROUP
:
184 return "no node group";
185 case UBIFS_IN_NODE_GROUP
:
186 return "in node group";
187 case UBIFS_LAST_OF_NODE_GROUP
:
188 return "last of node group";
194 const char *dbg_cstate(int cmt_state
)
198 return "commit resting";
199 case COMMIT_BACKGROUND
:
200 return "background commit requested";
201 case COMMIT_REQUIRED
:
202 return "commit required";
203 case COMMIT_RUNNING_BACKGROUND
:
204 return "BACKGROUND commit running";
205 case COMMIT_RUNNING_REQUIRED
:
206 return "commit running and required";
208 return "broken commit";
210 return "unknown commit state";
214 const char *dbg_jhead(int jhead
)
224 return "unknown journal head";
228 static void dump_ch(const struct ubifs_ch
*ch
)
230 printk(KERN_DEBUG
"\tmagic %#x\n", le32_to_cpu(ch
->magic
));
231 printk(KERN_DEBUG
"\tcrc %#x\n", le32_to_cpu(ch
->crc
));
232 printk(KERN_DEBUG
"\tnode_type %d (%s)\n", ch
->node_type
,
233 dbg_ntype(ch
->node_type
));
234 printk(KERN_DEBUG
"\tgroup_type %d (%s)\n", ch
->group_type
,
235 dbg_gtype(ch
->group_type
));
236 printk(KERN_DEBUG
"\tsqnum %llu\n",
237 (unsigned long long)le64_to_cpu(ch
->sqnum
));
238 printk(KERN_DEBUG
"\tlen %u\n", le32_to_cpu(ch
->len
));
241 void dbg_dump_inode(const struct ubifs_info
*c
, const struct inode
*inode
)
243 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
245 printk(KERN_DEBUG
"Dump in-memory inode:");
246 printk(KERN_DEBUG
"\tinode %lu\n", inode
->i_ino
);
247 printk(KERN_DEBUG
"\tsize %llu\n",
248 (unsigned long long)i_size_read(inode
));
249 printk(KERN_DEBUG
"\tnlink %u\n", inode
->i_nlink
);
250 printk(KERN_DEBUG
"\tuid %u\n", (unsigned int)inode
->i_uid
);
251 printk(KERN_DEBUG
"\tgid %u\n", (unsigned int)inode
->i_gid
);
252 printk(KERN_DEBUG
"\tatime %u.%u\n",
253 (unsigned int)inode
->i_atime
.tv_sec
,
254 (unsigned int)inode
->i_atime
.tv_nsec
);
255 printk(KERN_DEBUG
"\tmtime %u.%u\n",
256 (unsigned int)inode
->i_mtime
.tv_sec
,
257 (unsigned int)inode
->i_mtime
.tv_nsec
);
258 printk(KERN_DEBUG
"\tctime %u.%u\n",
259 (unsigned int)inode
->i_ctime
.tv_sec
,
260 (unsigned int)inode
->i_ctime
.tv_nsec
);
261 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n", ui
->creat_sqnum
);
262 printk(KERN_DEBUG
"\txattr_size %u\n", ui
->xattr_size
);
263 printk(KERN_DEBUG
"\txattr_cnt %u\n", ui
->xattr_cnt
);
264 printk(KERN_DEBUG
"\txattr_names %u\n", ui
->xattr_names
);
265 printk(KERN_DEBUG
"\tdirty %u\n", ui
->dirty
);
266 printk(KERN_DEBUG
"\txattr %u\n", ui
->xattr
);
267 printk(KERN_DEBUG
"\tbulk_read %u\n", ui
->xattr
);
268 printk(KERN_DEBUG
"\tsynced_i_size %llu\n",
269 (unsigned long long)ui
->synced_i_size
);
270 printk(KERN_DEBUG
"\tui_size %llu\n",
271 (unsigned long long)ui
->ui_size
);
272 printk(KERN_DEBUG
"\tflags %d\n", ui
->flags
);
273 printk(KERN_DEBUG
"\tcompr_type %d\n", ui
->compr_type
);
274 printk(KERN_DEBUG
"\tlast_page_read %lu\n", ui
->last_page_read
);
275 printk(KERN_DEBUG
"\tread_in_a_row %lu\n", ui
->read_in_a_row
);
276 printk(KERN_DEBUG
"\tdata_len %d\n", ui
->data_len
);
279 void dbg_dump_node(const struct ubifs_info
*c
, const void *node
)
283 const struct ubifs_ch
*ch
= node
;
285 if (dbg_failure_mode
)
288 /* If the magic is incorrect, just hexdump the first bytes */
289 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
) {
290 printk(KERN_DEBUG
"Not a node, first %zu bytes:", UBIFS_CH_SZ
);
291 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
292 (void *)node
, UBIFS_CH_SZ
, 1);
296 spin_lock(&dbg_lock
);
299 switch (ch
->node_type
) {
302 const struct ubifs_pad_node
*pad
= node
;
304 printk(KERN_DEBUG
"\tpad_len %u\n",
305 le32_to_cpu(pad
->pad_len
));
310 const struct ubifs_sb_node
*sup
= node
;
311 unsigned int sup_flags
= le32_to_cpu(sup
->flags
);
313 printk(KERN_DEBUG
"\tkey_hash %d (%s)\n",
314 (int)sup
->key_hash
, get_key_hash(sup
->key_hash
));
315 printk(KERN_DEBUG
"\tkey_fmt %d (%s)\n",
316 (int)sup
->key_fmt
, get_key_fmt(sup
->key_fmt
));
317 printk(KERN_DEBUG
"\tflags %#x\n", sup_flags
);
318 printk(KERN_DEBUG
"\t big_lpt %u\n",
319 !!(sup_flags
& UBIFS_FLG_BIGLPT
));
320 printk(KERN_DEBUG
"\tmin_io_size %u\n",
321 le32_to_cpu(sup
->min_io_size
));
322 printk(KERN_DEBUG
"\tleb_size %u\n",
323 le32_to_cpu(sup
->leb_size
));
324 printk(KERN_DEBUG
"\tleb_cnt %u\n",
325 le32_to_cpu(sup
->leb_cnt
));
326 printk(KERN_DEBUG
"\tmax_leb_cnt %u\n",
327 le32_to_cpu(sup
->max_leb_cnt
));
328 printk(KERN_DEBUG
"\tmax_bud_bytes %llu\n",
329 (unsigned long long)le64_to_cpu(sup
->max_bud_bytes
));
330 printk(KERN_DEBUG
"\tlog_lebs %u\n",
331 le32_to_cpu(sup
->log_lebs
));
332 printk(KERN_DEBUG
"\tlpt_lebs %u\n",
333 le32_to_cpu(sup
->lpt_lebs
));
334 printk(KERN_DEBUG
"\torph_lebs %u\n",
335 le32_to_cpu(sup
->orph_lebs
));
336 printk(KERN_DEBUG
"\tjhead_cnt %u\n",
337 le32_to_cpu(sup
->jhead_cnt
));
338 printk(KERN_DEBUG
"\tfanout %u\n",
339 le32_to_cpu(sup
->fanout
));
340 printk(KERN_DEBUG
"\tlsave_cnt %u\n",
341 le32_to_cpu(sup
->lsave_cnt
));
342 printk(KERN_DEBUG
"\tdefault_compr %u\n",
343 (int)le16_to_cpu(sup
->default_compr
));
344 printk(KERN_DEBUG
"\trp_size %llu\n",
345 (unsigned long long)le64_to_cpu(sup
->rp_size
));
346 printk(KERN_DEBUG
"\trp_uid %u\n",
347 le32_to_cpu(sup
->rp_uid
));
348 printk(KERN_DEBUG
"\trp_gid %u\n",
349 le32_to_cpu(sup
->rp_gid
));
350 printk(KERN_DEBUG
"\tfmt_version %u\n",
351 le32_to_cpu(sup
->fmt_version
));
352 printk(KERN_DEBUG
"\ttime_gran %u\n",
353 le32_to_cpu(sup
->time_gran
));
354 printk(KERN_DEBUG
"\tUUID %pUB\n",
360 const struct ubifs_mst_node
*mst
= node
;
362 printk(KERN_DEBUG
"\thighest_inum %llu\n",
363 (unsigned long long)le64_to_cpu(mst
->highest_inum
));
364 printk(KERN_DEBUG
"\tcommit number %llu\n",
365 (unsigned long long)le64_to_cpu(mst
->cmt_no
));
366 printk(KERN_DEBUG
"\tflags %#x\n",
367 le32_to_cpu(mst
->flags
));
368 printk(KERN_DEBUG
"\tlog_lnum %u\n",
369 le32_to_cpu(mst
->log_lnum
));
370 printk(KERN_DEBUG
"\troot_lnum %u\n",
371 le32_to_cpu(mst
->root_lnum
));
372 printk(KERN_DEBUG
"\troot_offs %u\n",
373 le32_to_cpu(mst
->root_offs
));
374 printk(KERN_DEBUG
"\troot_len %u\n",
375 le32_to_cpu(mst
->root_len
));
376 printk(KERN_DEBUG
"\tgc_lnum %u\n",
377 le32_to_cpu(mst
->gc_lnum
));
378 printk(KERN_DEBUG
"\tihead_lnum %u\n",
379 le32_to_cpu(mst
->ihead_lnum
));
380 printk(KERN_DEBUG
"\tihead_offs %u\n",
381 le32_to_cpu(mst
->ihead_offs
));
382 printk(KERN_DEBUG
"\tindex_size %llu\n",
383 (unsigned long long)le64_to_cpu(mst
->index_size
));
384 printk(KERN_DEBUG
"\tlpt_lnum %u\n",
385 le32_to_cpu(mst
->lpt_lnum
));
386 printk(KERN_DEBUG
"\tlpt_offs %u\n",
387 le32_to_cpu(mst
->lpt_offs
));
388 printk(KERN_DEBUG
"\tnhead_lnum %u\n",
389 le32_to_cpu(mst
->nhead_lnum
));
390 printk(KERN_DEBUG
"\tnhead_offs %u\n",
391 le32_to_cpu(mst
->nhead_offs
));
392 printk(KERN_DEBUG
"\tltab_lnum %u\n",
393 le32_to_cpu(mst
->ltab_lnum
));
394 printk(KERN_DEBUG
"\tltab_offs %u\n",
395 le32_to_cpu(mst
->ltab_offs
));
396 printk(KERN_DEBUG
"\tlsave_lnum %u\n",
397 le32_to_cpu(mst
->lsave_lnum
));
398 printk(KERN_DEBUG
"\tlsave_offs %u\n",
399 le32_to_cpu(mst
->lsave_offs
));
400 printk(KERN_DEBUG
"\tlscan_lnum %u\n",
401 le32_to_cpu(mst
->lscan_lnum
));
402 printk(KERN_DEBUG
"\tleb_cnt %u\n",
403 le32_to_cpu(mst
->leb_cnt
));
404 printk(KERN_DEBUG
"\tempty_lebs %u\n",
405 le32_to_cpu(mst
->empty_lebs
));
406 printk(KERN_DEBUG
"\tidx_lebs %u\n",
407 le32_to_cpu(mst
->idx_lebs
));
408 printk(KERN_DEBUG
"\ttotal_free %llu\n",
409 (unsigned long long)le64_to_cpu(mst
->total_free
));
410 printk(KERN_DEBUG
"\ttotal_dirty %llu\n",
411 (unsigned long long)le64_to_cpu(mst
->total_dirty
));
412 printk(KERN_DEBUG
"\ttotal_used %llu\n",
413 (unsigned long long)le64_to_cpu(mst
->total_used
));
414 printk(KERN_DEBUG
"\ttotal_dead %llu\n",
415 (unsigned long long)le64_to_cpu(mst
->total_dead
));
416 printk(KERN_DEBUG
"\ttotal_dark %llu\n",
417 (unsigned long long)le64_to_cpu(mst
->total_dark
));
422 const struct ubifs_ref_node
*ref
= node
;
424 printk(KERN_DEBUG
"\tlnum %u\n",
425 le32_to_cpu(ref
->lnum
));
426 printk(KERN_DEBUG
"\toffs %u\n",
427 le32_to_cpu(ref
->offs
));
428 printk(KERN_DEBUG
"\tjhead %u\n",
429 le32_to_cpu(ref
->jhead
));
434 const struct ubifs_ino_node
*ino
= node
;
436 key_read(c
, &ino
->key
, &key
);
437 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
438 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n",
439 (unsigned long long)le64_to_cpu(ino
->creat_sqnum
));
440 printk(KERN_DEBUG
"\tsize %llu\n",
441 (unsigned long long)le64_to_cpu(ino
->size
));
442 printk(KERN_DEBUG
"\tnlink %u\n",
443 le32_to_cpu(ino
->nlink
));
444 printk(KERN_DEBUG
"\tatime %lld.%u\n",
445 (long long)le64_to_cpu(ino
->atime_sec
),
446 le32_to_cpu(ino
->atime_nsec
));
447 printk(KERN_DEBUG
"\tmtime %lld.%u\n",
448 (long long)le64_to_cpu(ino
->mtime_sec
),
449 le32_to_cpu(ino
->mtime_nsec
));
450 printk(KERN_DEBUG
"\tctime %lld.%u\n",
451 (long long)le64_to_cpu(ino
->ctime_sec
),
452 le32_to_cpu(ino
->ctime_nsec
));
453 printk(KERN_DEBUG
"\tuid %u\n",
454 le32_to_cpu(ino
->uid
));
455 printk(KERN_DEBUG
"\tgid %u\n",
456 le32_to_cpu(ino
->gid
));
457 printk(KERN_DEBUG
"\tmode %u\n",
458 le32_to_cpu(ino
->mode
));
459 printk(KERN_DEBUG
"\tflags %#x\n",
460 le32_to_cpu(ino
->flags
));
461 printk(KERN_DEBUG
"\txattr_cnt %u\n",
462 le32_to_cpu(ino
->xattr_cnt
));
463 printk(KERN_DEBUG
"\txattr_size %u\n",
464 le32_to_cpu(ino
->xattr_size
));
465 printk(KERN_DEBUG
"\txattr_names %u\n",
466 le32_to_cpu(ino
->xattr_names
));
467 printk(KERN_DEBUG
"\tcompr_type %#x\n",
468 (int)le16_to_cpu(ino
->compr_type
));
469 printk(KERN_DEBUG
"\tdata len %u\n",
470 le32_to_cpu(ino
->data_len
));
473 case UBIFS_DENT_NODE
:
474 case UBIFS_XENT_NODE
:
476 const struct ubifs_dent_node
*dent
= node
;
477 int nlen
= le16_to_cpu(dent
->nlen
);
479 key_read(c
, &dent
->key
, &key
);
480 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
481 printk(KERN_DEBUG
"\tinum %llu\n",
482 (unsigned long long)le64_to_cpu(dent
->inum
));
483 printk(KERN_DEBUG
"\ttype %d\n", (int)dent
->type
);
484 printk(KERN_DEBUG
"\tnlen %d\n", nlen
);
485 printk(KERN_DEBUG
"\tname ");
487 if (nlen
> UBIFS_MAX_NLEN
)
488 printk(KERN_DEBUG
"(bad name length, not printing, "
489 "bad or corrupted node)");
491 for (i
= 0; i
< nlen
&& dent
->name
[i
]; i
++)
492 printk(KERN_CONT
"%c", dent
->name
[i
]);
494 printk(KERN_CONT
"\n");
498 case UBIFS_DATA_NODE
:
500 const struct ubifs_data_node
*dn
= node
;
501 int dlen
= le32_to_cpu(ch
->len
) - UBIFS_DATA_NODE_SZ
;
503 key_read(c
, &dn
->key
, &key
);
504 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
505 printk(KERN_DEBUG
"\tsize %u\n",
506 le32_to_cpu(dn
->size
));
507 printk(KERN_DEBUG
"\tcompr_typ %d\n",
508 (int)le16_to_cpu(dn
->compr_type
));
509 printk(KERN_DEBUG
"\tdata size %d\n",
511 printk(KERN_DEBUG
"\tdata:\n");
512 print_hex_dump(KERN_DEBUG
, "\t", DUMP_PREFIX_OFFSET
, 32, 1,
513 (void *)&dn
->data
, dlen
, 0);
516 case UBIFS_TRUN_NODE
:
518 const struct ubifs_trun_node
*trun
= node
;
520 printk(KERN_DEBUG
"\tinum %u\n",
521 le32_to_cpu(trun
->inum
));
522 printk(KERN_DEBUG
"\told_size %llu\n",
523 (unsigned long long)le64_to_cpu(trun
->old_size
));
524 printk(KERN_DEBUG
"\tnew_size %llu\n",
525 (unsigned long long)le64_to_cpu(trun
->new_size
));
530 const struct ubifs_idx_node
*idx
= node
;
532 n
= le16_to_cpu(idx
->child_cnt
);
533 printk(KERN_DEBUG
"\tchild_cnt %d\n", n
);
534 printk(KERN_DEBUG
"\tlevel %d\n",
535 (int)le16_to_cpu(idx
->level
));
536 printk(KERN_DEBUG
"\tBranches:\n");
538 for (i
= 0; i
< n
&& i
< c
->fanout
- 1; i
++) {
539 const struct ubifs_branch
*br
;
541 br
= ubifs_idx_branch(c
, idx
, i
);
542 key_read(c
, &br
->key
, &key
);
543 printk(KERN_DEBUG
"\t%d: LEB %d:%d len %d key %s\n",
544 i
, le32_to_cpu(br
->lnum
), le32_to_cpu(br
->offs
),
545 le32_to_cpu(br
->len
), DBGKEY(&key
));
551 case UBIFS_ORPH_NODE
:
553 const struct ubifs_orph_node
*orph
= node
;
555 printk(KERN_DEBUG
"\tcommit number %llu\n",
557 le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
);
558 printk(KERN_DEBUG
"\tlast node flag %llu\n",
559 (unsigned long long)(le64_to_cpu(orph
->cmt_no
)) >> 63);
560 n
= (le32_to_cpu(ch
->len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
561 printk(KERN_DEBUG
"\t%d orphan inode numbers:\n", n
);
562 for (i
= 0; i
< n
; i
++)
563 printk(KERN_DEBUG
"\t ino %llu\n",
564 (unsigned long long)le64_to_cpu(orph
->inos
[i
]));
568 printk(KERN_DEBUG
"node type %d was not recognized\n",
571 spin_unlock(&dbg_lock
);
574 void dbg_dump_budget_req(const struct ubifs_budget_req
*req
)
576 spin_lock(&dbg_lock
);
577 printk(KERN_DEBUG
"Budgeting request: new_ino %d, dirtied_ino %d\n",
578 req
->new_ino
, req
->dirtied_ino
);
579 printk(KERN_DEBUG
"\tnew_ino_d %d, dirtied_ino_d %d\n",
580 req
->new_ino_d
, req
->dirtied_ino_d
);
581 printk(KERN_DEBUG
"\tnew_page %d, dirtied_page %d\n",
582 req
->new_page
, req
->dirtied_page
);
583 printk(KERN_DEBUG
"\tnew_dent %d, mod_dent %d\n",
584 req
->new_dent
, req
->mod_dent
);
585 printk(KERN_DEBUG
"\tidx_growth %d\n", req
->idx_growth
);
586 printk(KERN_DEBUG
"\tdata_growth %d dd_growth %d\n",
587 req
->data_growth
, req
->dd_growth
);
588 spin_unlock(&dbg_lock
);
591 void dbg_dump_lstats(const struct ubifs_lp_stats
*lst
)
593 spin_lock(&dbg_lock
);
594 printk(KERN_DEBUG
"(pid %d) Lprops statistics: empty_lebs %d, "
595 "idx_lebs %d\n", current
->pid
, lst
->empty_lebs
, lst
->idx_lebs
);
596 printk(KERN_DEBUG
"\ttaken_empty_lebs %d, total_free %lld, "
597 "total_dirty %lld\n", lst
->taken_empty_lebs
, lst
->total_free
,
599 printk(KERN_DEBUG
"\ttotal_used %lld, total_dark %lld, "
600 "total_dead %lld\n", lst
->total_used
, lst
->total_dark
,
602 spin_unlock(&dbg_lock
);
605 void dbg_dump_budg(struct ubifs_info
*c
)
609 struct ubifs_bud
*bud
;
610 struct ubifs_gced_idx_leb
*idx_gc
;
611 long long available
, outstanding
, free
;
613 ubifs_assert(spin_is_locked(&c
->space_lock
));
614 spin_lock(&dbg_lock
);
615 printk(KERN_DEBUG
"(pid %d) Budgeting info: budg_data_growth %lld, "
616 "budg_dd_growth %lld, budg_idx_growth %lld\n", current
->pid
,
617 c
->budg_data_growth
, c
->budg_dd_growth
, c
->budg_idx_growth
);
618 printk(KERN_DEBUG
"\tdata budget sum %lld, total budget sum %lld, "
619 "freeable_cnt %d\n", c
->budg_data_growth
+ c
->budg_dd_growth
,
620 c
->budg_data_growth
+ c
->budg_dd_growth
+ c
->budg_idx_growth
,
622 printk(KERN_DEBUG
"\tmin_idx_lebs %d, old_idx_sz %lld, "
623 "calc_idx_sz %lld, idx_gc_cnt %d\n", c
->min_idx_lebs
,
624 c
->old_idx_sz
, c
->calc_idx_sz
, c
->idx_gc_cnt
);
625 printk(KERN_DEBUG
"\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
626 "clean_zn_cnt %ld\n", atomic_long_read(&c
->dirty_pg_cnt
),
627 atomic_long_read(&c
->dirty_zn_cnt
),
628 atomic_long_read(&c
->clean_zn_cnt
));
629 printk(KERN_DEBUG
"\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
630 c
->dark_wm
, c
->dead_wm
, c
->max_idx_node_sz
);
631 printk(KERN_DEBUG
"\tgc_lnum %d, ihead_lnum %d\n",
632 c
->gc_lnum
, c
->ihead_lnum
);
633 /* If we are in R/O mode, journal heads do not exist */
635 for (i
= 0; i
< c
->jhead_cnt
; i
++)
636 printk(KERN_DEBUG
"\tjhead %s\t LEB %d\n",
637 dbg_jhead(c
->jheads
[i
].wbuf
.jhead
),
638 c
->jheads
[i
].wbuf
.lnum
);
639 for (rb
= rb_first(&c
->buds
); rb
; rb
= rb_next(rb
)) {
640 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
641 printk(KERN_DEBUG
"\tbud LEB %d\n", bud
->lnum
);
643 list_for_each_entry(bud
, &c
->old_buds
, list
)
644 printk(KERN_DEBUG
"\told bud LEB %d\n", bud
->lnum
);
645 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
646 printk(KERN_DEBUG
"\tGC'ed idx LEB %d unmap %d\n",
647 idx_gc
->lnum
, idx_gc
->unmap
);
648 printk(KERN_DEBUG
"\tcommit state %d\n", c
->cmt_state
);
650 /* Print budgeting predictions */
651 available
= ubifs_calc_available(c
, c
->min_idx_lebs
);
652 outstanding
= c
->budg_data_growth
+ c
->budg_dd_growth
;
653 free
= ubifs_get_free_space_nolock(c
);
654 printk(KERN_DEBUG
"Budgeting predictions:\n");
655 printk(KERN_DEBUG
"\tavailable: %lld, outstanding %lld, free %lld\n",
656 available
, outstanding
, free
);
657 spin_unlock(&dbg_lock
);
660 void dbg_dump_lprop(const struct ubifs_info
*c
, const struct ubifs_lprops
*lp
)
662 int i
, spc
, dark
= 0, dead
= 0;
664 struct ubifs_bud
*bud
;
666 spc
= lp
->free
+ lp
->dirty
;
667 if (spc
< c
->dead_wm
)
670 dark
= ubifs_calc_dark(c
, spc
);
672 if (lp
->flags
& LPROPS_INDEX
)
673 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
674 "free + dirty %-8d flags %#x (", lp
->lnum
, lp
->free
,
675 lp
->dirty
, c
->leb_size
- spc
, spc
, lp
->flags
);
677 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
678 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
679 "flags %#-4x (", lp
->lnum
, lp
->free
, lp
->dirty
,
680 c
->leb_size
- spc
, spc
, dark
, dead
,
681 (int)(spc
/ UBIFS_MAX_NODE_SZ
), lp
->flags
);
683 if (lp
->flags
& LPROPS_TAKEN
) {
684 if (lp
->flags
& LPROPS_INDEX
)
685 printk(KERN_CONT
"index, taken");
687 printk(KERN_CONT
"taken");
691 if (lp
->flags
& LPROPS_INDEX
) {
692 switch (lp
->flags
& LPROPS_CAT_MASK
) {
693 case LPROPS_DIRTY_IDX
:
696 case LPROPS_FRDI_IDX
:
697 s
= "freeable index";
703 switch (lp
->flags
& LPROPS_CAT_MASK
) {
705 s
= "not categorized";
716 case LPROPS_FREEABLE
:
724 printk(KERN_CONT
"%s", s
);
727 for (rb
= rb_first((struct rb_root
*)&c
->buds
); rb
; rb
= rb_next(rb
)) {
728 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
729 if (bud
->lnum
== lp
->lnum
) {
731 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
732 if (lp
->lnum
== c
->jheads
[i
].wbuf
.lnum
) {
733 printk(KERN_CONT
", jhead %s",
739 printk(KERN_CONT
", bud of jhead %s",
740 dbg_jhead(bud
->jhead
));
743 if (lp
->lnum
== c
->gc_lnum
)
744 printk(KERN_CONT
", GC LEB");
745 printk(KERN_CONT
")\n");
748 void dbg_dump_lprops(struct ubifs_info
*c
)
751 struct ubifs_lprops lp
;
752 struct ubifs_lp_stats lst
;
754 printk(KERN_DEBUG
"(pid %d) start dumping LEB properties\n",
756 ubifs_get_lp_stats(c
, &lst
);
757 dbg_dump_lstats(&lst
);
759 for (lnum
= c
->main_first
; lnum
< c
->leb_cnt
; lnum
++) {
760 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
762 ubifs_err("cannot read lprops for LEB %d", lnum
);
764 dbg_dump_lprop(c
, &lp
);
766 printk(KERN_DEBUG
"(pid %d) finish dumping LEB properties\n",
770 void dbg_dump_lpt_info(struct ubifs_info
*c
)
774 spin_lock(&dbg_lock
);
775 printk(KERN_DEBUG
"(pid %d) dumping LPT information\n", current
->pid
);
776 printk(KERN_DEBUG
"\tlpt_sz: %lld\n", c
->lpt_sz
);
777 printk(KERN_DEBUG
"\tpnode_sz: %d\n", c
->pnode_sz
);
778 printk(KERN_DEBUG
"\tnnode_sz: %d\n", c
->nnode_sz
);
779 printk(KERN_DEBUG
"\tltab_sz: %d\n", c
->ltab_sz
);
780 printk(KERN_DEBUG
"\tlsave_sz: %d\n", c
->lsave_sz
);
781 printk(KERN_DEBUG
"\tbig_lpt: %d\n", c
->big_lpt
);
782 printk(KERN_DEBUG
"\tlpt_hght: %d\n", c
->lpt_hght
);
783 printk(KERN_DEBUG
"\tpnode_cnt: %d\n", c
->pnode_cnt
);
784 printk(KERN_DEBUG
"\tnnode_cnt: %d\n", c
->nnode_cnt
);
785 printk(KERN_DEBUG
"\tdirty_pn_cnt: %d\n", c
->dirty_pn_cnt
);
786 printk(KERN_DEBUG
"\tdirty_nn_cnt: %d\n", c
->dirty_nn_cnt
);
787 printk(KERN_DEBUG
"\tlsave_cnt: %d\n", c
->lsave_cnt
);
788 printk(KERN_DEBUG
"\tspace_bits: %d\n", c
->space_bits
);
789 printk(KERN_DEBUG
"\tlpt_lnum_bits: %d\n", c
->lpt_lnum_bits
);
790 printk(KERN_DEBUG
"\tlpt_offs_bits: %d\n", c
->lpt_offs_bits
);
791 printk(KERN_DEBUG
"\tlpt_spc_bits: %d\n", c
->lpt_spc_bits
);
792 printk(KERN_DEBUG
"\tpcnt_bits: %d\n", c
->pcnt_bits
);
793 printk(KERN_DEBUG
"\tlnum_bits: %d\n", c
->lnum_bits
);
794 printk(KERN_DEBUG
"\tLPT root is at %d:%d\n", c
->lpt_lnum
, c
->lpt_offs
);
795 printk(KERN_DEBUG
"\tLPT head is at %d:%d\n",
796 c
->nhead_lnum
, c
->nhead_offs
);
797 printk(KERN_DEBUG
"\tLPT ltab is at %d:%d\n",
798 c
->ltab_lnum
, c
->ltab_offs
);
800 printk(KERN_DEBUG
"\tLPT lsave is at %d:%d\n",
801 c
->lsave_lnum
, c
->lsave_offs
);
802 for (i
= 0; i
< c
->lpt_lebs
; i
++)
803 printk(KERN_DEBUG
"\tLPT LEB %d free %d dirty %d tgc %d "
804 "cmt %d\n", i
+ c
->lpt_first
, c
->ltab
[i
].free
,
805 c
->ltab
[i
].dirty
, c
->ltab
[i
].tgc
, c
->ltab
[i
].cmt
);
806 spin_unlock(&dbg_lock
);
809 void dbg_dump_leb(const struct ubifs_info
*c
, int lnum
)
811 struct ubifs_scan_leb
*sleb
;
812 struct ubifs_scan_node
*snod
;
815 if (dbg_failure_mode
)
818 printk(KERN_DEBUG
"(pid %d) start dumping LEB %d\n",
821 buf
= __vmalloc(c
->leb_size
, GFP_NOFS
, PAGE_KERNEL
);
823 ubifs_err("cannot allocate memory for dumping LEB %d", lnum
);
827 sleb
= ubifs_scan(c
, lnum
, 0, buf
, 0);
829 ubifs_err("scan error %d", (int)PTR_ERR(sleb
));
833 printk(KERN_DEBUG
"LEB %d has %d nodes ending at %d\n", lnum
,
834 sleb
->nodes_cnt
, sleb
->endpt
);
836 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
838 printk(KERN_DEBUG
"Dumping node at LEB %d:%d len %d\n", lnum
,
839 snod
->offs
, snod
->len
);
840 dbg_dump_node(c
, snod
->node
);
843 printk(KERN_DEBUG
"(pid %d) finish dumping LEB %d\n",
845 ubifs_scan_destroy(sleb
);
852 void dbg_dump_znode(const struct ubifs_info
*c
,
853 const struct ubifs_znode
*znode
)
856 const struct ubifs_zbranch
*zbr
;
858 spin_lock(&dbg_lock
);
860 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
864 printk(KERN_DEBUG
"znode %p, LEB %d:%d len %d parent %p iip %d level %d"
865 " child_cnt %d flags %lx\n", znode
, zbr
->lnum
, zbr
->offs
,
866 zbr
->len
, znode
->parent
, znode
->iip
, znode
->level
,
867 znode
->child_cnt
, znode
->flags
);
869 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
870 spin_unlock(&dbg_lock
);
874 printk(KERN_DEBUG
"zbranches:\n");
875 for (n
= 0; n
< znode
->child_cnt
; n
++) {
876 zbr
= &znode
->zbranch
[n
];
877 if (znode
->level
> 0)
878 printk(KERN_DEBUG
"\t%d: znode %p LEB %d:%d len %d key "
879 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
883 printk(KERN_DEBUG
"\t%d: LNC %p LEB %d:%d len %d key "
884 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
888 spin_unlock(&dbg_lock
);
891 void dbg_dump_heap(struct ubifs_info
*c
, struct ubifs_lpt_heap
*heap
, int cat
)
895 printk(KERN_DEBUG
"(pid %d) start dumping heap cat %d (%d elements)\n",
896 current
->pid
, cat
, heap
->cnt
);
897 for (i
= 0; i
< heap
->cnt
; i
++) {
898 struct ubifs_lprops
*lprops
= heap
->arr
[i
];
900 printk(KERN_DEBUG
"\t%d. LEB %d hpos %d free %d dirty %d "
901 "flags %d\n", i
, lprops
->lnum
, lprops
->hpos
,
902 lprops
->free
, lprops
->dirty
, lprops
->flags
);
904 printk(KERN_DEBUG
"(pid %d) finish dumping heap\n", current
->pid
);
907 void dbg_dump_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
908 struct ubifs_nnode
*parent
, int iip
)
912 printk(KERN_DEBUG
"(pid %d) dumping pnode:\n", current
->pid
);
913 printk(KERN_DEBUG
"\taddress %zx parent %zx cnext %zx\n",
914 (size_t)pnode
, (size_t)parent
, (size_t)pnode
->cnext
);
915 printk(KERN_DEBUG
"\tflags %lu iip %d level %d num %d\n",
916 pnode
->flags
, iip
, pnode
->level
, pnode
->num
);
917 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
918 struct ubifs_lprops
*lp
= &pnode
->lprops
[i
];
920 printk(KERN_DEBUG
"\t%d: free %d dirty %d flags %d lnum %d\n",
921 i
, lp
->free
, lp
->dirty
, lp
->flags
, lp
->lnum
);
925 void dbg_dump_tnc(struct ubifs_info
*c
)
927 struct ubifs_znode
*znode
;
930 printk(KERN_DEBUG
"\n");
931 printk(KERN_DEBUG
"(pid %d) start dumping TNC tree\n", current
->pid
);
932 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, NULL
);
933 level
= znode
->level
;
934 printk(KERN_DEBUG
"== Level %d ==\n", level
);
936 if (level
!= znode
->level
) {
937 level
= znode
->level
;
938 printk(KERN_DEBUG
"== Level %d ==\n", level
);
940 dbg_dump_znode(c
, znode
);
941 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, znode
);
943 printk(KERN_DEBUG
"(pid %d) finish dumping TNC tree\n", current
->pid
);
946 static int dump_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
949 dbg_dump_znode(c
, znode
);
954 * dbg_dump_index - dump the on-flash index.
955 * @c: UBIFS file-system description object
957 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
958 * which dumps only in-memory znodes and does not read znodes which from flash.
960 void dbg_dump_index(struct ubifs_info
*c
)
962 dbg_walk_index(c
, NULL
, dump_znode
, NULL
);
966 * dbg_save_space_info - save information about flash space.
967 * @c: UBIFS file-system description object
969 * This function saves information about UBIFS free space, dirty space, etc, in
970 * order to check it later.
972 void dbg_save_space_info(struct ubifs_info
*c
)
974 struct ubifs_debug_info
*d
= c
->dbg
;
977 spin_lock(&c
->space_lock
);
978 memcpy(&d
->saved_lst
, &c
->lst
, sizeof(struct ubifs_lp_stats
));
981 * We use a dirty hack here and zero out @c->freeable_cnt, because it
982 * affects the free space calculations, and UBIFS might not know about
983 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
984 * only when we read their lprops, and we do this only lazily, upon the
985 * need. So at any given point of time @c->freeable_cnt might be not
988 * Just one example about the issue we hit when we did not zero
990 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
991 * amount of free space in @d->saved_free
992 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
993 * information from flash, where we cache LEBs from various
994 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
995 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
996 * -> 'ubifs_get_pnode()' -> 'update_cats()'
997 * -> 'ubifs_add_to_cat()').
998 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1000 * 4. We calculate the amount of free space when the re-mount is
1001 * finished in 'dbg_check_space_info()' and it does not match
1004 freeable_cnt
= c
->freeable_cnt
;
1005 c
->freeable_cnt
= 0;
1006 d
->saved_free
= ubifs_get_free_space_nolock(c
);
1007 c
->freeable_cnt
= freeable_cnt
;
1008 spin_unlock(&c
->space_lock
);
1012 * dbg_check_space_info - check flash space information.
1013 * @c: UBIFS file-system description object
1015 * This function compares current flash space information with the information
1016 * which was saved when the 'dbg_save_space_info()' function was called.
1017 * Returns zero if the information has not changed, and %-EINVAL it it has
1020 int dbg_check_space_info(struct ubifs_info
*c
)
1022 struct ubifs_debug_info
*d
= c
->dbg
;
1023 struct ubifs_lp_stats lst
;
1027 spin_lock(&c
->space_lock
);
1028 freeable_cnt
= c
->freeable_cnt
;
1029 c
->freeable_cnt
= 0;
1030 free
= ubifs_get_free_space_nolock(c
);
1031 c
->freeable_cnt
= freeable_cnt
;
1032 spin_unlock(&c
->space_lock
);
1034 if (free
!= d
->saved_free
) {
1035 ubifs_err("free space changed from %lld to %lld",
1036 d
->saved_free
, free
);
1043 ubifs_msg("saved lprops statistics dump");
1044 dbg_dump_lstats(&d
->saved_lst
);
1045 ubifs_get_lp_stats(c
, &lst
);
1047 ubifs_msg("current lprops statistics dump");
1048 dbg_dump_lstats(&lst
);
1050 spin_lock(&c
->space_lock
);
1052 spin_unlock(&c
->space_lock
);
1058 * dbg_check_synced_i_size - check synchronized inode size.
1059 * @inode: inode to check
1061 * If inode is clean, synchronized inode size has to be equivalent to current
1062 * inode size. This function has to be called only for locked inodes (@i_mutex
1063 * has to be locked). Returns %0 if synchronized inode size if correct, and
1066 int dbg_check_synced_i_size(struct inode
*inode
)
1069 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1071 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
1073 if (!S_ISREG(inode
->i_mode
))
1076 mutex_lock(&ui
->ui_mutex
);
1077 spin_lock(&ui
->ui_lock
);
1078 if (ui
->ui_size
!= ui
->synced_i_size
&& !ui
->dirty
) {
1079 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1080 "is clean", ui
->ui_size
, ui
->synced_i_size
);
1081 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode
->i_ino
,
1082 inode
->i_mode
, i_size_read(inode
));
1086 spin_unlock(&ui
->ui_lock
);
1087 mutex_unlock(&ui
->ui_mutex
);
1092 * dbg_check_dir - check directory inode size and link count.
1093 * @c: UBIFS file-system description object
1094 * @dir: the directory to calculate size for
1095 * @size: the result is returned here
1097 * This function makes sure that directory size and link count are correct.
1098 * Returns zero in case of success and a negative error code in case of
1101 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1102 * calling this function.
1104 int dbg_check_dir_size(struct ubifs_info
*c
, const struct inode
*dir
)
1106 unsigned int nlink
= 2;
1107 union ubifs_key key
;
1108 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
1109 struct qstr nm
= { .name
= NULL
};
1110 loff_t size
= UBIFS_INO_NODE_SZ
;
1112 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
1115 if (!S_ISDIR(dir
->i_mode
))
1118 lowest_dent_key(c
, &key
, dir
->i_ino
);
1122 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
1124 err
= PTR_ERR(dent
);
1130 nm
.name
= dent
->name
;
1131 nm
.len
= le16_to_cpu(dent
->nlen
);
1132 size
+= CALC_DENT_SIZE(nm
.len
);
1133 if (dent
->type
== UBIFS_ITYPE_DIR
)
1137 key_read(c
, &dent
->key
, &key
);
1141 if (i_size_read(dir
) != size
) {
1142 ubifs_err("directory inode %lu has size %llu, "
1143 "but calculated size is %llu", dir
->i_ino
,
1144 (unsigned long long)i_size_read(dir
),
1145 (unsigned long long)size
);
1149 if (dir
->i_nlink
!= nlink
) {
1150 ubifs_err("directory inode %lu has nlink %u, but calculated "
1151 "nlink is %u", dir
->i_ino
, dir
->i_nlink
, nlink
);
1160 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1161 * @c: UBIFS file-system description object
1162 * @zbr1: first zbranch
1163 * @zbr2: following zbranch
1165 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1166 * names of the direntries/xentries which are referred by the keys. This
1167 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1168 * sure the name of direntry/xentry referred by @zbr1 is less than
1169 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1170 * and a negative error code in case of failure.
1172 static int dbg_check_key_order(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr1
,
1173 struct ubifs_zbranch
*zbr2
)
1175 int err
, nlen1
, nlen2
, cmp
;
1176 struct ubifs_dent_node
*dent1
, *dent2
;
1177 union ubifs_key key
;
1179 ubifs_assert(!keys_cmp(c
, &zbr1
->key
, &zbr2
->key
));
1180 dent1
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1183 dent2
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1189 err
= ubifs_tnc_read_node(c
, zbr1
, dent1
);
1192 err
= ubifs_validate_entry(c
, dent1
);
1196 err
= ubifs_tnc_read_node(c
, zbr2
, dent2
);
1199 err
= ubifs_validate_entry(c
, dent2
);
1203 /* Make sure node keys are the same as in zbranch */
1205 key_read(c
, &dent1
->key
, &key
);
1206 if (keys_cmp(c
, &zbr1
->key
, &key
)) {
1207 dbg_err("1st entry at %d:%d has key %s", zbr1
->lnum
,
1208 zbr1
->offs
, DBGKEY(&key
));
1209 dbg_err("but it should have key %s according to tnc",
1210 DBGKEY(&zbr1
->key
));
1211 dbg_dump_node(c
, dent1
);
1215 key_read(c
, &dent2
->key
, &key
);
1216 if (keys_cmp(c
, &zbr2
->key
, &key
)) {
1217 dbg_err("2nd entry at %d:%d has key %s", zbr1
->lnum
,
1218 zbr1
->offs
, DBGKEY(&key
));
1219 dbg_err("but it should have key %s according to tnc",
1220 DBGKEY(&zbr2
->key
));
1221 dbg_dump_node(c
, dent2
);
1225 nlen1
= le16_to_cpu(dent1
->nlen
);
1226 nlen2
= le16_to_cpu(dent2
->nlen
);
1228 cmp
= memcmp(dent1
->name
, dent2
->name
, min_t(int, nlen1
, nlen2
));
1229 if (cmp
< 0 || (cmp
== 0 && nlen1
< nlen2
)) {
1233 if (cmp
== 0 && nlen1
== nlen2
)
1234 dbg_err("2 xent/dent nodes with the same name");
1236 dbg_err("bad order of colliding key %s",
1239 ubifs_msg("first node at %d:%d\n", zbr1
->lnum
, zbr1
->offs
);
1240 dbg_dump_node(c
, dent1
);
1241 ubifs_msg("second node at %d:%d\n", zbr2
->lnum
, zbr2
->offs
);
1242 dbg_dump_node(c
, dent2
);
1251 * dbg_check_znode - check if znode is all right.
1252 * @c: UBIFS file-system description object
1253 * @zbr: zbranch which points to this znode
1255 * This function makes sure that znode referred to by @zbr is all right.
1256 * Returns zero if it is, and %-EINVAL if it is not.
1258 static int dbg_check_znode(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
)
1260 struct ubifs_znode
*znode
= zbr
->znode
;
1261 struct ubifs_znode
*zp
= znode
->parent
;
1264 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
1268 if (znode
->level
< 0) {
1272 if (znode
->iip
< 0 || znode
->iip
>= c
->fanout
) {
1278 /* Only dirty zbranch may have no on-flash nodes */
1279 if (!ubifs_zn_dirty(znode
)) {
1284 if (ubifs_zn_dirty(znode
)) {
1286 * If znode is dirty, its parent has to be dirty as well. The
1287 * order of the operation is important, so we have to have
1291 if (zp
&& !ubifs_zn_dirty(zp
)) {
1293 * The dirty flag is atomic and is cleared outside the
1294 * TNC mutex, so znode's dirty flag may now have
1295 * been cleared. The child is always cleared before the
1296 * parent, so we just need to check again.
1299 if (ubifs_zn_dirty(znode
)) {
1307 const union ubifs_key
*min
, *max
;
1309 if (znode
->level
!= zp
->level
- 1) {
1314 /* Make sure the 'parent' pointer in our znode is correct */
1315 err
= ubifs_search_zbranch(c
, zp
, &zbr
->key
, &n
);
1317 /* This zbranch does not exist in the parent */
1322 if (znode
->iip
>= zp
->child_cnt
) {
1327 if (znode
->iip
!= n
) {
1328 /* This may happen only in case of collisions */
1329 if (keys_cmp(c
, &zp
->zbranch
[n
].key
,
1330 &zp
->zbranch
[znode
->iip
].key
)) {
1338 * Make sure that the first key in our znode is greater than or
1339 * equal to the key in the pointing zbranch.
1342 cmp
= keys_cmp(c
, min
, &znode
->zbranch
[0].key
);
1348 if (n
+ 1 < zp
->child_cnt
) {
1349 max
= &zp
->zbranch
[n
+ 1].key
;
1352 * Make sure the last key in our znode is less or
1353 * equivalent than the key in the zbranch which goes
1354 * after our pointing zbranch.
1356 cmp
= keys_cmp(c
, max
,
1357 &znode
->zbranch
[znode
->child_cnt
- 1].key
);
1364 /* This may only be root znode */
1365 if (zbr
!= &c
->zroot
) {
1372 * Make sure that next key is greater or equivalent then the previous
1375 for (n
= 1; n
< znode
->child_cnt
; n
++) {
1376 cmp
= keys_cmp(c
, &znode
->zbranch
[n
- 1].key
,
1377 &znode
->zbranch
[n
].key
);
1383 /* This can only be keys with colliding hash */
1384 if (!is_hash_key(c
, &znode
->zbranch
[n
].key
)) {
1389 if (znode
->level
!= 0 || c
->replaying
)
1393 * Colliding keys should follow binary order of
1394 * corresponding xentry/dentry names.
1396 err
= dbg_check_key_order(c
, &znode
->zbranch
[n
- 1],
1397 &znode
->zbranch
[n
]);
1407 for (n
= 0; n
< znode
->child_cnt
; n
++) {
1408 if (!znode
->zbranch
[n
].znode
&&
1409 (znode
->zbranch
[n
].lnum
== 0 ||
1410 znode
->zbranch
[n
].len
== 0)) {
1415 if (znode
->zbranch
[n
].lnum
!= 0 &&
1416 znode
->zbranch
[n
].len
== 0) {
1421 if (znode
->zbranch
[n
].lnum
== 0 &&
1422 znode
->zbranch
[n
].len
!= 0) {
1427 if (znode
->zbranch
[n
].lnum
== 0 &&
1428 znode
->zbranch
[n
].offs
!= 0) {
1433 if (znode
->level
!= 0 && znode
->zbranch
[n
].znode
)
1434 if (znode
->zbranch
[n
].znode
->parent
!= znode
) {
1443 ubifs_err("failed, error %d", err
);
1444 ubifs_msg("dump of the znode");
1445 dbg_dump_znode(c
, znode
);
1447 ubifs_msg("dump of the parent znode");
1448 dbg_dump_znode(c
, zp
);
1455 * dbg_check_tnc - check TNC tree.
1456 * @c: UBIFS file-system description object
1457 * @extra: do extra checks that are possible at start commit
1459 * This function traverses whole TNC tree and checks every znode. Returns zero
1460 * if everything is all right and %-EINVAL if something is wrong with TNC.
1462 int dbg_check_tnc(struct ubifs_info
*c
, int extra
)
1464 struct ubifs_znode
*znode
;
1465 long clean_cnt
= 0, dirty_cnt
= 0;
1468 if (!(ubifs_chk_flags
& UBIFS_CHK_TNC
))
1471 ubifs_assert(mutex_is_locked(&c
->tnc_mutex
));
1472 if (!c
->zroot
.znode
)
1475 znode
= ubifs_tnc_postorder_first(c
->zroot
.znode
);
1477 struct ubifs_znode
*prev
;
1478 struct ubifs_zbranch
*zbr
;
1483 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1485 err
= dbg_check_znode(c
, zbr
);
1490 if (ubifs_zn_dirty(znode
))
1497 znode
= ubifs_tnc_postorder_next(znode
);
1502 * If the last key of this znode is equivalent to the first key
1503 * of the next znode (collision), then check order of the keys.
1505 last
= prev
->child_cnt
- 1;
1506 if (prev
->level
== 0 && znode
->level
== 0 && !c
->replaying
&&
1507 !keys_cmp(c
, &prev
->zbranch
[last
].key
,
1508 &znode
->zbranch
[0].key
)) {
1509 err
= dbg_check_key_order(c
, &prev
->zbranch
[last
],
1510 &znode
->zbranch
[0]);
1514 ubifs_msg("first znode");
1515 dbg_dump_znode(c
, prev
);
1516 ubifs_msg("second znode");
1517 dbg_dump_znode(c
, znode
);
1524 if (clean_cnt
!= atomic_long_read(&c
->clean_zn_cnt
)) {
1525 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1526 atomic_long_read(&c
->clean_zn_cnt
),
1530 if (dirty_cnt
!= atomic_long_read(&c
->dirty_zn_cnt
)) {
1531 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1532 atomic_long_read(&c
->dirty_zn_cnt
),
1542 * dbg_walk_index - walk the on-flash index.
1543 * @c: UBIFS file-system description object
1544 * @leaf_cb: called for each leaf node
1545 * @znode_cb: called for each indexing node
1546 * @priv: private data which is passed to callbacks
1548 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1549 * node and @znode_cb for each indexing node. Returns zero in case of success
1550 * and a negative error code in case of failure.
1552 * It would be better if this function removed every znode it pulled to into
1553 * the TNC, so that the behavior more closely matched the non-debugging
1556 int dbg_walk_index(struct ubifs_info
*c
, dbg_leaf_callback leaf_cb
,
1557 dbg_znode_callback znode_cb
, void *priv
)
1560 struct ubifs_zbranch
*zbr
;
1561 struct ubifs_znode
*znode
, *child
;
1563 mutex_lock(&c
->tnc_mutex
);
1564 /* If the root indexing node is not in TNC - pull it */
1565 if (!c
->zroot
.znode
) {
1566 c
->zroot
.znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1567 if (IS_ERR(c
->zroot
.znode
)) {
1568 err
= PTR_ERR(c
->zroot
.znode
);
1569 c
->zroot
.znode
= NULL
;
1575 * We are going to traverse the indexing tree in the postorder manner.
1576 * Go down and find the leftmost indexing node where we are going to
1579 znode
= c
->zroot
.znode
;
1580 while (znode
->level
> 0) {
1581 zbr
= &znode
->zbranch
[0];
1584 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1585 if (IS_ERR(child
)) {
1586 err
= PTR_ERR(child
);
1595 /* Iterate over all indexing nodes */
1602 err
= znode_cb(c
, znode
, priv
);
1604 ubifs_err("znode checking function returned "
1606 dbg_dump_znode(c
, znode
);
1610 if (leaf_cb
&& znode
->level
== 0) {
1611 for (idx
= 0; idx
< znode
->child_cnt
; idx
++) {
1612 zbr
= &znode
->zbranch
[idx
];
1613 err
= leaf_cb(c
, zbr
, priv
);
1615 ubifs_err("leaf checking function "
1616 "returned error %d, for leaf "
1618 err
, zbr
->lnum
, zbr
->offs
);
1627 idx
= znode
->iip
+ 1;
1628 znode
= znode
->parent
;
1629 if (idx
< znode
->child_cnt
) {
1630 /* Switch to the next index in the parent */
1631 zbr
= &znode
->zbranch
[idx
];
1634 child
= ubifs_load_znode(c
, zbr
, znode
, idx
);
1635 if (IS_ERR(child
)) {
1636 err
= PTR_ERR(child
);
1644 * This is the last child, switch to the parent and
1649 /* Go to the lowest leftmost znode in the new sub-tree */
1650 while (znode
->level
> 0) {
1651 zbr
= &znode
->zbranch
[0];
1654 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1655 if (IS_ERR(child
)) {
1656 err
= PTR_ERR(child
);
1665 mutex_unlock(&c
->tnc_mutex
);
1670 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1673 ubifs_msg("dump of znode at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1674 dbg_dump_znode(c
, znode
);
1676 mutex_unlock(&c
->tnc_mutex
);
1681 * add_size - add znode size to partially calculated index size.
1682 * @c: UBIFS file-system description object
1683 * @znode: znode to add size for
1684 * @priv: partially calculated index size
1686 * This is a helper function for 'dbg_check_idx_size()' which is called for
1687 * every indexing node and adds its size to the 'long long' variable pointed to
1690 static int add_size(struct ubifs_info
*c
, struct ubifs_znode
*znode
, void *priv
)
1692 long long *idx_size
= priv
;
1695 add
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
1696 add
= ALIGN(add
, 8);
1702 * dbg_check_idx_size - check index size.
1703 * @c: UBIFS file-system description object
1704 * @idx_size: size to check
1706 * This function walks the UBIFS index, calculates its size and checks that the
1707 * size is equivalent to @idx_size. Returns zero in case of success and a
1708 * negative error code in case of failure.
1710 int dbg_check_idx_size(struct ubifs_info
*c
, long long idx_size
)
1715 if (!(ubifs_chk_flags
& UBIFS_CHK_IDX_SZ
))
1718 err
= dbg_walk_index(c
, NULL
, add_size
, &calc
);
1720 ubifs_err("error %d while walking the index", err
);
1724 if (calc
!= idx_size
) {
1725 ubifs_err("index size check failed: calculated size is %lld, "
1726 "should be %lld", calc
, idx_size
);
1735 * struct fsck_inode - information about an inode used when checking the file-system.
1736 * @rb: link in the RB-tree of inodes
1737 * @inum: inode number
1738 * @mode: inode type, permissions, etc
1739 * @nlink: inode link count
1740 * @xattr_cnt: count of extended attributes
1741 * @references: how many directory/xattr entries refer this inode (calculated
1742 * while walking the index)
1743 * @calc_cnt: for directory inode count of child directories
1744 * @size: inode size (read from on-flash inode)
1745 * @xattr_sz: summary size of all extended attributes (read from on-flash
1747 * @calc_sz: for directories calculated directory size
1748 * @calc_xcnt: count of extended attributes
1749 * @calc_xsz: calculated summary size of all extended attributes
1750 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1751 * inode (read from on-flash inode)
1752 * @calc_xnms: calculated sum of lengths of all extended attribute names
1759 unsigned int xattr_cnt
;
1763 unsigned int xattr_sz
;
1765 long long calc_xcnt
;
1767 unsigned int xattr_nms
;
1768 long long calc_xnms
;
1772 * struct fsck_data - private FS checking information.
1773 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1776 struct rb_root inodes
;
1780 * add_inode - add inode information to RB-tree of inodes.
1781 * @c: UBIFS file-system description object
1782 * @fsckd: FS checking information
1783 * @ino: raw UBIFS inode to add
1785 * This is a helper function for 'check_leaf()' which adds information about
1786 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1787 * case of success and a negative error code in case of failure.
1789 static struct fsck_inode
*add_inode(struct ubifs_info
*c
,
1790 struct fsck_data
*fsckd
,
1791 struct ubifs_ino_node
*ino
)
1793 struct rb_node
**p
, *parent
= NULL
;
1794 struct fsck_inode
*fscki
;
1795 ino_t inum
= key_inum_flash(c
, &ino
->key
);
1797 p
= &fsckd
->inodes
.rb_node
;
1800 fscki
= rb_entry(parent
, struct fsck_inode
, rb
);
1801 if (inum
< fscki
->inum
)
1803 else if (inum
> fscki
->inum
)
1804 p
= &(*p
)->rb_right
;
1809 if (inum
> c
->highest_inum
) {
1810 ubifs_err("too high inode number, max. is %lu",
1811 (unsigned long)c
->highest_inum
);
1812 return ERR_PTR(-EINVAL
);
1815 fscki
= kzalloc(sizeof(struct fsck_inode
), GFP_NOFS
);
1817 return ERR_PTR(-ENOMEM
);
1820 fscki
->nlink
= le32_to_cpu(ino
->nlink
);
1821 fscki
->size
= le64_to_cpu(ino
->size
);
1822 fscki
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
1823 fscki
->xattr_sz
= le32_to_cpu(ino
->xattr_size
);
1824 fscki
->xattr_nms
= le32_to_cpu(ino
->xattr_names
);
1825 fscki
->mode
= le32_to_cpu(ino
->mode
);
1826 if (S_ISDIR(fscki
->mode
)) {
1827 fscki
->calc_sz
= UBIFS_INO_NODE_SZ
;
1828 fscki
->calc_cnt
= 2;
1830 rb_link_node(&fscki
->rb
, parent
, p
);
1831 rb_insert_color(&fscki
->rb
, &fsckd
->inodes
);
1836 * search_inode - search inode in the RB-tree of inodes.
1837 * @fsckd: FS checking information
1838 * @inum: inode number to search
1840 * This is a helper function for 'check_leaf()' which searches inode @inum in
1841 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1842 * the inode was not found.
1844 static struct fsck_inode
*search_inode(struct fsck_data
*fsckd
, ino_t inum
)
1847 struct fsck_inode
*fscki
;
1849 p
= fsckd
->inodes
.rb_node
;
1851 fscki
= rb_entry(p
, struct fsck_inode
, rb
);
1852 if (inum
< fscki
->inum
)
1854 else if (inum
> fscki
->inum
)
1863 * read_add_inode - read inode node and add it to RB-tree of inodes.
1864 * @c: UBIFS file-system description object
1865 * @fsckd: FS checking information
1866 * @inum: inode number to read
1868 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1869 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1870 * information pointer in case of success and a negative error code in case of
1873 static struct fsck_inode
*read_add_inode(struct ubifs_info
*c
,
1874 struct fsck_data
*fsckd
, ino_t inum
)
1877 union ubifs_key key
;
1878 struct ubifs_znode
*znode
;
1879 struct ubifs_zbranch
*zbr
;
1880 struct ubifs_ino_node
*ino
;
1881 struct fsck_inode
*fscki
;
1883 fscki
= search_inode(fsckd
, inum
);
1887 ino_key_init(c
, &key
, inum
);
1888 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
1890 ubifs_err("inode %lu not found in index", (unsigned long)inum
);
1891 return ERR_PTR(-ENOENT
);
1892 } else if (err
< 0) {
1893 ubifs_err("error %d while looking up inode %lu",
1894 err
, (unsigned long)inum
);
1895 return ERR_PTR(err
);
1898 zbr
= &znode
->zbranch
[n
];
1899 if (zbr
->len
< UBIFS_INO_NODE_SZ
) {
1900 ubifs_err("bad node %lu node length %d",
1901 (unsigned long)inum
, zbr
->len
);
1902 return ERR_PTR(-EINVAL
);
1905 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
1907 return ERR_PTR(-ENOMEM
);
1909 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
1911 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1912 zbr
->lnum
, zbr
->offs
, err
);
1914 return ERR_PTR(err
);
1917 fscki
= add_inode(c
, fsckd
, ino
);
1919 if (IS_ERR(fscki
)) {
1920 ubifs_err("error %ld while adding inode %lu node",
1921 PTR_ERR(fscki
), (unsigned long)inum
);
1929 * check_leaf - check leaf node.
1930 * @c: UBIFS file-system description object
1931 * @zbr: zbranch of the leaf node to check
1932 * @priv: FS checking information
1934 * This is a helper function for 'dbg_check_filesystem()' which is called for
1935 * every single leaf node while walking the indexing tree. It checks that the
1936 * leaf node referred from the indexing tree exists, has correct CRC, and does
1937 * some other basic validation. This function is also responsible for building
1938 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1939 * calculates reference count, size, etc for each inode in order to later
1940 * compare them to the information stored inside the inodes and detect possible
1941 * inconsistencies. Returns zero in case of success and a negative error code
1942 * in case of failure.
1944 static int check_leaf(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
1949 struct ubifs_ch
*ch
;
1950 int err
, type
= key_type(c
, &zbr
->key
);
1951 struct fsck_inode
*fscki
;
1953 if (zbr
->len
< UBIFS_CH_SZ
) {
1954 ubifs_err("bad leaf length %d (LEB %d:%d)",
1955 zbr
->len
, zbr
->lnum
, zbr
->offs
);
1959 node
= kmalloc(zbr
->len
, GFP_NOFS
);
1963 err
= ubifs_tnc_read_node(c
, zbr
, node
);
1965 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1966 zbr
->lnum
, zbr
->offs
, err
);
1970 /* If this is an inode node, add it to RB-tree of inodes */
1971 if (type
== UBIFS_INO_KEY
) {
1972 fscki
= add_inode(c
, priv
, node
);
1973 if (IS_ERR(fscki
)) {
1974 err
= PTR_ERR(fscki
);
1975 ubifs_err("error %d while adding inode node", err
);
1981 if (type
!= UBIFS_DENT_KEY
&& type
!= UBIFS_XENT_KEY
&&
1982 type
!= UBIFS_DATA_KEY
) {
1983 ubifs_err("unexpected node type %d at LEB %d:%d",
1984 type
, zbr
->lnum
, zbr
->offs
);
1990 if (le64_to_cpu(ch
->sqnum
) > c
->max_sqnum
) {
1991 ubifs_err("too high sequence number, max. is %llu",
1997 if (type
== UBIFS_DATA_KEY
) {
1999 struct ubifs_data_node
*dn
= node
;
2002 * Search the inode node this data node belongs to and insert
2003 * it to the RB-tree of inodes.
2005 inum
= key_inum_flash(c
, &dn
->key
);
2006 fscki
= read_add_inode(c
, priv
, inum
);
2007 if (IS_ERR(fscki
)) {
2008 err
= PTR_ERR(fscki
);
2009 ubifs_err("error %d while processing data node and "
2010 "trying to find inode node %lu",
2011 err
, (unsigned long)inum
);
2015 /* Make sure the data node is within inode size */
2016 blk_offs
= key_block_flash(c
, &dn
->key
);
2017 blk_offs
<<= UBIFS_BLOCK_SHIFT
;
2018 blk_offs
+= le32_to_cpu(dn
->size
);
2019 if (blk_offs
> fscki
->size
) {
2020 ubifs_err("data node at LEB %d:%d is not within inode "
2021 "size %lld", zbr
->lnum
, zbr
->offs
,
2028 struct ubifs_dent_node
*dent
= node
;
2029 struct fsck_inode
*fscki1
;
2031 err
= ubifs_validate_entry(c
, dent
);
2036 * Search the inode node this entry refers to and the parent
2037 * inode node and insert them to the RB-tree of inodes.
2039 inum
= le64_to_cpu(dent
->inum
);
2040 fscki
= read_add_inode(c
, priv
, inum
);
2041 if (IS_ERR(fscki
)) {
2042 err
= PTR_ERR(fscki
);
2043 ubifs_err("error %d while processing entry node and "
2044 "trying to find inode node %lu",
2045 err
, (unsigned long)inum
);
2049 /* Count how many direntries or xentries refers this inode */
2050 fscki
->references
+= 1;
2052 inum
= key_inum_flash(c
, &dent
->key
);
2053 fscki1
= read_add_inode(c
, priv
, inum
);
2054 if (IS_ERR(fscki1
)) {
2055 err
= PTR_ERR(fscki1
);
2056 ubifs_err("error %d while processing entry node and "
2057 "trying to find parent inode node %lu",
2058 err
, (unsigned long)inum
);
2062 nlen
= le16_to_cpu(dent
->nlen
);
2063 if (type
== UBIFS_XENT_KEY
) {
2064 fscki1
->calc_xcnt
+= 1;
2065 fscki1
->calc_xsz
+= CALC_DENT_SIZE(nlen
);
2066 fscki1
->calc_xsz
+= CALC_XATTR_BYTES(fscki
->size
);
2067 fscki1
->calc_xnms
+= nlen
;
2069 fscki1
->calc_sz
+= CALC_DENT_SIZE(nlen
);
2070 if (dent
->type
== UBIFS_ITYPE_DIR
)
2071 fscki1
->calc_cnt
+= 1;
2080 ubifs_msg("dump of node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
2081 dbg_dump_node(c
, node
);
2088 * free_inodes - free RB-tree of inodes.
2089 * @fsckd: FS checking information
2091 static void free_inodes(struct fsck_data
*fsckd
)
2093 struct rb_node
*this = fsckd
->inodes
.rb_node
;
2094 struct fsck_inode
*fscki
;
2098 this = this->rb_left
;
2099 else if (this->rb_right
)
2100 this = this->rb_right
;
2102 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2103 this = rb_parent(this);
2105 if (this->rb_left
== &fscki
->rb
)
2106 this->rb_left
= NULL
;
2108 this->rb_right
= NULL
;
2116 * check_inodes - checks all inodes.
2117 * @c: UBIFS file-system description object
2118 * @fsckd: FS checking information
2120 * This is a helper function for 'dbg_check_filesystem()' which walks the
2121 * RB-tree of inodes after the index scan has been finished, and checks that
2122 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2123 * %-EINVAL if not, and a negative error code in case of failure.
2125 static int check_inodes(struct ubifs_info
*c
, struct fsck_data
*fsckd
)
2128 union ubifs_key key
;
2129 struct ubifs_znode
*znode
;
2130 struct ubifs_zbranch
*zbr
;
2131 struct ubifs_ino_node
*ino
;
2132 struct fsck_inode
*fscki
;
2133 struct rb_node
*this = rb_first(&fsckd
->inodes
);
2136 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2137 this = rb_next(this);
2139 if (S_ISDIR(fscki
->mode
)) {
2141 * Directories have to have exactly one reference (they
2142 * cannot have hardlinks), although root inode is an
2145 if (fscki
->inum
!= UBIFS_ROOT_INO
&&
2146 fscki
->references
!= 1) {
2147 ubifs_err("directory inode %lu has %d "
2148 "direntries which refer it, but "
2150 (unsigned long)fscki
->inum
,
2154 if (fscki
->inum
== UBIFS_ROOT_INO
&&
2155 fscki
->references
!= 0) {
2156 ubifs_err("root inode %lu has non-zero (%d) "
2157 "direntries which refer it",
2158 (unsigned long)fscki
->inum
,
2162 if (fscki
->calc_sz
!= fscki
->size
) {
2163 ubifs_err("directory inode %lu size is %lld, "
2164 "but calculated size is %lld",
2165 (unsigned long)fscki
->inum
,
2166 fscki
->size
, fscki
->calc_sz
);
2169 if (fscki
->calc_cnt
!= fscki
->nlink
) {
2170 ubifs_err("directory inode %lu nlink is %d, "
2171 "but calculated nlink is %d",
2172 (unsigned long)fscki
->inum
,
2173 fscki
->nlink
, fscki
->calc_cnt
);
2177 if (fscki
->references
!= fscki
->nlink
) {
2178 ubifs_err("inode %lu nlink is %d, but "
2179 "calculated nlink is %d",
2180 (unsigned long)fscki
->inum
,
2181 fscki
->nlink
, fscki
->references
);
2185 if (fscki
->xattr_sz
!= fscki
->calc_xsz
) {
2186 ubifs_err("inode %lu has xattr size %u, but "
2187 "calculated size is %lld",
2188 (unsigned long)fscki
->inum
, fscki
->xattr_sz
,
2192 if (fscki
->xattr_cnt
!= fscki
->calc_xcnt
) {
2193 ubifs_err("inode %lu has %u xattrs, but "
2194 "calculated count is %lld",
2195 (unsigned long)fscki
->inum
,
2196 fscki
->xattr_cnt
, fscki
->calc_xcnt
);
2199 if (fscki
->xattr_nms
!= fscki
->calc_xnms
) {
2200 ubifs_err("inode %lu has xattr names' size %u, but "
2201 "calculated names' size is %lld",
2202 (unsigned long)fscki
->inum
, fscki
->xattr_nms
,
2211 /* Read the bad inode and dump it */
2212 ino_key_init(c
, &key
, fscki
->inum
);
2213 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2215 ubifs_err("inode %lu not found in index",
2216 (unsigned long)fscki
->inum
);
2218 } else if (err
< 0) {
2219 ubifs_err("error %d while looking up inode %lu",
2220 err
, (unsigned long)fscki
->inum
);
2224 zbr
= &znode
->zbranch
[n
];
2225 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2229 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2231 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2232 zbr
->lnum
, zbr
->offs
, err
);
2237 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2238 (unsigned long)fscki
->inum
, zbr
->lnum
, zbr
->offs
);
2239 dbg_dump_node(c
, ino
);
2245 * dbg_check_filesystem - check the file-system.
2246 * @c: UBIFS file-system description object
2248 * This function checks the file system, namely:
2249 * o makes sure that all leaf nodes exist and their CRCs are correct;
2250 * o makes sure inode nlink, size, xattr size/count are correct (for all
2253 * The function reads whole indexing tree and all nodes, so it is pretty
2254 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2255 * not, and a negative error code in case of failure.
2257 int dbg_check_filesystem(struct ubifs_info
*c
)
2260 struct fsck_data fsckd
;
2262 if (!(ubifs_chk_flags
& UBIFS_CHK_FS
))
2265 fsckd
.inodes
= RB_ROOT
;
2266 err
= dbg_walk_index(c
, check_leaf
, NULL
, &fsckd
);
2270 err
= check_inodes(c
, &fsckd
);
2274 free_inodes(&fsckd
);
2278 ubifs_err("file-system check failed with error %d", err
);
2280 free_inodes(&fsckd
);
2285 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2286 * @c: UBIFS file-system description object
2287 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2289 * This function returns zero if the list of data nodes is sorted correctly,
2290 * and %-EINVAL if not.
2292 int dbg_check_data_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2294 struct list_head
*cur
;
2295 struct ubifs_scan_node
*sa
, *sb
;
2297 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
2300 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2302 uint32_t blka
, blkb
;
2305 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2306 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2308 if (sa
->type
!= UBIFS_DATA_NODE
) {
2309 ubifs_err("bad node type %d", sa
->type
);
2310 dbg_dump_node(c
, sa
->node
);
2313 if (sb
->type
!= UBIFS_DATA_NODE
) {
2314 ubifs_err("bad node type %d", sb
->type
);
2315 dbg_dump_node(c
, sb
->node
);
2319 inuma
= key_inum(c
, &sa
->key
);
2320 inumb
= key_inum(c
, &sb
->key
);
2324 if (inuma
> inumb
) {
2325 ubifs_err("larger inum %lu goes before inum %lu",
2326 (unsigned long)inuma
, (unsigned long)inumb
);
2330 blka
= key_block(c
, &sa
->key
);
2331 blkb
= key_block(c
, &sb
->key
);
2334 ubifs_err("larger block %u goes before %u", blka
, blkb
);
2338 ubifs_err("two data nodes for the same block");
2346 dbg_dump_node(c
, sa
->node
);
2347 dbg_dump_node(c
, sb
->node
);
2352 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2353 * @c: UBIFS file-system description object
2354 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2356 * This function returns zero if the list of non-data nodes is sorted correctly,
2357 * and %-EINVAL if not.
2359 int dbg_check_nondata_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2361 struct list_head
*cur
;
2362 struct ubifs_scan_node
*sa
, *sb
;
2364 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
2367 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2369 uint32_t hasha
, hashb
;
2372 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2373 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2375 if (sa
->type
!= UBIFS_INO_NODE
&& sa
->type
!= UBIFS_DENT_NODE
&&
2376 sa
->type
!= UBIFS_XENT_NODE
) {
2377 ubifs_err("bad node type %d", sa
->type
);
2378 dbg_dump_node(c
, sa
->node
);
2381 if (sa
->type
!= UBIFS_INO_NODE
&& sa
->type
!= UBIFS_DENT_NODE
&&
2382 sa
->type
!= UBIFS_XENT_NODE
) {
2383 ubifs_err("bad node type %d", sb
->type
);
2384 dbg_dump_node(c
, sb
->node
);
2388 if (sa
->type
!= UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2389 ubifs_err("non-inode node goes before inode node");
2393 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
!= UBIFS_INO_NODE
)
2396 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2397 /* Inode nodes are sorted in descending size order */
2398 if (sa
->len
< sb
->len
) {
2399 ubifs_err("smaller inode node goes first");
2406 * This is either a dentry or xentry, which should be sorted in
2407 * ascending (parent ino, hash) order.
2409 inuma
= key_inum(c
, &sa
->key
);
2410 inumb
= key_inum(c
, &sb
->key
);
2414 if (inuma
> inumb
) {
2415 ubifs_err("larger inum %lu goes before inum %lu",
2416 (unsigned long)inuma
, (unsigned long)inumb
);
2420 hasha
= key_block(c
, &sa
->key
);
2421 hashb
= key_block(c
, &sb
->key
);
2423 if (hasha
> hashb
) {
2424 ubifs_err("larger hash %u goes before %u", hasha
, hashb
);
2432 ubifs_msg("dumping first node");
2433 dbg_dump_node(c
, sa
->node
);
2434 ubifs_msg("dumping second node");
2435 dbg_dump_node(c
, sb
->node
);
2440 static int invocation_cnt
;
2442 int dbg_force_in_the_gaps(void)
2444 if (!dbg_force_in_the_gaps_enabled
)
2446 /* Force in-the-gaps every 8th commit */
2447 return !((invocation_cnt
++) & 0x7);
2450 /* Failure mode for recovery testing */
2452 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2454 struct failure_mode_info
{
2455 struct list_head list
;
2456 struct ubifs_info
*c
;
2459 static LIST_HEAD(fmi_list
);
2460 static DEFINE_SPINLOCK(fmi_lock
);
2462 static unsigned int next
;
2464 static int simple_rand(void)
2467 next
= current
->pid
;
2468 next
= next
* 1103515245 + 12345;
2469 return (next
>> 16) & 32767;
2472 static void failure_mode_init(struct ubifs_info
*c
)
2474 struct failure_mode_info
*fmi
;
2476 fmi
= kmalloc(sizeof(struct failure_mode_info
), GFP_NOFS
);
2478 ubifs_err("Failed to register failure mode - no memory");
2482 spin_lock(&fmi_lock
);
2483 list_add_tail(&fmi
->list
, &fmi_list
);
2484 spin_unlock(&fmi_lock
);
2487 static void failure_mode_exit(struct ubifs_info
*c
)
2489 struct failure_mode_info
*fmi
, *tmp
;
2491 spin_lock(&fmi_lock
);
2492 list_for_each_entry_safe(fmi
, tmp
, &fmi_list
, list
)
2494 list_del(&fmi
->list
);
2497 spin_unlock(&fmi_lock
);
2500 static struct ubifs_info
*dbg_find_info(struct ubi_volume_desc
*desc
)
2502 struct failure_mode_info
*fmi
;
2504 spin_lock(&fmi_lock
);
2505 list_for_each_entry(fmi
, &fmi_list
, list
)
2506 if (fmi
->c
->ubi
== desc
) {
2507 struct ubifs_info
*c
= fmi
->c
;
2509 spin_unlock(&fmi_lock
);
2512 spin_unlock(&fmi_lock
);
2516 static int in_failure_mode(struct ubi_volume_desc
*desc
)
2518 struct ubifs_info
*c
= dbg_find_info(desc
);
2520 if (c
&& dbg_failure_mode
)
2521 return c
->dbg
->failure_mode
;
2525 static int do_fail(struct ubi_volume_desc
*desc
, int lnum
, int write
)
2527 struct ubifs_info
*c
= dbg_find_info(desc
);
2528 struct ubifs_debug_info
*d
;
2530 if (!c
|| !dbg_failure_mode
)
2533 if (d
->failure_mode
)
2536 /* First call - decide delay to failure */
2538 unsigned int delay
= 1 << (simple_rand() >> 11);
2542 d
->fail_timeout
= jiffies
+
2543 msecs_to_jiffies(delay
);
2544 dbg_rcvry("failing after %ums", delay
);
2547 d
->fail_cnt_max
= delay
;
2548 dbg_rcvry("failing after %u calls", delay
);
2553 /* Determine if failure delay has expired */
2554 if (d
->fail_delay
== 1) {
2555 if (time_before(jiffies
, d
->fail_timeout
))
2557 } else if (d
->fail_delay
== 2)
2558 if (d
->fail_cnt
++ < d
->fail_cnt_max
)
2560 if (lnum
== UBIFS_SB_LNUM
) {
2564 } else if (chance(19, 20))
2566 dbg_rcvry("failing in super block LEB %d", lnum
);
2567 } else if (lnum
== UBIFS_MST_LNUM
|| lnum
== UBIFS_MST_LNUM
+ 1) {
2570 dbg_rcvry("failing in master LEB %d", lnum
);
2571 } else if (lnum
>= UBIFS_LOG_LNUM
&& lnum
<= c
->log_last
) {
2573 if (chance(99, 100))
2575 } else if (chance(399, 400))
2577 dbg_rcvry("failing in log LEB %d", lnum
);
2578 } else if (lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
) {
2582 } else if (chance(19, 20))
2584 dbg_rcvry("failing in LPT LEB %d", lnum
);
2585 } else if (lnum
>= c
->orph_first
&& lnum
<= c
->orph_last
) {
2589 } else if (chance(9, 10))
2591 dbg_rcvry("failing in orphan LEB %d", lnum
);
2592 } else if (lnum
== c
->ihead_lnum
) {
2593 if (chance(99, 100))
2595 dbg_rcvry("failing in index head LEB %d", lnum
);
2596 } else if (c
->jheads
&& lnum
== c
->jheads
[GCHD
].wbuf
.lnum
) {
2599 dbg_rcvry("failing in GC head LEB %d", lnum
);
2600 } else if (write
&& !RB_EMPTY_ROOT(&c
->buds
) &&
2601 !ubifs_search_bud(c
, lnum
)) {
2604 dbg_rcvry("failing in non-bud LEB %d", lnum
);
2605 } else if (c
->cmt_state
== COMMIT_RUNNING_BACKGROUND
||
2606 c
->cmt_state
== COMMIT_RUNNING_REQUIRED
) {
2607 if (chance(999, 1000))
2609 dbg_rcvry("failing in bud LEB %d commit running", lnum
);
2611 if (chance(9999, 10000))
2613 dbg_rcvry("failing in bud LEB %d commit not running", lnum
);
2615 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum
);
2616 d
->failure_mode
= 1;
2621 static void cut_data(const void *buf
, int len
)
2624 unsigned char *p
= (void *)buf
;
2626 flen
= (len
* (long long)simple_rand()) >> 15;
2627 for (i
= flen
; i
< len
; i
++)
2631 int dbg_leb_read(struct ubi_volume_desc
*desc
, int lnum
, char *buf
, int offset
,
2634 if (in_failure_mode(desc
))
2636 return ubi_leb_read(desc
, lnum
, buf
, offset
, len
, check
);
2639 int dbg_leb_write(struct ubi_volume_desc
*desc
, int lnum
, const void *buf
,
2640 int offset
, int len
, int dtype
)
2644 if (in_failure_mode(desc
))
2646 failing
= do_fail(desc
, lnum
, 1);
2649 err
= ubi_leb_write(desc
, lnum
, buf
, offset
, len
, dtype
);
2657 int dbg_leb_change(struct ubi_volume_desc
*desc
, int lnum
, const void *buf
,
2662 if (do_fail(desc
, lnum
, 1))
2664 err
= ubi_leb_change(desc
, lnum
, buf
, len
, dtype
);
2667 if (do_fail(desc
, lnum
, 1))
2672 int dbg_leb_erase(struct ubi_volume_desc
*desc
, int lnum
)
2676 if (do_fail(desc
, lnum
, 0))
2678 err
= ubi_leb_erase(desc
, lnum
);
2681 if (do_fail(desc
, lnum
, 0))
2686 int dbg_leb_unmap(struct ubi_volume_desc
*desc
, int lnum
)
2690 if (do_fail(desc
, lnum
, 0))
2692 err
= ubi_leb_unmap(desc
, lnum
);
2695 if (do_fail(desc
, lnum
, 0))
2700 int dbg_is_mapped(struct ubi_volume_desc
*desc
, int lnum
)
2702 if (in_failure_mode(desc
))
2704 return ubi_is_mapped(desc
, lnum
);
2707 int dbg_leb_map(struct ubi_volume_desc
*desc
, int lnum
, int dtype
)
2711 if (do_fail(desc
, lnum
, 0))
2713 err
= ubi_leb_map(desc
, lnum
, dtype
);
2716 if (do_fail(desc
, lnum
, 0))
2722 * ubifs_debugging_init - initialize UBIFS debugging.
2723 * @c: UBIFS file-system description object
2725 * This function initializes debugging-related data for the file system.
2726 * Returns zero in case of success and a negative error code in case of
2729 int ubifs_debugging_init(struct ubifs_info
*c
)
2731 c
->dbg
= kzalloc(sizeof(struct ubifs_debug_info
), GFP_KERNEL
);
2735 failure_mode_init(c
);
2740 * ubifs_debugging_exit - free debugging data.
2741 * @c: UBIFS file-system description object
2743 void ubifs_debugging_exit(struct ubifs_info
*c
)
2745 failure_mode_exit(c
);
2750 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2751 * contain the stuff specific to particular file-system mounts.
2753 static struct dentry
*dfs_rootdir
;
2756 * dbg_debugfs_init - initialize debugfs file-system.
2758 * UBIFS uses debugfs file-system to expose various debugging knobs to
2759 * user-space. This function creates "ubifs" directory in the debugfs
2760 * file-system. Returns zero in case of success and a negative error code in
2763 int dbg_debugfs_init(void)
2765 dfs_rootdir
= debugfs_create_dir("ubifs", NULL
);
2766 if (IS_ERR(dfs_rootdir
)) {
2767 int err
= PTR_ERR(dfs_rootdir
);
2768 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2777 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2779 void dbg_debugfs_exit(void)
2781 debugfs_remove(dfs_rootdir
);
2784 static int open_debugfs_file(struct inode
*inode
, struct file
*file
)
2786 file
->private_data
= inode
->i_private
;
2790 static ssize_t
write_debugfs_file(struct file
*file
, const char __user
*buf
,
2791 size_t count
, loff_t
*ppos
)
2793 struct ubifs_info
*c
= file
->private_data
;
2794 struct ubifs_debug_info
*d
= c
->dbg
;
2796 if (file
->f_path
.dentry
== d
->dfs_dump_lprops
)
2798 else if (file
->f_path
.dentry
== d
->dfs_dump_budg
) {
2799 spin_lock(&c
->space_lock
);
2801 spin_unlock(&c
->space_lock
);
2802 } else if (file
->f_path
.dentry
== d
->dfs_dump_tnc
) {
2803 mutex_lock(&c
->tnc_mutex
);
2805 mutex_unlock(&c
->tnc_mutex
);
2813 static const struct file_operations dfs_fops
= {
2814 .open
= open_debugfs_file
,
2815 .write
= write_debugfs_file
,
2816 .owner
= THIS_MODULE
,
2817 .llseek
= default_llseek
,
2821 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2822 * @c: UBIFS file-system description object
2824 * This function creates all debugfs files for this instance of UBIFS. Returns
2825 * zero in case of success and a negative error code in case of failure.
2827 * Note, the only reason we have not merged this function with the
2828 * 'ubifs_debugging_init()' function is because it is better to initialize
2829 * debugfs interfaces at the very end of the mount process, and remove them at
2830 * the very beginning of the mount process.
2832 int dbg_debugfs_init_fs(struct ubifs_info
*c
)
2836 struct dentry
*dent
;
2837 struct ubifs_debug_info
*d
= c
->dbg
;
2839 sprintf(d
->dfs_dir_name
, "ubi%d_%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
2840 fname
= d
->dfs_dir_name
;
2841 dent
= debugfs_create_dir(fname
, dfs_rootdir
);
2842 if (IS_ERR_OR_NULL(dent
))
2846 fname
= "dump_lprops";
2847 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2848 if (IS_ERR_OR_NULL(dent
))
2850 d
->dfs_dump_lprops
= dent
;
2852 fname
= "dump_budg";
2853 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2854 if (IS_ERR_OR_NULL(dent
))
2856 d
->dfs_dump_budg
= dent
;
2859 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2860 if (IS_ERR_OR_NULL(dent
))
2862 d
->dfs_dump_tnc
= dent
;
2867 debugfs_remove_recursive(d
->dfs_dir
);
2869 err
= dent
? PTR_ERR(dent
) : -ENODEV
;
2870 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2876 * dbg_debugfs_exit_fs - remove all debugfs files.
2877 * @c: UBIFS file-system description object
2879 void dbg_debugfs_exit_fs(struct ubifs_info
*c
)
2881 debugfs_remove_recursive(c
->dbg
->dfs_dir
);
2884 #endif /* CONFIG_UBIFS_FS_DEBUG */