2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
40 #include <asm/atomic.h>
44 * There are three level of locking required by epoll :
48 * 3) ep->lock (spinlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
73 * It is possible to drop the "ep->mtx" and to use the global
74 * mutex "epmutex" (together with "ep->lock") to have it working,
75 * but having "ep->mtx" will make the interface more scalable.
76 * Events that require holding "epmutex" are very rare, while for
77 * normal operations the epoll private "ep->mtx" will guarantee
78 * a better scalability.
81 /* Epoll private bits inside the event mask */
82 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
84 /* Maximum number of nesting allowed inside epoll sets */
85 #define EP_MAX_NESTS 4
87 /* Maximum msec timeout value storeable in a long int */
88 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
90 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
92 #define EP_UNACTIVE_PTR ((void *) -1L)
94 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
102 * Structure used to track possible nested calls, for too deep recursions
105 struct nested_call_node
{
106 struct list_head llink
;
112 * This structure is used as collector for nested calls, to check for
113 * maximum recursion dept and loop cycles.
115 struct nested_calls
{
116 struct list_head tasks_call_list
;
121 * Each file descriptor added to the eventpoll interface will
122 * have an entry of this type linked to the "rbr" RB tree.
125 /* RB tree node used to link this structure to the eventpoll RB tree */
128 /* List header used to link this structure to the eventpoll ready list */
129 struct list_head rdllink
;
132 * Works together "struct eventpoll"->ovflist in keeping the
133 * single linked chain of items.
137 /* The file descriptor information this item refers to */
138 struct epoll_filefd ffd
;
140 /* Number of active wait queue attached to poll operations */
143 /* List containing poll wait queues */
144 struct list_head pwqlist
;
146 /* The "container" of this item */
147 struct eventpoll
*ep
;
149 /* List header used to link this item to the "struct file" items list */
150 struct list_head fllink
;
152 /* The structure that describe the interested events and the source fd */
153 struct epoll_event event
;
157 * This structure is stored inside the "private_data" member of the file
158 * structure and rapresent the main data sructure for the eventpoll
162 /* Protect the this structure access */
166 * This mutex is used to ensure that files are not removed
167 * while epoll is using them. This is held during the event
168 * collection loop, the file cleanup path, the epoll file exit
169 * code and the ctl operations.
173 /* Wait queue used by sys_epoll_wait() */
174 wait_queue_head_t wq
;
176 /* Wait queue used by file->poll() */
177 wait_queue_head_t poll_wait
;
179 /* List of ready file descriptors */
180 struct list_head rdllist
;
182 /* RB tree root used to store monitored fd structs */
186 * This is a single linked list that chains all the "struct epitem" that
187 * happened while transfering ready events to userspace w/out
190 struct epitem
*ovflist
;
192 /* The user that created the eventpoll descriptor */
193 struct user_struct
*user
;
196 /* Wait structure used by the poll hooks */
197 struct eppoll_entry
{
198 /* List header used to link this structure to the "struct epitem" */
199 struct list_head llink
;
201 /* The "base" pointer is set to the container "struct epitem" */
205 * Wait queue item that will be linked to the target file wait
210 /* The wait queue head that linked the "wait" wait queue item */
211 wait_queue_head_t
*whead
;
214 /* Wrapper struct used by poll queueing */
220 /* Used by the ep_send_events() function as callback private data */
221 struct ep_send_events_data
{
223 struct epoll_event __user
*events
;
227 * Configuration options available inside /proc/sys/fs/epoll/
229 /* Maximum number of epoll watched descriptors, per user */
230 static int max_user_watches __read_mostly
;
233 * This mutex is used to serialize ep_free() and eventpoll_release_file().
235 static DEFINE_MUTEX(epmutex
);
237 /* Used to check for epoll file descriptor inclusion loops */
238 static struct nested_calls poll_loop_ncalls
;
240 /* Used for safe wake up implementation */
241 static struct nested_calls poll_safewake_ncalls
;
243 /* Used to call file's f_op->poll() under the nested calls boundaries */
244 static struct nested_calls poll_readywalk_ncalls
;
246 /* Slab cache used to allocate "struct epitem" */
247 static struct kmem_cache
*epi_cache __read_mostly
;
249 /* Slab cache used to allocate "struct eppoll_entry" */
250 static struct kmem_cache
*pwq_cache __read_mostly
;
254 #include <linux/sysctl.h>
258 ctl_table epoll_table
[] = {
260 .procname
= "max_user_watches",
261 .data
= &max_user_watches
,
262 .maxlen
= sizeof(int),
264 .proc_handler
= proc_dointvec_minmax
,
269 #endif /* CONFIG_SYSCTL */
272 /* Setup the structure that is used as key for the RB tree */
273 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
274 struct file
*file
, int fd
)
280 /* Compare RB tree keys */
281 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
282 struct epoll_filefd
*p2
)
284 return (p1
->file
> p2
->file
? +1:
285 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
288 /* Tells us if the item is currently linked */
289 static inline int ep_is_linked(struct list_head
*p
)
291 return !list_empty(p
);
294 /* Get the "struct epitem" from a wait queue pointer */
295 static inline struct epitem
*ep_item_from_wait(wait_queue_t
*p
)
297 return container_of(p
, struct eppoll_entry
, wait
)->base
;
300 /* Get the "struct epitem" from an epoll queue wrapper */
301 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
303 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
306 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
307 static inline int ep_op_has_event(int op
)
309 return op
!= EPOLL_CTL_DEL
;
312 /* Initialize the poll safe wake up structure */
313 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
315 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
316 spin_lock_init(&ncalls
->lock
);
320 * ep_call_nested - Perform a bound (possibly) nested call, by checking
321 * that the recursion limit is not exceeded, and that
322 * the same nested call (by the meaning of same cookie) is
325 * @ncalls: Pointer to the nested_calls structure to be used for this call.
326 * @max_nests: Maximum number of allowed nesting calls.
327 * @nproc: Nested call core function pointer.
328 * @priv: Opaque data to be passed to the @nproc callback.
329 * @cookie: Cookie to be used to identify this nested call.
330 * @ctx: This instance context.
332 * Returns: Returns the code returned by the @nproc callback, or -1 if
333 * the maximum recursion limit has been exceeded.
335 static int ep_call_nested(struct nested_calls
*ncalls
, int max_nests
,
336 int (*nproc
)(void *, void *, int), void *priv
,
337 void *cookie
, void *ctx
)
339 int error
, call_nests
= 0;
341 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
342 struct nested_call_node
*tncur
;
343 struct nested_call_node tnode
;
345 spin_lock_irqsave(&ncalls
->lock
, flags
);
348 * Try to see if the current task is already inside this wakeup call.
349 * We use a list here, since the population inside this set is always
352 list_for_each_entry(tncur
, lsthead
, llink
) {
353 if (tncur
->ctx
== ctx
&&
354 (tncur
->cookie
== cookie
|| ++call_nests
> max_nests
)) {
356 * Ops ... loop detected or maximum nest level reached.
357 * We abort this wake by breaking the cycle itself.
364 /* Add the current task and cookie to the list */
366 tnode
.cookie
= cookie
;
367 list_add(&tnode
.llink
, lsthead
);
369 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
371 /* Call the nested function */
372 error
= (*nproc
)(priv
, cookie
, call_nests
);
374 /* Remove the current task from the list */
375 spin_lock_irqsave(&ncalls
->lock
, flags
);
376 list_del(&tnode
.llink
);
378 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
383 #ifdef CONFIG_DEBUG_LOCK_ALLOC
384 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
385 unsigned long events
, int subclass
)
389 spin_lock_irqsave_nested(&wqueue
->lock
, flags
, subclass
);
390 wake_up_locked_poll(wqueue
, events
);
391 spin_unlock_irqrestore(&wqueue
->lock
, flags
);
394 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
395 unsigned long events
, int subclass
)
397 wake_up_poll(wqueue
, events
);
401 static int ep_poll_wakeup_proc(void *priv
, void *cookie
, int call_nests
)
403 ep_wake_up_nested((wait_queue_head_t
*) cookie
, POLLIN
,
409 * Perform a safe wake up of the poll wait list. The problem is that
410 * with the new callback'd wake up system, it is possible that the
411 * poll callback is reentered from inside the call to wake_up() done
412 * on the poll wait queue head. The rule is that we cannot reenter the
413 * wake up code from the same task more than EP_MAX_NESTS times,
414 * and we cannot reenter the same wait queue head at all. This will
415 * enable to have a hierarchy of epoll file descriptor of no more than
418 static void ep_poll_safewake(wait_queue_head_t
*wq
)
420 int this_cpu
= get_cpu();
422 ep_call_nested(&poll_safewake_ncalls
, EP_MAX_NESTS
,
423 ep_poll_wakeup_proc
, NULL
, wq
, (void *) (long) this_cpu
);
429 * This function unregisters poll callbacks from the associated file
430 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
433 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
435 struct list_head
*lsthead
= &epi
->pwqlist
;
436 struct eppoll_entry
*pwq
;
438 while (!list_empty(lsthead
)) {
439 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
441 list_del(&pwq
->llink
);
442 remove_wait_queue(pwq
->whead
, &pwq
->wait
);
443 kmem_cache_free(pwq_cache
, pwq
);
448 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
449 * the scan code, to call f_op->poll(). Also allows for
450 * O(NumReady) performance.
452 * @ep: Pointer to the epoll private data structure.
453 * @sproc: Pointer to the scan callback.
454 * @priv: Private opaque data passed to the @sproc callback.
456 * Returns: The same integer error code returned by the @sproc callback.
458 static int ep_scan_ready_list(struct eventpoll
*ep
,
459 int (*sproc
)(struct eventpoll
*,
460 struct list_head
*, void *),
463 int error
, pwake
= 0;
465 struct epitem
*epi
, *nepi
;
469 * We need to lock this because we could be hit by
470 * eventpoll_release_file() and epoll_ctl().
472 mutex_lock(&ep
->mtx
);
475 * Steal the ready list, and re-init the original one to the
476 * empty list. Also, set ep->ovflist to NULL so that events
477 * happening while looping w/out locks, are not lost. We cannot
478 * have the poll callback to queue directly on ep->rdllist,
479 * because we want the "sproc" callback to be able to do it
482 spin_lock_irqsave(&ep
->lock
, flags
);
483 list_splice_init(&ep
->rdllist
, &txlist
);
485 spin_unlock_irqrestore(&ep
->lock
, flags
);
488 * Now call the callback function.
490 error
= (*sproc
)(ep
, &txlist
, priv
);
492 spin_lock_irqsave(&ep
->lock
, flags
);
494 * During the time we spent inside the "sproc" callback, some
495 * other events might have been queued by the poll callback.
496 * We re-insert them inside the main ready-list here.
498 for (nepi
= ep
->ovflist
; (epi
= nepi
) != NULL
;
499 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
501 * We need to check if the item is already in the list.
502 * During the "sproc" callback execution time, items are
503 * queued into ->ovflist but the "txlist" might already
504 * contain them, and the list_splice() below takes care of them.
506 if (!ep_is_linked(&epi
->rdllink
))
507 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
510 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
511 * releasing the lock, events will be queued in the normal way inside
514 ep
->ovflist
= EP_UNACTIVE_PTR
;
517 * Quickly re-inject items left on "txlist".
519 list_splice(&txlist
, &ep
->rdllist
);
521 if (!list_empty(&ep
->rdllist
)) {
523 * Wake up (if active) both the eventpoll wait list and
524 * the ->poll() wait list (delayed after we release the lock).
526 if (waitqueue_active(&ep
->wq
))
527 wake_up_locked(&ep
->wq
);
528 if (waitqueue_active(&ep
->poll_wait
))
531 spin_unlock_irqrestore(&ep
->lock
, flags
);
533 mutex_unlock(&ep
->mtx
);
535 /* We have to call this outside the lock */
537 ep_poll_safewake(&ep
->poll_wait
);
543 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
544 * all the associated resources. Must be called with "mtx" held.
546 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
549 struct file
*file
= epi
->ffd
.file
;
552 * Removes poll wait queue hooks. We _have_ to do this without holding
553 * the "ep->lock" otherwise a deadlock might occur. This because of the
554 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
555 * queue head lock when unregistering the wait queue. The wakeup callback
556 * will run by holding the wait queue head lock and will call our callback
557 * that will try to get "ep->lock".
559 ep_unregister_pollwait(ep
, epi
);
561 /* Remove the current item from the list of epoll hooks */
562 spin_lock(&file
->f_lock
);
563 if (ep_is_linked(&epi
->fllink
))
564 list_del_init(&epi
->fllink
);
565 spin_unlock(&file
->f_lock
);
567 rb_erase(&epi
->rbn
, &ep
->rbr
);
569 spin_lock_irqsave(&ep
->lock
, flags
);
570 if (ep_is_linked(&epi
->rdllink
))
571 list_del_init(&epi
->rdllink
);
572 spin_unlock_irqrestore(&ep
->lock
, flags
);
574 /* At this point it is safe to free the eventpoll item */
575 kmem_cache_free(epi_cache
, epi
);
577 atomic_dec(&ep
->user
->epoll_watches
);
582 static void ep_free(struct eventpoll
*ep
)
587 /* We need to release all tasks waiting for these file */
588 if (waitqueue_active(&ep
->poll_wait
))
589 ep_poll_safewake(&ep
->poll_wait
);
592 * We need to lock this because we could be hit by
593 * eventpoll_release_file() while we're freeing the "struct eventpoll".
594 * We do not need to hold "ep->mtx" here because the epoll file
595 * is on the way to be removed and no one has references to it
596 * anymore. The only hit might come from eventpoll_release_file() but
597 * holding "epmutex" is sufficent here.
599 mutex_lock(&epmutex
);
602 * Walks through the whole tree by unregistering poll callbacks.
604 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
605 epi
= rb_entry(rbp
, struct epitem
, rbn
);
607 ep_unregister_pollwait(ep
, epi
);
611 * Walks through the whole tree by freeing each "struct epitem". At this
612 * point we are sure no poll callbacks will be lingering around, and also by
613 * holding "epmutex" we can be sure that no file cleanup code will hit
614 * us during this operation. So we can avoid the lock on "ep->lock".
616 while ((rbp
= rb_first(&ep
->rbr
)) != NULL
) {
617 epi
= rb_entry(rbp
, struct epitem
, rbn
);
621 mutex_unlock(&epmutex
);
622 mutex_destroy(&ep
->mtx
);
627 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
629 struct eventpoll
*ep
= file
->private_data
;
637 static int ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
640 struct epitem
*epi
, *tmp
;
642 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
643 if (epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, NULL
) &
645 return POLLIN
| POLLRDNORM
;
648 * Item has been dropped into the ready list by the poll
649 * callback, but it's not actually ready, as far as
650 * caller requested events goes. We can remove it here.
652 list_del_init(&epi
->rdllink
);
659 static int ep_poll_readyevents_proc(void *priv
, void *cookie
, int call_nests
)
661 return ep_scan_ready_list(priv
, ep_read_events_proc
, NULL
);
664 static unsigned int ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
667 struct eventpoll
*ep
= file
->private_data
;
669 /* Insert inside our poll wait queue */
670 poll_wait(file
, &ep
->poll_wait
, wait
);
673 * Proceed to find out if wanted events are really available inside
674 * the ready list. This need to be done under ep_call_nested()
675 * supervision, since the call to f_op->poll() done on listed files
676 * could re-enter here.
678 pollflags
= ep_call_nested(&poll_readywalk_ncalls
, EP_MAX_NESTS
,
679 ep_poll_readyevents_proc
, ep
, ep
, current
);
681 return pollflags
!= -1 ? pollflags
: 0;
684 /* File callbacks that implement the eventpoll file behaviour */
685 static const struct file_operations eventpoll_fops
= {
686 .release
= ep_eventpoll_release
,
687 .poll
= ep_eventpoll_poll
690 /* Fast test to see if the file is an evenpoll file */
691 static inline int is_file_epoll(struct file
*f
)
693 return f
->f_op
== &eventpoll_fops
;
697 * This is called from eventpoll_release() to unlink files from the eventpoll
698 * interface. We need to have this facility to cleanup correctly files that are
699 * closed without being removed from the eventpoll interface.
701 void eventpoll_release_file(struct file
*file
)
703 struct list_head
*lsthead
= &file
->f_ep_links
;
704 struct eventpoll
*ep
;
708 * We don't want to get "file->f_lock" because it is not
709 * necessary. It is not necessary because we're in the "struct file"
710 * cleanup path, and this means that noone is using this file anymore.
711 * So, for example, epoll_ctl() cannot hit here since if we reach this
712 * point, the file counter already went to zero and fget() would fail.
713 * The only hit might come from ep_free() but by holding the mutex
714 * will correctly serialize the operation. We do need to acquire
715 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
716 * from anywhere but ep_free().
718 * Besides, ep_remove() acquires the lock, so we can't hold it here.
720 mutex_lock(&epmutex
);
722 while (!list_empty(lsthead
)) {
723 epi
= list_first_entry(lsthead
, struct epitem
, fllink
);
726 list_del_init(&epi
->fllink
);
727 mutex_lock(&ep
->mtx
);
729 mutex_unlock(&ep
->mtx
);
732 mutex_unlock(&epmutex
);
735 static int ep_alloc(struct eventpoll
**pep
)
738 struct user_struct
*user
;
739 struct eventpoll
*ep
;
741 user
= get_current_user();
743 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
747 spin_lock_init(&ep
->lock
);
748 mutex_init(&ep
->mtx
);
749 init_waitqueue_head(&ep
->wq
);
750 init_waitqueue_head(&ep
->poll_wait
);
751 INIT_LIST_HEAD(&ep
->rdllist
);
753 ep
->ovflist
= EP_UNACTIVE_PTR
;
766 * Search the file inside the eventpoll tree. The RB tree operations
767 * are protected by the "mtx" mutex, and ep_find() must be called with
770 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
774 struct epitem
*epi
, *epir
= NULL
;
775 struct epoll_filefd ffd
;
777 ep_set_ffd(&ffd
, file
, fd
);
778 for (rbp
= ep
->rbr
.rb_node
; rbp
; ) {
779 epi
= rb_entry(rbp
, struct epitem
, rbn
);
780 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
795 * This is the callback that is passed to the wait queue wakeup
796 * machanism. It is called by the stored file descriptors when they
797 * have events to report.
799 static int ep_poll_callback(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
803 struct epitem
*epi
= ep_item_from_wait(wait
);
804 struct eventpoll
*ep
= epi
->ep
;
806 spin_lock_irqsave(&ep
->lock
, flags
);
809 * If the event mask does not contain any poll(2) event, we consider the
810 * descriptor to be disabled. This condition is likely the effect of the
811 * EPOLLONESHOT bit that disables the descriptor when an event is received,
812 * until the next EPOLL_CTL_MOD will be issued.
814 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
818 * Check the events coming with the callback. At this stage, not
819 * every device reports the events in the "key" parameter of the
820 * callback. We need to be able to handle both cases here, hence the
821 * test for "key" != NULL before the event match test.
823 if (key
&& !((unsigned long) key
& epi
->event
.events
))
827 * If we are trasfering events to userspace, we can hold no locks
828 * (because we're accessing user memory, and because of linux f_op->poll()
829 * semantics). All the events that happens during that period of time are
830 * chained in ep->ovflist and requeued later on.
832 if (unlikely(ep
->ovflist
!= EP_UNACTIVE_PTR
)) {
833 if (epi
->next
== EP_UNACTIVE_PTR
) {
834 epi
->next
= ep
->ovflist
;
840 /* If this file is already in the ready list we exit soon */
841 if (!ep_is_linked(&epi
->rdllink
))
842 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
845 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
848 if (waitqueue_active(&ep
->wq
))
849 wake_up_locked(&ep
->wq
);
850 if (waitqueue_active(&ep
->poll_wait
))
854 spin_unlock_irqrestore(&ep
->lock
, flags
);
856 /* We have to call this outside the lock */
858 ep_poll_safewake(&ep
->poll_wait
);
864 * This is the callback that is used to add our wait queue to the
865 * target file wakeup lists.
867 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
870 struct epitem
*epi
= ep_item_from_epqueue(pt
);
871 struct eppoll_entry
*pwq
;
873 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
874 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
877 add_wait_queue(whead
, &pwq
->wait
);
878 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
881 /* We have to signal that an error occurred */
886 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
889 struct rb_node
**p
= &ep
->rbr
.rb_node
, *parent
= NULL
;
894 epic
= rb_entry(parent
, struct epitem
, rbn
);
895 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
897 p
= &parent
->rb_right
;
899 p
= &parent
->rb_left
;
901 rb_link_node(&epi
->rbn
, parent
, p
);
902 rb_insert_color(&epi
->rbn
, &ep
->rbr
);
906 * Must be called with "mtx" held.
908 static int ep_insert(struct eventpoll
*ep
, struct epoll_event
*event
,
909 struct file
*tfile
, int fd
)
911 int error
, revents
, pwake
= 0;
914 struct ep_pqueue epq
;
916 if (unlikely(atomic_read(&ep
->user
->epoll_watches
) >=
919 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
922 /* Item initialization follow here ... */
923 INIT_LIST_HEAD(&epi
->rdllink
);
924 INIT_LIST_HEAD(&epi
->fllink
);
925 INIT_LIST_HEAD(&epi
->pwqlist
);
927 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
930 epi
->next
= EP_UNACTIVE_PTR
;
932 /* Initialize the poll table using the queue callback */
934 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
937 * Attach the item to the poll hooks and get current event bits.
938 * We can safely use the file* here because its usage count has
939 * been increased by the caller of this function. Note that after
940 * this operation completes, the poll callback can start hitting
943 revents
= tfile
->f_op
->poll(tfile
, &epq
.pt
);
946 * We have to check if something went wrong during the poll wait queue
947 * install process. Namely an allocation for a wait queue failed due
948 * high memory pressure.
952 goto error_unregister
;
954 /* Add the current item to the list of active epoll hook for this file */
955 spin_lock(&tfile
->f_lock
);
956 list_add_tail(&epi
->fllink
, &tfile
->f_ep_links
);
957 spin_unlock(&tfile
->f_lock
);
960 * Add the current item to the RB tree. All RB tree operations are
961 * protected by "mtx", and ep_insert() is called with "mtx" held.
963 ep_rbtree_insert(ep
, epi
);
965 /* We have to drop the new item inside our item list to keep track of it */
966 spin_lock_irqsave(&ep
->lock
, flags
);
968 /* If the file is already "ready" we drop it inside the ready list */
969 if ((revents
& event
->events
) && !ep_is_linked(&epi
->rdllink
)) {
970 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
972 /* Notify waiting tasks that events are available */
973 if (waitqueue_active(&ep
->wq
))
974 wake_up_locked(&ep
->wq
);
975 if (waitqueue_active(&ep
->poll_wait
))
979 spin_unlock_irqrestore(&ep
->lock
, flags
);
981 atomic_inc(&ep
->user
->epoll_watches
);
983 /* We have to call this outside the lock */
985 ep_poll_safewake(&ep
->poll_wait
);
990 ep_unregister_pollwait(ep
, epi
);
993 * We need to do this because an event could have been arrived on some
994 * allocated wait queue. Note that we don't care about the ep->ovflist
995 * list, since that is used/cleaned only inside a section bound by "mtx".
996 * And ep_insert() is called with "mtx" held.
998 spin_lock_irqsave(&ep
->lock
, flags
);
999 if (ep_is_linked(&epi
->rdllink
))
1000 list_del_init(&epi
->rdllink
);
1001 spin_unlock_irqrestore(&ep
->lock
, flags
);
1003 kmem_cache_free(epi_cache
, epi
);
1009 * Modify the interest event mask by dropping an event if the new mask
1010 * has a match in the current file status. Must be called with "mtx" held.
1012 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
, struct epoll_event
*event
)
1015 unsigned int revents
;
1018 * Set the new event interest mask before calling f_op->poll();
1019 * otherwise we might miss an event that happens between the
1020 * f_op->poll() call and the new event set registering.
1022 epi
->event
.events
= event
->events
;
1023 epi
->event
.data
= event
->data
; /* protected by mtx */
1026 * Get current event bits. We can safely use the file* here because
1027 * its usage count has been increased by the caller of this function.
1029 revents
= epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, NULL
);
1032 * If the item is "hot" and it is not registered inside the ready
1033 * list, push it inside.
1035 if (revents
& event
->events
) {
1036 spin_lock_irq(&ep
->lock
);
1037 if (!ep_is_linked(&epi
->rdllink
)) {
1038 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1040 /* Notify waiting tasks that events are available */
1041 if (waitqueue_active(&ep
->wq
))
1042 wake_up_locked(&ep
->wq
);
1043 if (waitqueue_active(&ep
->poll_wait
))
1046 spin_unlock_irq(&ep
->lock
);
1049 /* We have to call this outside the lock */
1051 ep_poll_safewake(&ep
->poll_wait
);
1056 static int ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1059 struct ep_send_events_data
*esed
= priv
;
1061 unsigned int revents
;
1063 struct epoll_event __user
*uevent
;
1066 * We can loop without lock because we are passed a task private list.
1067 * Items cannot vanish during the loop because ep_scan_ready_list() is
1068 * holding "mtx" during this call.
1070 for (eventcnt
= 0, uevent
= esed
->events
;
1071 !list_empty(head
) && eventcnt
< esed
->maxevents
;) {
1072 epi
= list_first_entry(head
, struct epitem
, rdllink
);
1074 list_del_init(&epi
->rdllink
);
1076 revents
= epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, NULL
) &
1080 * If the event mask intersect the caller-requested one,
1081 * deliver the event to userspace. Again, ep_scan_ready_list()
1082 * is holding "mtx", so no operations coming from userspace
1083 * can change the item.
1086 if (__put_user(revents
, &uevent
->events
) ||
1087 __put_user(epi
->event
.data
, &uevent
->data
)) {
1088 list_add(&epi
->rdllink
, head
);
1089 return eventcnt
? eventcnt
: -EFAULT
;
1093 if (epi
->event
.events
& EPOLLONESHOT
)
1094 epi
->event
.events
&= EP_PRIVATE_BITS
;
1095 else if (!(epi
->event
.events
& EPOLLET
)) {
1097 * If this file has been added with Level
1098 * Trigger mode, we need to insert back inside
1099 * the ready list, so that the next call to
1100 * epoll_wait() will check again the events
1101 * availability. At this point, noone can insert
1102 * into ep->rdllist besides us. The epoll_ctl()
1103 * callers are locked out by
1104 * ep_scan_ready_list() holding "mtx" and the
1105 * poll callback will queue them in ep->ovflist.
1107 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1115 static int ep_send_events(struct eventpoll
*ep
,
1116 struct epoll_event __user
*events
, int maxevents
)
1118 struct ep_send_events_data esed
;
1120 esed
.maxevents
= maxevents
;
1121 esed
.events
= events
;
1123 return ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
);
1126 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1127 int maxevents
, long timeout
)
1130 unsigned long flags
;
1135 * Calculate the timeout by checking for the "infinite" value (-1)
1136 * and the overflow condition. The passed timeout is in milliseconds,
1137 * that why (t * HZ) / 1000.
1139 jtimeout
= (timeout
< 0 || timeout
>= EP_MAX_MSTIMEO
) ?
1140 MAX_SCHEDULE_TIMEOUT
: (timeout
* HZ
+ 999) / 1000;
1143 spin_lock_irqsave(&ep
->lock
, flags
);
1146 if (list_empty(&ep
->rdllist
)) {
1148 * We don't have any available event to return to the caller.
1149 * We need to sleep here, and we will be wake up by
1150 * ep_poll_callback() when events will become available.
1152 init_waitqueue_entry(&wait
, current
);
1153 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
1154 __add_wait_queue(&ep
->wq
, &wait
);
1158 * We don't want to sleep if the ep_poll_callback() sends us
1159 * a wakeup in between. That's why we set the task state
1160 * to TASK_INTERRUPTIBLE before doing the checks.
1162 set_current_state(TASK_INTERRUPTIBLE
);
1163 if (!list_empty(&ep
->rdllist
) || !jtimeout
)
1165 if (signal_pending(current
)) {
1170 spin_unlock_irqrestore(&ep
->lock
, flags
);
1171 jtimeout
= schedule_timeout(jtimeout
);
1172 spin_lock_irqsave(&ep
->lock
, flags
);
1174 __remove_wait_queue(&ep
->wq
, &wait
);
1176 set_current_state(TASK_RUNNING
);
1178 /* Is it worth to try to dig for events ? */
1179 eavail
= !list_empty(&ep
->rdllist
) || ep
->ovflist
!= EP_UNACTIVE_PTR
;
1181 spin_unlock_irqrestore(&ep
->lock
, flags
);
1184 * Try to transfer events to user space. In case we get 0 events and
1185 * there's still timeout left over, we go trying again in search of
1188 if (!res
&& eavail
&&
1189 !(res
= ep_send_events(ep
, events
, maxevents
)) && jtimeout
)
1196 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1197 * API, to verify that adding an epoll file inside another
1198 * epoll structure, does not violate the constraints, in
1199 * terms of closed loops, or too deep chains (which can
1200 * result in excessive stack usage).
1202 * @priv: Pointer to the epoll file to be currently checked.
1203 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1204 * data structure pointer.
1205 * @call_nests: Current dept of the @ep_call_nested() call stack.
1207 * Returns: Returns zero if adding the epoll @file inside current epoll
1208 * structure @ep does not violate the constraints, or -1 otherwise.
1210 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1213 struct file
*file
= priv
;
1214 struct eventpoll
*ep
= file
->private_data
;
1215 struct rb_node
*rbp
;
1218 mutex_lock(&ep
->mtx
);
1219 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1220 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1221 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1222 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1223 ep_loop_check_proc
, epi
->ffd
.file
,
1224 epi
->ffd
.file
->private_data
, current
);
1229 mutex_unlock(&ep
->mtx
);
1235 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1236 * another epoll file (represented by @ep) does not create
1237 * closed loops or too deep chains.
1239 * @ep: Pointer to the epoll private data structure.
1240 * @file: Pointer to the epoll file to be checked.
1242 * Returns: Returns zero if adding the epoll @file inside current epoll
1243 * structure @ep does not violate the constraints, or -1 otherwise.
1245 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1247 return ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1248 ep_loop_check_proc
, file
, ep
, current
);
1252 * Open an eventpoll file descriptor.
1254 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
1257 struct eventpoll
*ep
= NULL
;
1259 /* Check the EPOLL_* constant for consistency. */
1260 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
1262 if (flags
& ~EPOLL_CLOEXEC
)
1265 * Create the internal data structure ("struct eventpoll").
1267 error
= ep_alloc(&ep
);
1271 * Creates all the items needed to setup an eventpoll file. That is,
1272 * a file structure and a free file descriptor.
1274 error
= anon_inode_getfd("[eventpoll]", &eventpoll_fops
, ep
,
1275 O_RDWR
| (flags
& O_CLOEXEC
));
1282 SYSCALL_DEFINE1(epoll_create
, int, size
)
1287 return sys_epoll_create1(0);
1291 * The following function implements the controller interface for
1292 * the eventpoll file that enables the insertion/removal/change of
1293 * file descriptors inside the interest set.
1295 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
1296 struct epoll_event __user
*, event
)
1299 int did_lock_epmutex
= 0;
1300 struct file
*file
, *tfile
;
1301 struct eventpoll
*ep
;
1303 struct epoll_event epds
;
1306 if (ep_op_has_event(op
) &&
1307 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
1310 /* Get the "struct file *" for the eventpoll file */
1316 /* Get the "struct file *" for the target file */
1321 /* The target file descriptor must support poll */
1323 if (!tfile
->f_op
|| !tfile
->f_op
->poll
)
1324 goto error_tgt_fput
;
1327 * We have to check that the file structure underneath the file descriptor
1328 * the user passed to us _is_ an eventpoll file. And also we do not permit
1329 * adding an epoll file descriptor inside itself.
1332 if (file
== tfile
|| !is_file_epoll(file
))
1333 goto error_tgt_fput
;
1336 * At this point it is safe to assume that the "private_data" contains
1337 * our own data structure.
1339 ep
= file
->private_data
;
1342 * When we insert an epoll file descriptor, inside another epoll file
1343 * descriptor, there is the change of creating closed loops, which are
1344 * better be handled here, than in more critical paths.
1346 * We hold epmutex across the loop check and the insert in this case, in
1347 * order to prevent two separate inserts from racing and each doing the
1348 * insert "at the same time" such that ep_loop_check passes on both
1349 * before either one does the insert, thereby creating a cycle.
1351 if (unlikely(is_file_epoll(tfile
) && op
== EPOLL_CTL_ADD
)) {
1352 mutex_lock(&epmutex
);
1353 did_lock_epmutex
= 1;
1355 if (ep_loop_check(ep
, tfile
) != 0)
1356 goto error_tgt_fput
;
1360 mutex_lock(&ep
->mtx
);
1363 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1364 * above, we can be sure to be able to use the item looked up by
1365 * ep_find() till we release the mutex.
1367 epi
= ep_find(ep
, tfile
, fd
);
1373 epds
.events
|= POLLERR
| POLLHUP
;
1374 error
= ep_insert(ep
, &epds
, tfile
, fd
);
1380 error
= ep_remove(ep
, epi
);
1386 epds
.events
|= POLLERR
| POLLHUP
;
1387 error
= ep_modify(ep
, epi
, &epds
);
1392 mutex_unlock(&ep
->mtx
);
1395 if (unlikely(did_lock_epmutex
))
1396 mutex_unlock(&epmutex
);
1407 * Implement the event wait interface for the eventpoll file. It is the kernel
1408 * part of the user space epoll_wait(2).
1410 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
1411 int, maxevents
, int, timeout
)
1415 struct eventpoll
*ep
;
1417 /* The maximum number of event must be greater than zero */
1418 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
1421 /* Verify that the area passed by the user is writeable */
1422 if (!access_ok(VERIFY_WRITE
, events
, maxevents
* sizeof(struct epoll_event
))) {
1427 /* Get the "struct file *" for the eventpoll file */
1434 * We have to check that the file structure underneath the fd
1435 * the user passed to us _is_ an eventpoll file.
1438 if (!is_file_epoll(file
))
1442 * At this point it is safe to assume that the "private_data" contains
1443 * our own data structure.
1445 ep
= file
->private_data
;
1447 /* Time to fish for events ... */
1448 error
= ep_poll(ep
, events
, maxevents
, timeout
);
1457 #ifdef HAVE_SET_RESTORE_SIGMASK
1460 * Implement the event wait interface for the eventpoll file. It is the kernel
1461 * part of the user space epoll_pwait(2).
1463 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
1464 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
1468 sigset_t ksigmask
, sigsaved
;
1471 * If the caller wants a certain signal mask to be set during the wait,
1475 if (sigsetsize
!= sizeof(sigset_t
))
1477 if (copy_from_user(&ksigmask
, sigmask
, sizeof(ksigmask
)))
1479 sigdelsetmask(&ksigmask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
1480 sigprocmask(SIG_SETMASK
, &ksigmask
, &sigsaved
);
1483 error
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
1486 * If we changed the signal mask, we need to restore the original one.
1487 * In case we've got a signal while waiting, we do not restore the
1488 * signal mask yet, and we allow do_signal() to deliver the signal on
1489 * the way back to userspace, before the signal mask is restored.
1492 if (error
== -EINTR
) {
1493 memcpy(¤t
->saved_sigmask
, &sigsaved
,
1495 set_restore_sigmask();
1497 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
1503 #endif /* HAVE_SET_RESTORE_SIGMASK */
1505 static int __init
eventpoll_init(void)
1511 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1513 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
1517 * Initialize the structure used to perform epoll file descriptor
1518 * inclusion loops checks.
1520 ep_nested_calls_init(&poll_loop_ncalls
);
1522 /* Initialize the structure used to perform safe poll wait head wake ups */
1523 ep_nested_calls_init(&poll_safewake_ncalls
);
1525 /* Initialize the structure used to perform file's f_op->poll() calls */
1526 ep_nested_calls_init(&poll_readywalk_ncalls
);
1528 /* Allocates slab cache used to allocate "struct epitem" items */
1529 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
1530 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
1532 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1533 pwq_cache
= kmem_cache_create("eventpoll_pwq",
1534 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
, NULL
);
1538 fs_initcall(eventpoll_init
);