2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
28 static u64
entry_end(struct btrfs_ordered_extent
*entry
)
30 if (entry
->file_offset
+ entry
->len
< entry
->file_offset
)
32 return entry
->file_offset
+ entry
->len
;
35 /* returns NULL if the insertion worked, or it returns the node it did find
38 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 file_offset
,
41 struct rb_node
**p
= &root
->rb_node
;
42 struct rb_node
*parent
= NULL
;
43 struct btrfs_ordered_extent
*entry
;
47 entry
= rb_entry(parent
, struct btrfs_ordered_extent
, rb_node
);
49 if (file_offset
< entry
->file_offset
)
51 else if (file_offset
>= entry_end(entry
))
57 rb_link_node(node
, parent
, p
);
58 rb_insert_color(node
, root
);
63 * look for a given offset in the tree, and if it can't be found return the
66 static struct rb_node
*__tree_search(struct rb_root
*root
, u64 file_offset
,
67 struct rb_node
**prev_ret
)
69 struct rb_node
*n
= root
->rb_node
;
70 struct rb_node
*prev
= NULL
;
72 struct btrfs_ordered_extent
*entry
;
73 struct btrfs_ordered_extent
*prev_entry
= NULL
;
76 entry
= rb_entry(n
, struct btrfs_ordered_extent
, rb_node
);
80 if (file_offset
< entry
->file_offset
)
82 else if (file_offset
>= entry_end(entry
))
90 while (prev
&& file_offset
>= entry_end(prev_entry
)) {
94 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
96 if (file_offset
< entry_end(prev_entry
))
102 prev_entry
= rb_entry(prev
, struct btrfs_ordered_extent
,
104 while (prev
&& file_offset
< entry_end(prev_entry
)) {
105 test
= rb_prev(prev
);
108 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
117 * helper to check if a given offset is inside a given entry
119 static int offset_in_entry(struct btrfs_ordered_extent
*entry
, u64 file_offset
)
121 if (file_offset
< entry
->file_offset
||
122 entry
->file_offset
+ entry
->len
<= file_offset
)
127 static int range_overlaps(struct btrfs_ordered_extent
*entry
, u64 file_offset
,
130 if (file_offset
+ len
<= entry
->file_offset
||
131 entry
->file_offset
+ entry
->len
<= file_offset
)
137 * look find the first ordered struct that has this offset, otherwise
138 * the first one less than this offset
140 static inline struct rb_node
*tree_search(struct btrfs_ordered_inode_tree
*tree
,
143 struct rb_root
*root
= &tree
->tree
;
144 struct rb_node
*prev
;
146 struct btrfs_ordered_extent
*entry
;
149 entry
= rb_entry(tree
->last
, struct btrfs_ordered_extent
,
151 if (offset_in_entry(entry
, file_offset
))
154 ret
= __tree_search(root
, file_offset
, &prev
);
162 /* allocate and add a new ordered_extent into the per-inode tree.
163 * file_offset is the logical offset in the file
165 * start is the disk block number of an extent already reserved in the
166 * extent allocation tree
168 * len is the length of the extent
170 * The tree is given a single reference on the ordered extent that was
173 static int __btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
174 u64 start
, u64 len
, u64 disk_len
,
177 struct btrfs_ordered_inode_tree
*tree
;
178 struct rb_node
*node
;
179 struct btrfs_ordered_extent
*entry
;
181 tree
= &BTRFS_I(inode
)->ordered_tree
;
182 entry
= kzalloc(sizeof(*entry
), GFP_NOFS
);
186 entry
->file_offset
= file_offset
;
187 entry
->start
= start
;
189 entry
->disk_len
= disk_len
;
190 entry
->bytes_left
= len
;
191 entry
->inode
= inode
;
192 if (type
!= BTRFS_ORDERED_IO_DONE
&& type
!= BTRFS_ORDERED_COMPLETE
)
193 set_bit(type
, &entry
->flags
);
196 set_bit(BTRFS_ORDERED_DIRECT
, &entry
->flags
);
198 /* one ref for the tree */
199 atomic_set(&entry
->refs
, 1);
200 init_waitqueue_head(&entry
->wait
);
201 INIT_LIST_HEAD(&entry
->list
);
202 INIT_LIST_HEAD(&entry
->root_extent_list
);
204 spin_lock(&tree
->lock
);
205 node
= tree_insert(&tree
->tree
, file_offset
,
208 spin_unlock(&tree
->lock
);
210 spin_lock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
211 list_add_tail(&entry
->root_extent_list
,
212 &BTRFS_I(inode
)->root
->fs_info
->ordered_extents
);
213 spin_unlock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
219 int btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
220 u64 start
, u64 len
, u64 disk_len
, int type
)
222 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
226 int btrfs_add_ordered_extent_dio(struct inode
*inode
, u64 file_offset
,
227 u64 start
, u64 len
, u64 disk_len
, int type
)
229 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
234 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
235 * when an ordered extent is finished. If the list covers more than one
236 * ordered extent, it is split across multiples.
238 int btrfs_add_ordered_sum(struct inode
*inode
,
239 struct btrfs_ordered_extent
*entry
,
240 struct btrfs_ordered_sum
*sum
)
242 struct btrfs_ordered_inode_tree
*tree
;
244 tree
= &BTRFS_I(inode
)->ordered_tree
;
245 spin_lock(&tree
->lock
);
246 list_add_tail(&sum
->list
, &entry
->list
);
247 spin_unlock(&tree
->lock
);
252 * this is used to account for finished IO across a given range
253 * of the file. The IO should not span ordered extents. If
254 * a given ordered_extent is completely done, 1 is returned, otherwise
257 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
258 * to make sure this function only returns 1 once for a given ordered extent.
260 int btrfs_dec_test_ordered_pending(struct inode
*inode
,
261 struct btrfs_ordered_extent
**cached
,
262 u64 file_offset
, u64 io_size
)
264 struct btrfs_ordered_inode_tree
*tree
;
265 struct rb_node
*node
;
266 struct btrfs_ordered_extent
*entry
= NULL
;
269 tree
= &BTRFS_I(inode
)->ordered_tree
;
270 spin_lock(&tree
->lock
);
271 node
= tree_search(tree
, file_offset
);
277 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
278 if (!offset_in_entry(entry
, file_offset
)) {
283 if (io_size
> entry
->bytes_left
) {
284 printk(KERN_CRIT
"bad ordered accounting left %llu size %llu\n",
285 (unsigned long long)entry
->bytes_left
,
286 (unsigned long long)io_size
);
288 entry
->bytes_left
-= io_size
;
289 if (entry
->bytes_left
== 0)
290 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
294 if (!ret
&& cached
&& entry
) {
296 atomic_inc(&entry
->refs
);
298 spin_unlock(&tree
->lock
);
303 * used to drop a reference on an ordered extent. This will free
304 * the extent if the last reference is dropped
306 int btrfs_put_ordered_extent(struct btrfs_ordered_extent
*entry
)
308 struct list_head
*cur
;
309 struct btrfs_ordered_sum
*sum
;
311 if (atomic_dec_and_test(&entry
->refs
)) {
312 while (!list_empty(&entry
->list
)) {
313 cur
= entry
->list
.next
;
314 sum
= list_entry(cur
, struct btrfs_ordered_sum
, list
);
315 list_del(&sum
->list
);
324 * remove an ordered extent from the tree. No references are dropped
325 * and you must wake_up entry->wait. You must hold the tree lock
326 * while you call this function.
328 static int __btrfs_remove_ordered_extent(struct inode
*inode
,
329 struct btrfs_ordered_extent
*entry
)
331 struct btrfs_ordered_inode_tree
*tree
;
332 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
333 struct rb_node
*node
;
335 tree
= &BTRFS_I(inode
)->ordered_tree
;
336 node
= &entry
->rb_node
;
337 rb_erase(node
, &tree
->tree
);
339 set_bit(BTRFS_ORDERED_COMPLETE
, &entry
->flags
);
341 spin_lock(&root
->fs_info
->ordered_extent_lock
);
342 list_del_init(&entry
->root_extent_list
);
345 * we have no more ordered extents for this inode and
346 * no dirty pages. We can safely remove it from the
347 * list of ordered extents
349 if (RB_EMPTY_ROOT(&tree
->tree
) &&
350 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
351 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
353 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
359 * remove an ordered extent from the tree. No references are dropped
360 * but any waiters are woken.
362 int btrfs_remove_ordered_extent(struct inode
*inode
,
363 struct btrfs_ordered_extent
*entry
)
365 struct btrfs_ordered_inode_tree
*tree
;
368 tree
= &BTRFS_I(inode
)->ordered_tree
;
369 spin_lock(&tree
->lock
);
370 ret
= __btrfs_remove_ordered_extent(inode
, entry
);
371 spin_unlock(&tree
->lock
);
372 wake_up(&entry
->wait
);
378 * wait for all the ordered extents in a root. This is done when balancing
379 * space between drives.
381 int btrfs_wait_ordered_extents(struct btrfs_root
*root
,
382 int nocow_only
, int delay_iput
)
384 struct list_head splice
;
385 struct list_head
*cur
;
386 struct btrfs_ordered_extent
*ordered
;
389 INIT_LIST_HEAD(&splice
);
391 spin_lock(&root
->fs_info
->ordered_extent_lock
);
392 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
393 while (!list_empty(&splice
)) {
395 ordered
= list_entry(cur
, struct btrfs_ordered_extent
,
398 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
) &&
399 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
400 list_move(&ordered
->root_extent_list
,
401 &root
->fs_info
->ordered_extents
);
402 cond_resched_lock(&root
->fs_info
->ordered_extent_lock
);
406 list_del_init(&ordered
->root_extent_list
);
407 atomic_inc(&ordered
->refs
);
410 * the inode may be getting freed (in sys_unlink path).
412 inode
= igrab(ordered
->inode
);
414 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
417 btrfs_start_ordered_extent(inode
, ordered
, 1);
418 btrfs_put_ordered_extent(ordered
);
420 btrfs_add_delayed_iput(inode
);
424 btrfs_put_ordered_extent(ordered
);
427 spin_lock(&root
->fs_info
->ordered_extent_lock
);
429 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
434 * this is used during transaction commit to write all the inodes
435 * added to the ordered operation list. These files must be fully on
436 * disk before the transaction commits.
438 * we have two modes here, one is to just start the IO via filemap_flush
439 * and the other is to wait for all the io. When we wait, we have an
440 * extra check to make sure the ordered operation list really is empty
443 int btrfs_run_ordered_operations(struct btrfs_root
*root
, int wait
)
445 struct btrfs_inode
*btrfs_inode
;
447 struct list_head splice
;
449 INIT_LIST_HEAD(&splice
);
451 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
452 spin_lock(&root
->fs_info
->ordered_extent_lock
);
454 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
456 while (!list_empty(&splice
)) {
457 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
460 inode
= &btrfs_inode
->vfs_inode
;
462 list_del_init(&btrfs_inode
->ordered_operations
);
465 * the inode may be getting freed (in sys_unlink path).
467 inode
= igrab(inode
);
469 if (!wait
&& inode
) {
470 list_add_tail(&BTRFS_I(inode
)->ordered_operations
,
471 &root
->fs_info
->ordered_operations
);
473 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
477 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
479 filemap_flush(inode
->i_mapping
);
480 btrfs_add_delayed_iput(inode
);
484 spin_lock(&root
->fs_info
->ordered_extent_lock
);
486 if (wait
&& !list_empty(&root
->fs_info
->ordered_operations
))
489 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
490 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
496 * Used to start IO or wait for a given ordered extent to finish.
498 * If wait is one, this effectively waits on page writeback for all the pages
499 * in the extent, and it waits on the io completion code to insert
500 * metadata into the btree corresponding to the extent
502 void btrfs_start_ordered_extent(struct inode
*inode
,
503 struct btrfs_ordered_extent
*entry
,
506 u64 start
= entry
->file_offset
;
507 u64 end
= start
+ entry
->len
- 1;
510 * pages in the range can be dirty, clean or writeback. We
511 * start IO on any dirty ones so the wait doesn't stall waiting
512 * for pdflush to find them
514 if (!test_bit(BTRFS_ORDERED_DIRECT
, &entry
->flags
))
515 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
517 wait_event(entry
->wait
, test_bit(BTRFS_ORDERED_COMPLETE
,
523 * Used to wait on ordered extents across a large range of bytes.
525 int btrfs_wait_ordered_range(struct inode
*inode
, u64 start
, u64 len
)
530 struct btrfs_ordered_extent
*ordered
;
533 if (start
+ len
< start
) {
534 orig_end
= INT_LIMIT(loff_t
);
536 orig_end
= start
+ len
- 1;
537 if (orig_end
> INT_LIMIT(loff_t
))
538 orig_end
= INT_LIMIT(loff_t
);
542 /* start IO across the range first to instantiate any delalloc
545 filemap_fdatawrite_range(inode
->i_mapping
, start
, orig_end
);
547 /* The compression code will leave pages locked but return from
548 * writepage without setting the page writeback. Starting again
549 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
551 filemap_fdatawrite_range(inode
->i_mapping
, start
, orig_end
);
553 filemap_fdatawait_range(inode
->i_mapping
, start
, orig_end
);
558 ordered
= btrfs_lookup_first_ordered_extent(inode
, end
);
561 if (ordered
->file_offset
> orig_end
) {
562 btrfs_put_ordered_extent(ordered
);
565 if (ordered
->file_offset
+ ordered
->len
< start
) {
566 btrfs_put_ordered_extent(ordered
);
570 btrfs_start_ordered_extent(inode
, ordered
, 1);
571 end
= ordered
->file_offset
;
572 btrfs_put_ordered_extent(ordered
);
573 if (end
== 0 || end
== start
)
577 if (found
|| test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, orig_end
,
578 EXTENT_DELALLOC
, 0, NULL
)) {
586 * find an ordered extent corresponding to file_offset. return NULL if
587 * nothing is found, otherwise take a reference on the extent and return it
589 struct btrfs_ordered_extent
*btrfs_lookup_ordered_extent(struct inode
*inode
,
592 struct btrfs_ordered_inode_tree
*tree
;
593 struct rb_node
*node
;
594 struct btrfs_ordered_extent
*entry
= NULL
;
596 tree
= &BTRFS_I(inode
)->ordered_tree
;
597 spin_lock(&tree
->lock
);
598 node
= tree_search(tree
, file_offset
);
602 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
603 if (!offset_in_entry(entry
, file_offset
))
606 atomic_inc(&entry
->refs
);
608 spin_unlock(&tree
->lock
);
612 /* Since the DIO code tries to lock a wide area we need to look for any ordered
613 * extents that exist in the range, rather than just the start of the range.
615 struct btrfs_ordered_extent
*btrfs_lookup_ordered_range(struct inode
*inode
,
619 struct btrfs_ordered_inode_tree
*tree
;
620 struct rb_node
*node
;
621 struct btrfs_ordered_extent
*entry
= NULL
;
623 tree
= &BTRFS_I(inode
)->ordered_tree
;
624 spin_lock(&tree
->lock
);
625 node
= tree_search(tree
, file_offset
);
627 node
= tree_search(tree
, file_offset
+ len
);
633 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
634 if (range_overlaps(entry
, file_offset
, len
))
637 if (entry
->file_offset
>= file_offset
+ len
) {
642 node
= rb_next(node
);
648 atomic_inc(&entry
->refs
);
649 spin_unlock(&tree
->lock
);
654 * lookup and return any extent before 'file_offset'. NULL is returned
657 struct btrfs_ordered_extent
*
658 btrfs_lookup_first_ordered_extent(struct inode
*inode
, u64 file_offset
)
660 struct btrfs_ordered_inode_tree
*tree
;
661 struct rb_node
*node
;
662 struct btrfs_ordered_extent
*entry
= NULL
;
664 tree
= &BTRFS_I(inode
)->ordered_tree
;
665 spin_lock(&tree
->lock
);
666 node
= tree_search(tree
, file_offset
);
670 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
671 atomic_inc(&entry
->refs
);
673 spin_unlock(&tree
->lock
);
678 * After an extent is done, call this to conditionally update the on disk
679 * i_size. i_size is updated to cover any fully written part of the file.
681 int btrfs_ordered_update_i_size(struct inode
*inode
, u64 offset
,
682 struct btrfs_ordered_extent
*ordered
)
684 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
685 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
689 u64 i_size
= i_size_read(inode
);
690 struct rb_node
*node
;
691 struct rb_node
*prev
= NULL
;
692 struct btrfs_ordered_extent
*test
;
696 offset
= entry_end(ordered
);
698 offset
= ALIGN(offset
, BTRFS_I(inode
)->root
->sectorsize
);
700 spin_lock(&tree
->lock
);
701 disk_i_size
= BTRFS_I(inode
)->disk_i_size
;
704 if (disk_i_size
> i_size
) {
705 BTRFS_I(inode
)->disk_i_size
= i_size
;
711 * if the disk i_size is already at the inode->i_size, or
712 * this ordered extent is inside the disk i_size, we're done
714 if (disk_i_size
== i_size
|| offset
<= disk_i_size
) {
719 * we can't update the disk_isize if there are delalloc bytes
720 * between disk_i_size and this ordered extent
722 if (test_range_bit(io_tree
, disk_i_size
, offset
- 1,
723 EXTENT_DELALLOC
, 0, NULL
)) {
727 * walk backward from this ordered extent to disk_i_size.
728 * if we find an ordered extent then we can't update disk i_size
732 node
= rb_prev(&ordered
->rb_node
);
734 prev
= tree_search(tree
, offset
);
736 * we insert file extents without involving ordered struct,
737 * so there should be no ordered struct cover this offset
740 test
= rb_entry(prev
, struct btrfs_ordered_extent
,
742 BUG_ON(offset_in_entry(test
, offset
));
747 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
748 if (test
->file_offset
+ test
->len
<= disk_i_size
)
750 if (test
->file_offset
>= i_size
)
752 if (test
->file_offset
>= disk_i_size
)
754 node
= rb_prev(node
);
756 new_i_size
= min_t(u64
, offset
, i_size
);
759 * at this point, we know we can safely update i_size to at least
760 * the offset from this ordered extent. But, we need to
761 * walk forward and see if ios from higher up in the file have
765 node
= rb_next(&ordered
->rb_node
);
768 node
= rb_next(prev
);
770 node
= rb_first(&tree
->tree
);
775 * do we have an area where IO might have finished
776 * between our ordered extent and the next one.
778 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
779 if (test
->file_offset
> offset
)
780 i_size_test
= test
->file_offset
;
782 i_size_test
= i_size
;
786 * i_size_test is the end of a region after this ordered
787 * extent where there are no ordered extents. As long as there
788 * are no delalloc bytes in this area, it is safe to update
789 * disk_i_size to the end of the region.
791 if (i_size_test
> offset
&&
792 !test_range_bit(io_tree
, offset
, i_size_test
- 1,
793 EXTENT_DELALLOC
, 0, NULL
)) {
794 new_i_size
= min_t(u64
, i_size_test
, i_size
);
796 BTRFS_I(inode
)->disk_i_size
= new_i_size
;
800 * we need to remove the ordered extent with the tree lock held
801 * so that other people calling this function don't find our fully
802 * processed ordered entry and skip updating the i_size
805 __btrfs_remove_ordered_extent(inode
, ordered
);
806 spin_unlock(&tree
->lock
);
808 wake_up(&ordered
->wait
);
813 * search the ordered extents for one corresponding to 'offset' and
814 * try to find a checksum. This is used because we allow pages to
815 * be reclaimed before their checksum is actually put into the btree
817 int btrfs_find_ordered_sum(struct inode
*inode
, u64 offset
, u64 disk_bytenr
,
820 struct btrfs_ordered_sum
*ordered_sum
;
821 struct btrfs_sector_sum
*sector_sums
;
822 struct btrfs_ordered_extent
*ordered
;
823 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
824 unsigned long num_sectors
;
826 u32 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
829 ordered
= btrfs_lookup_ordered_extent(inode
, offset
);
833 spin_lock(&tree
->lock
);
834 list_for_each_entry_reverse(ordered_sum
, &ordered
->list
, list
) {
835 if (disk_bytenr
>= ordered_sum
->bytenr
) {
836 num_sectors
= ordered_sum
->len
/ sectorsize
;
837 sector_sums
= ordered_sum
->sums
;
838 for (i
= 0; i
< num_sectors
; i
++) {
839 if (sector_sums
[i
].bytenr
== disk_bytenr
) {
840 *sum
= sector_sums
[i
].sum
;
848 spin_unlock(&tree
->lock
);
849 btrfs_put_ordered_extent(ordered
);
855 * add a given inode to the list of inodes that must be fully on
856 * disk before a transaction commit finishes.
858 * This basically gives us the ext3 style data=ordered mode, and it is mostly
859 * used to make sure renamed files are fully on disk.
861 * It is a noop if the inode is already fully on disk.
863 * If trans is not null, we'll do a friendly check for a transaction that
864 * is already flushing things and force the IO down ourselves.
866 int btrfs_add_ordered_operation(struct btrfs_trans_handle
*trans
,
867 struct btrfs_root
*root
,
872 last_mod
= max(BTRFS_I(inode
)->generation
, BTRFS_I(inode
)->last_trans
);
875 * if this file hasn't been changed since the last transaction
876 * commit, we can safely return without doing anything
878 if (last_mod
< root
->fs_info
->last_trans_committed
)
882 * the transaction is already committing. Just start the IO and
883 * don't bother with all of this list nonsense
885 if (trans
&& root
->fs_info
->running_transaction
->blocked
) {
886 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
890 spin_lock(&root
->fs_info
->ordered_extent_lock
);
891 if (list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
892 list_add_tail(&BTRFS_I(inode
)->ordered_operations
,
893 &root
->fs_info
->ordered_operations
);
895 spin_unlock(&root
->fs_info
->ordered_extent_lock
);