ath9k_hw: fix dual band assumption for XB113
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
blobb2536bd2b6b53b56d5c909bb7dd48bcca697d8f6
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
39 #include <asm/irq_regs.h>
41 enum event_type_t {
42 EVENT_FLEXIBLE = 0x1,
43 EVENT_PINNED = 0x2,
44 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
47 atomic_t perf_task_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
52 static LIST_HEAD(pmus);
53 static DEFINE_MUTEX(pmus_lock);
54 static struct srcu_struct pmus_srcu;
57 * perf event paranoia level:
58 * -1 - not paranoid at all
59 * 0 - disallow raw tracepoint access for unpriv
60 * 1 - disallow cpu events for unpriv
61 * 2 - disallow kernel profiling for unpriv
63 int sysctl_perf_event_paranoid __read_mostly = 1;
65 /* Minimum for 512 kiB + 1 user control page */
66 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
69 * max perf event sample rate
71 int sysctl_perf_event_sample_rate __read_mostly = 100000;
73 static atomic64_t perf_event_id;
75 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
76 enum event_type_t event_type);
78 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
79 enum event_type_t event_type);
81 void __weak perf_event_print_debug(void) { }
83 extern __weak const char *perf_pmu_name(void)
85 return "pmu";
88 static inline u64 perf_clock(void)
90 return local_clock();
93 void perf_pmu_disable(struct pmu *pmu)
95 int *count = this_cpu_ptr(pmu->pmu_disable_count);
96 if (!(*count)++)
97 pmu->pmu_disable(pmu);
100 void perf_pmu_enable(struct pmu *pmu)
102 int *count = this_cpu_ptr(pmu->pmu_disable_count);
103 if (!--(*count))
104 pmu->pmu_enable(pmu);
107 static DEFINE_PER_CPU(struct list_head, rotation_list);
110 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
111 * because they're strictly cpu affine and rotate_start is called with IRQs
112 * disabled, while rotate_context is called from IRQ context.
114 static void perf_pmu_rotate_start(struct pmu *pmu)
116 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
117 struct list_head *head = &__get_cpu_var(rotation_list);
119 WARN_ON(!irqs_disabled());
121 if (list_empty(&cpuctx->rotation_list))
122 list_add(&cpuctx->rotation_list, head);
125 static void get_ctx(struct perf_event_context *ctx)
127 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
130 static void free_ctx(struct rcu_head *head)
132 struct perf_event_context *ctx;
134 ctx = container_of(head, struct perf_event_context, rcu_head);
135 kfree(ctx);
138 static void put_ctx(struct perf_event_context *ctx)
140 if (atomic_dec_and_test(&ctx->refcount)) {
141 if (ctx->parent_ctx)
142 put_ctx(ctx->parent_ctx);
143 if (ctx->task)
144 put_task_struct(ctx->task);
145 call_rcu(&ctx->rcu_head, free_ctx);
149 static void unclone_ctx(struct perf_event_context *ctx)
151 if (ctx->parent_ctx) {
152 put_ctx(ctx->parent_ctx);
153 ctx->parent_ctx = NULL;
157 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
160 * only top level events have the pid namespace they were created in
162 if (event->parent)
163 event = event->parent;
165 return task_tgid_nr_ns(p, event->ns);
168 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
171 * only top level events have the pid namespace they were created in
173 if (event->parent)
174 event = event->parent;
176 return task_pid_nr_ns(p, event->ns);
180 * If we inherit events we want to return the parent event id
181 * to userspace.
183 static u64 primary_event_id(struct perf_event *event)
185 u64 id = event->id;
187 if (event->parent)
188 id = event->parent->id;
190 return id;
194 * Get the perf_event_context for a task and lock it.
195 * This has to cope with with the fact that until it is locked,
196 * the context could get moved to another task.
198 static struct perf_event_context *
199 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
201 struct perf_event_context *ctx;
203 rcu_read_lock();
204 retry:
205 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
206 if (ctx) {
208 * If this context is a clone of another, it might
209 * get swapped for another underneath us by
210 * perf_event_task_sched_out, though the
211 * rcu_read_lock() protects us from any context
212 * getting freed. Lock the context and check if it
213 * got swapped before we could get the lock, and retry
214 * if so. If we locked the right context, then it
215 * can't get swapped on us any more.
217 raw_spin_lock_irqsave(&ctx->lock, *flags);
218 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
219 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
220 goto retry;
223 if (!atomic_inc_not_zero(&ctx->refcount)) {
224 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
225 ctx = NULL;
228 rcu_read_unlock();
229 return ctx;
233 * Get the context for a task and increment its pin_count so it
234 * can't get swapped to another task. This also increments its
235 * reference count so that the context can't get freed.
237 static struct perf_event_context *
238 perf_pin_task_context(struct task_struct *task, int ctxn)
240 struct perf_event_context *ctx;
241 unsigned long flags;
243 ctx = perf_lock_task_context(task, ctxn, &flags);
244 if (ctx) {
245 ++ctx->pin_count;
246 raw_spin_unlock_irqrestore(&ctx->lock, flags);
248 return ctx;
251 static void perf_unpin_context(struct perf_event_context *ctx)
253 unsigned long flags;
255 raw_spin_lock_irqsave(&ctx->lock, flags);
256 --ctx->pin_count;
257 raw_spin_unlock_irqrestore(&ctx->lock, flags);
258 put_ctx(ctx);
262 * Update the record of the current time in a context.
264 static void update_context_time(struct perf_event_context *ctx)
266 u64 now = perf_clock();
268 ctx->time += now - ctx->timestamp;
269 ctx->timestamp = now;
272 static u64 perf_event_time(struct perf_event *event)
274 struct perf_event_context *ctx = event->ctx;
275 return ctx ? ctx->time : 0;
279 * Update the total_time_enabled and total_time_running fields for a event.
281 static void update_event_times(struct perf_event *event)
283 struct perf_event_context *ctx = event->ctx;
284 u64 run_end;
286 if (event->state < PERF_EVENT_STATE_INACTIVE ||
287 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
288 return;
290 if (ctx->is_active)
291 run_end = perf_event_time(event);
292 else
293 run_end = event->tstamp_stopped;
295 event->total_time_enabled = run_end - event->tstamp_enabled;
297 if (event->state == PERF_EVENT_STATE_INACTIVE)
298 run_end = event->tstamp_stopped;
299 else
300 run_end = perf_event_time(event);
302 event->total_time_running = run_end - event->tstamp_running;
306 * Update total_time_enabled and total_time_running for all events in a group.
308 static void update_group_times(struct perf_event *leader)
310 struct perf_event *event;
312 update_event_times(leader);
313 list_for_each_entry(event, &leader->sibling_list, group_entry)
314 update_event_times(event);
317 static struct list_head *
318 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
320 if (event->attr.pinned)
321 return &ctx->pinned_groups;
322 else
323 return &ctx->flexible_groups;
327 * Add a event from the lists for its context.
328 * Must be called with ctx->mutex and ctx->lock held.
330 static void
331 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
333 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
334 event->attach_state |= PERF_ATTACH_CONTEXT;
337 * If we're a stand alone event or group leader, we go to the context
338 * list, group events are kept attached to the group so that
339 * perf_group_detach can, at all times, locate all siblings.
341 if (event->group_leader == event) {
342 struct list_head *list;
344 if (is_software_event(event))
345 event->group_flags |= PERF_GROUP_SOFTWARE;
347 list = ctx_group_list(event, ctx);
348 list_add_tail(&event->group_entry, list);
351 list_add_rcu(&event->event_entry, &ctx->event_list);
352 if (!ctx->nr_events)
353 perf_pmu_rotate_start(ctx->pmu);
354 ctx->nr_events++;
355 if (event->attr.inherit_stat)
356 ctx->nr_stat++;
360 * Called at perf_event creation and when events are attached/detached from a
361 * group.
363 static void perf_event__read_size(struct perf_event *event)
365 int entry = sizeof(u64); /* value */
366 int size = 0;
367 int nr = 1;
369 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
370 size += sizeof(u64);
372 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
373 size += sizeof(u64);
375 if (event->attr.read_format & PERF_FORMAT_ID)
376 entry += sizeof(u64);
378 if (event->attr.read_format & PERF_FORMAT_GROUP) {
379 nr += event->group_leader->nr_siblings;
380 size += sizeof(u64);
383 size += entry * nr;
384 event->read_size = size;
387 static void perf_event__header_size(struct perf_event *event)
389 struct perf_sample_data *data;
390 u64 sample_type = event->attr.sample_type;
391 u16 size = 0;
393 perf_event__read_size(event);
395 if (sample_type & PERF_SAMPLE_IP)
396 size += sizeof(data->ip);
398 if (sample_type & PERF_SAMPLE_ADDR)
399 size += sizeof(data->addr);
401 if (sample_type & PERF_SAMPLE_PERIOD)
402 size += sizeof(data->period);
404 if (sample_type & PERF_SAMPLE_READ)
405 size += event->read_size;
407 event->header_size = size;
410 static void perf_event__id_header_size(struct perf_event *event)
412 struct perf_sample_data *data;
413 u64 sample_type = event->attr.sample_type;
414 u16 size = 0;
416 if (sample_type & PERF_SAMPLE_TID)
417 size += sizeof(data->tid_entry);
419 if (sample_type & PERF_SAMPLE_TIME)
420 size += sizeof(data->time);
422 if (sample_type & PERF_SAMPLE_ID)
423 size += sizeof(data->id);
425 if (sample_type & PERF_SAMPLE_STREAM_ID)
426 size += sizeof(data->stream_id);
428 if (sample_type & PERF_SAMPLE_CPU)
429 size += sizeof(data->cpu_entry);
431 event->id_header_size = size;
434 static void perf_group_attach(struct perf_event *event)
436 struct perf_event *group_leader = event->group_leader, *pos;
439 * We can have double attach due to group movement in perf_event_open.
441 if (event->attach_state & PERF_ATTACH_GROUP)
442 return;
444 event->attach_state |= PERF_ATTACH_GROUP;
446 if (group_leader == event)
447 return;
449 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
450 !is_software_event(event))
451 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
453 list_add_tail(&event->group_entry, &group_leader->sibling_list);
454 group_leader->nr_siblings++;
456 perf_event__header_size(group_leader);
458 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
459 perf_event__header_size(pos);
463 * Remove a event from the lists for its context.
464 * Must be called with ctx->mutex and ctx->lock held.
466 static void
467 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
470 * We can have double detach due to exit/hot-unplug + close.
472 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
473 return;
475 event->attach_state &= ~PERF_ATTACH_CONTEXT;
477 ctx->nr_events--;
478 if (event->attr.inherit_stat)
479 ctx->nr_stat--;
481 list_del_rcu(&event->event_entry);
483 if (event->group_leader == event)
484 list_del_init(&event->group_entry);
486 update_group_times(event);
489 * If event was in error state, then keep it
490 * that way, otherwise bogus counts will be
491 * returned on read(). The only way to get out
492 * of error state is by explicit re-enabling
493 * of the event
495 if (event->state > PERF_EVENT_STATE_OFF)
496 event->state = PERF_EVENT_STATE_OFF;
499 static void perf_group_detach(struct perf_event *event)
501 struct perf_event *sibling, *tmp;
502 struct list_head *list = NULL;
505 * We can have double detach due to exit/hot-unplug + close.
507 if (!(event->attach_state & PERF_ATTACH_GROUP))
508 return;
510 event->attach_state &= ~PERF_ATTACH_GROUP;
513 * If this is a sibling, remove it from its group.
515 if (event->group_leader != event) {
516 list_del_init(&event->group_entry);
517 event->group_leader->nr_siblings--;
518 goto out;
521 if (!list_empty(&event->group_entry))
522 list = &event->group_entry;
525 * If this was a group event with sibling events then
526 * upgrade the siblings to singleton events by adding them
527 * to whatever list we are on.
529 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
530 if (list)
531 list_move_tail(&sibling->group_entry, list);
532 sibling->group_leader = sibling;
534 /* Inherit group flags from the previous leader */
535 sibling->group_flags = event->group_flags;
538 out:
539 perf_event__header_size(event->group_leader);
541 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
542 perf_event__header_size(tmp);
545 static inline int
546 event_filter_match(struct perf_event *event)
548 return event->cpu == -1 || event->cpu == smp_processor_id();
551 static void
552 event_sched_out(struct perf_event *event,
553 struct perf_cpu_context *cpuctx,
554 struct perf_event_context *ctx)
556 u64 tstamp = perf_event_time(event);
557 u64 delta;
559 * An event which could not be activated because of
560 * filter mismatch still needs to have its timings
561 * maintained, otherwise bogus information is return
562 * via read() for time_enabled, time_running:
564 if (event->state == PERF_EVENT_STATE_INACTIVE
565 && !event_filter_match(event)) {
566 delta = ctx->time - event->tstamp_stopped;
567 event->tstamp_running += delta;
568 event->tstamp_stopped = tstamp;
571 if (event->state != PERF_EVENT_STATE_ACTIVE)
572 return;
574 event->state = PERF_EVENT_STATE_INACTIVE;
575 if (event->pending_disable) {
576 event->pending_disable = 0;
577 event->state = PERF_EVENT_STATE_OFF;
579 event->tstamp_stopped = tstamp;
580 event->pmu->del(event, 0);
581 event->oncpu = -1;
583 if (!is_software_event(event))
584 cpuctx->active_oncpu--;
585 ctx->nr_active--;
586 if (event->attr.exclusive || !cpuctx->active_oncpu)
587 cpuctx->exclusive = 0;
590 static void
591 group_sched_out(struct perf_event *group_event,
592 struct perf_cpu_context *cpuctx,
593 struct perf_event_context *ctx)
595 struct perf_event *event;
596 int state = group_event->state;
598 event_sched_out(group_event, cpuctx, ctx);
601 * Schedule out siblings (if any):
603 list_for_each_entry(event, &group_event->sibling_list, group_entry)
604 event_sched_out(event, cpuctx, ctx);
606 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
607 cpuctx->exclusive = 0;
610 static inline struct perf_cpu_context *
611 __get_cpu_context(struct perf_event_context *ctx)
613 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
617 * Cross CPU call to remove a performance event
619 * We disable the event on the hardware level first. After that we
620 * remove it from the context list.
622 static void __perf_event_remove_from_context(void *info)
624 struct perf_event *event = info;
625 struct perf_event_context *ctx = event->ctx;
626 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
629 * If this is a task context, we need to check whether it is
630 * the current task context of this cpu. If not it has been
631 * scheduled out before the smp call arrived.
633 if (ctx->task && cpuctx->task_ctx != ctx)
634 return;
636 raw_spin_lock(&ctx->lock);
638 event_sched_out(event, cpuctx, ctx);
640 list_del_event(event, ctx);
642 raw_spin_unlock(&ctx->lock);
647 * Remove the event from a task's (or a CPU's) list of events.
649 * Must be called with ctx->mutex held.
651 * CPU events are removed with a smp call. For task events we only
652 * call when the task is on a CPU.
654 * If event->ctx is a cloned context, callers must make sure that
655 * every task struct that event->ctx->task could possibly point to
656 * remains valid. This is OK when called from perf_release since
657 * that only calls us on the top-level context, which can't be a clone.
658 * When called from perf_event_exit_task, it's OK because the
659 * context has been detached from its task.
661 static void perf_event_remove_from_context(struct perf_event *event)
663 struct perf_event_context *ctx = event->ctx;
664 struct task_struct *task = ctx->task;
666 if (!task) {
668 * Per cpu events are removed via an smp call and
669 * the removal is always successful.
671 smp_call_function_single(event->cpu,
672 __perf_event_remove_from_context,
673 event, 1);
674 return;
677 retry:
678 task_oncpu_function_call(task, __perf_event_remove_from_context,
679 event);
681 raw_spin_lock_irq(&ctx->lock);
683 * If the context is active we need to retry the smp call.
685 if (ctx->nr_active && !list_empty(&event->group_entry)) {
686 raw_spin_unlock_irq(&ctx->lock);
687 goto retry;
691 * The lock prevents that this context is scheduled in so we
692 * can remove the event safely, if the call above did not
693 * succeed.
695 if (!list_empty(&event->group_entry))
696 list_del_event(event, ctx);
697 raw_spin_unlock_irq(&ctx->lock);
701 * Cross CPU call to disable a performance event
703 static void __perf_event_disable(void *info)
705 struct perf_event *event = info;
706 struct perf_event_context *ctx = event->ctx;
707 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
710 * If this is a per-task event, need to check whether this
711 * event's task is the current task on this cpu.
713 if (ctx->task && cpuctx->task_ctx != ctx)
714 return;
716 raw_spin_lock(&ctx->lock);
719 * If the event is on, turn it off.
720 * If it is in error state, leave it in error state.
722 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
723 update_context_time(ctx);
724 update_group_times(event);
725 if (event == event->group_leader)
726 group_sched_out(event, cpuctx, ctx);
727 else
728 event_sched_out(event, cpuctx, ctx);
729 event->state = PERF_EVENT_STATE_OFF;
732 raw_spin_unlock(&ctx->lock);
736 * Disable a event.
738 * If event->ctx is a cloned context, callers must make sure that
739 * every task struct that event->ctx->task could possibly point to
740 * remains valid. This condition is satisifed when called through
741 * perf_event_for_each_child or perf_event_for_each because they
742 * hold the top-level event's child_mutex, so any descendant that
743 * goes to exit will block in sync_child_event.
744 * When called from perf_pending_event it's OK because event->ctx
745 * is the current context on this CPU and preemption is disabled,
746 * hence we can't get into perf_event_task_sched_out for this context.
748 void perf_event_disable(struct perf_event *event)
750 struct perf_event_context *ctx = event->ctx;
751 struct task_struct *task = ctx->task;
753 if (!task) {
755 * Disable the event on the cpu that it's on
757 smp_call_function_single(event->cpu, __perf_event_disable,
758 event, 1);
759 return;
762 retry:
763 task_oncpu_function_call(task, __perf_event_disable, event);
765 raw_spin_lock_irq(&ctx->lock);
767 * If the event is still active, we need to retry the cross-call.
769 if (event->state == PERF_EVENT_STATE_ACTIVE) {
770 raw_spin_unlock_irq(&ctx->lock);
771 goto retry;
775 * Since we have the lock this context can't be scheduled
776 * in, so we can change the state safely.
778 if (event->state == PERF_EVENT_STATE_INACTIVE) {
779 update_group_times(event);
780 event->state = PERF_EVENT_STATE_OFF;
783 raw_spin_unlock_irq(&ctx->lock);
786 #define MAX_INTERRUPTS (~0ULL)
788 static void perf_log_throttle(struct perf_event *event, int enable);
790 static int
791 event_sched_in(struct perf_event *event,
792 struct perf_cpu_context *cpuctx,
793 struct perf_event_context *ctx)
795 u64 tstamp = perf_event_time(event);
797 if (event->state <= PERF_EVENT_STATE_OFF)
798 return 0;
800 event->state = PERF_EVENT_STATE_ACTIVE;
801 event->oncpu = smp_processor_id();
804 * Unthrottle events, since we scheduled we might have missed several
805 * ticks already, also for a heavily scheduling task there is little
806 * guarantee it'll get a tick in a timely manner.
808 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
809 perf_log_throttle(event, 1);
810 event->hw.interrupts = 0;
814 * The new state must be visible before we turn it on in the hardware:
816 smp_wmb();
818 if (event->pmu->add(event, PERF_EF_START)) {
819 event->state = PERF_EVENT_STATE_INACTIVE;
820 event->oncpu = -1;
821 return -EAGAIN;
824 event->tstamp_running += tstamp - event->tstamp_stopped;
826 event->shadow_ctx_time = tstamp - ctx->timestamp;
828 if (!is_software_event(event))
829 cpuctx->active_oncpu++;
830 ctx->nr_active++;
832 if (event->attr.exclusive)
833 cpuctx->exclusive = 1;
835 return 0;
838 static int
839 group_sched_in(struct perf_event *group_event,
840 struct perf_cpu_context *cpuctx,
841 struct perf_event_context *ctx)
843 struct perf_event *event, *partial_group = NULL;
844 struct pmu *pmu = group_event->pmu;
845 u64 now = ctx->time;
846 bool simulate = false;
848 if (group_event->state == PERF_EVENT_STATE_OFF)
849 return 0;
851 pmu->start_txn(pmu);
853 if (event_sched_in(group_event, cpuctx, ctx)) {
854 pmu->cancel_txn(pmu);
855 return -EAGAIN;
859 * Schedule in siblings as one group (if any):
861 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
862 if (event_sched_in(event, cpuctx, ctx)) {
863 partial_group = event;
864 goto group_error;
868 if (!pmu->commit_txn(pmu))
869 return 0;
871 group_error:
873 * Groups can be scheduled in as one unit only, so undo any
874 * partial group before returning:
875 * The events up to the failed event are scheduled out normally,
876 * tstamp_stopped will be updated.
878 * The failed events and the remaining siblings need to have
879 * their timings updated as if they had gone thru event_sched_in()
880 * and event_sched_out(). This is required to get consistent timings
881 * across the group. This also takes care of the case where the group
882 * could never be scheduled by ensuring tstamp_stopped is set to mark
883 * the time the event was actually stopped, such that time delta
884 * calculation in update_event_times() is correct.
886 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
887 if (event == partial_group)
888 simulate = true;
890 if (simulate) {
891 event->tstamp_running += now - event->tstamp_stopped;
892 event->tstamp_stopped = now;
893 } else {
894 event_sched_out(event, cpuctx, ctx);
897 event_sched_out(group_event, cpuctx, ctx);
899 pmu->cancel_txn(pmu);
901 return -EAGAIN;
905 * Work out whether we can put this event group on the CPU now.
907 static int group_can_go_on(struct perf_event *event,
908 struct perf_cpu_context *cpuctx,
909 int can_add_hw)
912 * Groups consisting entirely of software events can always go on.
914 if (event->group_flags & PERF_GROUP_SOFTWARE)
915 return 1;
917 * If an exclusive group is already on, no other hardware
918 * events can go on.
920 if (cpuctx->exclusive)
921 return 0;
923 * If this group is exclusive and there are already
924 * events on the CPU, it can't go on.
926 if (event->attr.exclusive && cpuctx->active_oncpu)
927 return 0;
929 * Otherwise, try to add it if all previous groups were able
930 * to go on.
932 return can_add_hw;
935 static void add_event_to_ctx(struct perf_event *event,
936 struct perf_event_context *ctx)
938 u64 tstamp = perf_event_time(event);
940 list_add_event(event, ctx);
941 perf_group_attach(event);
942 event->tstamp_enabled = tstamp;
943 event->tstamp_running = tstamp;
944 event->tstamp_stopped = tstamp;
948 * Cross CPU call to install and enable a performance event
950 * Must be called with ctx->mutex held
952 static void __perf_install_in_context(void *info)
954 struct perf_event *event = info;
955 struct perf_event_context *ctx = event->ctx;
956 struct perf_event *leader = event->group_leader;
957 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
958 int err;
961 * If this is a task context, we need to check whether it is
962 * the current task context of this cpu. If not it has been
963 * scheduled out before the smp call arrived.
964 * Or possibly this is the right context but it isn't
965 * on this cpu because it had no events.
967 if (ctx->task && cpuctx->task_ctx != ctx) {
968 if (cpuctx->task_ctx || ctx->task != current)
969 return;
970 cpuctx->task_ctx = ctx;
973 raw_spin_lock(&ctx->lock);
974 ctx->is_active = 1;
975 update_context_time(ctx);
977 add_event_to_ctx(event, ctx);
979 if (!event_filter_match(event))
980 goto unlock;
983 * Don't put the event on if it is disabled or if
984 * it is in a group and the group isn't on.
986 if (event->state != PERF_EVENT_STATE_INACTIVE ||
987 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
988 goto unlock;
991 * An exclusive event can't go on if there are already active
992 * hardware events, and no hardware event can go on if there
993 * is already an exclusive event on.
995 if (!group_can_go_on(event, cpuctx, 1))
996 err = -EEXIST;
997 else
998 err = event_sched_in(event, cpuctx, ctx);
1000 if (err) {
1002 * This event couldn't go on. If it is in a group
1003 * then we have to pull the whole group off.
1004 * If the event group is pinned then put it in error state.
1006 if (leader != event)
1007 group_sched_out(leader, cpuctx, ctx);
1008 if (leader->attr.pinned) {
1009 update_group_times(leader);
1010 leader->state = PERF_EVENT_STATE_ERROR;
1014 unlock:
1015 raw_spin_unlock(&ctx->lock);
1019 * Attach a performance event to a context
1021 * First we add the event to the list with the hardware enable bit
1022 * in event->hw_config cleared.
1024 * If the event is attached to a task which is on a CPU we use a smp
1025 * call to enable it in the task context. The task might have been
1026 * scheduled away, but we check this in the smp call again.
1028 * Must be called with ctx->mutex held.
1030 static void
1031 perf_install_in_context(struct perf_event_context *ctx,
1032 struct perf_event *event,
1033 int cpu)
1035 struct task_struct *task = ctx->task;
1037 event->ctx = ctx;
1039 if (!task) {
1041 * Per cpu events are installed via an smp call and
1042 * the install is always successful.
1044 smp_call_function_single(cpu, __perf_install_in_context,
1045 event, 1);
1046 return;
1049 retry:
1050 task_oncpu_function_call(task, __perf_install_in_context,
1051 event);
1053 raw_spin_lock_irq(&ctx->lock);
1055 * we need to retry the smp call.
1057 if (ctx->is_active && list_empty(&event->group_entry)) {
1058 raw_spin_unlock_irq(&ctx->lock);
1059 goto retry;
1063 * The lock prevents that this context is scheduled in so we
1064 * can add the event safely, if it the call above did not
1065 * succeed.
1067 if (list_empty(&event->group_entry))
1068 add_event_to_ctx(event, ctx);
1069 raw_spin_unlock_irq(&ctx->lock);
1073 * Put a event into inactive state and update time fields.
1074 * Enabling the leader of a group effectively enables all
1075 * the group members that aren't explicitly disabled, so we
1076 * have to update their ->tstamp_enabled also.
1077 * Note: this works for group members as well as group leaders
1078 * since the non-leader members' sibling_lists will be empty.
1080 static void __perf_event_mark_enabled(struct perf_event *event,
1081 struct perf_event_context *ctx)
1083 struct perf_event *sub;
1084 u64 tstamp = perf_event_time(event);
1086 event->state = PERF_EVENT_STATE_INACTIVE;
1087 event->tstamp_enabled = tstamp - event->total_time_enabled;
1088 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1089 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1090 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1095 * Cross CPU call to enable a performance event
1097 static void __perf_event_enable(void *info)
1099 struct perf_event *event = info;
1100 struct perf_event_context *ctx = event->ctx;
1101 struct perf_event *leader = event->group_leader;
1102 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1103 int err;
1106 * If this is a per-task event, need to check whether this
1107 * event's task is the current task on this cpu.
1109 if (ctx->task && cpuctx->task_ctx != ctx) {
1110 if (cpuctx->task_ctx || ctx->task != current)
1111 return;
1112 cpuctx->task_ctx = ctx;
1115 raw_spin_lock(&ctx->lock);
1116 ctx->is_active = 1;
1117 update_context_time(ctx);
1119 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1120 goto unlock;
1121 __perf_event_mark_enabled(event, ctx);
1123 if (!event_filter_match(event))
1124 goto unlock;
1127 * If the event is in a group and isn't the group leader,
1128 * then don't put it on unless the group is on.
1130 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1131 goto unlock;
1133 if (!group_can_go_on(event, cpuctx, 1)) {
1134 err = -EEXIST;
1135 } else {
1136 if (event == leader)
1137 err = group_sched_in(event, cpuctx, ctx);
1138 else
1139 err = event_sched_in(event, cpuctx, ctx);
1142 if (err) {
1144 * If this event can't go on and it's part of a
1145 * group, then the whole group has to come off.
1147 if (leader != event)
1148 group_sched_out(leader, cpuctx, ctx);
1149 if (leader->attr.pinned) {
1150 update_group_times(leader);
1151 leader->state = PERF_EVENT_STATE_ERROR;
1155 unlock:
1156 raw_spin_unlock(&ctx->lock);
1160 * Enable a event.
1162 * If event->ctx is a cloned context, callers must make sure that
1163 * every task struct that event->ctx->task could possibly point to
1164 * remains valid. This condition is satisfied when called through
1165 * perf_event_for_each_child or perf_event_for_each as described
1166 * for perf_event_disable.
1168 void perf_event_enable(struct perf_event *event)
1170 struct perf_event_context *ctx = event->ctx;
1171 struct task_struct *task = ctx->task;
1173 if (!task) {
1175 * Enable the event on the cpu that it's on
1177 smp_call_function_single(event->cpu, __perf_event_enable,
1178 event, 1);
1179 return;
1182 raw_spin_lock_irq(&ctx->lock);
1183 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1184 goto out;
1187 * If the event is in error state, clear that first.
1188 * That way, if we see the event in error state below, we
1189 * know that it has gone back into error state, as distinct
1190 * from the task having been scheduled away before the
1191 * cross-call arrived.
1193 if (event->state == PERF_EVENT_STATE_ERROR)
1194 event->state = PERF_EVENT_STATE_OFF;
1196 retry:
1197 raw_spin_unlock_irq(&ctx->lock);
1198 task_oncpu_function_call(task, __perf_event_enable, event);
1200 raw_spin_lock_irq(&ctx->lock);
1203 * If the context is active and the event is still off,
1204 * we need to retry the cross-call.
1206 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1207 goto retry;
1210 * Since we have the lock this context can't be scheduled
1211 * in, so we can change the state safely.
1213 if (event->state == PERF_EVENT_STATE_OFF)
1214 __perf_event_mark_enabled(event, ctx);
1216 out:
1217 raw_spin_unlock_irq(&ctx->lock);
1220 static int perf_event_refresh(struct perf_event *event, int refresh)
1223 * not supported on inherited events
1225 if (event->attr.inherit || !is_sampling_event(event))
1226 return -EINVAL;
1228 atomic_add(refresh, &event->event_limit);
1229 perf_event_enable(event);
1231 return 0;
1234 static void ctx_sched_out(struct perf_event_context *ctx,
1235 struct perf_cpu_context *cpuctx,
1236 enum event_type_t event_type)
1238 struct perf_event *event;
1240 raw_spin_lock(&ctx->lock);
1241 perf_pmu_disable(ctx->pmu);
1242 ctx->is_active = 0;
1243 if (likely(!ctx->nr_events))
1244 goto out;
1245 update_context_time(ctx);
1247 if (!ctx->nr_active)
1248 goto out;
1250 if (event_type & EVENT_PINNED) {
1251 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1252 group_sched_out(event, cpuctx, ctx);
1255 if (event_type & EVENT_FLEXIBLE) {
1256 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1257 group_sched_out(event, cpuctx, ctx);
1259 out:
1260 perf_pmu_enable(ctx->pmu);
1261 raw_spin_unlock(&ctx->lock);
1265 * Test whether two contexts are equivalent, i.e. whether they
1266 * have both been cloned from the same version of the same context
1267 * and they both have the same number of enabled events.
1268 * If the number of enabled events is the same, then the set
1269 * of enabled events should be the same, because these are both
1270 * inherited contexts, therefore we can't access individual events
1271 * in them directly with an fd; we can only enable/disable all
1272 * events via prctl, or enable/disable all events in a family
1273 * via ioctl, which will have the same effect on both contexts.
1275 static int context_equiv(struct perf_event_context *ctx1,
1276 struct perf_event_context *ctx2)
1278 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1279 && ctx1->parent_gen == ctx2->parent_gen
1280 && !ctx1->pin_count && !ctx2->pin_count;
1283 static void __perf_event_sync_stat(struct perf_event *event,
1284 struct perf_event *next_event)
1286 u64 value;
1288 if (!event->attr.inherit_stat)
1289 return;
1292 * Update the event value, we cannot use perf_event_read()
1293 * because we're in the middle of a context switch and have IRQs
1294 * disabled, which upsets smp_call_function_single(), however
1295 * we know the event must be on the current CPU, therefore we
1296 * don't need to use it.
1298 switch (event->state) {
1299 case PERF_EVENT_STATE_ACTIVE:
1300 event->pmu->read(event);
1301 /* fall-through */
1303 case PERF_EVENT_STATE_INACTIVE:
1304 update_event_times(event);
1305 break;
1307 default:
1308 break;
1312 * In order to keep per-task stats reliable we need to flip the event
1313 * values when we flip the contexts.
1315 value = local64_read(&next_event->count);
1316 value = local64_xchg(&event->count, value);
1317 local64_set(&next_event->count, value);
1319 swap(event->total_time_enabled, next_event->total_time_enabled);
1320 swap(event->total_time_running, next_event->total_time_running);
1323 * Since we swizzled the values, update the user visible data too.
1325 perf_event_update_userpage(event);
1326 perf_event_update_userpage(next_event);
1329 #define list_next_entry(pos, member) \
1330 list_entry(pos->member.next, typeof(*pos), member)
1332 static void perf_event_sync_stat(struct perf_event_context *ctx,
1333 struct perf_event_context *next_ctx)
1335 struct perf_event *event, *next_event;
1337 if (!ctx->nr_stat)
1338 return;
1340 update_context_time(ctx);
1342 event = list_first_entry(&ctx->event_list,
1343 struct perf_event, event_entry);
1345 next_event = list_first_entry(&next_ctx->event_list,
1346 struct perf_event, event_entry);
1348 while (&event->event_entry != &ctx->event_list &&
1349 &next_event->event_entry != &next_ctx->event_list) {
1351 __perf_event_sync_stat(event, next_event);
1353 event = list_next_entry(event, event_entry);
1354 next_event = list_next_entry(next_event, event_entry);
1358 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1359 struct task_struct *next)
1361 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1362 struct perf_event_context *next_ctx;
1363 struct perf_event_context *parent;
1364 struct perf_cpu_context *cpuctx;
1365 int do_switch = 1;
1367 if (likely(!ctx))
1368 return;
1370 cpuctx = __get_cpu_context(ctx);
1371 if (!cpuctx->task_ctx)
1372 return;
1374 rcu_read_lock();
1375 parent = rcu_dereference(ctx->parent_ctx);
1376 next_ctx = next->perf_event_ctxp[ctxn];
1377 if (parent && next_ctx &&
1378 rcu_dereference(next_ctx->parent_ctx) == parent) {
1380 * Looks like the two contexts are clones, so we might be
1381 * able to optimize the context switch. We lock both
1382 * contexts and check that they are clones under the
1383 * lock (including re-checking that neither has been
1384 * uncloned in the meantime). It doesn't matter which
1385 * order we take the locks because no other cpu could
1386 * be trying to lock both of these tasks.
1388 raw_spin_lock(&ctx->lock);
1389 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1390 if (context_equiv(ctx, next_ctx)) {
1392 * XXX do we need a memory barrier of sorts
1393 * wrt to rcu_dereference() of perf_event_ctxp
1395 task->perf_event_ctxp[ctxn] = next_ctx;
1396 next->perf_event_ctxp[ctxn] = ctx;
1397 ctx->task = next;
1398 next_ctx->task = task;
1399 do_switch = 0;
1401 perf_event_sync_stat(ctx, next_ctx);
1403 raw_spin_unlock(&next_ctx->lock);
1404 raw_spin_unlock(&ctx->lock);
1406 rcu_read_unlock();
1408 if (do_switch) {
1409 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1410 cpuctx->task_ctx = NULL;
1414 #define for_each_task_context_nr(ctxn) \
1415 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1418 * Called from scheduler to remove the events of the current task,
1419 * with interrupts disabled.
1421 * We stop each event and update the event value in event->count.
1423 * This does not protect us against NMI, but disable()
1424 * sets the disabled bit in the control field of event _before_
1425 * accessing the event control register. If a NMI hits, then it will
1426 * not restart the event.
1428 void __perf_event_task_sched_out(struct task_struct *task,
1429 struct task_struct *next)
1431 int ctxn;
1433 for_each_task_context_nr(ctxn)
1434 perf_event_context_sched_out(task, ctxn, next);
1437 static void task_ctx_sched_out(struct perf_event_context *ctx,
1438 enum event_type_t event_type)
1440 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1442 if (!cpuctx->task_ctx)
1443 return;
1445 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1446 return;
1448 ctx_sched_out(ctx, cpuctx, event_type);
1449 cpuctx->task_ctx = NULL;
1453 * Called with IRQs disabled
1455 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1456 enum event_type_t event_type)
1458 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1461 static void
1462 ctx_pinned_sched_in(struct perf_event_context *ctx,
1463 struct perf_cpu_context *cpuctx)
1465 struct perf_event *event;
1467 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1468 if (event->state <= PERF_EVENT_STATE_OFF)
1469 continue;
1470 if (!event_filter_match(event))
1471 continue;
1473 if (group_can_go_on(event, cpuctx, 1))
1474 group_sched_in(event, cpuctx, ctx);
1477 * If this pinned group hasn't been scheduled,
1478 * put it in error state.
1480 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1481 update_group_times(event);
1482 event->state = PERF_EVENT_STATE_ERROR;
1487 static void
1488 ctx_flexible_sched_in(struct perf_event_context *ctx,
1489 struct perf_cpu_context *cpuctx)
1491 struct perf_event *event;
1492 int can_add_hw = 1;
1494 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1495 /* Ignore events in OFF or ERROR state */
1496 if (event->state <= PERF_EVENT_STATE_OFF)
1497 continue;
1499 * Listen to the 'cpu' scheduling filter constraint
1500 * of events:
1502 if (!event_filter_match(event))
1503 continue;
1505 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1506 if (group_sched_in(event, cpuctx, ctx))
1507 can_add_hw = 0;
1512 static void
1513 ctx_sched_in(struct perf_event_context *ctx,
1514 struct perf_cpu_context *cpuctx,
1515 enum event_type_t event_type)
1517 raw_spin_lock(&ctx->lock);
1518 ctx->is_active = 1;
1519 if (likely(!ctx->nr_events))
1520 goto out;
1522 ctx->timestamp = perf_clock();
1525 * First go through the list and put on any pinned groups
1526 * in order to give them the best chance of going on.
1528 if (event_type & EVENT_PINNED)
1529 ctx_pinned_sched_in(ctx, cpuctx);
1531 /* Then walk through the lower prio flexible groups */
1532 if (event_type & EVENT_FLEXIBLE)
1533 ctx_flexible_sched_in(ctx, cpuctx);
1535 out:
1536 raw_spin_unlock(&ctx->lock);
1539 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1540 enum event_type_t event_type)
1542 struct perf_event_context *ctx = &cpuctx->ctx;
1544 ctx_sched_in(ctx, cpuctx, event_type);
1547 static void task_ctx_sched_in(struct perf_event_context *ctx,
1548 enum event_type_t event_type)
1550 struct perf_cpu_context *cpuctx;
1552 cpuctx = __get_cpu_context(ctx);
1553 if (cpuctx->task_ctx == ctx)
1554 return;
1556 ctx_sched_in(ctx, cpuctx, event_type);
1557 cpuctx->task_ctx = ctx;
1560 void perf_event_context_sched_in(struct perf_event_context *ctx)
1562 struct perf_cpu_context *cpuctx;
1564 cpuctx = __get_cpu_context(ctx);
1565 if (cpuctx->task_ctx == ctx)
1566 return;
1568 perf_pmu_disable(ctx->pmu);
1570 * We want to keep the following priority order:
1571 * cpu pinned (that don't need to move), task pinned,
1572 * cpu flexible, task flexible.
1574 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1576 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1577 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1578 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1580 cpuctx->task_ctx = ctx;
1583 * Since these rotations are per-cpu, we need to ensure the
1584 * cpu-context we got scheduled on is actually rotating.
1586 perf_pmu_rotate_start(ctx->pmu);
1587 perf_pmu_enable(ctx->pmu);
1591 * Called from scheduler to add the events of the current task
1592 * with interrupts disabled.
1594 * We restore the event value and then enable it.
1596 * This does not protect us against NMI, but enable()
1597 * sets the enabled bit in the control field of event _before_
1598 * accessing the event control register. If a NMI hits, then it will
1599 * keep the event running.
1601 void __perf_event_task_sched_in(struct task_struct *task)
1603 struct perf_event_context *ctx;
1604 int ctxn;
1606 for_each_task_context_nr(ctxn) {
1607 ctx = task->perf_event_ctxp[ctxn];
1608 if (likely(!ctx))
1609 continue;
1611 perf_event_context_sched_in(ctx);
1615 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1617 u64 frequency = event->attr.sample_freq;
1618 u64 sec = NSEC_PER_SEC;
1619 u64 divisor, dividend;
1621 int count_fls, nsec_fls, frequency_fls, sec_fls;
1623 count_fls = fls64(count);
1624 nsec_fls = fls64(nsec);
1625 frequency_fls = fls64(frequency);
1626 sec_fls = 30;
1629 * We got @count in @nsec, with a target of sample_freq HZ
1630 * the target period becomes:
1632 * @count * 10^9
1633 * period = -------------------
1634 * @nsec * sample_freq
1639 * Reduce accuracy by one bit such that @a and @b converge
1640 * to a similar magnitude.
1642 #define REDUCE_FLS(a, b) \
1643 do { \
1644 if (a##_fls > b##_fls) { \
1645 a >>= 1; \
1646 a##_fls--; \
1647 } else { \
1648 b >>= 1; \
1649 b##_fls--; \
1651 } while (0)
1654 * Reduce accuracy until either term fits in a u64, then proceed with
1655 * the other, so that finally we can do a u64/u64 division.
1657 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1658 REDUCE_FLS(nsec, frequency);
1659 REDUCE_FLS(sec, count);
1662 if (count_fls + sec_fls > 64) {
1663 divisor = nsec * frequency;
1665 while (count_fls + sec_fls > 64) {
1666 REDUCE_FLS(count, sec);
1667 divisor >>= 1;
1670 dividend = count * sec;
1671 } else {
1672 dividend = count * sec;
1674 while (nsec_fls + frequency_fls > 64) {
1675 REDUCE_FLS(nsec, frequency);
1676 dividend >>= 1;
1679 divisor = nsec * frequency;
1682 if (!divisor)
1683 return dividend;
1685 return div64_u64(dividend, divisor);
1688 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1690 struct hw_perf_event *hwc = &event->hw;
1691 s64 period, sample_period;
1692 s64 delta;
1694 period = perf_calculate_period(event, nsec, count);
1696 delta = (s64)(period - hwc->sample_period);
1697 delta = (delta + 7) / 8; /* low pass filter */
1699 sample_period = hwc->sample_period + delta;
1701 if (!sample_period)
1702 sample_period = 1;
1704 hwc->sample_period = sample_period;
1706 if (local64_read(&hwc->period_left) > 8*sample_period) {
1707 event->pmu->stop(event, PERF_EF_UPDATE);
1708 local64_set(&hwc->period_left, 0);
1709 event->pmu->start(event, PERF_EF_RELOAD);
1713 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1715 struct perf_event *event;
1716 struct hw_perf_event *hwc;
1717 u64 interrupts, now;
1718 s64 delta;
1720 raw_spin_lock(&ctx->lock);
1721 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1722 if (event->state != PERF_EVENT_STATE_ACTIVE)
1723 continue;
1725 if (!event_filter_match(event))
1726 continue;
1728 hwc = &event->hw;
1730 interrupts = hwc->interrupts;
1731 hwc->interrupts = 0;
1734 * unthrottle events on the tick
1736 if (interrupts == MAX_INTERRUPTS) {
1737 perf_log_throttle(event, 1);
1738 event->pmu->start(event, 0);
1741 if (!event->attr.freq || !event->attr.sample_freq)
1742 continue;
1744 event->pmu->read(event);
1745 now = local64_read(&event->count);
1746 delta = now - hwc->freq_count_stamp;
1747 hwc->freq_count_stamp = now;
1749 if (delta > 0)
1750 perf_adjust_period(event, period, delta);
1752 raw_spin_unlock(&ctx->lock);
1756 * Round-robin a context's events:
1758 static void rotate_ctx(struct perf_event_context *ctx)
1760 raw_spin_lock(&ctx->lock);
1763 * Rotate the first entry last of non-pinned groups. Rotation might be
1764 * disabled by the inheritance code.
1766 if (!ctx->rotate_disable)
1767 list_rotate_left(&ctx->flexible_groups);
1769 raw_spin_unlock(&ctx->lock);
1773 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1774 * because they're strictly cpu affine and rotate_start is called with IRQs
1775 * disabled, while rotate_context is called from IRQ context.
1777 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1779 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1780 struct perf_event_context *ctx = NULL;
1781 int rotate = 0, remove = 1;
1783 if (cpuctx->ctx.nr_events) {
1784 remove = 0;
1785 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1786 rotate = 1;
1789 ctx = cpuctx->task_ctx;
1790 if (ctx && ctx->nr_events) {
1791 remove = 0;
1792 if (ctx->nr_events != ctx->nr_active)
1793 rotate = 1;
1796 perf_pmu_disable(cpuctx->ctx.pmu);
1797 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1798 if (ctx)
1799 perf_ctx_adjust_freq(ctx, interval);
1801 if (!rotate)
1802 goto done;
1804 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1805 if (ctx)
1806 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1808 rotate_ctx(&cpuctx->ctx);
1809 if (ctx)
1810 rotate_ctx(ctx);
1812 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1813 if (ctx)
1814 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1816 done:
1817 if (remove)
1818 list_del_init(&cpuctx->rotation_list);
1820 perf_pmu_enable(cpuctx->ctx.pmu);
1823 void perf_event_task_tick(void)
1825 struct list_head *head = &__get_cpu_var(rotation_list);
1826 struct perf_cpu_context *cpuctx, *tmp;
1828 WARN_ON(!irqs_disabled());
1830 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1831 if (cpuctx->jiffies_interval == 1 ||
1832 !(jiffies % cpuctx->jiffies_interval))
1833 perf_rotate_context(cpuctx);
1837 static int event_enable_on_exec(struct perf_event *event,
1838 struct perf_event_context *ctx)
1840 if (!event->attr.enable_on_exec)
1841 return 0;
1843 event->attr.enable_on_exec = 0;
1844 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1845 return 0;
1847 __perf_event_mark_enabled(event, ctx);
1849 return 1;
1853 * Enable all of a task's events that have been marked enable-on-exec.
1854 * This expects task == current.
1856 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1858 struct perf_event *event;
1859 unsigned long flags;
1860 int enabled = 0;
1861 int ret;
1863 local_irq_save(flags);
1864 if (!ctx || !ctx->nr_events)
1865 goto out;
1867 task_ctx_sched_out(ctx, EVENT_ALL);
1869 raw_spin_lock(&ctx->lock);
1871 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1872 ret = event_enable_on_exec(event, ctx);
1873 if (ret)
1874 enabled = 1;
1877 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1878 ret = event_enable_on_exec(event, ctx);
1879 if (ret)
1880 enabled = 1;
1884 * Unclone this context if we enabled any event.
1886 if (enabled)
1887 unclone_ctx(ctx);
1889 raw_spin_unlock(&ctx->lock);
1891 perf_event_context_sched_in(ctx);
1892 out:
1893 local_irq_restore(flags);
1897 * Cross CPU call to read the hardware event
1899 static void __perf_event_read(void *info)
1901 struct perf_event *event = info;
1902 struct perf_event_context *ctx = event->ctx;
1903 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1906 * If this is a task context, we need to check whether it is
1907 * the current task context of this cpu. If not it has been
1908 * scheduled out before the smp call arrived. In that case
1909 * event->count would have been updated to a recent sample
1910 * when the event was scheduled out.
1912 if (ctx->task && cpuctx->task_ctx != ctx)
1913 return;
1915 raw_spin_lock(&ctx->lock);
1916 if (ctx->is_active)
1917 update_context_time(ctx);
1918 update_event_times(event);
1919 if (event->state == PERF_EVENT_STATE_ACTIVE)
1920 event->pmu->read(event);
1921 raw_spin_unlock(&ctx->lock);
1924 static inline u64 perf_event_count(struct perf_event *event)
1926 return local64_read(&event->count) + atomic64_read(&event->child_count);
1929 static u64 perf_event_read(struct perf_event *event)
1932 * If event is enabled and currently active on a CPU, update the
1933 * value in the event structure:
1935 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1936 smp_call_function_single(event->oncpu,
1937 __perf_event_read, event, 1);
1938 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1939 struct perf_event_context *ctx = event->ctx;
1940 unsigned long flags;
1942 raw_spin_lock_irqsave(&ctx->lock, flags);
1944 * may read while context is not active
1945 * (e.g., thread is blocked), in that case
1946 * we cannot update context time
1948 if (ctx->is_active)
1949 update_context_time(ctx);
1950 update_event_times(event);
1951 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1954 return perf_event_count(event);
1958 * Callchain support
1961 struct callchain_cpus_entries {
1962 struct rcu_head rcu_head;
1963 struct perf_callchain_entry *cpu_entries[0];
1966 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1967 static atomic_t nr_callchain_events;
1968 static DEFINE_MUTEX(callchain_mutex);
1969 struct callchain_cpus_entries *callchain_cpus_entries;
1972 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1973 struct pt_regs *regs)
1977 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1978 struct pt_regs *regs)
1982 static void release_callchain_buffers_rcu(struct rcu_head *head)
1984 struct callchain_cpus_entries *entries;
1985 int cpu;
1987 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1989 for_each_possible_cpu(cpu)
1990 kfree(entries->cpu_entries[cpu]);
1992 kfree(entries);
1995 static void release_callchain_buffers(void)
1997 struct callchain_cpus_entries *entries;
1999 entries = callchain_cpus_entries;
2000 rcu_assign_pointer(callchain_cpus_entries, NULL);
2001 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2004 static int alloc_callchain_buffers(void)
2006 int cpu;
2007 int size;
2008 struct callchain_cpus_entries *entries;
2011 * We can't use the percpu allocation API for data that can be
2012 * accessed from NMI. Use a temporary manual per cpu allocation
2013 * until that gets sorted out.
2015 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2017 entries = kzalloc(size, GFP_KERNEL);
2018 if (!entries)
2019 return -ENOMEM;
2021 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2023 for_each_possible_cpu(cpu) {
2024 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2025 cpu_to_node(cpu));
2026 if (!entries->cpu_entries[cpu])
2027 goto fail;
2030 rcu_assign_pointer(callchain_cpus_entries, entries);
2032 return 0;
2034 fail:
2035 for_each_possible_cpu(cpu)
2036 kfree(entries->cpu_entries[cpu]);
2037 kfree(entries);
2039 return -ENOMEM;
2042 static int get_callchain_buffers(void)
2044 int err = 0;
2045 int count;
2047 mutex_lock(&callchain_mutex);
2049 count = atomic_inc_return(&nr_callchain_events);
2050 if (WARN_ON_ONCE(count < 1)) {
2051 err = -EINVAL;
2052 goto exit;
2055 if (count > 1) {
2056 /* If the allocation failed, give up */
2057 if (!callchain_cpus_entries)
2058 err = -ENOMEM;
2059 goto exit;
2062 err = alloc_callchain_buffers();
2063 if (err)
2064 release_callchain_buffers();
2065 exit:
2066 mutex_unlock(&callchain_mutex);
2068 return err;
2071 static void put_callchain_buffers(void)
2073 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2074 release_callchain_buffers();
2075 mutex_unlock(&callchain_mutex);
2079 static int get_recursion_context(int *recursion)
2081 int rctx;
2083 if (in_nmi())
2084 rctx = 3;
2085 else if (in_irq())
2086 rctx = 2;
2087 else if (in_softirq())
2088 rctx = 1;
2089 else
2090 rctx = 0;
2092 if (recursion[rctx])
2093 return -1;
2095 recursion[rctx]++;
2096 barrier();
2098 return rctx;
2101 static inline void put_recursion_context(int *recursion, int rctx)
2103 barrier();
2104 recursion[rctx]--;
2107 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2109 int cpu;
2110 struct callchain_cpus_entries *entries;
2112 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2113 if (*rctx == -1)
2114 return NULL;
2116 entries = rcu_dereference(callchain_cpus_entries);
2117 if (!entries)
2118 return NULL;
2120 cpu = smp_processor_id();
2122 return &entries->cpu_entries[cpu][*rctx];
2125 static void
2126 put_callchain_entry(int rctx)
2128 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2131 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2133 int rctx;
2134 struct perf_callchain_entry *entry;
2137 entry = get_callchain_entry(&rctx);
2138 if (rctx == -1)
2139 return NULL;
2141 if (!entry)
2142 goto exit_put;
2144 entry->nr = 0;
2146 if (!user_mode(regs)) {
2147 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2148 perf_callchain_kernel(entry, regs);
2149 if (current->mm)
2150 regs = task_pt_regs(current);
2151 else
2152 regs = NULL;
2155 if (regs) {
2156 perf_callchain_store(entry, PERF_CONTEXT_USER);
2157 perf_callchain_user(entry, regs);
2160 exit_put:
2161 put_callchain_entry(rctx);
2163 return entry;
2167 * Initialize the perf_event context in a task_struct:
2169 static void __perf_event_init_context(struct perf_event_context *ctx)
2171 raw_spin_lock_init(&ctx->lock);
2172 mutex_init(&ctx->mutex);
2173 INIT_LIST_HEAD(&ctx->pinned_groups);
2174 INIT_LIST_HEAD(&ctx->flexible_groups);
2175 INIT_LIST_HEAD(&ctx->event_list);
2176 atomic_set(&ctx->refcount, 1);
2179 static struct perf_event_context *
2180 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2182 struct perf_event_context *ctx;
2184 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2185 if (!ctx)
2186 return NULL;
2188 __perf_event_init_context(ctx);
2189 if (task) {
2190 ctx->task = task;
2191 get_task_struct(task);
2193 ctx->pmu = pmu;
2195 return ctx;
2198 static struct task_struct *
2199 find_lively_task_by_vpid(pid_t vpid)
2201 struct task_struct *task;
2202 int err;
2204 rcu_read_lock();
2205 if (!vpid)
2206 task = current;
2207 else
2208 task = find_task_by_vpid(vpid);
2209 if (task)
2210 get_task_struct(task);
2211 rcu_read_unlock();
2213 if (!task)
2214 return ERR_PTR(-ESRCH);
2216 /* Reuse ptrace permission checks for now. */
2217 err = -EACCES;
2218 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2219 goto errout;
2221 return task;
2222 errout:
2223 put_task_struct(task);
2224 return ERR_PTR(err);
2228 static struct perf_event_context *
2229 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2231 struct perf_event_context *ctx;
2232 struct perf_cpu_context *cpuctx;
2233 unsigned long flags;
2234 int ctxn, err;
2236 if (!task) {
2237 /* Must be root to operate on a CPU event: */
2238 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2239 return ERR_PTR(-EACCES);
2242 * We could be clever and allow to attach a event to an
2243 * offline CPU and activate it when the CPU comes up, but
2244 * that's for later.
2246 if (!cpu_online(cpu))
2247 return ERR_PTR(-ENODEV);
2249 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2250 ctx = &cpuctx->ctx;
2251 get_ctx(ctx);
2253 return ctx;
2256 err = -EINVAL;
2257 ctxn = pmu->task_ctx_nr;
2258 if (ctxn < 0)
2259 goto errout;
2261 retry:
2262 ctx = perf_lock_task_context(task, ctxn, &flags);
2263 if (ctx) {
2264 unclone_ctx(ctx);
2265 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2268 if (!ctx) {
2269 ctx = alloc_perf_context(pmu, task);
2270 err = -ENOMEM;
2271 if (!ctx)
2272 goto errout;
2274 get_ctx(ctx);
2276 err = 0;
2277 mutex_lock(&task->perf_event_mutex);
2279 * If it has already passed perf_event_exit_task().
2280 * we must see PF_EXITING, it takes this mutex too.
2282 if (task->flags & PF_EXITING)
2283 err = -ESRCH;
2284 else if (task->perf_event_ctxp[ctxn])
2285 err = -EAGAIN;
2286 else
2287 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2288 mutex_unlock(&task->perf_event_mutex);
2290 if (unlikely(err)) {
2291 put_task_struct(task);
2292 kfree(ctx);
2294 if (err == -EAGAIN)
2295 goto retry;
2296 goto errout;
2300 return ctx;
2302 errout:
2303 return ERR_PTR(err);
2306 static void perf_event_free_filter(struct perf_event *event);
2308 static void free_event_rcu(struct rcu_head *head)
2310 struct perf_event *event;
2312 event = container_of(head, struct perf_event, rcu_head);
2313 if (event->ns)
2314 put_pid_ns(event->ns);
2315 perf_event_free_filter(event);
2316 kfree(event);
2319 static void perf_buffer_put(struct perf_buffer *buffer);
2321 static void free_event(struct perf_event *event)
2323 irq_work_sync(&event->pending);
2325 if (!event->parent) {
2326 if (event->attach_state & PERF_ATTACH_TASK)
2327 jump_label_dec(&perf_task_events);
2328 if (event->attr.mmap || event->attr.mmap_data)
2329 atomic_dec(&nr_mmap_events);
2330 if (event->attr.comm)
2331 atomic_dec(&nr_comm_events);
2332 if (event->attr.task)
2333 atomic_dec(&nr_task_events);
2334 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2335 put_callchain_buffers();
2338 if (event->buffer) {
2339 perf_buffer_put(event->buffer);
2340 event->buffer = NULL;
2343 if (event->destroy)
2344 event->destroy(event);
2346 if (event->ctx)
2347 put_ctx(event->ctx);
2349 call_rcu(&event->rcu_head, free_event_rcu);
2352 int perf_event_release_kernel(struct perf_event *event)
2354 struct perf_event_context *ctx = event->ctx;
2357 * Remove from the PMU, can't get re-enabled since we got
2358 * here because the last ref went.
2360 perf_event_disable(event);
2362 WARN_ON_ONCE(ctx->parent_ctx);
2364 * There are two ways this annotation is useful:
2366 * 1) there is a lock recursion from perf_event_exit_task
2367 * see the comment there.
2369 * 2) there is a lock-inversion with mmap_sem through
2370 * perf_event_read_group(), which takes faults while
2371 * holding ctx->mutex, however this is called after
2372 * the last filedesc died, so there is no possibility
2373 * to trigger the AB-BA case.
2375 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2376 raw_spin_lock_irq(&ctx->lock);
2377 perf_group_detach(event);
2378 list_del_event(event, ctx);
2379 raw_spin_unlock_irq(&ctx->lock);
2380 mutex_unlock(&ctx->mutex);
2382 free_event(event);
2384 return 0;
2386 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2389 * Called when the last reference to the file is gone.
2391 static int perf_release(struct inode *inode, struct file *file)
2393 struct perf_event *event = file->private_data;
2394 struct task_struct *owner;
2396 file->private_data = NULL;
2398 rcu_read_lock();
2399 owner = ACCESS_ONCE(event->owner);
2401 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2402 * !owner it means the list deletion is complete and we can indeed
2403 * free this event, otherwise we need to serialize on
2404 * owner->perf_event_mutex.
2406 smp_read_barrier_depends();
2407 if (owner) {
2409 * Since delayed_put_task_struct() also drops the last
2410 * task reference we can safely take a new reference
2411 * while holding the rcu_read_lock().
2413 get_task_struct(owner);
2415 rcu_read_unlock();
2417 if (owner) {
2418 mutex_lock(&owner->perf_event_mutex);
2420 * We have to re-check the event->owner field, if it is cleared
2421 * we raced with perf_event_exit_task(), acquiring the mutex
2422 * ensured they're done, and we can proceed with freeing the
2423 * event.
2425 if (event->owner)
2426 list_del_init(&event->owner_entry);
2427 mutex_unlock(&owner->perf_event_mutex);
2428 put_task_struct(owner);
2431 return perf_event_release_kernel(event);
2434 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2436 struct perf_event *child;
2437 u64 total = 0;
2439 *enabled = 0;
2440 *running = 0;
2442 mutex_lock(&event->child_mutex);
2443 total += perf_event_read(event);
2444 *enabled += event->total_time_enabled +
2445 atomic64_read(&event->child_total_time_enabled);
2446 *running += event->total_time_running +
2447 atomic64_read(&event->child_total_time_running);
2449 list_for_each_entry(child, &event->child_list, child_list) {
2450 total += perf_event_read(child);
2451 *enabled += child->total_time_enabled;
2452 *running += child->total_time_running;
2454 mutex_unlock(&event->child_mutex);
2456 return total;
2458 EXPORT_SYMBOL_GPL(perf_event_read_value);
2460 static int perf_event_read_group(struct perf_event *event,
2461 u64 read_format, char __user *buf)
2463 struct perf_event *leader = event->group_leader, *sub;
2464 int n = 0, size = 0, ret = -EFAULT;
2465 struct perf_event_context *ctx = leader->ctx;
2466 u64 values[5];
2467 u64 count, enabled, running;
2469 mutex_lock(&ctx->mutex);
2470 count = perf_event_read_value(leader, &enabled, &running);
2472 values[n++] = 1 + leader->nr_siblings;
2473 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2474 values[n++] = enabled;
2475 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2476 values[n++] = running;
2477 values[n++] = count;
2478 if (read_format & PERF_FORMAT_ID)
2479 values[n++] = primary_event_id(leader);
2481 size = n * sizeof(u64);
2483 if (copy_to_user(buf, values, size))
2484 goto unlock;
2486 ret = size;
2488 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2489 n = 0;
2491 values[n++] = perf_event_read_value(sub, &enabled, &running);
2492 if (read_format & PERF_FORMAT_ID)
2493 values[n++] = primary_event_id(sub);
2495 size = n * sizeof(u64);
2497 if (copy_to_user(buf + ret, values, size)) {
2498 ret = -EFAULT;
2499 goto unlock;
2502 ret += size;
2504 unlock:
2505 mutex_unlock(&ctx->mutex);
2507 return ret;
2510 static int perf_event_read_one(struct perf_event *event,
2511 u64 read_format, char __user *buf)
2513 u64 enabled, running;
2514 u64 values[4];
2515 int n = 0;
2517 values[n++] = perf_event_read_value(event, &enabled, &running);
2518 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2519 values[n++] = enabled;
2520 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2521 values[n++] = running;
2522 if (read_format & PERF_FORMAT_ID)
2523 values[n++] = primary_event_id(event);
2525 if (copy_to_user(buf, values, n * sizeof(u64)))
2526 return -EFAULT;
2528 return n * sizeof(u64);
2532 * Read the performance event - simple non blocking version for now
2534 static ssize_t
2535 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2537 u64 read_format = event->attr.read_format;
2538 int ret;
2541 * Return end-of-file for a read on a event that is in
2542 * error state (i.e. because it was pinned but it couldn't be
2543 * scheduled on to the CPU at some point).
2545 if (event->state == PERF_EVENT_STATE_ERROR)
2546 return 0;
2548 if (count < event->read_size)
2549 return -ENOSPC;
2551 WARN_ON_ONCE(event->ctx->parent_ctx);
2552 if (read_format & PERF_FORMAT_GROUP)
2553 ret = perf_event_read_group(event, read_format, buf);
2554 else
2555 ret = perf_event_read_one(event, read_format, buf);
2557 return ret;
2560 static ssize_t
2561 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2563 struct perf_event *event = file->private_data;
2565 return perf_read_hw(event, buf, count);
2568 static unsigned int perf_poll(struct file *file, poll_table *wait)
2570 struct perf_event *event = file->private_data;
2571 struct perf_buffer *buffer;
2572 unsigned int events = POLL_HUP;
2574 rcu_read_lock();
2575 buffer = rcu_dereference(event->buffer);
2576 if (buffer)
2577 events = atomic_xchg(&buffer->poll, 0);
2578 rcu_read_unlock();
2580 poll_wait(file, &event->waitq, wait);
2582 return events;
2585 static void perf_event_reset(struct perf_event *event)
2587 (void)perf_event_read(event);
2588 local64_set(&event->count, 0);
2589 perf_event_update_userpage(event);
2593 * Holding the top-level event's child_mutex means that any
2594 * descendant process that has inherited this event will block
2595 * in sync_child_event if it goes to exit, thus satisfying the
2596 * task existence requirements of perf_event_enable/disable.
2598 static void perf_event_for_each_child(struct perf_event *event,
2599 void (*func)(struct perf_event *))
2601 struct perf_event *child;
2603 WARN_ON_ONCE(event->ctx->parent_ctx);
2604 mutex_lock(&event->child_mutex);
2605 func(event);
2606 list_for_each_entry(child, &event->child_list, child_list)
2607 func(child);
2608 mutex_unlock(&event->child_mutex);
2611 static void perf_event_for_each(struct perf_event *event,
2612 void (*func)(struct perf_event *))
2614 struct perf_event_context *ctx = event->ctx;
2615 struct perf_event *sibling;
2617 WARN_ON_ONCE(ctx->parent_ctx);
2618 mutex_lock(&ctx->mutex);
2619 event = event->group_leader;
2621 perf_event_for_each_child(event, func);
2622 func(event);
2623 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2624 perf_event_for_each_child(event, func);
2625 mutex_unlock(&ctx->mutex);
2628 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2630 struct perf_event_context *ctx = event->ctx;
2631 int ret = 0;
2632 u64 value;
2634 if (!is_sampling_event(event))
2635 return -EINVAL;
2637 if (copy_from_user(&value, arg, sizeof(value)))
2638 return -EFAULT;
2640 if (!value)
2641 return -EINVAL;
2643 raw_spin_lock_irq(&ctx->lock);
2644 if (event->attr.freq) {
2645 if (value > sysctl_perf_event_sample_rate) {
2646 ret = -EINVAL;
2647 goto unlock;
2650 event->attr.sample_freq = value;
2651 } else {
2652 event->attr.sample_period = value;
2653 event->hw.sample_period = value;
2655 unlock:
2656 raw_spin_unlock_irq(&ctx->lock);
2658 return ret;
2661 static const struct file_operations perf_fops;
2663 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2665 struct file *file;
2667 file = fget_light(fd, fput_needed);
2668 if (!file)
2669 return ERR_PTR(-EBADF);
2671 if (file->f_op != &perf_fops) {
2672 fput_light(file, *fput_needed);
2673 *fput_needed = 0;
2674 return ERR_PTR(-EBADF);
2677 return file->private_data;
2680 static int perf_event_set_output(struct perf_event *event,
2681 struct perf_event *output_event);
2682 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2684 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2686 struct perf_event *event = file->private_data;
2687 void (*func)(struct perf_event *);
2688 u32 flags = arg;
2690 switch (cmd) {
2691 case PERF_EVENT_IOC_ENABLE:
2692 func = perf_event_enable;
2693 break;
2694 case PERF_EVENT_IOC_DISABLE:
2695 func = perf_event_disable;
2696 break;
2697 case PERF_EVENT_IOC_RESET:
2698 func = perf_event_reset;
2699 break;
2701 case PERF_EVENT_IOC_REFRESH:
2702 return perf_event_refresh(event, arg);
2704 case PERF_EVENT_IOC_PERIOD:
2705 return perf_event_period(event, (u64 __user *)arg);
2707 case PERF_EVENT_IOC_SET_OUTPUT:
2709 struct perf_event *output_event = NULL;
2710 int fput_needed = 0;
2711 int ret;
2713 if (arg != -1) {
2714 output_event = perf_fget_light(arg, &fput_needed);
2715 if (IS_ERR(output_event))
2716 return PTR_ERR(output_event);
2719 ret = perf_event_set_output(event, output_event);
2720 if (output_event)
2721 fput_light(output_event->filp, fput_needed);
2723 return ret;
2726 case PERF_EVENT_IOC_SET_FILTER:
2727 return perf_event_set_filter(event, (void __user *)arg);
2729 default:
2730 return -ENOTTY;
2733 if (flags & PERF_IOC_FLAG_GROUP)
2734 perf_event_for_each(event, func);
2735 else
2736 perf_event_for_each_child(event, func);
2738 return 0;
2741 int perf_event_task_enable(void)
2743 struct perf_event *event;
2745 mutex_lock(&current->perf_event_mutex);
2746 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2747 perf_event_for_each_child(event, perf_event_enable);
2748 mutex_unlock(&current->perf_event_mutex);
2750 return 0;
2753 int perf_event_task_disable(void)
2755 struct perf_event *event;
2757 mutex_lock(&current->perf_event_mutex);
2758 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2759 perf_event_for_each_child(event, perf_event_disable);
2760 mutex_unlock(&current->perf_event_mutex);
2762 return 0;
2765 #ifndef PERF_EVENT_INDEX_OFFSET
2766 # define PERF_EVENT_INDEX_OFFSET 0
2767 #endif
2769 static int perf_event_index(struct perf_event *event)
2771 if (event->hw.state & PERF_HES_STOPPED)
2772 return 0;
2774 if (event->state != PERF_EVENT_STATE_ACTIVE)
2775 return 0;
2777 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2781 * Callers need to ensure there can be no nesting of this function, otherwise
2782 * the seqlock logic goes bad. We can not serialize this because the arch
2783 * code calls this from NMI context.
2785 void perf_event_update_userpage(struct perf_event *event)
2787 struct perf_event_mmap_page *userpg;
2788 struct perf_buffer *buffer;
2790 rcu_read_lock();
2791 buffer = rcu_dereference(event->buffer);
2792 if (!buffer)
2793 goto unlock;
2795 userpg = buffer->user_page;
2798 * Disable preemption so as to not let the corresponding user-space
2799 * spin too long if we get preempted.
2801 preempt_disable();
2802 ++userpg->lock;
2803 barrier();
2804 userpg->index = perf_event_index(event);
2805 userpg->offset = perf_event_count(event);
2806 if (event->state == PERF_EVENT_STATE_ACTIVE)
2807 userpg->offset -= local64_read(&event->hw.prev_count);
2809 userpg->time_enabled = event->total_time_enabled +
2810 atomic64_read(&event->child_total_time_enabled);
2812 userpg->time_running = event->total_time_running +
2813 atomic64_read(&event->child_total_time_running);
2815 barrier();
2816 ++userpg->lock;
2817 preempt_enable();
2818 unlock:
2819 rcu_read_unlock();
2822 static unsigned long perf_data_size(struct perf_buffer *buffer);
2824 static void
2825 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2827 long max_size = perf_data_size(buffer);
2829 if (watermark)
2830 buffer->watermark = min(max_size, watermark);
2832 if (!buffer->watermark)
2833 buffer->watermark = max_size / 2;
2835 if (flags & PERF_BUFFER_WRITABLE)
2836 buffer->writable = 1;
2838 atomic_set(&buffer->refcount, 1);
2841 #ifndef CONFIG_PERF_USE_VMALLOC
2844 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2847 static struct page *
2848 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2850 if (pgoff > buffer->nr_pages)
2851 return NULL;
2853 if (pgoff == 0)
2854 return virt_to_page(buffer->user_page);
2856 return virt_to_page(buffer->data_pages[pgoff - 1]);
2859 static void *perf_mmap_alloc_page(int cpu)
2861 struct page *page;
2862 int node;
2864 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2865 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2866 if (!page)
2867 return NULL;
2869 return page_address(page);
2872 static struct perf_buffer *
2873 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2875 struct perf_buffer *buffer;
2876 unsigned long size;
2877 int i;
2879 size = sizeof(struct perf_buffer);
2880 size += nr_pages * sizeof(void *);
2882 buffer = kzalloc(size, GFP_KERNEL);
2883 if (!buffer)
2884 goto fail;
2886 buffer->user_page = perf_mmap_alloc_page(cpu);
2887 if (!buffer->user_page)
2888 goto fail_user_page;
2890 for (i = 0; i < nr_pages; i++) {
2891 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2892 if (!buffer->data_pages[i])
2893 goto fail_data_pages;
2896 buffer->nr_pages = nr_pages;
2898 perf_buffer_init(buffer, watermark, flags);
2900 return buffer;
2902 fail_data_pages:
2903 for (i--; i >= 0; i--)
2904 free_page((unsigned long)buffer->data_pages[i]);
2906 free_page((unsigned long)buffer->user_page);
2908 fail_user_page:
2909 kfree(buffer);
2911 fail:
2912 return NULL;
2915 static void perf_mmap_free_page(unsigned long addr)
2917 struct page *page = virt_to_page((void *)addr);
2919 page->mapping = NULL;
2920 __free_page(page);
2923 static void perf_buffer_free(struct perf_buffer *buffer)
2925 int i;
2927 perf_mmap_free_page((unsigned long)buffer->user_page);
2928 for (i = 0; i < buffer->nr_pages; i++)
2929 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2930 kfree(buffer);
2933 static inline int page_order(struct perf_buffer *buffer)
2935 return 0;
2938 #else
2941 * Back perf_mmap() with vmalloc memory.
2943 * Required for architectures that have d-cache aliasing issues.
2946 static inline int page_order(struct perf_buffer *buffer)
2948 return buffer->page_order;
2951 static struct page *
2952 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2954 if (pgoff > (1UL << page_order(buffer)))
2955 return NULL;
2957 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2960 static void perf_mmap_unmark_page(void *addr)
2962 struct page *page = vmalloc_to_page(addr);
2964 page->mapping = NULL;
2967 static void perf_buffer_free_work(struct work_struct *work)
2969 struct perf_buffer *buffer;
2970 void *base;
2971 int i, nr;
2973 buffer = container_of(work, struct perf_buffer, work);
2974 nr = 1 << page_order(buffer);
2976 base = buffer->user_page;
2977 for (i = 0; i < nr + 1; i++)
2978 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2980 vfree(base);
2981 kfree(buffer);
2984 static void perf_buffer_free(struct perf_buffer *buffer)
2986 schedule_work(&buffer->work);
2989 static struct perf_buffer *
2990 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2992 struct perf_buffer *buffer;
2993 unsigned long size;
2994 void *all_buf;
2996 size = sizeof(struct perf_buffer);
2997 size += sizeof(void *);
2999 buffer = kzalloc(size, GFP_KERNEL);
3000 if (!buffer)
3001 goto fail;
3003 INIT_WORK(&buffer->work, perf_buffer_free_work);
3005 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
3006 if (!all_buf)
3007 goto fail_all_buf;
3009 buffer->user_page = all_buf;
3010 buffer->data_pages[0] = all_buf + PAGE_SIZE;
3011 buffer->page_order = ilog2(nr_pages);
3012 buffer->nr_pages = 1;
3014 perf_buffer_init(buffer, watermark, flags);
3016 return buffer;
3018 fail_all_buf:
3019 kfree(buffer);
3021 fail:
3022 return NULL;
3025 #endif
3027 static unsigned long perf_data_size(struct perf_buffer *buffer)
3029 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3032 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3034 struct perf_event *event = vma->vm_file->private_data;
3035 struct perf_buffer *buffer;
3036 int ret = VM_FAULT_SIGBUS;
3038 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3039 if (vmf->pgoff == 0)
3040 ret = 0;
3041 return ret;
3044 rcu_read_lock();
3045 buffer = rcu_dereference(event->buffer);
3046 if (!buffer)
3047 goto unlock;
3049 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3050 goto unlock;
3052 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3053 if (!vmf->page)
3054 goto unlock;
3056 get_page(vmf->page);
3057 vmf->page->mapping = vma->vm_file->f_mapping;
3058 vmf->page->index = vmf->pgoff;
3060 ret = 0;
3061 unlock:
3062 rcu_read_unlock();
3064 return ret;
3067 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3069 struct perf_buffer *buffer;
3071 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3072 perf_buffer_free(buffer);
3075 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3077 struct perf_buffer *buffer;
3079 rcu_read_lock();
3080 buffer = rcu_dereference(event->buffer);
3081 if (buffer) {
3082 if (!atomic_inc_not_zero(&buffer->refcount))
3083 buffer = NULL;
3085 rcu_read_unlock();
3087 return buffer;
3090 static void perf_buffer_put(struct perf_buffer *buffer)
3092 if (!atomic_dec_and_test(&buffer->refcount))
3093 return;
3095 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3098 static void perf_mmap_open(struct vm_area_struct *vma)
3100 struct perf_event *event = vma->vm_file->private_data;
3102 atomic_inc(&event->mmap_count);
3105 static void perf_mmap_close(struct vm_area_struct *vma)
3107 struct perf_event *event = vma->vm_file->private_data;
3109 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3110 unsigned long size = perf_data_size(event->buffer);
3111 struct user_struct *user = event->mmap_user;
3112 struct perf_buffer *buffer = event->buffer;
3114 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3115 vma->vm_mm->locked_vm -= event->mmap_locked;
3116 rcu_assign_pointer(event->buffer, NULL);
3117 mutex_unlock(&event->mmap_mutex);
3119 perf_buffer_put(buffer);
3120 free_uid(user);
3124 static const struct vm_operations_struct perf_mmap_vmops = {
3125 .open = perf_mmap_open,
3126 .close = perf_mmap_close,
3127 .fault = perf_mmap_fault,
3128 .page_mkwrite = perf_mmap_fault,
3131 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3133 struct perf_event *event = file->private_data;
3134 unsigned long user_locked, user_lock_limit;
3135 struct user_struct *user = current_user();
3136 unsigned long locked, lock_limit;
3137 struct perf_buffer *buffer;
3138 unsigned long vma_size;
3139 unsigned long nr_pages;
3140 long user_extra, extra;
3141 int ret = 0, flags = 0;
3144 * Don't allow mmap() of inherited per-task counters. This would
3145 * create a performance issue due to all children writing to the
3146 * same buffer.
3148 if (event->cpu == -1 && event->attr.inherit)
3149 return -EINVAL;
3151 if (!(vma->vm_flags & VM_SHARED))
3152 return -EINVAL;
3154 vma_size = vma->vm_end - vma->vm_start;
3155 nr_pages = (vma_size / PAGE_SIZE) - 1;
3158 * If we have buffer pages ensure they're a power-of-two number, so we
3159 * can do bitmasks instead of modulo.
3161 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3162 return -EINVAL;
3164 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3165 return -EINVAL;
3167 if (vma->vm_pgoff != 0)
3168 return -EINVAL;
3170 WARN_ON_ONCE(event->ctx->parent_ctx);
3171 mutex_lock(&event->mmap_mutex);
3172 if (event->buffer) {
3173 if (event->buffer->nr_pages == nr_pages)
3174 atomic_inc(&event->buffer->refcount);
3175 else
3176 ret = -EINVAL;
3177 goto unlock;
3180 user_extra = nr_pages + 1;
3181 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3184 * Increase the limit linearly with more CPUs:
3186 user_lock_limit *= num_online_cpus();
3188 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3190 extra = 0;
3191 if (user_locked > user_lock_limit)
3192 extra = user_locked - user_lock_limit;
3194 lock_limit = rlimit(RLIMIT_MEMLOCK);
3195 lock_limit >>= PAGE_SHIFT;
3196 locked = vma->vm_mm->locked_vm + extra;
3198 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3199 !capable(CAP_IPC_LOCK)) {
3200 ret = -EPERM;
3201 goto unlock;
3204 WARN_ON(event->buffer);
3206 if (vma->vm_flags & VM_WRITE)
3207 flags |= PERF_BUFFER_WRITABLE;
3209 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3210 event->cpu, flags);
3211 if (!buffer) {
3212 ret = -ENOMEM;
3213 goto unlock;
3215 rcu_assign_pointer(event->buffer, buffer);
3217 atomic_long_add(user_extra, &user->locked_vm);
3218 event->mmap_locked = extra;
3219 event->mmap_user = get_current_user();
3220 vma->vm_mm->locked_vm += event->mmap_locked;
3222 unlock:
3223 if (!ret)
3224 atomic_inc(&event->mmap_count);
3225 mutex_unlock(&event->mmap_mutex);
3227 vma->vm_flags |= VM_RESERVED;
3228 vma->vm_ops = &perf_mmap_vmops;
3230 return ret;
3233 static int perf_fasync(int fd, struct file *filp, int on)
3235 struct inode *inode = filp->f_path.dentry->d_inode;
3236 struct perf_event *event = filp->private_data;
3237 int retval;
3239 mutex_lock(&inode->i_mutex);
3240 retval = fasync_helper(fd, filp, on, &event->fasync);
3241 mutex_unlock(&inode->i_mutex);
3243 if (retval < 0)
3244 return retval;
3246 return 0;
3249 static const struct file_operations perf_fops = {
3250 .llseek = no_llseek,
3251 .release = perf_release,
3252 .read = perf_read,
3253 .poll = perf_poll,
3254 .unlocked_ioctl = perf_ioctl,
3255 .compat_ioctl = perf_ioctl,
3256 .mmap = perf_mmap,
3257 .fasync = perf_fasync,
3261 * Perf event wakeup
3263 * If there's data, ensure we set the poll() state and publish everything
3264 * to user-space before waking everybody up.
3267 void perf_event_wakeup(struct perf_event *event)
3269 wake_up_all(&event->waitq);
3271 if (event->pending_kill) {
3272 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3273 event->pending_kill = 0;
3277 static void perf_pending_event(struct irq_work *entry)
3279 struct perf_event *event = container_of(entry,
3280 struct perf_event, pending);
3282 if (event->pending_disable) {
3283 event->pending_disable = 0;
3284 __perf_event_disable(event);
3287 if (event->pending_wakeup) {
3288 event->pending_wakeup = 0;
3289 perf_event_wakeup(event);
3294 * We assume there is only KVM supporting the callbacks.
3295 * Later on, we might change it to a list if there is
3296 * another virtualization implementation supporting the callbacks.
3298 struct perf_guest_info_callbacks *perf_guest_cbs;
3300 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3302 perf_guest_cbs = cbs;
3303 return 0;
3305 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3307 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3309 perf_guest_cbs = NULL;
3310 return 0;
3312 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3315 * Output
3317 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3318 unsigned long offset, unsigned long head)
3320 unsigned long mask;
3322 if (!buffer->writable)
3323 return true;
3325 mask = perf_data_size(buffer) - 1;
3327 offset = (offset - tail) & mask;
3328 head = (head - tail) & mask;
3330 if ((int)(head - offset) < 0)
3331 return false;
3333 return true;
3336 static void perf_output_wakeup(struct perf_output_handle *handle)
3338 atomic_set(&handle->buffer->poll, POLL_IN);
3340 if (handle->nmi) {
3341 handle->event->pending_wakeup = 1;
3342 irq_work_queue(&handle->event->pending);
3343 } else
3344 perf_event_wakeup(handle->event);
3348 * We need to ensure a later event_id doesn't publish a head when a former
3349 * event isn't done writing. However since we need to deal with NMIs we
3350 * cannot fully serialize things.
3352 * We only publish the head (and generate a wakeup) when the outer-most
3353 * event completes.
3355 static void perf_output_get_handle(struct perf_output_handle *handle)
3357 struct perf_buffer *buffer = handle->buffer;
3359 preempt_disable();
3360 local_inc(&buffer->nest);
3361 handle->wakeup = local_read(&buffer->wakeup);
3364 static void perf_output_put_handle(struct perf_output_handle *handle)
3366 struct perf_buffer *buffer = handle->buffer;
3367 unsigned long head;
3369 again:
3370 head = local_read(&buffer->head);
3373 * IRQ/NMI can happen here, which means we can miss a head update.
3376 if (!local_dec_and_test(&buffer->nest))
3377 goto out;
3380 * Publish the known good head. Rely on the full barrier implied
3381 * by atomic_dec_and_test() order the buffer->head read and this
3382 * write.
3384 buffer->user_page->data_head = head;
3387 * Now check if we missed an update, rely on the (compiler)
3388 * barrier in atomic_dec_and_test() to re-read buffer->head.
3390 if (unlikely(head != local_read(&buffer->head))) {
3391 local_inc(&buffer->nest);
3392 goto again;
3395 if (handle->wakeup != local_read(&buffer->wakeup))
3396 perf_output_wakeup(handle);
3398 out:
3399 preempt_enable();
3402 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3403 const void *buf, unsigned int len)
3405 do {
3406 unsigned long size = min_t(unsigned long, handle->size, len);
3408 memcpy(handle->addr, buf, size);
3410 len -= size;
3411 handle->addr += size;
3412 buf += size;
3413 handle->size -= size;
3414 if (!handle->size) {
3415 struct perf_buffer *buffer = handle->buffer;
3417 handle->page++;
3418 handle->page &= buffer->nr_pages - 1;
3419 handle->addr = buffer->data_pages[handle->page];
3420 handle->size = PAGE_SIZE << page_order(buffer);
3422 } while (len);
3425 static void __perf_event_header__init_id(struct perf_event_header *header,
3426 struct perf_sample_data *data,
3427 struct perf_event *event)
3429 u64 sample_type = event->attr.sample_type;
3431 data->type = sample_type;
3432 header->size += event->id_header_size;
3434 if (sample_type & PERF_SAMPLE_TID) {
3435 /* namespace issues */
3436 data->tid_entry.pid = perf_event_pid(event, current);
3437 data->tid_entry.tid = perf_event_tid(event, current);
3440 if (sample_type & PERF_SAMPLE_TIME)
3441 data->time = perf_clock();
3443 if (sample_type & PERF_SAMPLE_ID)
3444 data->id = primary_event_id(event);
3446 if (sample_type & PERF_SAMPLE_STREAM_ID)
3447 data->stream_id = event->id;
3449 if (sample_type & PERF_SAMPLE_CPU) {
3450 data->cpu_entry.cpu = raw_smp_processor_id();
3451 data->cpu_entry.reserved = 0;
3455 static void perf_event_header__init_id(struct perf_event_header *header,
3456 struct perf_sample_data *data,
3457 struct perf_event *event)
3459 if (event->attr.sample_id_all)
3460 __perf_event_header__init_id(header, data, event);
3463 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3464 struct perf_sample_data *data)
3466 u64 sample_type = data->type;
3468 if (sample_type & PERF_SAMPLE_TID)
3469 perf_output_put(handle, data->tid_entry);
3471 if (sample_type & PERF_SAMPLE_TIME)
3472 perf_output_put(handle, data->time);
3474 if (sample_type & PERF_SAMPLE_ID)
3475 perf_output_put(handle, data->id);
3477 if (sample_type & PERF_SAMPLE_STREAM_ID)
3478 perf_output_put(handle, data->stream_id);
3480 if (sample_type & PERF_SAMPLE_CPU)
3481 perf_output_put(handle, data->cpu_entry);
3484 static void perf_event__output_id_sample(struct perf_event *event,
3485 struct perf_output_handle *handle,
3486 struct perf_sample_data *sample)
3488 if (event->attr.sample_id_all)
3489 __perf_event__output_id_sample(handle, sample);
3492 int perf_output_begin(struct perf_output_handle *handle,
3493 struct perf_event *event, unsigned int size,
3494 int nmi, int sample)
3496 struct perf_buffer *buffer;
3497 unsigned long tail, offset, head;
3498 int have_lost;
3499 struct perf_sample_data sample_data;
3500 struct {
3501 struct perf_event_header header;
3502 u64 id;
3503 u64 lost;
3504 } lost_event;
3506 rcu_read_lock();
3508 * For inherited events we send all the output towards the parent.
3510 if (event->parent)
3511 event = event->parent;
3513 buffer = rcu_dereference(event->buffer);
3514 if (!buffer)
3515 goto out;
3517 handle->buffer = buffer;
3518 handle->event = event;
3519 handle->nmi = nmi;
3520 handle->sample = sample;
3522 if (!buffer->nr_pages)
3523 goto out;
3525 have_lost = local_read(&buffer->lost);
3526 if (have_lost) {
3527 lost_event.header.size = sizeof(lost_event);
3528 perf_event_header__init_id(&lost_event.header, &sample_data,
3529 event);
3530 size += lost_event.header.size;
3533 perf_output_get_handle(handle);
3535 do {
3537 * Userspace could choose to issue a mb() before updating the
3538 * tail pointer. So that all reads will be completed before the
3539 * write is issued.
3541 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3542 smp_rmb();
3543 offset = head = local_read(&buffer->head);
3544 head += size;
3545 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3546 goto fail;
3547 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3549 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3550 local_add(buffer->watermark, &buffer->wakeup);
3552 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3553 handle->page &= buffer->nr_pages - 1;
3554 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3555 handle->addr = buffer->data_pages[handle->page];
3556 handle->addr += handle->size;
3557 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3559 if (have_lost) {
3560 lost_event.header.type = PERF_RECORD_LOST;
3561 lost_event.header.misc = 0;
3562 lost_event.id = event->id;
3563 lost_event.lost = local_xchg(&buffer->lost, 0);
3565 perf_output_put(handle, lost_event);
3566 perf_event__output_id_sample(event, handle, &sample_data);
3569 return 0;
3571 fail:
3572 local_inc(&buffer->lost);
3573 perf_output_put_handle(handle);
3574 out:
3575 rcu_read_unlock();
3577 return -ENOSPC;
3580 void perf_output_end(struct perf_output_handle *handle)
3582 struct perf_event *event = handle->event;
3583 struct perf_buffer *buffer = handle->buffer;
3585 int wakeup_events = event->attr.wakeup_events;
3587 if (handle->sample && wakeup_events) {
3588 int events = local_inc_return(&buffer->events);
3589 if (events >= wakeup_events) {
3590 local_sub(wakeup_events, &buffer->events);
3591 local_inc(&buffer->wakeup);
3595 perf_output_put_handle(handle);
3596 rcu_read_unlock();
3599 static void perf_output_read_one(struct perf_output_handle *handle,
3600 struct perf_event *event,
3601 u64 enabled, u64 running)
3603 u64 read_format = event->attr.read_format;
3604 u64 values[4];
3605 int n = 0;
3607 values[n++] = perf_event_count(event);
3608 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3609 values[n++] = enabled +
3610 atomic64_read(&event->child_total_time_enabled);
3612 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3613 values[n++] = running +
3614 atomic64_read(&event->child_total_time_running);
3616 if (read_format & PERF_FORMAT_ID)
3617 values[n++] = primary_event_id(event);
3619 perf_output_copy(handle, values, n * sizeof(u64));
3623 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3625 static void perf_output_read_group(struct perf_output_handle *handle,
3626 struct perf_event *event,
3627 u64 enabled, u64 running)
3629 struct perf_event *leader = event->group_leader, *sub;
3630 u64 read_format = event->attr.read_format;
3631 u64 values[5];
3632 int n = 0;
3634 values[n++] = 1 + leader->nr_siblings;
3636 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3637 values[n++] = enabled;
3639 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3640 values[n++] = running;
3642 if (leader != event)
3643 leader->pmu->read(leader);
3645 values[n++] = perf_event_count(leader);
3646 if (read_format & PERF_FORMAT_ID)
3647 values[n++] = primary_event_id(leader);
3649 perf_output_copy(handle, values, n * sizeof(u64));
3651 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3652 n = 0;
3654 if (sub != event)
3655 sub->pmu->read(sub);
3657 values[n++] = perf_event_count(sub);
3658 if (read_format & PERF_FORMAT_ID)
3659 values[n++] = primary_event_id(sub);
3661 perf_output_copy(handle, values, n * sizeof(u64));
3665 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3666 PERF_FORMAT_TOTAL_TIME_RUNNING)
3668 static void perf_output_read(struct perf_output_handle *handle,
3669 struct perf_event *event)
3671 u64 enabled = 0, running = 0, now, ctx_time;
3672 u64 read_format = event->attr.read_format;
3675 * compute total_time_enabled, total_time_running
3676 * based on snapshot values taken when the event
3677 * was last scheduled in.
3679 * we cannot simply called update_context_time()
3680 * because of locking issue as we are called in
3681 * NMI context
3683 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3684 now = perf_clock();
3685 ctx_time = event->shadow_ctx_time + now;
3686 enabled = ctx_time - event->tstamp_enabled;
3687 running = ctx_time - event->tstamp_running;
3690 if (event->attr.read_format & PERF_FORMAT_GROUP)
3691 perf_output_read_group(handle, event, enabled, running);
3692 else
3693 perf_output_read_one(handle, event, enabled, running);
3696 void perf_output_sample(struct perf_output_handle *handle,
3697 struct perf_event_header *header,
3698 struct perf_sample_data *data,
3699 struct perf_event *event)
3701 u64 sample_type = data->type;
3703 perf_output_put(handle, *header);
3705 if (sample_type & PERF_SAMPLE_IP)
3706 perf_output_put(handle, data->ip);
3708 if (sample_type & PERF_SAMPLE_TID)
3709 perf_output_put(handle, data->tid_entry);
3711 if (sample_type & PERF_SAMPLE_TIME)
3712 perf_output_put(handle, data->time);
3714 if (sample_type & PERF_SAMPLE_ADDR)
3715 perf_output_put(handle, data->addr);
3717 if (sample_type & PERF_SAMPLE_ID)
3718 perf_output_put(handle, data->id);
3720 if (sample_type & PERF_SAMPLE_STREAM_ID)
3721 perf_output_put(handle, data->stream_id);
3723 if (sample_type & PERF_SAMPLE_CPU)
3724 perf_output_put(handle, data->cpu_entry);
3726 if (sample_type & PERF_SAMPLE_PERIOD)
3727 perf_output_put(handle, data->period);
3729 if (sample_type & PERF_SAMPLE_READ)
3730 perf_output_read(handle, event);
3732 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3733 if (data->callchain) {
3734 int size = 1;
3736 if (data->callchain)
3737 size += data->callchain->nr;
3739 size *= sizeof(u64);
3741 perf_output_copy(handle, data->callchain, size);
3742 } else {
3743 u64 nr = 0;
3744 perf_output_put(handle, nr);
3748 if (sample_type & PERF_SAMPLE_RAW) {
3749 if (data->raw) {
3750 perf_output_put(handle, data->raw->size);
3751 perf_output_copy(handle, data->raw->data,
3752 data->raw->size);
3753 } else {
3754 struct {
3755 u32 size;
3756 u32 data;
3757 } raw = {
3758 .size = sizeof(u32),
3759 .data = 0,
3761 perf_output_put(handle, raw);
3766 void perf_prepare_sample(struct perf_event_header *header,
3767 struct perf_sample_data *data,
3768 struct perf_event *event,
3769 struct pt_regs *regs)
3771 u64 sample_type = event->attr.sample_type;
3773 header->type = PERF_RECORD_SAMPLE;
3774 header->size = sizeof(*header) + event->header_size;
3776 header->misc = 0;
3777 header->misc |= perf_misc_flags(regs);
3779 __perf_event_header__init_id(header, data, event);
3781 if (sample_type & PERF_SAMPLE_IP)
3782 data->ip = perf_instruction_pointer(regs);
3784 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3785 int size = 1;
3787 data->callchain = perf_callchain(regs);
3789 if (data->callchain)
3790 size += data->callchain->nr;
3792 header->size += size * sizeof(u64);
3795 if (sample_type & PERF_SAMPLE_RAW) {
3796 int size = sizeof(u32);
3798 if (data->raw)
3799 size += data->raw->size;
3800 else
3801 size += sizeof(u32);
3803 WARN_ON_ONCE(size & (sizeof(u64)-1));
3804 header->size += size;
3808 static void perf_event_output(struct perf_event *event, int nmi,
3809 struct perf_sample_data *data,
3810 struct pt_regs *regs)
3812 struct perf_output_handle handle;
3813 struct perf_event_header header;
3815 /* protect the callchain buffers */
3816 rcu_read_lock();
3818 perf_prepare_sample(&header, data, event, regs);
3820 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3821 goto exit;
3823 perf_output_sample(&handle, &header, data, event);
3825 perf_output_end(&handle);
3827 exit:
3828 rcu_read_unlock();
3832 * read event_id
3835 struct perf_read_event {
3836 struct perf_event_header header;
3838 u32 pid;
3839 u32 tid;
3842 static void
3843 perf_event_read_event(struct perf_event *event,
3844 struct task_struct *task)
3846 struct perf_output_handle handle;
3847 struct perf_sample_data sample;
3848 struct perf_read_event read_event = {
3849 .header = {
3850 .type = PERF_RECORD_READ,
3851 .misc = 0,
3852 .size = sizeof(read_event) + event->read_size,
3854 .pid = perf_event_pid(event, task),
3855 .tid = perf_event_tid(event, task),
3857 int ret;
3859 perf_event_header__init_id(&read_event.header, &sample, event);
3860 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3861 if (ret)
3862 return;
3864 perf_output_put(&handle, read_event);
3865 perf_output_read(&handle, event);
3866 perf_event__output_id_sample(event, &handle, &sample);
3868 perf_output_end(&handle);
3872 * task tracking -- fork/exit
3874 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3877 struct perf_task_event {
3878 struct task_struct *task;
3879 struct perf_event_context *task_ctx;
3881 struct {
3882 struct perf_event_header header;
3884 u32 pid;
3885 u32 ppid;
3886 u32 tid;
3887 u32 ptid;
3888 u64 time;
3889 } event_id;
3892 static void perf_event_task_output(struct perf_event *event,
3893 struct perf_task_event *task_event)
3895 struct perf_output_handle handle;
3896 struct perf_sample_data sample;
3897 struct task_struct *task = task_event->task;
3898 int ret, size = task_event->event_id.header.size;
3900 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
3902 ret = perf_output_begin(&handle, event,
3903 task_event->event_id.header.size, 0, 0);
3904 if (ret)
3905 goto out;
3907 task_event->event_id.pid = perf_event_pid(event, task);
3908 task_event->event_id.ppid = perf_event_pid(event, current);
3910 task_event->event_id.tid = perf_event_tid(event, task);
3911 task_event->event_id.ptid = perf_event_tid(event, current);
3913 perf_output_put(&handle, task_event->event_id);
3915 perf_event__output_id_sample(event, &handle, &sample);
3917 perf_output_end(&handle);
3918 out:
3919 task_event->event_id.header.size = size;
3922 static int perf_event_task_match(struct perf_event *event)
3924 if (event->state < PERF_EVENT_STATE_INACTIVE)
3925 return 0;
3927 if (!event_filter_match(event))
3928 return 0;
3930 if (event->attr.comm || event->attr.mmap ||
3931 event->attr.mmap_data || event->attr.task)
3932 return 1;
3934 return 0;
3937 static void perf_event_task_ctx(struct perf_event_context *ctx,
3938 struct perf_task_event *task_event)
3940 struct perf_event *event;
3942 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3943 if (perf_event_task_match(event))
3944 perf_event_task_output(event, task_event);
3948 static void perf_event_task_event(struct perf_task_event *task_event)
3950 struct perf_cpu_context *cpuctx;
3951 struct perf_event_context *ctx;
3952 struct pmu *pmu;
3953 int ctxn;
3955 rcu_read_lock();
3956 list_for_each_entry_rcu(pmu, &pmus, entry) {
3957 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3958 if (cpuctx->active_pmu != pmu)
3959 goto next;
3960 perf_event_task_ctx(&cpuctx->ctx, task_event);
3962 ctx = task_event->task_ctx;
3963 if (!ctx) {
3964 ctxn = pmu->task_ctx_nr;
3965 if (ctxn < 0)
3966 goto next;
3967 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3969 if (ctx)
3970 perf_event_task_ctx(ctx, task_event);
3971 next:
3972 put_cpu_ptr(pmu->pmu_cpu_context);
3974 rcu_read_unlock();
3977 static void perf_event_task(struct task_struct *task,
3978 struct perf_event_context *task_ctx,
3979 int new)
3981 struct perf_task_event task_event;
3983 if (!atomic_read(&nr_comm_events) &&
3984 !atomic_read(&nr_mmap_events) &&
3985 !atomic_read(&nr_task_events))
3986 return;
3988 task_event = (struct perf_task_event){
3989 .task = task,
3990 .task_ctx = task_ctx,
3991 .event_id = {
3992 .header = {
3993 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3994 .misc = 0,
3995 .size = sizeof(task_event.event_id),
3997 /* .pid */
3998 /* .ppid */
3999 /* .tid */
4000 /* .ptid */
4001 .time = perf_clock(),
4005 perf_event_task_event(&task_event);
4008 void perf_event_fork(struct task_struct *task)
4010 perf_event_task(task, NULL, 1);
4014 * comm tracking
4017 struct perf_comm_event {
4018 struct task_struct *task;
4019 char *comm;
4020 int comm_size;
4022 struct {
4023 struct perf_event_header header;
4025 u32 pid;
4026 u32 tid;
4027 } event_id;
4030 static void perf_event_comm_output(struct perf_event *event,
4031 struct perf_comm_event *comm_event)
4033 struct perf_output_handle handle;
4034 struct perf_sample_data sample;
4035 int size = comm_event->event_id.header.size;
4036 int ret;
4038 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4039 ret = perf_output_begin(&handle, event,
4040 comm_event->event_id.header.size, 0, 0);
4042 if (ret)
4043 goto out;
4045 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4046 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4048 perf_output_put(&handle, comm_event->event_id);
4049 perf_output_copy(&handle, comm_event->comm,
4050 comm_event->comm_size);
4052 perf_event__output_id_sample(event, &handle, &sample);
4054 perf_output_end(&handle);
4055 out:
4056 comm_event->event_id.header.size = size;
4059 static int perf_event_comm_match(struct perf_event *event)
4061 if (event->state < PERF_EVENT_STATE_INACTIVE)
4062 return 0;
4064 if (!event_filter_match(event))
4065 return 0;
4067 if (event->attr.comm)
4068 return 1;
4070 return 0;
4073 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4074 struct perf_comm_event *comm_event)
4076 struct perf_event *event;
4078 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4079 if (perf_event_comm_match(event))
4080 perf_event_comm_output(event, comm_event);
4084 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4086 struct perf_cpu_context *cpuctx;
4087 struct perf_event_context *ctx;
4088 char comm[TASK_COMM_LEN];
4089 unsigned int size;
4090 struct pmu *pmu;
4091 int ctxn;
4093 memset(comm, 0, sizeof(comm));
4094 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4095 size = ALIGN(strlen(comm)+1, sizeof(u64));
4097 comm_event->comm = comm;
4098 comm_event->comm_size = size;
4100 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4101 rcu_read_lock();
4102 list_for_each_entry_rcu(pmu, &pmus, entry) {
4103 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4104 if (cpuctx->active_pmu != pmu)
4105 goto next;
4106 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4108 ctxn = pmu->task_ctx_nr;
4109 if (ctxn < 0)
4110 goto next;
4112 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4113 if (ctx)
4114 perf_event_comm_ctx(ctx, comm_event);
4115 next:
4116 put_cpu_ptr(pmu->pmu_cpu_context);
4118 rcu_read_unlock();
4121 void perf_event_comm(struct task_struct *task)
4123 struct perf_comm_event comm_event;
4124 struct perf_event_context *ctx;
4125 int ctxn;
4127 for_each_task_context_nr(ctxn) {
4128 ctx = task->perf_event_ctxp[ctxn];
4129 if (!ctx)
4130 continue;
4132 perf_event_enable_on_exec(ctx);
4135 if (!atomic_read(&nr_comm_events))
4136 return;
4138 comm_event = (struct perf_comm_event){
4139 .task = task,
4140 /* .comm */
4141 /* .comm_size */
4142 .event_id = {
4143 .header = {
4144 .type = PERF_RECORD_COMM,
4145 .misc = 0,
4146 /* .size */
4148 /* .pid */
4149 /* .tid */
4153 perf_event_comm_event(&comm_event);
4157 * mmap tracking
4160 struct perf_mmap_event {
4161 struct vm_area_struct *vma;
4163 const char *file_name;
4164 int file_size;
4166 struct {
4167 struct perf_event_header header;
4169 u32 pid;
4170 u32 tid;
4171 u64 start;
4172 u64 len;
4173 u64 pgoff;
4174 } event_id;
4177 static void perf_event_mmap_output(struct perf_event *event,
4178 struct perf_mmap_event *mmap_event)
4180 struct perf_output_handle handle;
4181 struct perf_sample_data sample;
4182 int size = mmap_event->event_id.header.size;
4183 int ret;
4185 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4186 ret = perf_output_begin(&handle, event,
4187 mmap_event->event_id.header.size, 0, 0);
4188 if (ret)
4189 goto out;
4191 mmap_event->event_id.pid = perf_event_pid(event, current);
4192 mmap_event->event_id.tid = perf_event_tid(event, current);
4194 perf_output_put(&handle, mmap_event->event_id);
4195 perf_output_copy(&handle, mmap_event->file_name,
4196 mmap_event->file_size);
4198 perf_event__output_id_sample(event, &handle, &sample);
4200 perf_output_end(&handle);
4201 out:
4202 mmap_event->event_id.header.size = size;
4205 static int perf_event_mmap_match(struct perf_event *event,
4206 struct perf_mmap_event *mmap_event,
4207 int executable)
4209 if (event->state < PERF_EVENT_STATE_INACTIVE)
4210 return 0;
4212 if (!event_filter_match(event))
4213 return 0;
4215 if ((!executable && event->attr.mmap_data) ||
4216 (executable && event->attr.mmap))
4217 return 1;
4219 return 0;
4222 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4223 struct perf_mmap_event *mmap_event,
4224 int executable)
4226 struct perf_event *event;
4228 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4229 if (perf_event_mmap_match(event, mmap_event, executable))
4230 perf_event_mmap_output(event, mmap_event);
4234 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4236 struct perf_cpu_context *cpuctx;
4237 struct perf_event_context *ctx;
4238 struct vm_area_struct *vma = mmap_event->vma;
4239 struct file *file = vma->vm_file;
4240 unsigned int size;
4241 char tmp[16];
4242 char *buf = NULL;
4243 const char *name;
4244 struct pmu *pmu;
4245 int ctxn;
4247 memset(tmp, 0, sizeof(tmp));
4249 if (file) {
4251 * d_path works from the end of the buffer backwards, so we
4252 * need to add enough zero bytes after the string to handle
4253 * the 64bit alignment we do later.
4255 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4256 if (!buf) {
4257 name = strncpy(tmp, "//enomem", sizeof(tmp));
4258 goto got_name;
4260 name = d_path(&file->f_path, buf, PATH_MAX);
4261 if (IS_ERR(name)) {
4262 name = strncpy(tmp, "//toolong", sizeof(tmp));
4263 goto got_name;
4265 } else {
4266 if (arch_vma_name(mmap_event->vma)) {
4267 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4268 sizeof(tmp));
4269 goto got_name;
4272 if (!vma->vm_mm) {
4273 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4274 goto got_name;
4275 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4276 vma->vm_end >= vma->vm_mm->brk) {
4277 name = strncpy(tmp, "[heap]", sizeof(tmp));
4278 goto got_name;
4279 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4280 vma->vm_end >= vma->vm_mm->start_stack) {
4281 name = strncpy(tmp, "[stack]", sizeof(tmp));
4282 goto got_name;
4285 name = strncpy(tmp, "//anon", sizeof(tmp));
4286 goto got_name;
4289 got_name:
4290 size = ALIGN(strlen(name)+1, sizeof(u64));
4292 mmap_event->file_name = name;
4293 mmap_event->file_size = size;
4295 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4297 rcu_read_lock();
4298 list_for_each_entry_rcu(pmu, &pmus, entry) {
4299 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4300 if (cpuctx->active_pmu != pmu)
4301 goto next;
4302 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4303 vma->vm_flags & VM_EXEC);
4305 ctxn = pmu->task_ctx_nr;
4306 if (ctxn < 0)
4307 goto next;
4309 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4310 if (ctx) {
4311 perf_event_mmap_ctx(ctx, mmap_event,
4312 vma->vm_flags & VM_EXEC);
4314 next:
4315 put_cpu_ptr(pmu->pmu_cpu_context);
4317 rcu_read_unlock();
4319 kfree(buf);
4322 void perf_event_mmap(struct vm_area_struct *vma)
4324 struct perf_mmap_event mmap_event;
4326 if (!atomic_read(&nr_mmap_events))
4327 return;
4329 mmap_event = (struct perf_mmap_event){
4330 .vma = vma,
4331 /* .file_name */
4332 /* .file_size */
4333 .event_id = {
4334 .header = {
4335 .type = PERF_RECORD_MMAP,
4336 .misc = PERF_RECORD_MISC_USER,
4337 /* .size */
4339 /* .pid */
4340 /* .tid */
4341 .start = vma->vm_start,
4342 .len = vma->vm_end - vma->vm_start,
4343 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4347 perf_event_mmap_event(&mmap_event);
4351 * IRQ throttle logging
4354 static void perf_log_throttle(struct perf_event *event, int enable)
4356 struct perf_output_handle handle;
4357 struct perf_sample_data sample;
4358 int ret;
4360 struct {
4361 struct perf_event_header header;
4362 u64 time;
4363 u64 id;
4364 u64 stream_id;
4365 } throttle_event = {
4366 .header = {
4367 .type = PERF_RECORD_THROTTLE,
4368 .misc = 0,
4369 .size = sizeof(throttle_event),
4371 .time = perf_clock(),
4372 .id = primary_event_id(event),
4373 .stream_id = event->id,
4376 if (enable)
4377 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4379 perf_event_header__init_id(&throttle_event.header, &sample, event);
4381 ret = perf_output_begin(&handle, event,
4382 throttle_event.header.size, 1, 0);
4383 if (ret)
4384 return;
4386 perf_output_put(&handle, throttle_event);
4387 perf_event__output_id_sample(event, &handle, &sample);
4388 perf_output_end(&handle);
4392 * Generic event overflow handling, sampling.
4395 static int __perf_event_overflow(struct perf_event *event, int nmi,
4396 int throttle, struct perf_sample_data *data,
4397 struct pt_regs *regs)
4399 int events = atomic_read(&event->event_limit);
4400 struct hw_perf_event *hwc = &event->hw;
4401 int ret = 0;
4404 * Non-sampling counters might still use the PMI to fold short
4405 * hardware counters, ignore those.
4407 if (unlikely(!is_sampling_event(event)))
4408 return 0;
4410 if (!throttle) {
4411 hwc->interrupts++;
4412 } else {
4413 if (hwc->interrupts != MAX_INTERRUPTS) {
4414 hwc->interrupts++;
4415 if (HZ * hwc->interrupts >
4416 (u64)sysctl_perf_event_sample_rate) {
4417 hwc->interrupts = MAX_INTERRUPTS;
4418 perf_log_throttle(event, 0);
4419 ret = 1;
4421 } else {
4423 * Keep re-disabling events even though on the previous
4424 * pass we disabled it - just in case we raced with a
4425 * sched-in and the event got enabled again:
4427 ret = 1;
4431 if (event->attr.freq) {
4432 u64 now = perf_clock();
4433 s64 delta = now - hwc->freq_time_stamp;
4435 hwc->freq_time_stamp = now;
4437 if (delta > 0 && delta < 2*TICK_NSEC)
4438 perf_adjust_period(event, delta, hwc->last_period);
4442 * XXX event_limit might not quite work as expected on inherited
4443 * events
4446 event->pending_kill = POLL_IN;
4447 if (events && atomic_dec_and_test(&event->event_limit)) {
4448 ret = 1;
4449 event->pending_kill = POLL_HUP;
4450 if (nmi) {
4451 event->pending_disable = 1;
4452 irq_work_queue(&event->pending);
4453 } else
4454 perf_event_disable(event);
4457 if (event->overflow_handler)
4458 event->overflow_handler(event, nmi, data, regs);
4459 else
4460 perf_event_output(event, nmi, data, regs);
4462 return ret;
4465 int perf_event_overflow(struct perf_event *event, int nmi,
4466 struct perf_sample_data *data,
4467 struct pt_regs *regs)
4469 return __perf_event_overflow(event, nmi, 1, data, regs);
4473 * Generic software event infrastructure
4476 struct swevent_htable {
4477 struct swevent_hlist *swevent_hlist;
4478 struct mutex hlist_mutex;
4479 int hlist_refcount;
4481 /* Recursion avoidance in each contexts */
4482 int recursion[PERF_NR_CONTEXTS];
4485 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4488 * We directly increment event->count and keep a second value in
4489 * event->hw.period_left to count intervals. This period event
4490 * is kept in the range [-sample_period, 0] so that we can use the
4491 * sign as trigger.
4494 static u64 perf_swevent_set_period(struct perf_event *event)
4496 struct hw_perf_event *hwc = &event->hw;
4497 u64 period = hwc->last_period;
4498 u64 nr, offset;
4499 s64 old, val;
4501 hwc->last_period = hwc->sample_period;
4503 again:
4504 old = val = local64_read(&hwc->period_left);
4505 if (val < 0)
4506 return 0;
4508 nr = div64_u64(period + val, period);
4509 offset = nr * period;
4510 val -= offset;
4511 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4512 goto again;
4514 return nr;
4517 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4518 int nmi, struct perf_sample_data *data,
4519 struct pt_regs *regs)
4521 struct hw_perf_event *hwc = &event->hw;
4522 int throttle = 0;
4524 data->period = event->hw.last_period;
4525 if (!overflow)
4526 overflow = perf_swevent_set_period(event);
4528 if (hwc->interrupts == MAX_INTERRUPTS)
4529 return;
4531 for (; overflow; overflow--) {
4532 if (__perf_event_overflow(event, nmi, throttle,
4533 data, regs)) {
4535 * We inhibit the overflow from happening when
4536 * hwc->interrupts == MAX_INTERRUPTS.
4538 break;
4540 throttle = 1;
4544 static void perf_swevent_event(struct perf_event *event, u64 nr,
4545 int nmi, struct perf_sample_data *data,
4546 struct pt_regs *regs)
4548 struct hw_perf_event *hwc = &event->hw;
4550 local64_add(nr, &event->count);
4552 if (!regs)
4553 return;
4555 if (!is_sampling_event(event))
4556 return;
4558 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4559 return perf_swevent_overflow(event, 1, nmi, data, regs);
4561 if (local64_add_negative(nr, &hwc->period_left))
4562 return;
4564 perf_swevent_overflow(event, 0, nmi, data, regs);
4567 static int perf_exclude_event(struct perf_event *event,
4568 struct pt_regs *regs)
4570 if (event->hw.state & PERF_HES_STOPPED)
4571 return 1;
4573 if (regs) {
4574 if (event->attr.exclude_user && user_mode(regs))
4575 return 1;
4577 if (event->attr.exclude_kernel && !user_mode(regs))
4578 return 1;
4581 return 0;
4584 static int perf_swevent_match(struct perf_event *event,
4585 enum perf_type_id type,
4586 u32 event_id,
4587 struct perf_sample_data *data,
4588 struct pt_regs *regs)
4590 if (event->attr.type != type)
4591 return 0;
4593 if (event->attr.config != event_id)
4594 return 0;
4596 if (perf_exclude_event(event, regs))
4597 return 0;
4599 return 1;
4602 static inline u64 swevent_hash(u64 type, u32 event_id)
4604 u64 val = event_id | (type << 32);
4606 return hash_64(val, SWEVENT_HLIST_BITS);
4609 static inline struct hlist_head *
4610 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4612 u64 hash = swevent_hash(type, event_id);
4614 return &hlist->heads[hash];
4617 /* For the read side: events when they trigger */
4618 static inline struct hlist_head *
4619 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4621 struct swevent_hlist *hlist;
4623 hlist = rcu_dereference(swhash->swevent_hlist);
4624 if (!hlist)
4625 return NULL;
4627 return __find_swevent_head(hlist, type, event_id);
4630 /* For the event head insertion and removal in the hlist */
4631 static inline struct hlist_head *
4632 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4634 struct swevent_hlist *hlist;
4635 u32 event_id = event->attr.config;
4636 u64 type = event->attr.type;
4639 * Event scheduling is always serialized against hlist allocation
4640 * and release. Which makes the protected version suitable here.
4641 * The context lock guarantees that.
4643 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4644 lockdep_is_held(&event->ctx->lock));
4645 if (!hlist)
4646 return NULL;
4648 return __find_swevent_head(hlist, type, event_id);
4651 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4652 u64 nr, int nmi,
4653 struct perf_sample_data *data,
4654 struct pt_regs *regs)
4656 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4657 struct perf_event *event;
4658 struct hlist_node *node;
4659 struct hlist_head *head;
4661 rcu_read_lock();
4662 head = find_swevent_head_rcu(swhash, type, event_id);
4663 if (!head)
4664 goto end;
4666 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4667 if (perf_swevent_match(event, type, event_id, data, regs))
4668 perf_swevent_event(event, nr, nmi, data, regs);
4670 end:
4671 rcu_read_unlock();
4674 int perf_swevent_get_recursion_context(void)
4676 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4678 return get_recursion_context(swhash->recursion);
4680 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4682 inline void perf_swevent_put_recursion_context(int rctx)
4684 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4686 put_recursion_context(swhash->recursion, rctx);
4689 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4690 struct pt_regs *regs, u64 addr)
4692 struct perf_sample_data data;
4693 int rctx;
4695 preempt_disable_notrace();
4696 rctx = perf_swevent_get_recursion_context();
4697 if (rctx < 0)
4698 return;
4700 perf_sample_data_init(&data, addr);
4702 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4704 perf_swevent_put_recursion_context(rctx);
4705 preempt_enable_notrace();
4708 static void perf_swevent_read(struct perf_event *event)
4712 static int perf_swevent_add(struct perf_event *event, int flags)
4714 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4715 struct hw_perf_event *hwc = &event->hw;
4716 struct hlist_head *head;
4718 if (is_sampling_event(event)) {
4719 hwc->last_period = hwc->sample_period;
4720 perf_swevent_set_period(event);
4723 hwc->state = !(flags & PERF_EF_START);
4725 head = find_swevent_head(swhash, event);
4726 if (WARN_ON_ONCE(!head))
4727 return -EINVAL;
4729 hlist_add_head_rcu(&event->hlist_entry, head);
4731 return 0;
4734 static void perf_swevent_del(struct perf_event *event, int flags)
4736 hlist_del_rcu(&event->hlist_entry);
4739 static void perf_swevent_start(struct perf_event *event, int flags)
4741 event->hw.state = 0;
4744 static void perf_swevent_stop(struct perf_event *event, int flags)
4746 event->hw.state = PERF_HES_STOPPED;
4749 /* Deref the hlist from the update side */
4750 static inline struct swevent_hlist *
4751 swevent_hlist_deref(struct swevent_htable *swhash)
4753 return rcu_dereference_protected(swhash->swevent_hlist,
4754 lockdep_is_held(&swhash->hlist_mutex));
4757 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4759 struct swevent_hlist *hlist;
4761 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4762 kfree(hlist);
4765 static void swevent_hlist_release(struct swevent_htable *swhash)
4767 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4769 if (!hlist)
4770 return;
4772 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4773 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4776 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4778 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4780 mutex_lock(&swhash->hlist_mutex);
4782 if (!--swhash->hlist_refcount)
4783 swevent_hlist_release(swhash);
4785 mutex_unlock(&swhash->hlist_mutex);
4788 static void swevent_hlist_put(struct perf_event *event)
4790 int cpu;
4792 if (event->cpu != -1) {
4793 swevent_hlist_put_cpu(event, event->cpu);
4794 return;
4797 for_each_possible_cpu(cpu)
4798 swevent_hlist_put_cpu(event, cpu);
4801 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4803 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4804 int err = 0;
4806 mutex_lock(&swhash->hlist_mutex);
4808 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4809 struct swevent_hlist *hlist;
4811 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4812 if (!hlist) {
4813 err = -ENOMEM;
4814 goto exit;
4816 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4818 swhash->hlist_refcount++;
4819 exit:
4820 mutex_unlock(&swhash->hlist_mutex);
4822 return err;
4825 static int swevent_hlist_get(struct perf_event *event)
4827 int err;
4828 int cpu, failed_cpu;
4830 if (event->cpu != -1)
4831 return swevent_hlist_get_cpu(event, event->cpu);
4833 get_online_cpus();
4834 for_each_possible_cpu(cpu) {
4835 err = swevent_hlist_get_cpu(event, cpu);
4836 if (err) {
4837 failed_cpu = cpu;
4838 goto fail;
4841 put_online_cpus();
4843 return 0;
4844 fail:
4845 for_each_possible_cpu(cpu) {
4846 if (cpu == failed_cpu)
4847 break;
4848 swevent_hlist_put_cpu(event, cpu);
4851 put_online_cpus();
4852 return err;
4855 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4857 static void sw_perf_event_destroy(struct perf_event *event)
4859 u64 event_id = event->attr.config;
4861 WARN_ON(event->parent);
4863 jump_label_dec(&perf_swevent_enabled[event_id]);
4864 swevent_hlist_put(event);
4867 static int perf_swevent_init(struct perf_event *event)
4869 int event_id = event->attr.config;
4871 if (event->attr.type != PERF_TYPE_SOFTWARE)
4872 return -ENOENT;
4874 switch (event_id) {
4875 case PERF_COUNT_SW_CPU_CLOCK:
4876 case PERF_COUNT_SW_TASK_CLOCK:
4877 return -ENOENT;
4879 default:
4880 break;
4883 if (event_id >= PERF_COUNT_SW_MAX)
4884 return -ENOENT;
4886 if (!event->parent) {
4887 int err;
4889 err = swevent_hlist_get(event);
4890 if (err)
4891 return err;
4893 jump_label_inc(&perf_swevent_enabled[event_id]);
4894 event->destroy = sw_perf_event_destroy;
4897 return 0;
4900 static struct pmu perf_swevent = {
4901 .task_ctx_nr = perf_sw_context,
4903 .event_init = perf_swevent_init,
4904 .add = perf_swevent_add,
4905 .del = perf_swevent_del,
4906 .start = perf_swevent_start,
4907 .stop = perf_swevent_stop,
4908 .read = perf_swevent_read,
4911 #ifdef CONFIG_EVENT_TRACING
4913 static int perf_tp_filter_match(struct perf_event *event,
4914 struct perf_sample_data *data)
4916 void *record = data->raw->data;
4918 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4919 return 1;
4920 return 0;
4923 static int perf_tp_event_match(struct perf_event *event,
4924 struct perf_sample_data *data,
4925 struct pt_regs *regs)
4927 if (event->hw.state & PERF_HES_STOPPED)
4928 return 0;
4930 * All tracepoints are from kernel-space.
4932 if (event->attr.exclude_kernel)
4933 return 0;
4935 if (!perf_tp_filter_match(event, data))
4936 return 0;
4938 return 1;
4941 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4942 struct pt_regs *regs, struct hlist_head *head, int rctx)
4944 struct perf_sample_data data;
4945 struct perf_event *event;
4946 struct hlist_node *node;
4948 struct perf_raw_record raw = {
4949 .size = entry_size,
4950 .data = record,
4953 perf_sample_data_init(&data, addr);
4954 data.raw = &raw;
4956 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4957 if (perf_tp_event_match(event, &data, regs))
4958 perf_swevent_event(event, count, 1, &data, regs);
4961 perf_swevent_put_recursion_context(rctx);
4963 EXPORT_SYMBOL_GPL(perf_tp_event);
4965 static void tp_perf_event_destroy(struct perf_event *event)
4967 perf_trace_destroy(event);
4970 static int perf_tp_event_init(struct perf_event *event)
4972 int err;
4974 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4975 return -ENOENT;
4977 err = perf_trace_init(event);
4978 if (err)
4979 return err;
4981 event->destroy = tp_perf_event_destroy;
4983 return 0;
4986 static struct pmu perf_tracepoint = {
4987 .task_ctx_nr = perf_sw_context,
4989 .event_init = perf_tp_event_init,
4990 .add = perf_trace_add,
4991 .del = perf_trace_del,
4992 .start = perf_swevent_start,
4993 .stop = perf_swevent_stop,
4994 .read = perf_swevent_read,
4997 static inline void perf_tp_register(void)
4999 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5002 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5004 char *filter_str;
5005 int ret;
5007 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5008 return -EINVAL;
5010 filter_str = strndup_user(arg, PAGE_SIZE);
5011 if (IS_ERR(filter_str))
5012 return PTR_ERR(filter_str);
5014 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5016 kfree(filter_str);
5017 return ret;
5020 static void perf_event_free_filter(struct perf_event *event)
5022 ftrace_profile_free_filter(event);
5025 #else
5027 static inline void perf_tp_register(void)
5031 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5033 return -ENOENT;
5036 static void perf_event_free_filter(struct perf_event *event)
5040 #endif /* CONFIG_EVENT_TRACING */
5042 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5043 void perf_bp_event(struct perf_event *bp, void *data)
5045 struct perf_sample_data sample;
5046 struct pt_regs *regs = data;
5048 perf_sample_data_init(&sample, bp->attr.bp_addr);
5050 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5051 perf_swevent_event(bp, 1, 1, &sample, regs);
5053 #endif
5056 * hrtimer based swevent callback
5059 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5061 enum hrtimer_restart ret = HRTIMER_RESTART;
5062 struct perf_sample_data data;
5063 struct pt_regs *regs;
5064 struct perf_event *event;
5065 u64 period;
5067 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5068 event->pmu->read(event);
5070 perf_sample_data_init(&data, 0);
5071 data.period = event->hw.last_period;
5072 regs = get_irq_regs();
5074 if (regs && !perf_exclude_event(event, regs)) {
5075 if (!(event->attr.exclude_idle && current->pid == 0))
5076 if (perf_event_overflow(event, 0, &data, regs))
5077 ret = HRTIMER_NORESTART;
5080 period = max_t(u64, 10000, event->hw.sample_period);
5081 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5083 return ret;
5086 static void perf_swevent_start_hrtimer(struct perf_event *event)
5088 struct hw_perf_event *hwc = &event->hw;
5089 s64 period;
5091 if (!is_sampling_event(event))
5092 return;
5094 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5095 hwc->hrtimer.function = perf_swevent_hrtimer;
5097 period = local64_read(&hwc->period_left);
5098 if (period) {
5099 if (period < 0)
5100 period = 10000;
5102 local64_set(&hwc->period_left, 0);
5103 } else {
5104 period = max_t(u64, 10000, hwc->sample_period);
5106 __hrtimer_start_range_ns(&hwc->hrtimer,
5107 ns_to_ktime(period), 0,
5108 HRTIMER_MODE_REL_PINNED, 0);
5111 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5113 struct hw_perf_event *hwc = &event->hw;
5115 if (is_sampling_event(event)) {
5116 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5117 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5119 hrtimer_cancel(&hwc->hrtimer);
5124 * Software event: cpu wall time clock
5127 static void cpu_clock_event_update(struct perf_event *event)
5129 s64 prev;
5130 u64 now;
5132 now = local_clock();
5133 prev = local64_xchg(&event->hw.prev_count, now);
5134 local64_add(now - prev, &event->count);
5137 static void cpu_clock_event_start(struct perf_event *event, int flags)
5139 local64_set(&event->hw.prev_count, local_clock());
5140 perf_swevent_start_hrtimer(event);
5143 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5145 perf_swevent_cancel_hrtimer(event);
5146 cpu_clock_event_update(event);
5149 static int cpu_clock_event_add(struct perf_event *event, int flags)
5151 if (flags & PERF_EF_START)
5152 cpu_clock_event_start(event, flags);
5154 return 0;
5157 static void cpu_clock_event_del(struct perf_event *event, int flags)
5159 cpu_clock_event_stop(event, flags);
5162 static void cpu_clock_event_read(struct perf_event *event)
5164 cpu_clock_event_update(event);
5167 static int cpu_clock_event_init(struct perf_event *event)
5169 if (event->attr.type != PERF_TYPE_SOFTWARE)
5170 return -ENOENT;
5172 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5173 return -ENOENT;
5175 return 0;
5178 static struct pmu perf_cpu_clock = {
5179 .task_ctx_nr = perf_sw_context,
5181 .event_init = cpu_clock_event_init,
5182 .add = cpu_clock_event_add,
5183 .del = cpu_clock_event_del,
5184 .start = cpu_clock_event_start,
5185 .stop = cpu_clock_event_stop,
5186 .read = cpu_clock_event_read,
5190 * Software event: task time clock
5193 static void task_clock_event_update(struct perf_event *event, u64 now)
5195 u64 prev;
5196 s64 delta;
5198 prev = local64_xchg(&event->hw.prev_count, now);
5199 delta = now - prev;
5200 local64_add(delta, &event->count);
5203 static void task_clock_event_start(struct perf_event *event, int flags)
5205 local64_set(&event->hw.prev_count, event->ctx->time);
5206 perf_swevent_start_hrtimer(event);
5209 static void task_clock_event_stop(struct perf_event *event, int flags)
5211 perf_swevent_cancel_hrtimer(event);
5212 task_clock_event_update(event, event->ctx->time);
5215 static int task_clock_event_add(struct perf_event *event, int flags)
5217 if (flags & PERF_EF_START)
5218 task_clock_event_start(event, flags);
5220 return 0;
5223 static void task_clock_event_del(struct perf_event *event, int flags)
5225 task_clock_event_stop(event, PERF_EF_UPDATE);
5228 static void task_clock_event_read(struct perf_event *event)
5230 u64 time;
5232 if (!in_nmi()) {
5233 update_context_time(event->ctx);
5234 time = event->ctx->time;
5235 } else {
5236 u64 now = perf_clock();
5237 u64 delta = now - event->ctx->timestamp;
5238 time = event->ctx->time + delta;
5241 task_clock_event_update(event, time);
5244 static int task_clock_event_init(struct perf_event *event)
5246 if (event->attr.type != PERF_TYPE_SOFTWARE)
5247 return -ENOENT;
5249 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5250 return -ENOENT;
5252 return 0;
5255 static struct pmu perf_task_clock = {
5256 .task_ctx_nr = perf_sw_context,
5258 .event_init = task_clock_event_init,
5259 .add = task_clock_event_add,
5260 .del = task_clock_event_del,
5261 .start = task_clock_event_start,
5262 .stop = task_clock_event_stop,
5263 .read = task_clock_event_read,
5266 static void perf_pmu_nop_void(struct pmu *pmu)
5270 static int perf_pmu_nop_int(struct pmu *pmu)
5272 return 0;
5275 static void perf_pmu_start_txn(struct pmu *pmu)
5277 perf_pmu_disable(pmu);
5280 static int perf_pmu_commit_txn(struct pmu *pmu)
5282 perf_pmu_enable(pmu);
5283 return 0;
5286 static void perf_pmu_cancel_txn(struct pmu *pmu)
5288 perf_pmu_enable(pmu);
5292 * Ensures all contexts with the same task_ctx_nr have the same
5293 * pmu_cpu_context too.
5295 static void *find_pmu_context(int ctxn)
5297 struct pmu *pmu;
5299 if (ctxn < 0)
5300 return NULL;
5302 list_for_each_entry(pmu, &pmus, entry) {
5303 if (pmu->task_ctx_nr == ctxn)
5304 return pmu->pmu_cpu_context;
5307 return NULL;
5310 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5312 int cpu;
5314 for_each_possible_cpu(cpu) {
5315 struct perf_cpu_context *cpuctx;
5317 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5319 if (cpuctx->active_pmu == old_pmu)
5320 cpuctx->active_pmu = pmu;
5324 static void free_pmu_context(struct pmu *pmu)
5326 struct pmu *i;
5328 mutex_lock(&pmus_lock);
5330 * Like a real lame refcount.
5332 list_for_each_entry(i, &pmus, entry) {
5333 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5334 update_pmu_context(i, pmu);
5335 goto out;
5339 free_percpu(pmu->pmu_cpu_context);
5340 out:
5341 mutex_unlock(&pmus_lock);
5343 static struct idr pmu_idr;
5345 static ssize_t
5346 type_show(struct device *dev, struct device_attribute *attr, char *page)
5348 struct pmu *pmu = dev_get_drvdata(dev);
5350 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5353 static struct device_attribute pmu_dev_attrs[] = {
5354 __ATTR_RO(type),
5355 __ATTR_NULL,
5358 static int pmu_bus_running;
5359 static struct bus_type pmu_bus = {
5360 .name = "event_source",
5361 .dev_attrs = pmu_dev_attrs,
5364 static void pmu_dev_release(struct device *dev)
5366 kfree(dev);
5369 static int pmu_dev_alloc(struct pmu *pmu)
5371 int ret = -ENOMEM;
5373 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5374 if (!pmu->dev)
5375 goto out;
5377 device_initialize(pmu->dev);
5378 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5379 if (ret)
5380 goto free_dev;
5382 dev_set_drvdata(pmu->dev, pmu);
5383 pmu->dev->bus = &pmu_bus;
5384 pmu->dev->release = pmu_dev_release;
5385 ret = device_add(pmu->dev);
5386 if (ret)
5387 goto free_dev;
5389 out:
5390 return ret;
5392 free_dev:
5393 put_device(pmu->dev);
5394 goto out;
5397 static struct lock_class_key cpuctx_mutex;
5399 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5401 int cpu, ret;
5403 mutex_lock(&pmus_lock);
5404 ret = -ENOMEM;
5405 pmu->pmu_disable_count = alloc_percpu(int);
5406 if (!pmu->pmu_disable_count)
5407 goto unlock;
5409 pmu->type = -1;
5410 if (!name)
5411 goto skip_type;
5412 pmu->name = name;
5414 if (type < 0) {
5415 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5416 if (!err)
5417 goto free_pdc;
5419 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5420 if (err) {
5421 ret = err;
5422 goto free_pdc;
5425 pmu->type = type;
5427 if (pmu_bus_running) {
5428 ret = pmu_dev_alloc(pmu);
5429 if (ret)
5430 goto free_idr;
5433 skip_type:
5434 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5435 if (pmu->pmu_cpu_context)
5436 goto got_cpu_context;
5438 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5439 if (!pmu->pmu_cpu_context)
5440 goto free_dev;
5442 for_each_possible_cpu(cpu) {
5443 struct perf_cpu_context *cpuctx;
5445 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5446 __perf_event_init_context(&cpuctx->ctx);
5447 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5448 cpuctx->ctx.type = cpu_context;
5449 cpuctx->ctx.pmu = pmu;
5450 cpuctx->jiffies_interval = 1;
5451 INIT_LIST_HEAD(&cpuctx->rotation_list);
5452 cpuctx->active_pmu = pmu;
5455 got_cpu_context:
5456 if (!pmu->start_txn) {
5457 if (pmu->pmu_enable) {
5459 * If we have pmu_enable/pmu_disable calls, install
5460 * transaction stubs that use that to try and batch
5461 * hardware accesses.
5463 pmu->start_txn = perf_pmu_start_txn;
5464 pmu->commit_txn = perf_pmu_commit_txn;
5465 pmu->cancel_txn = perf_pmu_cancel_txn;
5466 } else {
5467 pmu->start_txn = perf_pmu_nop_void;
5468 pmu->commit_txn = perf_pmu_nop_int;
5469 pmu->cancel_txn = perf_pmu_nop_void;
5473 if (!pmu->pmu_enable) {
5474 pmu->pmu_enable = perf_pmu_nop_void;
5475 pmu->pmu_disable = perf_pmu_nop_void;
5478 list_add_rcu(&pmu->entry, &pmus);
5479 ret = 0;
5480 unlock:
5481 mutex_unlock(&pmus_lock);
5483 return ret;
5485 free_dev:
5486 device_del(pmu->dev);
5487 put_device(pmu->dev);
5489 free_idr:
5490 if (pmu->type >= PERF_TYPE_MAX)
5491 idr_remove(&pmu_idr, pmu->type);
5493 free_pdc:
5494 free_percpu(pmu->pmu_disable_count);
5495 goto unlock;
5498 void perf_pmu_unregister(struct pmu *pmu)
5500 mutex_lock(&pmus_lock);
5501 list_del_rcu(&pmu->entry);
5502 mutex_unlock(&pmus_lock);
5505 * We dereference the pmu list under both SRCU and regular RCU, so
5506 * synchronize against both of those.
5508 synchronize_srcu(&pmus_srcu);
5509 synchronize_rcu();
5511 free_percpu(pmu->pmu_disable_count);
5512 if (pmu->type >= PERF_TYPE_MAX)
5513 idr_remove(&pmu_idr, pmu->type);
5514 device_del(pmu->dev);
5515 put_device(pmu->dev);
5516 free_pmu_context(pmu);
5519 struct pmu *perf_init_event(struct perf_event *event)
5521 struct pmu *pmu = NULL;
5522 int idx;
5524 idx = srcu_read_lock(&pmus_srcu);
5526 rcu_read_lock();
5527 pmu = idr_find(&pmu_idr, event->attr.type);
5528 rcu_read_unlock();
5529 if (pmu)
5530 goto unlock;
5532 list_for_each_entry_rcu(pmu, &pmus, entry) {
5533 int ret = pmu->event_init(event);
5534 if (!ret)
5535 goto unlock;
5537 if (ret != -ENOENT) {
5538 pmu = ERR_PTR(ret);
5539 goto unlock;
5542 pmu = ERR_PTR(-ENOENT);
5543 unlock:
5544 srcu_read_unlock(&pmus_srcu, idx);
5546 return pmu;
5550 * Allocate and initialize a event structure
5552 static struct perf_event *
5553 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5554 struct task_struct *task,
5555 struct perf_event *group_leader,
5556 struct perf_event *parent_event,
5557 perf_overflow_handler_t overflow_handler)
5559 struct pmu *pmu;
5560 struct perf_event *event;
5561 struct hw_perf_event *hwc;
5562 long err;
5564 if ((unsigned)cpu >= nr_cpu_ids) {
5565 if (!task || cpu != -1)
5566 return ERR_PTR(-EINVAL);
5569 event = kzalloc(sizeof(*event), GFP_KERNEL);
5570 if (!event)
5571 return ERR_PTR(-ENOMEM);
5574 * Single events are their own group leaders, with an
5575 * empty sibling list:
5577 if (!group_leader)
5578 group_leader = event;
5580 mutex_init(&event->child_mutex);
5581 INIT_LIST_HEAD(&event->child_list);
5583 INIT_LIST_HEAD(&event->group_entry);
5584 INIT_LIST_HEAD(&event->event_entry);
5585 INIT_LIST_HEAD(&event->sibling_list);
5586 init_waitqueue_head(&event->waitq);
5587 init_irq_work(&event->pending, perf_pending_event);
5589 mutex_init(&event->mmap_mutex);
5591 event->cpu = cpu;
5592 event->attr = *attr;
5593 event->group_leader = group_leader;
5594 event->pmu = NULL;
5595 event->oncpu = -1;
5597 event->parent = parent_event;
5599 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5600 event->id = atomic64_inc_return(&perf_event_id);
5602 event->state = PERF_EVENT_STATE_INACTIVE;
5604 if (task) {
5605 event->attach_state = PERF_ATTACH_TASK;
5606 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5608 * hw_breakpoint is a bit difficult here..
5610 if (attr->type == PERF_TYPE_BREAKPOINT)
5611 event->hw.bp_target = task;
5612 #endif
5615 if (!overflow_handler && parent_event)
5616 overflow_handler = parent_event->overflow_handler;
5618 event->overflow_handler = overflow_handler;
5620 if (attr->disabled)
5621 event->state = PERF_EVENT_STATE_OFF;
5623 pmu = NULL;
5625 hwc = &event->hw;
5626 hwc->sample_period = attr->sample_period;
5627 if (attr->freq && attr->sample_freq)
5628 hwc->sample_period = 1;
5629 hwc->last_period = hwc->sample_period;
5631 local64_set(&hwc->period_left, hwc->sample_period);
5634 * we currently do not support PERF_FORMAT_GROUP on inherited events
5636 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5637 goto done;
5639 pmu = perf_init_event(event);
5641 done:
5642 err = 0;
5643 if (!pmu)
5644 err = -EINVAL;
5645 else if (IS_ERR(pmu))
5646 err = PTR_ERR(pmu);
5648 if (err) {
5649 if (event->ns)
5650 put_pid_ns(event->ns);
5651 kfree(event);
5652 return ERR_PTR(err);
5655 event->pmu = pmu;
5657 if (!event->parent) {
5658 if (event->attach_state & PERF_ATTACH_TASK)
5659 jump_label_inc(&perf_task_events);
5660 if (event->attr.mmap || event->attr.mmap_data)
5661 atomic_inc(&nr_mmap_events);
5662 if (event->attr.comm)
5663 atomic_inc(&nr_comm_events);
5664 if (event->attr.task)
5665 atomic_inc(&nr_task_events);
5666 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5667 err = get_callchain_buffers();
5668 if (err) {
5669 free_event(event);
5670 return ERR_PTR(err);
5675 return event;
5678 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5679 struct perf_event_attr *attr)
5681 u32 size;
5682 int ret;
5684 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5685 return -EFAULT;
5688 * zero the full structure, so that a short copy will be nice.
5690 memset(attr, 0, sizeof(*attr));
5692 ret = get_user(size, &uattr->size);
5693 if (ret)
5694 return ret;
5696 if (size > PAGE_SIZE) /* silly large */
5697 goto err_size;
5699 if (!size) /* abi compat */
5700 size = PERF_ATTR_SIZE_VER0;
5702 if (size < PERF_ATTR_SIZE_VER0)
5703 goto err_size;
5706 * If we're handed a bigger struct than we know of,
5707 * ensure all the unknown bits are 0 - i.e. new
5708 * user-space does not rely on any kernel feature
5709 * extensions we dont know about yet.
5711 if (size > sizeof(*attr)) {
5712 unsigned char __user *addr;
5713 unsigned char __user *end;
5714 unsigned char val;
5716 addr = (void __user *)uattr + sizeof(*attr);
5717 end = (void __user *)uattr + size;
5719 for (; addr < end; addr++) {
5720 ret = get_user(val, addr);
5721 if (ret)
5722 return ret;
5723 if (val)
5724 goto err_size;
5726 size = sizeof(*attr);
5729 ret = copy_from_user(attr, uattr, size);
5730 if (ret)
5731 return -EFAULT;
5734 * If the type exists, the corresponding creation will verify
5735 * the attr->config.
5737 if (attr->type >= PERF_TYPE_MAX)
5738 return -EINVAL;
5740 if (attr->__reserved_1)
5741 return -EINVAL;
5743 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5744 return -EINVAL;
5746 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5747 return -EINVAL;
5749 out:
5750 return ret;
5752 err_size:
5753 put_user(sizeof(*attr), &uattr->size);
5754 ret = -E2BIG;
5755 goto out;
5758 static int
5759 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5761 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5762 int ret = -EINVAL;
5764 if (!output_event)
5765 goto set;
5767 /* don't allow circular references */
5768 if (event == output_event)
5769 goto out;
5772 * Don't allow cross-cpu buffers
5774 if (output_event->cpu != event->cpu)
5775 goto out;
5778 * If its not a per-cpu buffer, it must be the same task.
5780 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5781 goto out;
5783 set:
5784 mutex_lock(&event->mmap_mutex);
5785 /* Can't redirect output if we've got an active mmap() */
5786 if (atomic_read(&event->mmap_count))
5787 goto unlock;
5789 if (output_event) {
5790 /* get the buffer we want to redirect to */
5791 buffer = perf_buffer_get(output_event);
5792 if (!buffer)
5793 goto unlock;
5796 old_buffer = event->buffer;
5797 rcu_assign_pointer(event->buffer, buffer);
5798 ret = 0;
5799 unlock:
5800 mutex_unlock(&event->mmap_mutex);
5802 if (old_buffer)
5803 perf_buffer_put(old_buffer);
5804 out:
5805 return ret;
5809 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5811 * @attr_uptr: event_id type attributes for monitoring/sampling
5812 * @pid: target pid
5813 * @cpu: target cpu
5814 * @group_fd: group leader event fd
5816 SYSCALL_DEFINE5(perf_event_open,
5817 struct perf_event_attr __user *, attr_uptr,
5818 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5820 struct perf_event *group_leader = NULL, *output_event = NULL;
5821 struct perf_event *event, *sibling;
5822 struct perf_event_attr attr;
5823 struct perf_event_context *ctx;
5824 struct file *event_file = NULL;
5825 struct file *group_file = NULL;
5826 struct task_struct *task = NULL;
5827 struct pmu *pmu;
5828 int event_fd;
5829 int move_group = 0;
5830 int fput_needed = 0;
5831 int err;
5833 /* for future expandability... */
5834 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5835 return -EINVAL;
5837 err = perf_copy_attr(attr_uptr, &attr);
5838 if (err)
5839 return err;
5841 if (!attr.exclude_kernel) {
5842 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5843 return -EACCES;
5846 if (attr.freq) {
5847 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5848 return -EINVAL;
5851 event_fd = get_unused_fd_flags(O_RDWR);
5852 if (event_fd < 0)
5853 return event_fd;
5855 if (group_fd != -1) {
5856 group_leader = perf_fget_light(group_fd, &fput_needed);
5857 if (IS_ERR(group_leader)) {
5858 err = PTR_ERR(group_leader);
5859 goto err_fd;
5861 group_file = group_leader->filp;
5862 if (flags & PERF_FLAG_FD_OUTPUT)
5863 output_event = group_leader;
5864 if (flags & PERF_FLAG_FD_NO_GROUP)
5865 group_leader = NULL;
5868 if (pid != -1) {
5869 task = find_lively_task_by_vpid(pid);
5870 if (IS_ERR(task)) {
5871 err = PTR_ERR(task);
5872 goto err_group_fd;
5876 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5877 if (IS_ERR(event)) {
5878 err = PTR_ERR(event);
5879 goto err_task;
5883 * Special case software events and allow them to be part of
5884 * any hardware group.
5886 pmu = event->pmu;
5888 if (group_leader &&
5889 (is_software_event(event) != is_software_event(group_leader))) {
5890 if (is_software_event(event)) {
5892 * If event and group_leader are not both a software
5893 * event, and event is, then group leader is not.
5895 * Allow the addition of software events to !software
5896 * groups, this is safe because software events never
5897 * fail to schedule.
5899 pmu = group_leader->pmu;
5900 } else if (is_software_event(group_leader) &&
5901 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5903 * In case the group is a pure software group, and we
5904 * try to add a hardware event, move the whole group to
5905 * the hardware context.
5907 move_group = 1;
5912 * Get the target context (task or percpu):
5914 ctx = find_get_context(pmu, task, cpu);
5915 if (IS_ERR(ctx)) {
5916 err = PTR_ERR(ctx);
5917 goto err_alloc;
5920 if (task) {
5921 put_task_struct(task);
5922 task = NULL;
5926 * Look up the group leader (we will attach this event to it):
5928 if (group_leader) {
5929 err = -EINVAL;
5932 * Do not allow a recursive hierarchy (this new sibling
5933 * becoming part of another group-sibling):
5935 if (group_leader->group_leader != group_leader)
5936 goto err_context;
5938 * Do not allow to attach to a group in a different
5939 * task or CPU context:
5941 if (move_group) {
5942 if (group_leader->ctx->type != ctx->type)
5943 goto err_context;
5944 } else {
5945 if (group_leader->ctx != ctx)
5946 goto err_context;
5950 * Only a group leader can be exclusive or pinned
5952 if (attr.exclusive || attr.pinned)
5953 goto err_context;
5956 if (output_event) {
5957 err = perf_event_set_output(event, output_event);
5958 if (err)
5959 goto err_context;
5962 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5963 if (IS_ERR(event_file)) {
5964 err = PTR_ERR(event_file);
5965 goto err_context;
5968 if (move_group) {
5969 struct perf_event_context *gctx = group_leader->ctx;
5971 mutex_lock(&gctx->mutex);
5972 perf_event_remove_from_context(group_leader);
5973 list_for_each_entry(sibling, &group_leader->sibling_list,
5974 group_entry) {
5975 perf_event_remove_from_context(sibling);
5976 put_ctx(gctx);
5978 mutex_unlock(&gctx->mutex);
5979 put_ctx(gctx);
5982 event->filp = event_file;
5983 WARN_ON_ONCE(ctx->parent_ctx);
5984 mutex_lock(&ctx->mutex);
5986 if (move_group) {
5987 perf_install_in_context(ctx, group_leader, cpu);
5988 get_ctx(ctx);
5989 list_for_each_entry(sibling, &group_leader->sibling_list,
5990 group_entry) {
5991 perf_install_in_context(ctx, sibling, cpu);
5992 get_ctx(ctx);
5996 perf_install_in_context(ctx, event, cpu);
5997 ++ctx->generation;
5998 mutex_unlock(&ctx->mutex);
6000 event->owner = current;
6002 mutex_lock(&current->perf_event_mutex);
6003 list_add_tail(&event->owner_entry, &current->perf_event_list);
6004 mutex_unlock(&current->perf_event_mutex);
6007 * Precalculate sample_data sizes
6009 perf_event__header_size(event);
6010 perf_event__id_header_size(event);
6013 * Drop the reference on the group_event after placing the
6014 * new event on the sibling_list. This ensures destruction
6015 * of the group leader will find the pointer to itself in
6016 * perf_group_detach().
6018 fput_light(group_file, fput_needed);
6019 fd_install(event_fd, event_file);
6020 return event_fd;
6022 err_context:
6023 put_ctx(ctx);
6024 err_alloc:
6025 free_event(event);
6026 err_task:
6027 if (task)
6028 put_task_struct(task);
6029 err_group_fd:
6030 fput_light(group_file, fput_needed);
6031 err_fd:
6032 put_unused_fd(event_fd);
6033 return err;
6037 * perf_event_create_kernel_counter
6039 * @attr: attributes of the counter to create
6040 * @cpu: cpu in which the counter is bound
6041 * @task: task to profile (NULL for percpu)
6043 struct perf_event *
6044 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6045 struct task_struct *task,
6046 perf_overflow_handler_t overflow_handler)
6048 struct perf_event_context *ctx;
6049 struct perf_event *event;
6050 int err;
6053 * Get the target context (task or percpu):
6056 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6057 if (IS_ERR(event)) {
6058 err = PTR_ERR(event);
6059 goto err;
6062 ctx = find_get_context(event->pmu, task, cpu);
6063 if (IS_ERR(ctx)) {
6064 err = PTR_ERR(ctx);
6065 goto err_free;
6068 event->filp = NULL;
6069 WARN_ON_ONCE(ctx->parent_ctx);
6070 mutex_lock(&ctx->mutex);
6071 perf_install_in_context(ctx, event, cpu);
6072 ++ctx->generation;
6073 mutex_unlock(&ctx->mutex);
6075 return event;
6077 err_free:
6078 free_event(event);
6079 err:
6080 return ERR_PTR(err);
6082 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6084 static void sync_child_event(struct perf_event *child_event,
6085 struct task_struct *child)
6087 struct perf_event *parent_event = child_event->parent;
6088 u64 child_val;
6090 if (child_event->attr.inherit_stat)
6091 perf_event_read_event(child_event, child);
6093 child_val = perf_event_count(child_event);
6096 * Add back the child's count to the parent's count:
6098 atomic64_add(child_val, &parent_event->child_count);
6099 atomic64_add(child_event->total_time_enabled,
6100 &parent_event->child_total_time_enabled);
6101 atomic64_add(child_event->total_time_running,
6102 &parent_event->child_total_time_running);
6105 * Remove this event from the parent's list
6107 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6108 mutex_lock(&parent_event->child_mutex);
6109 list_del_init(&child_event->child_list);
6110 mutex_unlock(&parent_event->child_mutex);
6113 * Release the parent event, if this was the last
6114 * reference to it.
6116 fput(parent_event->filp);
6119 static void
6120 __perf_event_exit_task(struct perf_event *child_event,
6121 struct perf_event_context *child_ctx,
6122 struct task_struct *child)
6124 if (child_event->parent) {
6125 raw_spin_lock_irq(&child_ctx->lock);
6126 perf_group_detach(child_event);
6127 raw_spin_unlock_irq(&child_ctx->lock);
6130 perf_event_remove_from_context(child_event);
6133 * It can happen that the parent exits first, and has events
6134 * that are still around due to the child reference. These
6135 * events need to be zapped.
6137 if (child_event->parent) {
6138 sync_child_event(child_event, child);
6139 free_event(child_event);
6143 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6145 struct perf_event *child_event, *tmp;
6146 struct perf_event_context *child_ctx;
6147 unsigned long flags;
6149 if (likely(!child->perf_event_ctxp[ctxn])) {
6150 perf_event_task(child, NULL, 0);
6151 return;
6154 local_irq_save(flags);
6156 * We can't reschedule here because interrupts are disabled,
6157 * and either child is current or it is a task that can't be
6158 * scheduled, so we are now safe from rescheduling changing
6159 * our context.
6161 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6162 task_ctx_sched_out(child_ctx, EVENT_ALL);
6165 * Take the context lock here so that if find_get_context is
6166 * reading child->perf_event_ctxp, we wait until it has
6167 * incremented the context's refcount before we do put_ctx below.
6169 raw_spin_lock(&child_ctx->lock);
6170 child->perf_event_ctxp[ctxn] = NULL;
6172 * If this context is a clone; unclone it so it can't get
6173 * swapped to another process while we're removing all
6174 * the events from it.
6176 unclone_ctx(child_ctx);
6177 update_context_time(child_ctx);
6178 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6181 * Report the task dead after unscheduling the events so that we
6182 * won't get any samples after PERF_RECORD_EXIT. We can however still
6183 * get a few PERF_RECORD_READ events.
6185 perf_event_task(child, child_ctx, 0);
6188 * We can recurse on the same lock type through:
6190 * __perf_event_exit_task()
6191 * sync_child_event()
6192 * fput(parent_event->filp)
6193 * perf_release()
6194 * mutex_lock(&ctx->mutex)
6196 * But since its the parent context it won't be the same instance.
6198 mutex_lock(&child_ctx->mutex);
6200 again:
6201 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6202 group_entry)
6203 __perf_event_exit_task(child_event, child_ctx, child);
6205 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6206 group_entry)
6207 __perf_event_exit_task(child_event, child_ctx, child);
6210 * If the last event was a group event, it will have appended all
6211 * its siblings to the list, but we obtained 'tmp' before that which
6212 * will still point to the list head terminating the iteration.
6214 if (!list_empty(&child_ctx->pinned_groups) ||
6215 !list_empty(&child_ctx->flexible_groups))
6216 goto again;
6218 mutex_unlock(&child_ctx->mutex);
6220 put_ctx(child_ctx);
6224 * When a child task exits, feed back event values to parent events.
6226 void perf_event_exit_task(struct task_struct *child)
6228 struct perf_event *event, *tmp;
6229 int ctxn;
6231 mutex_lock(&child->perf_event_mutex);
6232 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6233 owner_entry) {
6234 list_del_init(&event->owner_entry);
6237 * Ensure the list deletion is visible before we clear
6238 * the owner, closes a race against perf_release() where
6239 * we need to serialize on the owner->perf_event_mutex.
6241 smp_wmb();
6242 event->owner = NULL;
6244 mutex_unlock(&child->perf_event_mutex);
6246 for_each_task_context_nr(ctxn)
6247 perf_event_exit_task_context(child, ctxn);
6250 static void perf_free_event(struct perf_event *event,
6251 struct perf_event_context *ctx)
6253 struct perf_event *parent = event->parent;
6255 if (WARN_ON_ONCE(!parent))
6256 return;
6258 mutex_lock(&parent->child_mutex);
6259 list_del_init(&event->child_list);
6260 mutex_unlock(&parent->child_mutex);
6262 fput(parent->filp);
6264 perf_group_detach(event);
6265 list_del_event(event, ctx);
6266 free_event(event);
6270 * free an unexposed, unused context as created by inheritance by
6271 * perf_event_init_task below, used by fork() in case of fail.
6273 void perf_event_free_task(struct task_struct *task)
6275 struct perf_event_context *ctx;
6276 struct perf_event *event, *tmp;
6277 int ctxn;
6279 for_each_task_context_nr(ctxn) {
6280 ctx = task->perf_event_ctxp[ctxn];
6281 if (!ctx)
6282 continue;
6284 mutex_lock(&ctx->mutex);
6285 again:
6286 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6287 group_entry)
6288 perf_free_event(event, ctx);
6290 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6291 group_entry)
6292 perf_free_event(event, ctx);
6294 if (!list_empty(&ctx->pinned_groups) ||
6295 !list_empty(&ctx->flexible_groups))
6296 goto again;
6298 mutex_unlock(&ctx->mutex);
6300 put_ctx(ctx);
6304 void perf_event_delayed_put(struct task_struct *task)
6306 int ctxn;
6308 for_each_task_context_nr(ctxn)
6309 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6313 * inherit a event from parent task to child task:
6315 static struct perf_event *
6316 inherit_event(struct perf_event *parent_event,
6317 struct task_struct *parent,
6318 struct perf_event_context *parent_ctx,
6319 struct task_struct *child,
6320 struct perf_event *group_leader,
6321 struct perf_event_context *child_ctx)
6323 struct perf_event *child_event;
6324 unsigned long flags;
6327 * Instead of creating recursive hierarchies of events,
6328 * we link inherited events back to the original parent,
6329 * which has a filp for sure, which we use as the reference
6330 * count:
6332 if (parent_event->parent)
6333 parent_event = parent_event->parent;
6335 child_event = perf_event_alloc(&parent_event->attr,
6336 parent_event->cpu,
6337 child,
6338 group_leader, parent_event,
6339 NULL);
6340 if (IS_ERR(child_event))
6341 return child_event;
6342 get_ctx(child_ctx);
6345 * Make the child state follow the state of the parent event,
6346 * not its attr.disabled bit. We hold the parent's mutex,
6347 * so we won't race with perf_event_{en, dis}able_family.
6349 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6350 child_event->state = PERF_EVENT_STATE_INACTIVE;
6351 else
6352 child_event->state = PERF_EVENT_STATE_OFF;
6354 if (parent_event->attr.freq) {
6355 u64 sample_period = parent_event->hw.sample_period;
6356 struct hw_perf_event *hwc = &child_event->hw;
6358 hwc->sample_period = sample_period;
6359 hwc->last_period = sample_period;
6361 local64_set(&hwc->period_left, sample_period);
6364 child_event->ctx = child_ctx;
6365 child_event->overflow_handler = parent_event->overflow_handler;
6368 * Precalculate sample_data sizes
6370 perf_event__header_size(child_event);
6371 perf_event__id_header_size(child_event);
6374 * Link it up in the child's context:
6376 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6377 add_event_to_ctx(child_event, child_ctx);
6378 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6381 * Get a reference to the parent filp - we will fput it
6382 * when the child event exits. This is safe to do because
6383 * we are in the parent and we know that the filp still
6384 * exists and has a nonzero count:
6386 atomic_long_inc(&parent_event->filp->f_count);
6389 * Link this into the parent event's child list
6391 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6392 mutex_lock(&parent_event->child_mutex);
6393 list_add_tail(&child_event->child_list, &parent_event->child_list);
6394 mutex_unlock(&parent_event->child_mutex);
6396 return child_event;
6399 static int inherit_group(struct perf_event *parent_event,
6400 struct task_struct *parent,
6401 struct perf_event_context *parent_ctx,
6402 struct task_struct *child,
6403 struct perf_event_context *child_ctx)
6405 struct perf_event *leader;
6406 struct perf_event *sub;
6407 struct perf_event *child_ctr;
6409 leader = inherit_event(parent_event, parent, parent_ctx,
6410 child, NULL, child_ctx);
6411 if (IS_ERR(leader))
6412 return PTR_ERR(leader);
6413 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6414 child_ctr = inherit_event(sub, parent, parent_ctx,
6415 child, leader, child_ctx);
6416 if (IS_ERR(child_ctr))
6417 return PTR_ERR(child_ctr);
6419 return 0;
6422 static int
6423 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6424 struct perf_event_context *parent_ctx,
6425 struct task_struct *child, int ctxn,
6426 int *inherited_all)
6428 int ret;
6429 struct perf_event_context *child_ctx;
6431 if (!event->attr.inherit) {
6432 *inherited_all = 0;
6433 return 0;
6436 child_ctx = child->perf_event_ctxp[ctxn];
6437 if (!child_ctx) {
6439 * This is executed from the parent task context, so
6440 * inherit events that have been marked for cloning.
6441 * First allocate and initialize a context for the
6442 * child.
6445 child_ctx = alloc_perf_context(event->pmu, child);
6446 if (!child_ctx)
6447 return -ENOMEM;
6449 child->perf_event_ctxp[ctxn] = child_ctx;
6452 ret = inherit_group(event, parent, parent_ctx,
6453 child, child_ctx);
6455 if (ret)
6456 *inherited_all = 0;
6458 return ret;
6462 * Initialize the perf_event context in task_struct
6464 int perf_event_init_context(struct task_struct *child, int ctxn)
6466 struct perf_event_context *child_ctx, *parent_ctx;
6467 struct perf_event_context *cloned_ctx;
6468 struct perf_event *event;
6469 struct task_struct *parent = current;
6470 int inherited_all = 1;
6471 unsigned long flags;
6472 int ret = 0;
6474 if (likely(!parent->perf_event_ctxp[ctxn]))
6475 return 0;
6478 * If the parent's context is a clone, pin it so it won't get
6479 * swapped under us.
6481 parent_ctx = perf_pin_task_context(parent, ctxn);
6484 * No need to check if parent_ctx != NULL here; since we saw
6485 * it non-NULL earlier, the only reason for it to become NULL
6486 * is if we exit, and since we're currently in the middle of
6487 * a fork we can't be exiting at the same time.
6491 * Lock the parent list. No need to lock the child - not PID
6492 * hashed yet and not running, so nobody can access it.
6494 mutex_lock(&parent_ctx->mutex);
6497 * We dont have to disable NMIs - we are only looking at
6498 * the list, not manipulating it:
6500 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6501 ret = inherit_task_group(event, parent, parent_ctx,
6502 child, ctxn, &inherited_all);
6503 if (ret)
6504 break;
6508 * We can't hold ctx->lock when iterating the ->flexible_group list due
6509 * to allocations, but we need to prevent rotation because
6510 * rotate_ctx() will change the list from interrupt context.
6512 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6513 parent_ctx->rotate_disable = 1;
6514 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6516 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6517 ret = inherit_task_group(event, parent, parent_ctx,
6518 child, ctxn, &inherited_all);
6519 if (ret)
6520 break;
6523 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6524 parent_ctx->rotate_disable = 0;
6526 child_ctx = child->perf_event_ctxp[ctxn];
6528 if (child_ctx && inherited_all) {
6530 * Mark the child context as a clone of the parent
6531 * context, or of whatever the parent is a clone of.
6533 * Note that if the parent is a clone, the holding of
6534 * parent_ctx->lock avoids it from being uncloned.
6536 cloned_ctx = parent_ctx->parent_ctx;
6537 if (cloned_ctx) {
6538 child_ctx->parent_ctx = cloned_ctx;
6539 child_ctx->parent_gen = parent_ctx->parent_gen;
6540 } else {
6541 child_ctx->parent_ctx = parent_ctx;
6542 child_ctx->parent_gen = parent_ctx->generation;
6544 get_ctx(child_ctx->parent_ctx);
6547 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6548 mutex_unlock(&parent_ctx->mutex);
6550 perf_unpin_context(parent_ctx);
6552 return ret;
6556 * Initialize the perf_event context in task_struct
6558 int perf_event_init_task(struct task_struct *child)
6560 int ctxn, ret;
6562 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6563 mutex_init(&child->perf_event_mutex);
6564 INIT_LIST_HEAD(&child->perf_event_list);
6566 for_each_task_context_nr(ctxn) {
6567 ret = perf_event_init_context(child, ctxn);
6568 if (ret)
6569 return ret;
6572 return 0;
6575 static void __init perf_event_init_all_cpus(void)
6577 struct swevent_htable *swhash;
6578 int cpu;
6580 for_each_possible_cpu(cpu) {
6581 swhash = &per_cpu(swevent_htable, cpu);
6582 mutex_init(&swhash->hlist_mutex);
6583 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6587 static void __cpuinit perf_event_init_cpu(int cpu)
6589 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6591 mutex_lock(&swhash->hlist_mutex);
6592 if (swhash->hlist_refcount > 0) {
6593 struct swevent_hlist *hlist;
6595 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6596 WARN_ON(!hlist);
6597 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6599 mutex_unlock(&swhash->hlist_mutex);
6602 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6603 static void perf_pmu_rotate_stop(struct pmu *pmu)
6605 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6607 WARN_ON(!irqs_disabled());
6609 list_del_init(&cpuctx->rotation_list);
6612 static void __perf_event_exit_context(void *__info)
6614 struct perf_event_context *ctx = __info;
6615 struct perf_event *event, *tmp;
6617 perf_pmu_rotate_stop(ctx->pmu);
6619 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6620 __perf_event_remove_from_context(event);
6621 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6622 __perf_event_remove_from_context(event);
6625 static void perf_event_exit_cpu_context(int cpu)
6627 struct perf_event_context *ctx;
6628 struct pmu *pmu;
6629 int idx;
6631 idx = srcu_read_lock(&pmus_srcu);
6632 list_for_each_entry_rcu(pmu, &pmus, entry) {
6633 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6635 mutex_lock(&ctx->mutex);
6636 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6637 mutex_unlock(&ctx->mutex);
6639 srcu_read_unlock(&pmus_srcu, idx);
6642 static void perf_event_exit_cpu(int cpu)
6644 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6646 mutex_lock(&swhash->hlist_mutex);
6647 swevent_hlist_release(swhash);
6648 mutex_unlock(&swhash->hlist_mutex);
6650 perf_event_exit_cpu_context(cpu);
6652 #else
6653 static inline void perf_event_exit_cpu(int cpu) { }
6654 #endif
6656 static int
6657 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6659 int cpu;
6661 for_each_online_cpu(cpu)
6662 perf_event_exit_cpu(cpu);
6664 return NOTIFY_OK;
6668 * Run the perf reboot notifier at the very last possible moment so that
6669 * the generic watchdog code runs as long as possible.
6671 static struct notifier_block perf_reboot_notifier = {
6672 .notifier_call = perf_reboot,
6673 .priority = INT_MIN,
6676 static int __cpuinit
6677 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6679 unsigned int cpu = (long)hcpu;
6681 switch (action & ~CPU_TASKS_FROZEN) {
6683 case CPU_UP_PREPARE:
6684 case CPU_DOWN_FAILED:
6685 perf_event_init_cpu(cpu);
6686 break;
6688 case CPU_UP_CANCELED:
6689 case CPU_DOWN_PREPARE:
6690 perf_event_exit_cpu(cpu);
6691 break;
6693 default:
6694 break;
6697 return NOTIFY_OK;
6700 void __init perf_event_init(void)
6702 int ret;
6704 idr_init(&pmu_idr);
6706 perf_event_init_all_cpus();
6707 init_srcu_struct(&pmus_srcu);
6708 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6709 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6710 perf_pmu_register(&perf_task_clock, NULL, -1);
6711 perf_tp_register();
6712 perf_cpu_notifier(perf_cpu_notify);
6713 register_reboot_notifier(&perf_reboot_notifier);
6715 ret = init_hw_breakpoint();
6716 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6719 static int __init perf_event_sysfs_init(void)
6721 struct pmu *pmu;
6722 int ret;
6724 mutex_lock(&pmus_lock);
6726 ret = bus_register(&pmu_bus);
6727 if (ret)
6728 goto unlock;
6730 list_for_each_entry(pmu, &pmus, entry) {
6731 if (!pmu->name || pmu->type < 0)
6732 continue;
6734 ret = pmu_dev_alloc(pmu);
6735 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6737 pmu_bus_running = 1;
6738 ret = 0;
6740 unlock:
6741 mutex_unlock(&pmus_lock);
6743 return ret;
6745 device_initcall(perf_event_sysfs_init);