[PATCH] slab: remove cachep->spinlock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slab.c
blob2cd80203984b27545141b86f253d00fe8c54c25a
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/seq_file.h>
98 #include <linux/notifier.h>
99 #include <linux/kallsyms.h>
100 #include <linux/cpu.h>
101 #include <linux/sysctl.h>
102 #include <linux/module.h>
103 #include <linux/rcupdate.h>
104 #include <linux/string.h>
105 #include <linux/nodemask.h>
106 #include <linux/mempolicy.h>
107 #include <linux/mutex.h>
109 #include <asm/uaccess.h>
110 #include <asm/cacheflush.h>
111 #include <asm/tlbflush.h>
112 #include <asm/page.h>
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 #ifdef CONFIG_DEBUG_SLAB
126 #define DEBUG 1
127 #define STATS 1
128 #define FORCED_DEBUG 1
129 #else
130 #define DEBUG 0
131 #define STATS 0
132 #define FORCED_DEBUG 0
133 #endif
135 /* Shouldn't this be in a header file somewhere? */
136 #define BYTES_PER_WORD sizeof(void *)
138 #ifndef cache_line_size
139 #define cache_line_size() L1_CACHE_BYTES
140 #endif
142 #ifndef ARCH_KMALLOC_MINALIGN
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
151 #define ARCH_KMALLOC_MINALIGN 0
152 #endif
154 #ifndef ARCH_SLAB_MINALIGN
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
162 #define ARCH_SLAB_MINALIGN 0
163 #endif
165 #ifndef ARCH_KMALLOC_FLAGS
166 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167 #endif
169 /* Legal flag mask for kmem_cache_create(). */
170 #if DEBUG
171 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177 #else
178 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182 #endif
185 * kmem_bufctl_t:
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 typedef unsigned int kmem_bufctl_t;
204 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
208 /* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
211 static unsigned long offslab_limit;
214 * struct slab
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
230 * struct slab_rcu
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
243 * We assume struct slab_rcu can overlay struct slab when destroying.
245 struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
252 * struct array_cache
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
288 * The slab lists for all objects.
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned long next_reap;
296 int free_touched;
297 unsigned int free_limit;
298 unsigned int colour_next; /* Per-node cache coloring */
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC 1
311 #define SIZE_L3 (1 + MAX_NUMNODES)
314 * This function must be completely optimized away if a constant is passed to
315 * it. Mostly the same as what is in linux/slab.h except it returns an index.
317 static __always_inline int index_of(const size_t size)
319 extern void __bad_size(void);
321 if (__builtin_constant_p(size)) {
322 int i = 0;
324 #define CACHE(x) \
325 if (size <=x) \
326 return i; \
327 else \
328 i++;
329 #include "linux/kmalloc_sizes.h"
330 #undef CACHE
331 __bad_size();
332 } else
333 __bad_size();
334 return 0;
337 #define INDEX_AC index_of(sizeof(struct arraycache_init))
338 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
340 static void kmem_list3_init(struct kmem_list3 *parent)
342 INIT_LIST_HEAD(&parent->slabs_full);
343 INIT_LIST_HEAD(&parent->slabs_partial);
344 INIT_LIST_HEAD(&parent->slabs_free);
345 parent->shared = NULL;
346 parent->alien = NULL;
347 parent->colour_next = 0;
348 spin_lock_init(&parent->list_lock);
349 parent->free_objects = 0;
350 parent->free_touched = 0;
353 #define MAKE_LIST(cachep, listp, slab, nodeid) \
354 do { \
355 INIT_LIST_HEAD(listp); \
356 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
357 } while (0)
359 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
360 do { \
361 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
364 } while (0)
367 * struct kmem_cache
369 * manages a cache.
372 struct kmem_cache {
373 /* 1) per-cpu data, touched during every alloc/free */
374 struct array_cache *array[NR_CPUS];
375 /* 2) Cache tunables. Protected by cache_chain_mutex */
376 unsigned int batchcount;
377 unsigned int limit;
378 unsigned int shared;
380 unsigned int buffer_size;
381 /* 3) touched by every alloc & free from the backend */
382 struct kmem_list3 *nodelists[MAX_NUMNODES];
384 unsigned int flags; /* constant flags */
385 unsigned int num; /* # of objs per slab */
387 /* 4) cache_grow/shrink */
388 /* order of pgs per slab (2^n) */
389 unsigned int gfporder;
391 /* force GFP flags, e.g. GFP_DMA */
392 gfp_t gfpflags;
394 size_t colour; /* cache colouring range */
395 unsigned int colour_off; /* colour offset */
396 struct kmem_cache *slabp_cache;
397 unsigned int slab_size;
398 unsigned int dflags; /* dynamic flags */
400 /* constructor func */
401 void (*ctor) (void *, struct kmem_cache *, unsigned long);
403 /* de-constructor func */
404 void (*dtor) (void *, struct kmem_cache *, unsigned long);
406 /* 5) cache creation/removal */
407 const char *name;
408 struct list_head next;
410 /* 6) statistics */
411 #if STATS
412 unsigned long num_active;
413 unsigned long num_allocations;
414 unsigned long high_mark;
415 unsigned long grown;
416 unsigned long reaped;
417 unsigned long errors;
418 unsigned long max_freeable;
419 unsigned long node_allocs;
420 unsigned long node_frees;
421 atomic_t allochit;
422 atomic_t allocmiss;
423 atomic_t freehit;
424 atomic_t freemiss;
425 #endif
426 #if DEBUG
428 * If debugging is enabled, then the allocator can add additional
429 * fields and/or padding to every object. buffer_size contains the total
430 * object size including these internal fields, the following two
431 * variables contain the offset to the user object and its size.
433 int obj_offset;
434 int obj_size;
435 #endif
438 #define CFLGS_OFF_SLAB (0x80000000UL)
439 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
441 #define BATCHREFILL_LIMIT 16
443 * Optimization question: fewer reaps means less probability for unnessary
444 * cpucache drain/refill cycles.
446 * OTOH the cpuarrays can contain lots of objects,
447 * which could lock up otherwise freeable slabs.
449 #define REAPTIMEOUT_CPUC (2*HZ)
450 #define REAPTIMEOUT_LIST3 (4*HZ)
452 #if STATS
453 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
454 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
455 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
456 #define STATS_INC_GROWN(x) ((x)->grown++)
457 #define STATS_INC_REAPED(x) ((x)->reaped++)
458 #define STATS_SET_HIGH(x) \
459 do { \
460 if ((x)->num_active > (x)->high_mark) \
461 (x)->high_mark = (x)->num_active; \
462 } while (0)
463 #define STATS_INC_ERR(x) ((x)->errors++)
464 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
465 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
466 #define STATS_SET_FREEABLE(x, i) \
467 do { \
468 if ((x)->max_freeable < i) \
469 (x)->max_freeable = i; \
470 } while (0)
471 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
472 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
473 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
474 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
475 #else
476 #define STATS_INC_ACTIVE(x) do { } while (0)
477 #define STATS_DEC_ACTIVE(x) do { } while (0)
478 #define STATS_INC_ALLOCED(x) do { } while (0)
479 #define STATS_INC_GROWN(x) do { } while (0)
480 #define STATS_INC_REAPED(x) do { } while (0)
481 #define STATS_SET_HIGH(x) do { } while (0)
482 #define STATS_INC_ERR(x) do { } while (0)
483 #define STATS_INC_NODEALLOCS(x) do { } while (0)
484 #define STATS_INC_NODEFREES(x) do { } while (0)
485 #define STATS_SET_FREEABLE(x, i) do { } while (0)
486 #define STATS_INC_ALLOCHIT(x) do { } while (0)
487 #define STATS_INC_ALLOCMISS(x) do { } while (0)
488 #define STATS_INC_FREEHIT(x) do { } while (0)
489 #define STATS_INC_FREEMISS(x) do { } while (0)
490 #endif
492 #if DEBUG
494 * Magic nums for obj red zoning.
495 * Placed in the first word before and the first word after an obj.
497 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
498 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
500 /* ...and for poisoning */
501 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
502 #define POISON_FREE 0x6b /* for use-after-free poisoning */
503 #define POISON_END 0xa5 /* end-byte of poisoning */
506 * memory layout of objects:
507 * 0 : objp
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
512 * redzone word.
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
518 static int obj_offset(struct kmem_cache *cachep)
520 return cachep->obj_offset;
523 static int obj_size(struct kmem_cache *cachep)
525 return cachep->obj_size;
528 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
534 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
538 return (unsigned long *)(objp + cachep->buffer_size -
539 2 * BYTES_PER_WORD);
540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
543 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
549 #else
551 #define obj_offset(x) 0
552 #define obj_size(cachep) (cachep->buffer_size)
553 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
557 #endif
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
563 #if defined(CONFIG_LARGE_ALLOCS)
564 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
565 #define MAX_GFP_ORDER 13 /* up to 32Mb */
566 #elif defined(CONFIG_MMU)
567 #define MAX_OBJ_ORDER 5 /* 32 pages */
568 #define MAX_GFP_ORDER 5 /* 32 pages */
569 #else
570 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
571 #define MAX_GFP_ORDER 8 /* up to 1Mb */
572 #endif
575 * Do not go above this order unless 0 objects fit into the slab.
577 #define BREAK_GFP_ORDER_HI 1
578 #define BREAK_GFP_ORDER_LO 0
579 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
586 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
588 page->lru.next = (struct list_head *)cache;
591 static inline struct kmem_cache *page_get_cache(struct page *page)
593 return (struct kmem_cache *)page->lru.next;
596 static inline void page_set_slab(struct page *page, struct slab *slab)
598 page->lru.prev = (struct list_head *)slab;
601 static inline struct slab *page_get_slab(struct page *page)
603 return (struct slab *)page->lru.prev;
606 static inline struct kmem_cache *virt_to_cache(const void *obj)
608 struct page *page = virt_to_page(obj);
609 return page_get_cache(page);
612 static inline struct slab *virt_to_slab(const void *obj)
614 struct page *page = virt_to_page(obj);
615 return page_get_slab(page);
618 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619 unsigned int idx)
621 return slab->s_mem + cache->buffer_size * idx;
624 static inline unsigned int obj_to_index(struct kmem_cache *cache,
625 struct slab *slab, void *obj)
627 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
631 * These are the default caches for kmalloc. Custom caches can have other sizes.
633 struct cache_sizes malloc_sizes[] = {
634 #define CACHE(x) { .cs_size = (x) },
635 #include <linux/kmalloc_sizes.h>
636 CACHE(ULONG_MAX)
637 #undef CACHE
639 EXPORT_SYMBOL(malloc_sizes);
641 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
642 struct cache_names {
643 char *name;
644 char *name_dma;
647 static struct cache_names __initdata cache_names[] = {
648 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
649 #include <linux/kmalloc_sizes.h>
650 {NULL,}
651 #undef CACHE
654 static struct arraycache_init initarray_cache __initdata =
655 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
656 static struct arraycache_init initarray_generic =
657 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
659 /* internal cache of cache description objs */
660 static struct kmem_cache cache_cache = {
661 .batchcount = 1,
662 .limit = BOOT_CPUCACHE_ENTRIES,
663 .shared = 1,
664 .buffer_size = sizeof(struct kmem_cache),
665 .flags = SLAB_NO_REAP,
666 .name = "kmem_cache",
667 #if DEBUG
668 .obj_size = sizeof(struct kmem_cache),
669 #endif
672 /* Guard access to the cache-chain. */
673 static DEFINE_MUTEX(cache_chain_mutex);
674 static struct list_head cache_chain;
677 * vm_enough_memory() looks at this to determine how many slab-allocated pages
678 * are possibly freeable under pressure
680 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
682 atomic_t slab_reclaim_pages;
685 * chicken and egg problem: delay the per-cpu array allocation
686 * until the general caches are up.
688 static enum {
689 NONE,
690 PARTIAL_AC,
691 PARTIAL_L3,
692 FULL
693 } g_cpucache_up;
695 static DEFINE_PER_CPU(struct work_struct, reap_work);
697 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
698 int node);
699 static void enable_cpucache(struct kmem_cache *cachep);
700 static void cache_reap(void *unused);
701 static int __node_shrink(struct kmem_cache *cachep, int node);
703 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
705 return cachep->array[smp_processor_id()];
708 static inline struct kmem_cache *__find_general_cachep(size_t size,
709 gfp_t gfpflags)
711 struct cache_sizes *csizep = malloc_sizes;
713 #if DEBUG
714 /* This happens if someone tries to call
715 * kmem_cache_create(), or __kmalloc(), before
716 * the generic caches are initialized.
718 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
719 #endif
720 while (size > csizep->cs_size)
721 csizep++;
724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
728 if (unlikely(gfpflags & GFP_DMA))
729 return csizep->cs_dmacachep;
730 return csizep->cs_cachep;
733 struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
735 return __find_general_cachep(size, gfpflags);
737 EXPORT_SYMBOL(kmem_find_general_cachep);
739 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
741 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
745 * Calculate the number of objects and left-over bytes for a given buffer size.
747 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
748 size_t align, int flags, size_t *left_over,
749 unsigned int *num)
751 int nr_objs;
752 size_t mgmt_size;
753 size_t slab_size = PAGE_SIZE << gfporder;
756 * The slab management structure can be either off the slab or
757 * on it. For the latter case, the memory allocated for a
758 * slab is used for:
760 * - The struct slab
761 * - One kmem_bufctl_t for each object
762 * - Padding to respect alignment of @align
763 * - @buffer_size bytes for each object
765 * If the slab management structure is off the slab, then the
766 * alignment will already be calculated into the size. Because
767 * the slabs are all pages aligned, the objects will be at the
768 * correct alignment when allocated.
770 if (flags & CFLGS_OFF_SLAB) {
771 mgmt_size = 0;
772 nr_objs = slab_size / buffer_size;
774 if (nr_objs > SLAB_LIMIT)
775 nr_objs = SLAB_LIMIT;
776 } else {
778 * Ignore padding for the initial guess. The padding
779 * is at most @align-1 bytes, and @buffer_size is at
780 * least @align. In the worst case, this result will
781 * be one greater than the number of objects that fit
782 * into the memory allocation when taking the padding
783 * into account.
785 nr_objs = (slab_size - sizeof(struct slab)) /
786 (buffer_size + sizeof(kmem_bufctl_t));
789 * This calculated number will be either the right
790 * amount, or one greater than what we want.
792 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
793 > slab_size)
794 nr_objs--;
796 if (nr_objs > SLAB_LIMIT)
797 nr_objs = SLAB_LIMIT;
799 mgmt_size = slab_mgmt_size(nr_objs, align);
801 *num = nr_objs;
802 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
805 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
807 static void __slab_error(const char *function, struct kmem_cache *cachep,
808 char *msg)
810 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
811 function, cachep->name, msg);
812 dump_stack();
815 #ifdef CONFIG_NUMA
817 * Special reaping functions for NUMA systems called from cache_reap().
818 * These take care of doing round robin flushing of alien caches (containing
819 * objects freed on different nodes from which they were allocated) and the
820 * flushing of remote pcps by calling drain_node_pages.
822 static DEFINE_PER_CPU(unsigned long, reap_node);
824 static void init_reap_node(int cpu)
826 int node;
828 node = next_node(cpu_to_node(cpu), node_online_map);
829 if (node == MAX_NUMNODES)
830 node = 0;
832 __get_cpu_var(reap_node) = node;
835 static void next_reap_node(void)
837 int node = __get_cpu_var(reap_node);
840 * Also drain per cpu pages on remote zones
842 if (node != numa_node_id())
843 drain_node_pages(node);
845 node = next_node(node, node_online_map);
846 if (unlikely(node >= MAX_NUMNODES))
847 node = first_node(node_online_map);
848 __get_cpu_var(reap_node) = node;
851 #else
852 #define init_reap_node(cpu) do { } while (0)
853 #define next_reap_node(void) do { } while (0)
854 #endif
857 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
858 * via the workqueue/eventd.
859 * Add the CPU number into the expiration time to minimize the possibility of
860 * the CPUs getting into lockstep and contending for the global cache chain
861 * lock.
863 static void __devinit start_cpu_timer(int cpu)
865 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
868 * When this gets called from do_initcalls via cpucache_init(),
869 * init_workqueues() has already run, so keventd will be setup
870 * at that time.
872 if (keventd_up() && reap_work->func == NULL) {
873 init_reap_node(cpu);
874 INIT_WORK(reap_work, cache_reap, NULL);
875 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
879 static struct array_cache *alloc_arraycache(int node, int entries,
880 int batchcount)
882 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
883 struct array_cache *nc = NULL;
885 nc = kmalloc_node(memsize, GFP_KERNEL, node);
886 if (nc) {
887 nc->avail = 0;
888 nc->limit = entries;
889 nc->batchcount = batchcount;
890 nc->touched = 0;
891 spin_lock_init(&nc->lock);
893 return nc;
896 #ifdef CONFIG_NUMA
897 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
899 static struct array_cache **alloc_alien_cache(int node, int limit)
901 struct array_cache **ac_ptr;
902 int memsize = sizeof(void *) * MAX_NUMNODES;
903 int i;
905 if (limit > 1)
906 limit = 12;
907 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
908 if (ac_ptr) {
909 for_each_node(i) {
910 if (i == node || !node_online(i)) {
911 ac_ptr[i] = NULL;
912 continue;
914 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
915 if (!ac_ptr[i]) {
916 for (i--; i <= 0; i--)
917 kfree(ac_ptr[i]);
918 kfree(ac_ptr);
919 return NULL;
923 return ac_ptr;
926 static void free_alien_cache(struct array_cache **ac_ptr)
928 int i;
930 if (!ac_ptr)
931 return;
932 for_each_node(i)
933 kfree(ac_ptr[i]);
934 kfree(ac_ptr);
937 static void __drain_alien_cache(struct kmem_cache *cachep,
938 struct array_cache *ac, int node)
940 struct kmem_list3 *rl3 = cachep->nodelists[node];
942 if (ac->avail) {
943 spin_lock(&rl3->list_lock);
944 free_block(cachep, ac->entry, ac->avail, node);
945 ac->avail = 0;
946 spin_unlock(&rl3->list_lock);
951 * Called from cache_reap() to regularly drain alien caches round robin.
953 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
955 int node = __get_cpu_var(reap_node);
957 if (l3->alien) {
958 struct array_cache *ac = l3->alien[node];
959 if (ac && ac->avail) {
960 spin_lock_irq(&ac->lock);
961 __drain_alien_cache(cachep, ac, node);
962 spin_unlock_irq(&ac->lock);
967 static void drain_alien_cache(struct kmem_cache *cachep,
968 struct array_cache **alien)
970 int i = 0;
971 struct array_cache *ac;
972 unsigned long flags;
974 for_each_online_node(i) {
975 ac = alien[i];
976 if (ac) {
977 spin_lock_irqsave(&ac->lock, flags);
978 __drain_alien_cache(cachep, ac, i);
979 spin_unlock_irqrestore(&ac->lock, flags);
983 #else
985 #define drain_alien_cache(cachep, alien) do { } while (0)
986 #define reap_alien(cachep, l3) do { } while (0)
988 static inline struct array_cache **alloc_alien_cache(int node, int limit)
990 return (struct array_cache **) 0x01020304ul;
993 static inline void free_alien_cache(struct array_cache **ac_ptr)
997 #endif
999 static int __devinit cpuup_callback(struct notifier_block *nfb,
1000 unsigned long action, void *hcpu)
1002 long cpu = (long)hcpu;
1003 struct kmem_cache *cachep;
1004 struct kmem_list3 *l3 = NULL;
1005 int node = cpu_to_node(cpu);
1006 int memsize = sizeof(struct kmem_list3);
1008 switch (action) {
1009 case CPU_UP_PREPARE:
1010 mutex_lock(&cache_chain_mutex);
1012 * We need to do this right in the beginning since
1013 * alloc_arraycache's are going to use this list.
1014 * kmalloc_node allows us to add the slab to the right
1015 * kmem_list3 and not this cpu's kmem_list3
1018 list_for_each_entry(cachep, &cache_chain, next) {
1020 * Set up the size64 kmemlist for cpu before we can
1021 * begin anything. Make sure some other cpu on this
1022 * node has not already allocated this
1024 if (!cachep->nodelists[node]) {
1025 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1026 if (!l3)
1027 goto bad;
1028 kmem_list3_init(l3);
1029 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1030 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1033 * The l3s don't come and go as CPUs come and
1034 * go. cache_chain_mutex is sufficient
1035 * protection here.
1037 cachep->nodelists[node] = l3;
1040 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1041 cachep->nodelists[node]->free_limit =
1042 (1 + nr_cpus_node(node)) *
1043 cachep->batchcount + cachep->num;
1044 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1048 * Now we can go ahead with allocating the shared arrays and
1049 * array caches
1051 list_for_each_entry(cachep, &cache_chain, next) {
1052 struct array_cache *nc;
1053 struct array_cache *shared;
1054 struct array_cache **alien;
1056 nc = alloc_arraycache(node, cachep->limit,
1057 cachep->batchcount);
1058 if (!nc)
1059 goto bad;
1060 shared = alloc_arraycache(node,
1061 cachep->shared * cachep->batchcount,
1062 0xbaadf00d);
1063 if (!shared)
1064 goto bad;
1066 alien = alloc_alien_cache(node, cachep->limit);
1067 if (!alien)
1068 goto bad;
1069 cachep->array[cpu] = nc;
1070 l3 = cachep->nodelists[node];
1071 BUG_ON(!l3);
1073 spin_lock_irq(&l3->list_lock);
1074 if (!l3->shared) {
1076 * We are serialised from CPU_DEAD or
1077 * CPU_UP_CANCELLED by the cpucontrol lock
1079 l3->shared = shared;
1080 shared = NULL;
1082 #ifdef CONFIG_NUMA
1083 if (!l3->alien) {
1084 l3->alien = alien;
1085 alien = NULL;
1087 #endif
1088 spin_unlock_irq(&l3->list_lock);
1089 kfree(shared);
1090 free_alien_cache(alien);
1092 mutex_unlock(&cache_chain_mutex);
1093 break;
1094 case CPU_ONLINE:
1095 start_cpu_timer(cpu);
1096 break;
1097 #ifdef CONFIG_HOTPLUG_CPU
1098 case CPU_DEAD:
1100 * Even if all the cpus of a node are down, we don't free the
1101 * kmem_list3 of any cache. This to avoid a race between
1102 * cpu_down, and a kmalloc allocation from another cpu for
1103 * memory from the node of the cpu going down. The list3
1104 * structure is usually allocated from kmem_cache_create() and
1105 * gets destroyed at kmem_cache_destroy().
1107 /* fall thru */
1108 case CPU_UP_CANCELED:
1109 mutex_lock(&cache_chain_mutex);
1110 list_for_each_entry(cachep, &cache_chain, next) {
1111 struct array_cache *nc;
1112 struct array_cache *shared;
1113 struct array_cache **alien;
1114 cpumask_t mask;
1116 mask = node_to_cpumask(node);
1117 /* cpu is dead; no one can alloc from it. */
1118 nc = cachep->array[cpu];
1119 cachep->array[cpu] = NULL;
1120 l3 = cachep->nodelists[node];
1122 if (!l3)
1123 goto free_array_cache;
1125 spin_lock_irq(&l3->list_lock);
1127 /* Free limit for this kmem_list3 */
1128 l3->free_limit -= cachep->batchcount;
1129 if (nc)
1130 free_block(cachep, nc->entry, nc->avail, node);
1132 if (!cpus_empty(mask)) {
1133 spin_unlock_irq(&l3->list_lock);
1134 goto free_array_cache;
1137 shared = l3->shared;
1138 if (shared) {
1139 free_block(cachep, l3->shared->entry,
1140 l3->shared->avail, node);
1141 l3->shared = NULL;
1144 alien = l3->alien;
1145 l3->alien = NULL;
1147 spin_unlock_irq(&l3->list_lock);
1149 kfree(shared);
1150 if (alien) {
1151 drain_alien_cache(cachep, alien);
1152 free_alien_cache(alien);
1154 free_array_cache:
1155 kfree(nc);
1158 * In the previous loop, all the objects were freed to
1159 * the respective cache's slabs, now we can go ahead and
1160 * shrink each nodelist to its limit.
1162 list_for_each_entry(cachep, &cache_chain, next) {
1163 l3 = cachep->nodelists[node];
1164 if (!l3)
1165 continue;
1166 spin_lock_irq(&l3->list_lock);
1167 /* free slabs belonging to this node */
1168 __node_shrink(cachep, node);
1169 spin_unlock_irq(&l3->list_lock);
1171 mutex_unlock(&cache_chain_mutex);
1172 break;
1173 #endif
1175 return NOTIFY_OK;
1176 bad:
1177 mutex_unlock(&cache_chain_mutex);
1178 return NOTIFY_BAD;
1181 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1184 * swap the static kmem_list3 with kmalloced memory
1186 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1187 int nodeid)
1189 struct kmem_list3 *ptr;
1191 BUG_ON(cachep->nodelists[nodeid] != list);
1192 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1193 BUG_ON(!ptr);
1195 local_irq_disable();
1196 memcpy(ptr, list, sizeof(struct kmem_list3));
1197 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1198 cachep->nodelists[nodeid] = ptr;
1199 local_irq_enable();
1203 * Initialisation. Called after the page allocator have been initialised and
1204 * before smp_init().
1206 void __init kmem_cache_init(void)
1208 size_t left_over;
1209 struct cache_sizes *sizes;
1210 struct cache_names *names;
1211 int i;
1212 int order;
1214 for (i = 0; i < NUM_INIT_LISTS; i++) {
1215 kmem_list3_init(&initkmem_list3[i]);
1216 if (i < MAX_NUMNODES)
1217 cache_cache.nodelists[i] = NULL;
1221 * Fragmentation resistance on low memory - only use bigger
1222 * page orders on machines with more than 32MB of memory.
1224 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1225 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1227 /* Bootstrap is tricky, because several objects are allocated
1228 * from caches that do not exist yet:
1229 * 1) initialize the cache_cache cache: it contains the struct
1230 * kmem_cache structures of all caches, except cache_cache itself:
1231 * cache_cache is statically allocated.
1232 * Initially an __init data area is used for the head array and the
1233 * kmem_list3 structures, it's replaced with a kmalloc allocated
1234 * array at the end of the bootstrap.
1235 * 2) Create the first kmalloc cache.
1236 * The struct kmem_cache for the new cache is allocated normally.
1237 * An __init data area is used for the head array.
1238 * 3) Create the remaining kmalloc caches, with minimally sized
1239 * head arrays.
1240 * 4) Replace the __init data head arrays for cache_cache and the first
1241 * kmalloc cache with kmalloc allocated arrays.
1242 * 5) Replace the __init data for kmem_list3 for cache_cache and
1243 * the other cache's with kmalloc allocated memory.
1244 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1247 /* 1) create the cache_cache */
1248 INIT_LIST_HEAD(&cache_chain);
1249 list_add(&cache_cache.next, &cache_chain);
1250 cache_cache.colour_off = cache_line_size();
1251 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1252 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1254 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1255 cache_line_size());
1257 for (order = 0; order < MAX_ORDER; order++) {
1258 cache_estimate(order, cache_cache.buffer_size,
1259 cache_line_size(), 0, &left_over, &cache_cache.num);
1260 if (cache_cache.num)
1261 break;
1263 if (!cache_cache.num)
1264 BUG();
1265 cache_cache.gfporder = order;
1266 cache_cache.colour = left_over / cache_cache.colour_off;
1267 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1268 sizeof(struct slab), cache_line_size());
1270 /* 2+3) create the kmalloc caches */
1271 sizes = malloc_sizes;
1272 names = cache_names;
1275 * Initialize the caches that provide memory for the array cache and the
1276 * kmem_list3 structures first. Without this, further allocations will
1277 * bug.
1280 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1281 sizes[INDEX_AC].cs_size,
1282 ARCH_KMALLOC_MINALIGN,
1283 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1284 NULL, NULL);
1286 if (INDEX_AC != INDEX_L3) {
1287 sizes[INDEX_L3].cs_cachep =
1288 kmem_cache_create(names[INDEX_L3].name,
1289 sizes[INDEX_L3].cs_size,
1290 ARCH_KMALLOC_MINALIGN,
1291 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1292 NULL, NULL);
1295 while (sizes->cs_size != ULONG_MAX) {
1297 * For performance, all the general caches are L1 aligned.
1298 * This should be particularly beneficial on SMP boxes, as it
1299 * eliminates "false sharing".
1300 * Note for systems short on memory removing the alignment will
1301 * allow tighter packing of the smaller caches.
1303 if (!sizes->cs_cachep) {
1304 sizes->cs_cachep = kmem_cache_create(names->name,
1305 sizes->cs_size,
1306 ARCH_KMALLOC_MINALIGN,
1307 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1308 NULL, NULL);
1311 /* Inc off-slab bufctl limit until the ceiling is hit. */
1312 if (!(OFF_SLAB(sizes->cs_cachep))) {
1313 offslab_limit = sizes->cs_size - sizeof(struct slab);
1314 offslab_limit /= sizeof(kmem_bufctl_t);
1317 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1318 sizes->cs_size,
1319 ARCH_KMALLOC_MINALIGN,
1320 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1321 SLAB_PANIC,
1322 NULL, NULL);
1323 sizes++;
1324 names++;
1326 /* 4) Replace the bootstrap head arrays */
1328 void *ptr;
1330 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1332 local_irq_disable();
1333 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1334 memcpy(ptr, cpu_cache_get(&cache_cache),
1335 sizeof(struct arraycache_init));
1336 cache_cache.array[smp_processor_id()] = ptr;
1337 local_irq_enable();
1339 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1341 local_irq_disable();
1342 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1343 != &initarray_generic.cache);
1344 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1345 sizeof(struct arraycache_init));
1346 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1347 ptr;
1348 local_irq_enable();
1350 /* 5) Replace the bootstrap kmem_list3's */
1352 int node;
1353 /* Replace the static kmem_list3 structures for the boot cpu */
1354 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1355 numa_node_id());
1357 for_each_online_node(node) {
1358 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1359 &initkmem_list3[SIZE_AC + node], node);
1361 if (INDEX_AC != INDEX_L3) {
1362 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1363 &initkmem_list3[SIZE_L3 + node],
1364 node);
1369 /* 6) resize the head arrays to their final sizes */
1371 struct kmem_cache *cachep;
1372 mutex_lock(&cache_chain_mutex);
1373 list_for_each_entry(cachep, &cache_chain, next)
1374 enable_cpucache(cachep);
1375 mutex_unlock(&cache_chain_mutex);
1378 /* Done! */
1379 g_cpucache_up = FULL;
1382 * Register a cpu startup notifier callback that initializes
1383 * cpu_cache_get for all new cpus
1385 register_cpu_notifier(&cpucache_notifier);
1388 * The reap timers are started later, with a module init call: That part
1389 * of the kernel is not yet operational.
1393 static int __init cpucache_init(void)
1395 int cpu;
1398 * Register the timers that return unneeded pages to the page allocator
1400 for_each_online_cpu(cpu)
1401 start_cpu_timer(cpu);
1402 return 0;
1404 __initcall(cpucache_init);
1407 * Interface to system's page allocator. No need to hold the cache-lock.
1409 * If we requested dmaable memory, we will get it. Even if we
1410 * did not request dmaable memory, we might get it, but that
1411 * would be relatively rare and ignorable.
1413 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1415 struct page *page;
1416 void *addr;
1417 int i;
1419 flags |= cachep->gfpflags;
1420 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1421 if (!page)
1422 return NULL;
1423 addr = page_address(page);
1425 i = (1 << cachep->gfporder);
1426 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1427 atomic_add(i, &slab_reclaim_pages);
1428 add_page_state(nr_slab, i);
1429 while (i--) {
1430 __SetPageSlab(page);
1431 page++;
1433 return addr;
1437 * Interface to system's page release.
1439 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1441 unsigned long i = (1 << cachep->gfporder);
1442 struct page *page = virt_to_page(addr);
1443 const unsigned long nr_freed = i;
1445 while (i--) {
1446 BUG_ON(!PageSlab(page));
1447 __ClearPageSlab(page);
1448 page++;
1450 sub_page_state(nr_slab, nr_freed);
1451 if (current->reclaim_state)
1452 current->reclaim_state->reclaimed_slab += nr_freed;
1453 free_pages((unsigned long)addr, cachep->gfporder);
1454 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1455 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1458 static void kmem_rcu_free(struct rcu_head *head)
1460 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1461 struct kmem_cache *cachep = slab_rcu->cachep;
1463 kmem_freepages(cachep, slab_rcu->addr);
1464 if (OFF_SLAB(cachep))
1465 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1468 #if DEBUG
1470 #ifdef CONFIG_DEBUG_PAGEALLOC
1471 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1472 unsigned long caller)
1474 int size = obj_size(cachep);
1476 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1478 if (size < 5 * sizeof(unsigned long))
1479 return;
1481 *addr++ = 0x12345678;
1482 *addr++ = caller;
1483 *addr++ = smp_processor_id();
1484 size -= 3 * sizeof(unsigned long);
1486 unsigned long *sptr = &caller;
1487 unsigned long svalue;
1489 while (!kstack_end(sptr)) {
1490 svalue = *sptr++;
1491 if (kernel_text_address(svalue)) {
1492 *addr++ = svalue;
1493 size -= sizeof(unsigned long);
1494 if (size <= sizeof(unsigned long))
1495 break;
1500 *addr++ = 0x87654321;
1502 #endif
1504 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1506 int size = obj_size(cachep);
1507 addr = &((char *)addr)[obj_offset(cachep)];
1509 memset(addr, val, size);
1510 *(unsigned char *)(addr + size - 1) = POISON_END;
1513 static void dump_line(char *data, int offset, int limit)
1515 int i;
1516 printk(KERN_ERR "%03x:", offset);
1517 for (i = 0; i < limit; i++)
1518 printk(" %02x", (unsigned char)data[offset + i]);
1519 printk("\n");
1521 #endif
1523 #if DEBUG
1525 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1527 int i, size;
1528 char *realobj;
1530 if (cachep->flags & SLAB_RED_ZONE) {
1531 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1532 *dbg_redzone1(cachep, objp),
1533 *dbg_redzone2(cachep, objp));
1536 if (cachep->flags & SLAB_STORE_USER) {
1537 printk(KERN_ERR "Last user: [<%p>]",
1538 *dbg_userword(cachep, objp));
1539 print_symbol("(%s)",
1540 (unsigned long)*dbg_userword(cachep, objp));
1541 printk("\n");
1543 realobj = (char *)objp + obj_offset(cachep);
1544 size = obj_size(cachep);
1545 for (i = 0; i < size && lines; i += 16, lines--) {
1546 int limit;
1547 limit = 16;
1548 if (i + limit > size)
1549 limit = size - i;
1550 dump_line(realobj, i, limit);
1554 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1556 char *realobj;
1557 int size, i;
1558 int lines = 0;
1560 realobj = (char *)objp + obj_offset(cachep);
1561 size = obj_size(cachep);
1563 for (i = 0; i < size; i++) {
1564 char exp = POISON_FREE;
1565 if (i == size - 1)
1566 exp = POISON_END;
1567 if (realobj[i] != exp) {
1568 int limit;
1569 /* Mismatch ! */
1570 /* Print header */
1571 if (lines == 0) {
1572 printk(KERN_ERR
1573 "Slab corruption: start=%p, len=%d\n",
1574 realobj, size);
1575 print_objinfo(cachep, objp, 0);
1577 /* Hexdump the affected line */
1578 i = (i / 16) * 16;
1579 limit = 16;
1580 if (i + limit > size)
1581 limit = size - i;
1582 dump_line(realobj, i, limit);
1583 i += 16;
1584 lines++;
1585 /* Limit to 5 lines */
1586 if (lines > 5)
1587 break;
1590 if (lines != 0) {
1591 /* Print some data about the neighboring objects, if they
1592 * exist:
1594 struct slab *slabp = virt_to_slab(objp);
1595 unsigned int objnr;
1597 objnr = obj_to_index(cachep, slabp, objp);
1598 if (objnr) {
1599 objp = index_to_obj(cachep, slabp, objnr - 1);
1600 realobj = (char *)objp + obj_offset(cachep);
1601 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1602 realobj, size);
1603 print_objinfo(cachep, objp, 2);
1605 if (objnr + 1 < cachep->num) {
1606 objp = index_to_obj(cachep, slabp, objnr + 1);
1607 realobj = (char *)objp + obj_offset(cachep);
1608 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1609 realobj, size);
1610 print_objinfo(cachep, objp, 2);
1614 #endif
1616 #if DEBUG
1618 * slab_destroy_objs - call the registered destructor for each object in
1619 * a slab that is to be destroyed.
1621 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1623 int i;
1624 for (i = 0; i < cachep->num; i++) {
1625 void *objp = index_to_obj(cachep, slabp, i);
1627 if (cachep->flags & SLAB_POISON) {
1628 #ifdef CONFIG_DEBUG_PAGEALLOC
1629 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1630 OFF_SLAB(cachep))
1631 kernel_map_pages(virt_to_page(objp),
1632 cachep->buffer_size / PAGE_SIZE, 1);
1633 else
1634 check_poison_obj(cachep, objp);
1635 #else
1636 check_poison_obj(cachep, objp);
1637 #endif
1639 if (cachep->flags & SLAB_RED_ZONE) {
1640 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1641 slab_error(cachep, "start of a freed object "
1642 "was overwritten");
1643 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1644 slab_error(cachep, "end of a freed object "
1645 "was overwritten");
1647 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1648 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1651 #else
1652 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1654 if (cachep->dtor) {
1655 int i;
1656 for (i = 0; i < cachep->num; i++) {
1657 void *objp = index_to_obj(cachep, slabp, i);
1658 (cachep->dtor) (objp, cachep, 0);
1662 #endif
1665 * Destroy all the objs in a slab, and release the mem back to the system.
1666 * Before calling the slab must have been unlinked from the cache. The
1667 * cache-lock is not held/needed.
1669 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1671 void *addr = slabp->s_mem - slabp->colouroff;
1673 slab_destroy_objs(cachep, slabp);
1674 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1675 struct slab_rcu *slab_rcu;
1677 slab_rcu = (struct slab_rcu *)slabp;
1678 slab_rcu->cachep = cachep;
1679 slab_rcu->addr = addr;
1680 call_rcu(&slab_rcu->head, kmem_rcu_free);
1681 } else {
1682 kmem_freepages(cachep, addr);
1683 if (OFF_SLAB(cachep))
1684 kmem_cache_free(cachep->slabp_cache, slabp);
1689 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1690 * size of kmem_list3.
1692 static void set_up_list3s(struct kmem_cache *cachep, int index)
1694 int node;
1696 for_each_online_node(node) {
1697 cachep->nodelists[node] = &initkmem_list3[index + node];
1698 cachep->nodelists[node]->next_reap = jiffies +
1699 REAPTIMEOUT_LIST3 +
1700 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1705 * calculate_slab_order - calculate size (page order) of slabs
1706 * @cachep: pointer to the cache that is being created
1707 * @size: size of objects to be created in this cache.
1708 * @align: required alignment for the objects.
1709 * @flags: slab allocation flags
1711 * Also calculates the number of objects per slab.
1713 * This could be made much more intelligent. For now, try to avoid using
1714 * high order pages for slabs. When the gfp() functions are more friendly
1715 * towards high-order requests, this should be changed.
1717 static size_t calculate_slab_order(struct kmem_cache *cachep,
1718 size_t size, size_t align, unsigned long flags)
1720 size_t left_over = 0;
1721 int gfporder;
1723 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1724 unsigned int num;
1725 size_t remainder;
1727 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1728 if (!num)
1729 continue;
1731 /* More than offslab_limit objects will cause problems */
1732 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1733 break;
1735 /* Found something acceptable - save it away */
1736 cachep->num = num;
1737 cachep->gfporder = gfporder;
1738 left_over = remainder;
1741 * A VFS-reclaimable slab tends to have most allocations
1742 * as GFP_NOFS and we really don't want to have to be allocating
1743 * higher-order pages when we are unable to shrink dcache.
1745 if (flags & SLAB_RECLAIM_ACCOUNT)
1746 break;
1749 * Large number of objects is good, but very large slabs are
1750 * currently bad for the gfp()s.
1752 if (gfporder >= slab_break_gfp_order)
1753 break;
1756 * Acceptable internal fragmentation?
1758 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1759 break;
1761 return left_over;
1764 static void setup_cpu_cache(struct kmem_cache *cachep)
1766 if (g_cpucache_up == FULL) {
1767 enable_cpucache(cachep);
1768 return;
1770 if (g_cpucache_up == NONE) {
1772 * Note: the first kmem_cache_create must create the cache
1773 * that's used by kmalloc(24), otherwise the creation of
1774 * further caches will BUG().
1776 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1779 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1780 * the first cache, then we need to set up all its list3s,
1781 * otherwise the creation of further caches will BUG().
1783 set_up_list3s(cachep, SIZE_AC);
1784 if (INDEX_AC == INDEX_L3)
1785 g_cpucache_up = PARTIAL_L3;
1786 else
1787 g_cpucache_up = PARTIAL_AC;
1788 } else {
1789 cachep->array[smp_processor_id()] =
1790 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1792 if (g_cpucache_up == PARTIAL_AC) {
1793 set_up_list3s(cachep, SIZE_L3);
1794 g_cpucache_up = PARTIAL_L3;
1795 } else {
1796 int node;
1797 for_each_online_node(node) {
1798 cachep->nodelists[node] =
1799 kmalloc_node(sizeof(struct kmem_list3),
1800 GFP_KERNEL, node);
1801 BUG_ON(!cachep->nodelists[node]);
1802 kmem_list3_init(cachep->nodelists[node]);
1806 cachep->nodelists[numa_node_id()]->next_reap =
1807 jiffies + REAPTIMEOUT_LIST3 +
1808 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1810 cpu_cache_get(cachep)->avail = 0;
1811 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1812 cpu_cache_get(cachep)->batchcount = 1;
1813 cpu_cache_get(cachep)->touched = 0;
1814 cachep->batchcount = 1;
1815 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1819 * kmem_cache_create - Create a cache.
1820 * @name: A string which is used in /proc/slabinfo to identify this cache.
1821 * @size: The size of objects to be created in this cache.
1822 * @align: The required alignment for the objects.
1823 * @flags: SLAB flags
1824 * @ctor: A constructor for the objects.
1825 * @dtor: A destructor for the objects.
1827 * Returns a ptr to the cache on success, NULL on failure.
1828 * Cannot be called within a int, but can be interrupted.
1829 * The @ctor is run when new pages are allocated by the cache
1830 * and the @dtor is run before the pages are handed back.
1832 * @name must be valid until the cache is destroyed. This implies that
1833 * the module calling this has to destroy the cache before getting unloaded.
1835 * The flags are
1837 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1838 * to catch references to uninitialised memory.
1840 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1841 * for buffer overruns.
1843 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1844 * memory pressure.
1846 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1847 * cacheline. This can be beneficial if you're counting cycles as closely
1848 * as davem.
1850 struct kmem_cache *
1851 kmem_cache_create (const char *name, size_t size, size_t align,
1852 unsigned long flags,
1853 void (*ctor)(void*, struct kmem_cache *, unsigned long),
1854 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1856 size_t left_over, slab_size, ralign;
1857 struct kmem_cache *cachep = NULL;
1858 struct list_head *p;
1861 * Sanity checks... these are all serious usage bugs.
1863 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1864 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1865 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1866 name);
1867 BUG();
1871 * Prevent CPUs from coming and going.
1872 * lock_cpu_hotplug() nests outside cache_chain_mutex
1874 lock_cpu_hotplug();
1876 mutex_lock(&cache_chain_mutex);
1878 list_for_each(p, &cache_chain) {
1879 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1880 mm_segment_t old_fs = get_fs();
1881 char tmp;
1882 int res;
1885 * This happens when the module gets unloaded and doesn't
1886 * destroy its slab cache and no-one else reuses the vmalloc
1887 * area of the module. Print a warning.
1889 set_fs(KERNEL_DS);
1890 res = __get_user(tmp, pc->name);
1891 set_fs(old_fs);
1892 if (res) {
1893 printk("SLAB: cache with size %d has lost its name\n",
1894 pc->buffer_size);
1895 continue;
1898 if (!strcmp(pc->name, name)) {
1899 printk("kmem_cache_create: duplicate cache %s\n", name);
1900 dump_stack();
1901 goto oops;
1905 #if DEBUG
1906 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1907 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1908 /* No constructor, but inital state check requested */
1909 printk(KERN_ERR "%s: No con, but init state check "
1910 "requested - %s\n", __FUNCTION__, name);
1911 flags &= ~SLAB_DEBUG_INITIAL;
1913 #if FORCED_DEBUG
1915 * Enable redzoning and last user accounting, except for caches with
1916 * large objects, if the increased size would increase the object size
1917 * above the next power of two: caches with object sizes just above a
1918 * power of two have a significant amount of internal fragmentation.
1920 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
1921 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1922 if (!(flags & SLAB_DESTROY_BY_RCU))
1923 flags |= SLAB_POISON;
1924 #endif
1925 if (flags & SLAB_DESTROY_BY_RCU)
1926 BUG_ON(flags & SLAB_POISON);
1927 #endif
1928 if (flags & SLAB_DESTROY_BY_RCU)
1929 BUG_ON(dtor);
1932 * Always checks flags, a caller might be expecting debug support which
1933 * isn't available.
1935 if (flags & ~CREATE_MASK)
1936 BUG();
1939 * Check that size is in terms of words. This is needed to avoid
1940 * unaligned accesses for some archs when redzoning is used, and makes
1941 * sure any on-slab bufctl's are also correctly aligned.
1943 if (size & (BYTES_PER_WORD - 1)) {
1944 size += (BYTES_PER_WORD - 1);
1945 size &= ~(BYTES_PER_WORD - 1);
1948 /* calculate the final buffer alignment: */
1950 /* 1) arch recommendation: can be overridden for debug */
1951 if (flags & SLAB_HWCACHE_ALIGN) {
1953 * Default alignment: as specified by the arch code. Except if
1954 * an object is really small, then squeeze multiple objects into
1955 * one cacheline.
1957 ralign = cache_line_size();
1958 while (size <= ralign / 2)
1959 ralign /= 2;
1960 } else {
1961 ralign = BYTES_PER_WORD;
1963 /* 2) arch mandated alignment: disables debug if necessary */
1964 if (ralign < ARCH_SLAB_MINALIGN) {
1965 ralign = ARCH_SLAB_MINALIGN;
1966 if (ralign > BYTES_PER_WORD)
1967 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1969 /* 3) caller mandated alignment: disables debug if necessary */
1970 if (ralign < align) {
1971 ralign = align;
1972 if (ralign > BYTES_PER_WORD)
1973 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1976 * 4) Store it. Note that the debug code below can reduce
1977 * the alignment to BYTES_PER_WORD.
1979 align = ralign;
1981 /* Get cache's description obj. */
1982 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1983 if (!cachep)
1984 goto oops;
1985 memset(cachep, 0, sizeof(struct kmem_cache));
1987 #if DEBUG
1988 cachep->obj_size = size;
1990 if (flags & SLAB_RED_ZONE) {
1991 /* redzoning only works with word aligned caches */
1992 align = BYTES_PER_WORD;
1994 /* add space for red zone words */
1995 cachep->obj_offset += BYTES_PER_WORD;
1996 size += 2 * BYTES_PER_WORD;
1998 if (flags & SLAB_STORE_USER) {
1999 /* user store requires word alignment and
2000 * one word storage behind the end of the real
2001 * object.
2003 align = BYTES_PER_WORD;
2004 size += BYTES_PER_WORD;
2006 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2007 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2008 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2009 cachep->obj_offset += PAGE_SIZE - size;
2010 size = PAGE_SIZE;
2012 #endif
2013 #endif
2015 /* Determine if the slab management is 'on' or 'off' slab. */
2016 if (size >= (PAGE_SIZE >> 3))
2018 * Size is large, assume best to place the slab management obj
2019 * off-slab (should allow better packing of objs).
2021 flags |= CFLGS_OFF_SLAB;
2023 size = ALIGN(size, align);
2025 left_over = calculate_slab_order(cachep, size, align, flags);
2027 if (!cachep->num) {
2028 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2029 kmem_cache_free(&cache_cache, cachep);
2030 cachep = NULL;
2031 goto oops;
2033 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2034 + sizeof(struct slab), align);
2037 * If the slab has been placed off-slab, and we have enough space then
2038 * move it on-slab. This is at the expense of any extra colouring.
2040 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2041 flags &= ~CFLGS_OFF_SLAB;
2042 left_over -= slab_size;
2045 if (flags & CFLGS_OFF_SLAB) {
2046 /* really off slab. No need for manual alignment */
2047 slab_size =
2048 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2051 cachep->colour_off = cache_line_size();
2052 /* Offset must be a multiple of the alignment. */
2053 if (cachep->colour_off < align)
2054 cachep->colour_off = align;
2055 cachep->colour = left_over / cachep->colour_off;
2056 cachep->slab_size = slab_size;
2057 cachep->flags = flags;
2058 cachep->gfpflags = 0;
2059 if (flags & SLAB_CACHE_DMA)
2060 cachep->gfpflags |= GFP_DMA;
2061 cachep->buffer_size = size;
2063 if (flags & CFLGS_OFF_SLAB)
2064 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2065 cachep->ctor = ctor;
2066 cachep->dtor = dtor;
2067 cachep->name = name;
2070 setup_cpu_cache(cachep);
2072 /* cache setup completed, link it into the list */
2073 list_add(&cachep->next, &cache_chain);
2074 oops:
2075 if (!cachep && (flags & SLAB_PANIC))
2076 panic("kmem_cache_create(): failed to create slab `%s'\n",
2077 name);
2078 mutex_unlock(&cache_chain_mutex);
2079 unlock_cpu_hotplug();
2080 return cachep;
2082 EXPORT_SYMBOL(kmem_cache_create);
2084 #if DEBUG
2085 static void check_irq_off(void)
2087 BUG_ON(!irqs_disabled());
2090 static void check_irq_on(void)
2092 BUG_ON(irqs_disabled());
2095 static void check_spinlock_acquired(struct kmem_cache *cachep)
2097 #ifdef CONFIG_SMP
2098 check_irq_off();
2099 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2100 #endif
2103 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2105 #ifdef CONFIG_SMP
2106 check_irq_off();
2107 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2108 #endif
2111 #else
2112 #define check_irq_off() do { } while(0)
2113 #define check_irq_on() do { } while(0)
2114 #define check_spinlock_acquired(x) do { } while(0)
2115 #define check_spinlock_acquired_node(x, y) do { } while(0)
2116 #endif
2119 * Waits for all CPUs to execute func().
2121 static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
2123 check_irq_on();
2124 preempt_disable();
2125 local_irq_disable();
2126 func(arg);
2127 local_irq_enable();
2129 if (smp_call_function(func, arg, 1, 1))
2130 BUG();
2132 preempt_enable();
2135 static void drain_array_locked(struct kmem_cache *cachep,
2136 struct array_cache *ac, int force, int node);
2138 static void do_drain(void *arg)
2140 struct kmem_cache *cachep = arg;
2141 struct array_cache *ac;
2142 int node = numa_node_id();
2144 check_irq_off();
2145 ac = cpu_cache_get(cachep);
2146 spin_lock(&cachep->nodelists[node]->list_lock);
2147 free_block(cachep, ac->entry, ac->avail, node);
2148 spin_unlock(&cachep->nodelists[node]->list_lock);
2149 ac->avail = 0;
2152 static void drain_cpu_caches(struct kmem_cache *cachep)
2154 struct kmem_list3 *l3;
2155 int node;
2157 smp_call_function_all_cpus(do_drain, cachep);
2158 check_irq_on();
2159 for_each_online_node(node) {
2160 l3 = cachep->nodelists[node];
2161 if (l3) {
2162 spin_lock_irq(&l3->list_lock);
2163 drain_array_locked(cachep, l3->shared, 1, node);
2164 spin_unlock_irq(&l3->list_lock);
2165 if (l3->alien)
2166 drain_alien_cache(cachep, l3->alien);
2171 static int __node_shrink(struct kmem_cache *cachep, int node)
2173 struct slab *slabp;
2174 struct kmem_list3 *l3 = cachep->nodelists[node];
2175 int ret;
2177 for (;;) {
2178 struct list_head *p;
2180 p = l3->slabs_free.prev;
2181 if (p == &l3->slabs_free)
2182 break;
2184 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2185 #if DEBUG
2186 if (slabp->inuse)
2187 BUG();
2188 #endif
2189 list_del(&slabp->list);
2191 l3->free_objects -= cachep->num;
2192 spin_unlock_irq(&l3->list_lock);
2193 slab_destroy(cachep, slabp);
2194 spin_lock_irq(&l3->list_lock);
2196 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2197 return ret;
2200 static int __cache_shrink(struct kmem_cache *cachep)
2202 int ret = 0, i = 0;
2203 struct kmem_list3 *l3;
2205 drain_cpu_caches(cachep);
2207 check_irq_on();
2208 for_each_online_node(i) {
2209 l3 = cachep->nodelists[i];
2210 if (l3) {
2211 spin_lock_irq(&l3->list_lock);
2212 ret += __node_shrink(cachep, i);
2213 spin_unlock_irq(&l3->list_lock);
2216 return (ret ? 1 : 0);
2220 * kmem_cache_shrink - Shrink a cache.
2221 * @cachep: The cache to shrink.
2223 * Releases as many slabs as possible for a cache.
2224 * To help debugging, a zero exit status indicates all slabs were released.
2226 int kmem_cache_shrink(struct kmem_cache *cachep)
2228 if (!cachep || in_interrupt())
2229 BUG();
2231 return __cache_shrink(cachep);
2233 EXPORT_SYMBOL(kmem_cache_shrink);
2236 * kmem_cache_destroy - delete a cache
2237 * @cachep: the cache to destroy
2239 * Remove a struct kmem_cache object from the slab cache.
2240 * Returns 0 on success.
2242 * It is expected this function will be called by a module when it is
2243 * unloaded. This will remove the cache completely, and avoid a duplicate
2244 * cache being allocated each time a module is loaded and unloaded, if the
2245 * module doesn't have persistent in-kernel storage across loads and unloads.
2247 * The cache must be empty before calling this function.
2249 * The caller must guarantee that noone will allocate memory from the cache
2250 * during the kmem_cache_destroy().
2252 int kmem_cache_destroy(struct kmem_cache *cachep)
2254 int i;
2255 struct kmem_list3 *l3;
2257 if (!cachep || in_interrupt())
2258 BUG();
2260 /* Don't let CPUs to come and go */
2261 lock_cpu_hotplug();
2263 /* Find the cache in the chain of caches. */
2264 mutex_lock(&cache_chain_mutex);
2266 * the chain is never empty, cache_cache is never destroyed
2268 list_del(&cachep->next);
2269 mutex_unlock(&cache_chain_mutex);
2271 if (__cache_shrink(cachep)) {
2272 slab_error(cachep, "Can't free all objects");
2273 mutex_lock(&cache_chain_mutex);
2274 list_add(&cachep->next, &cache_chain);
2275 mutex_unlock(&cache_chain_mutex);
2276 unlock_cpu_hotplug();
2277 return 1;
2280 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2281 synchronize_rcu();
2283 for_each_online_cpu(i)
2284 kfree(cachep->array[i]);
2286 /* NUMA: free the list3 structures */
2287 for_each_online_node(i) {
2288 l3 = cachep->nodelists[i];
2289 if (l3) {
2290 kfree(l3->shared);
2291 free_alien_cache(l3->alien);
2292 kfree(l3);
2295 kmem_cache_free(&cache_cache, cachep);
2296 unlock_cpu_hotplug();
2297 return 0;
2299 EXPORT_SYMBOL(kmem_cache_destroy);
2301 /* Get the memory for a slab management obj. */
2302 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2303 int colour_off, gfp_t local_flags)
2305 struct slab *slabp;
2307 if (OFF_SLAB(cachep)) {
2308 /* Slab management obj is off-slab. */
2309 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2310 if (!slabp)
2311 return NULL;
2312 } else {
2313 slabp = objp + colour_off;
2314 colour_off += cachep->slab_size;
2316 slabp->inuse = 0;
2317 slabp->colouroff = colour_off;
2318 slabp->s_mem = objp + colour_off;
2319 return slabp;
2322 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2324 return (kmem_bufctl_t *) (slabp + 1);
2327 static void cache_init_objs(struct kmem_cache *cachep,
2328 struct slab *slabp, unsigned long ctor_flags)
2330 int i;
2332 for (i = 0; i < cachep->num; i++) {
2333 void *objp = index_to_obj(cachep, slabp, i);
2334 #if DEBUG
2335 /* need to poison the objs? */
2336 if (cachep->flags & SLAB_POISON)
2337 poison_obj(cachep, objp, POISON_FREE);
2338 if (cachep->flags & SLAB_STORE_USER)
2339 *dbg_userword(cachep, objp) = NULL;
2341 if (cachep->flags & SLAB_RED_ZONE) {
2342 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2343 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2346 * Constructors are not allowed to allocate memory from the same
2347 * cache which they are a constructor for. Otherwise, deadlock.
2348 * They must also be threaded.
2350 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2351 cachep->ctor(objp + obj_offset(cachep), cachep,
2352 ctor_flags);
2354 if (cachep->flags & SLAB_RED_ZONE) {
2355 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2356 slab_error(cachep, "constructor overwrote the"
2357 " end of an object");
2358 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2359 slab_error(cachep, "constructor overwrote the"
2360 " start of an object");
2362 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2363 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2364 kernel_map_pages(virt_to_page(objp),
2365 cachep->buffer_size / PAGE_SIZE, 0);
2366 #else
2367 if (cachep->ctor)
2368 cachep->ctor(objp, cachep, ctor_flags);
2369 #endif
2370 slab_bufctl(slabp)[i] = i + 1;
2372 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2373 slabp->free = 0;
2376 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2378 if (flags & SLAB_DMA)
2379 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2380 else
2381 BUG_ON(cachep->gfpflags & GFP_DMA);
2384 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2385 int nodeid)
2387 void *objp = index_to_obj(cachep, slabp, slabp->free);
2388 kmem_bufctl_t next;
2390 slabp->inuse++;
2391 next = slab_bufctl(slabp)[slabp->free];
2392 #if DEBUG
2393 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2394 WARN_ON(slabp->nodeid != nodeid);
2395 #endif
2396 slabp->free = next;
2398 return objp;
2401 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2402 void *objp, int nodeid)
2404 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2406 #if DEBUG
2407 /* Verify that the slab belongs to the intended node */
2408 WARN_ON(slabp->nodeid != nodeid);
2410 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2411 printk(KERN_ERR "slab: double free detected in cache "
2412 "'%s', objp %p\n", cachep->name, objp);
2413 BUG();
2415 #endif
2416 slab_bufctl(slabp)[objnr] = slabp->free;
2417 slabp->free = objnr;
2418 slabp->inuse--;
2421 static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2422 void *objp)
2424 int i;
2425 struct page *page;
2427 /* Nasty!!!!!! I hope this is OK. */
2428 i = 1 << cachep->gfporder;
2429 page = virt_to_page(objp);
2430 do {
2431 page_set_cache(page, cachep);
2432 page_set_slab(page, slabp);
2433 page++;
2434 } while (--i);
2438 * Grow (by 1) the number of slabs within a cache. This is called by
2439 * kmem_cache_alloc() when there are no active objs left in a cache.
2441 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2443 struct slab *slabp;
2444 void *objp;
2445 size_t offset;
2446 gfp_t local_flags;
2447 unsigned long ctor_flags;
2448 struct kmem_list3 *l3;
2451 * Be lazy and only check for valid flags here, keeping it out of the
2452 * critical path in kmem_cache_alloc().
2454 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2455 BUG();
2456 if (flags & SLAB_NO_GROW)
2457 return 0;
2459 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2460 local_flags = (flags & SLAB_LEVEL_MASK);
2461 if (!(local_flags & __GFP_WAIT))
2463 * Not allowed to sleep. Need to tell a constructor about
2464 * this - it might need to know...
2466 ctor_flags |= SLAB_CTOR_ATOMIC;
2468 /* Take the l3 list lock to change the colour_next on this node */
2469 check_irq_off();
2470 l3 = cachep->nodelists[nodeid];
2471 spin_lock(&l3->list_lock);
2473 /* Get colour for the slab, and cal the next value. */
2474 offset = l3->colour_next;
2475 l3->colour_next++;
2476 if (l3->colour_next >= cachep->colour)
2477 l3->colour_next = 0;
2478 spin_unlock(&l3->list_lock);
2480 offset *= cachep->colour_off;
2482 if (local_flags & __GFP_WAIT)
2483 local_irq_enable();
2486 * The test for missing atomic flag is performed here, rather than
2487 * the more obvious place, simply to reduce the critical path length
2488 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2489 * will eventually be caught here (where it matters).
2491 kmem_flagcheck(cachep, flags);
2494 * Get mem for the objs. Attempt to allocate a physical page from
2495 * 'nodeid'.
2497 objp = kmem_getpages(cachep, flags, nodeid);
2498 if (!objp)
2499 goto failed;
2501 /* Get slab management. */
2502 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
2503 if (!slabp)
2504 goto opps1;
2506 slabp->nodeid = nodeid;
2507 set_slab_attr(cachep, slabp, objp);
2509 cache_init_objs(cachep, slabp, ctor_flags);
2511 if (local_flags & __GFP_WAIT)
2512 local_irq_disable();
2513 check_irq_off();
2514 spin_lock(&l3->list_lock);
2516 /* Make slab active. */
2517 list_add_tail(&slabp->list, &(l3->slabs_free));
2518 STATS_INC_GROWN(cachep);
2519 l3->free_objects += cachep->num;
2520 spin_unlock(&l3->list_lock);
2521 return 1;
2522 opps1:
2523 kmem_freepages(cachep, objp);
2524 failed:
2525 if (local_flags & __GFP_WAIT)
2526 local_irq_disable();
2527 return 0;
2530 #if DEBUG
2533 * Perform extra freeing checks:
2534 * - detect bad pointers.
2535 * - POISON/RED_ZONE checking
2536 * - destructor calls, for caches with POISON+dtor
2538 static void kfree_debugcheck(const void *objp)
2540 struct page *page;
2542 if (!virt_addr_valid(objp)) {
2543 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2544 (unsigned long)objp);
2545 BUG();
2547 page = virt_to_page(objp);
2548 if (!PageSlab(page)) {
2549 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2550 (unsigned long)objp);
2551 BUG();
2555 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2556 void *caller)
2558 struct page *page;
2559 unsigned int objnr;
2560 struct slab *slabp;
2562 objp -= obj_offset(cachep);
2563 kfree_debugcheck(objp);
2564 page = virt_to_page(objp);
2566 if (page_get_cache(page) != cachep) {
2567 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2568 "cache %p, got %p\n",
2569 page_get_cache(page), cachep);
2570 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2571 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2572 page_get_cache(page)->name);
2573 WARN_ON(1);
2575 slabp = page_get_slab(page);
2577 if (cachep->flags & SLAB_RED_ZONE) {
2578 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2579 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2580 slab_error(cachep, "double free, or memory outside"
2581 " object was overwritten");
2582 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2583 "redzone 2:0x%lx.\n",
2584 objp, *dbg_redzone1(cachep, objp),
2585 *dbg_redzone2(cachep, objp));
2587 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2588 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2590 if (cachep->flags & SLAB_STORE_USER)
2591 *dbg_userword(cachep, objp) = caller;
2593 objnr = obj_to_index(cachep, slabp, objp);
2595 BUG_ON(objnr >= cachep->num);
2596 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2598 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2600 * Need to call the slab's constructor so the caller can
2601 * perform a verify of its state (debugging). Called without
2602 * the cache-lock held.
2604 cachep->ctor(objp + obj_offset(cachep),
2605 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2607 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2608 /* we want to cache poison the object,
2609 * call the destruction callback
2611 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2613 if (cachep->flags & SLAB_POISON) {
2614 #ifdef CONFIG_DEBUG_PAGEALLOC
2615 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2616 store_stackinfo(cachep, objp, (unsigned long)caller);
2617 kernel_map_pages(virt_to_page(objp),
2618 cachep->buffer_size / PAGE_SIZE, 0);
2619 } else {
2620 poison_obj(cachep, objp, POISON_FREE);
2622 #else
2623 poison_obj(cachep, objp, POISON_FREE);
2624 #endif
2626 return objp;
2629 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2631 kmem_bufctl_t i;
2632 int entries = 0;
2634 /* Check slab's freelist to see if this obj is there. */
2635 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2636 entries++;
2637 if (entries > cachep->num || i >= cachep->num)
2638 goto bad;
2640 if (entries != cachep->num - slabp->inuse) {
2641 bad:
2642 printk(KERN_ERR "slab: Internal list corruption detected in "
2643 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2644 cachep->name, cachep->num, slabp, slabp->inuse);
2645 for (i = 0;
2646 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2647 i++) {
2648 if (i % 16 == 0)
2649 printk("\n%03x:", i);
2650 printk(" %02x", ((unsigned char *)slabp)[i]);
2652 printk("\n");
2653 BUG();
2656 #else
2657 #define kfree_debugcheck(x) do { } while(0)
2658 #define cache_free_debugcheck(x,objp,z) (objp)
2659 #define check_slabp(x,y) do { } while(0)
2660 #endif
2662 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2664 int batchcount;
2665 struct kmem_list3 *l3;
2666 struct array_cache *ac;
2668 check_irq_off();
2669 ac = cpu_cache_get(cachep);
2670 retry:
2671 batchcount = ac->batchcount;
2672 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2674 * If there was little recent activity on this cache, then
2675 * perform only a partial refill. Otherwise we could generate
2676 * refill bouncing.
2678 batchcount = BATCHREFILL_LIMIT;
2680 l3 = cachep->nodelists[numa_node_id()];
2682 BUG_ON(ac->avail > 0 || !l3);
2683 spin_lock(&l3->list_lock);
2685 if (l3->shared) {
2686 struct array_cache *shared_array = l3->shared;
2687 if (shared_array->avail) {
2688 if (batchcount > shared_array->avail)
2689 batchcount = shared_array->avail;
2690 shared_array->avail -= batchcount;
2691 ac->avail = batchcount;
2692 memcpy(ac->entry,
2693 &(shared_array->entry[shared_array->avail]),
2694 sizeof(void *) * batchcount);
2695 shared_array->touched = 1;
2696 goto alloc_done;
2699 while (batchcount > 0) {
2700 struct list_head *entry;
2701 struct slab *slabp;
2702 /* Get slab alloc is to come from. */
2703 entry = l3->slabs_partial.next;
2704 if (entry == &l3->slabs_partial) {
2705 l3->free_touched = 1;
2706 entry = l3->slabs_free.next;
2707 if (entry == &l3->slabs_free)
2708 goto must_grow;
2711 slabp = list_entry(entry, struct slab, list);
2712 check_slabp(cachep, slabp);
2713 check_spinlock_acquired(cachep);
2714 while (slabp->inuse < cachep->num && batchcount--) {
2715 STATS_INC_ALLOCED(cachep);
2716 STATS_INC_ACTIVE(cachep);
2717 STATS_SET_HIGH(cachep);
2719 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2720 numa_node_id());
2722 check_slabp(cachep, slabp);
2724 /* move slabp to correct slabp list: */
2725 list_del(&slabp->list);
2726 if (slabp->free == BUFCTL_END)
2727 list_add(&slabp->list, &l3->slabs_full);
2728 else
2729 list_add(&slabp->list, &l3->slabs_partial);
2732 must_grow:
2733 l3->free_objects -= ac->avail;
2734 alloc_done:
2735 spin_unlock(&l3->list_lock);
2737 if (unlikely(!ac->avail)) {
2738 int x;
2739 x = cache_grow(cachep, flags, numa_node_id());
2741 /* cache_grow can reenable interrupts, then ac could change. */
2742 ac = cpu_cache_get(cachep);
2743 if (!x && ac->avail == 0) /* no objects in sight? abort */
2744 return NULL;
2746 if (!ac->avail) /* objects refilled by interrupt? */
2747 goto retry;
2749 ac->touched = 1;
2750 return ac->entry[--ac->avail];
2753 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2754 gfp_t flags)
2756 might_sleep_if(flags & __GFP_WAIT);
2757 #if DEBUG
2758 kmem_flagcheck(cachep, flags);
2759 #endif
2762 #if DEBUG
2763 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2764 gfp_t flags, void *objp, void *caller)
2766 if (!objp)
2767 return objp;
2768 if (cachep->flags & SLAB_POISON) {
2769 #ifdef CONFIG_DEBUG_PAGEALLOC
2770 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2771 kernel_map_pages(virt_to_page(objp),
2772 cachep->buffer_size / PAGE_SIZE, 1);
2773 else
2774 check_poison_obj(cachep, objp);
2775 #else
2776 check_poison_obj(cachep, objp);
2777 #endif
2778 poison_obj(cachep, objp, POISON_INUSE);
2780 if (cachep->flags & SLAB_STORE_USER)
2781 *dbg_userword(cachep, objp) = caller;
2783 if (cachep->flags & SLAB_RED_ZONE) {
2784 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2785 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2786 slab_error(cachep, "double free, or memory outside"
2787 " object was overwritten");
2788 printk(KERN_ERR
2789 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2790 objp, *dbg_redzone1(cachep, objp),
2791 *dbg_redzone2(cachep, objp));
2793 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2794 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2796 objp += obj_offset(cachep);
2797 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2798 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2800 if (!(flags & __GFP_WAIT))
2801 ctor_flags |= SLAB_CTOR_ATOMIC;
2803 cachep->ctor(objp, cachep, ctor_flags);
2805 return objp;
2807 #else
2808 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2809 #endif
2811 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2813 void *objp;
2814 struct array_cache *ac;
2816 #ifdef CONFIG_NUMA
2817 if (unlikely(current->mempolicy && !in_interrupt())) {
2818 int nid = slab_node(current->mempolicy);
2820 if (nid != numa_node_id())
2821 return __cache_alloc_node(cachep, flags, nid);
2823 #endif
2825 check_irq_off();
2826 ac = cpu_cache_get(cachep);
2827 if (likely(ac->avail)) {
2828 STATS_INC_ALLOCHIT(cachep);
2829 ac->touched = 1;
2830 objp = ac->entry[--ac->avail];
2831 } else {
2832 STATS_INC_ALLOCMISS(cachep);
2833 objp = cache_alloc_refill(cachep, flags);
2835 return objp;
2838 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2839 gfp_t flags, void *caller)
2841 unsigned long save_flags;
2842 void *objp;
2844 cache_alloc_debugcheck_before(cachep, flags);
2846 local_irq_save(save_flags);
2847 objp = ____cache_alloc(cachep, flags);
2848 local_irq_restore(save_flags);
2849 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2850 caller);
2851 prefetchw(objp);
2852 return objp;
2855 #ifdef CONFIG_NUMA
2857 * A interface to enable slab creation on nodeid
2859 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2860 int nodeid)
2862 struct list_head *entry;
2863 struct slab *slabp;
2864 struct kmem_list3 *l3;
2865 void *obj;
2866 int x;
2868 l3 = cachep->nodelists[nodeid];
2869 BUG_ON(!l3);
2871 retry:
2872 check_irq_off();
2873 spin_lock(&l3->list_lock);
2874 entry = l3->slabs_partial.next;
2875 if (entry == &l3->slabs_partial) {
2876 l3->free_touched = 1;
2877 entry = l3->slabs_free.next;
2878 if (entry == &l3->slabs_free)
2879 goto must_grow;
2882 slabp = list_entry(entry, struct slab, list);
2883 check_spinlock_acquired_node(cachep, nodeid);
2884 check_slabp(cachep, slabp);
2886 STATS_INC_NODEALLOCS(cachep);
2887 STATS_INC_ACTIVE(cachep);
2888 STATS_SET_HIGH(cachep);
2890 BUG_ON(slabp->inuse == cachep->num);
2892 obj = slab_get_obj(cachep, slabp, nodeid);
2893 check_slabp(cachep, slabp);
2894 l3->free_objects--;
2895 /* move slabp to correct slabp list: */
2896 list_del(&slabp->list);
2898 if (slabp->free == BUFCTL_END)
2899 list_add(&slabp->list, &l3->slabs_full);
2900 else
2901 list_add(&slabp->list, &l3->slabs_partial);
2903 spin_unlock(&l3->list_lock);
2904 goto done;
2906 must_grow:
2907 spin_unlock(&l3->list_lock);
2908 x = cache_grow(cachep, flags, nodeid);
2910 if (!x)
2911 return NULL;
2913 goto retry;
2914 done:
2915 return obj;
2917 #endif
2920 * Caller needs to acquire correct kmem_list's list_lock
2922 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2923 int node)
2925 int i;
2926 struct kmem_list3 *l3;
2928 for (i = 0; i < nr_objects; i++) {
2929 void *objp = objpp[i];
2930 struct slab *slabp;
2932 slabp = virt_to_slab(objp);
2933 l3 = cachep->nodelists[node];
2934 list_del(&slabp->list);
2935 check_spinlock_acquired_node(cachep, node);
2936 check_slabp(cachep, slabp);
2937 slab_put_obj(cachep, slabp, objp, node);
2938 STATS_DEC_ACTIVE(cachep);
2939 l3->free_objects++;
2940 check_slabp(cachep, slabp);
2942 /* fixup slab chains */
2943 if (slabp->inuse == 0) {
2944 if (l3->free_objects > l3->free_limit) {
2945 l3->free_objects -= cachep->num;
2946 slab_destroy(cachep, slabp);
2947 } else {
2948 list_add(&slabp->list, &l3->slabs_free);
2950 } else {
2951 /* Unconditionally move a slab to the end of the
2952 * partial list on free - maximum time for the
2953 * other objects to be freed, too.
2955 list_add_tail(&slabp->list, &l3->slabs_partial);
2960 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
2962 int batchcount;
2963 struct kmem_list3 *l3;
2964 int node = numa_node_id();
2966 batchcount = ac->batchcount;
2967 #if DEBUG
2968 BUG_ON(!batchcount || batchcount > ac->avail);
2969 #endif
2970 check_irq_off();
2971 l3 = cachep->nodelists[node];
2972 spin_lock(&l3->list_lock);
2973 if (l3->shared) {
2974 struct array_cache *shared_array = l3->shared;
2975 int max = shared_array->limit - shared_array->avail;
2976 if (max) {
2977 if (batchcount > max)
2978 batchcount = max;
2979 memcpy(&(shared_array->entry[shared_array->avail]),
2980 ac->entry, sizeof(void *) * batchcount);
2981 shared_array->avail += batchcount;
2982 goto free_done;
2986 free_block(cachep, ac->entry, batchcount, node);
2987 free_done:
2988 #if STATS
2990 int i = 0;
2991 struct list_head *p;
2993 p = l3->slabs_free.next;
2994 while (p != &(l3->slabs_free)) {
2995 struct slab *slabp;
2997 slabp = list_entry(p, struct slab, list);
2998 BUG_ON(slabp->inuse);
3000 i++;
3001 p = p->next;
3003 STATS_SET_FREEABLE(cachep, i);
3005 #endif
3006 spin_unlock(&l3->list_lock);
3007 ac->avail -= batchcount;
3008 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3012 * Release an obj back to its cache. If the obj has a constructed state, it must
3013 * be in this state _before_ it is released. Called with disabled ints.
3015 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3017 struct array_cache *ac = cpu_cache_get(cachep);
3019 check_irq_off();
3020 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3022 /* Make sure we are not freeing a object from another
3023 * node to the array cache on this cpu.
3025 #ifdef CONFIG_NUMA
3027 struct slab *slabp;
3028 slabp = virt_to_slab(objp);
3029 if (unlikely(slabp->nodeid != numa_node_id())) {
3030 struct array_cache *alien = NULL;
3031 int nodeid = slabp->nodeid;
3032 struct kmem_list3 *l3;
3034 l3 = cachep->nodelists[numa_node_id()];
3035 STATS_INC_NODEFREES(cachep);
3036 if (l3->alien && l3->alien[nodeid]) {
3037 alien = l3->alien[nodeid];
3038 spin_lock(&alien->lock);
3039 if (unlikely(alien->avail == alien->limit))
3040 __drain_alien_cache(cachep,
3041 alien, nodeid);
3042 alien->entry[alien->avail++] = objp;
3043 spin_unlock(&alien->lock);
3044 } else {
3045 spin_lock(&(cachep->nodelists[nodeid])->
3046 list_lock);
3047 free_block(cachep, &objp, 1, nodeid);
3048 spin_unlock(&(cachep->nodelists[nodeid])->
3049 list_lock);
3051 return;
3054 #endif
3055 if (likely(ac->avail < ac->limit)) {
3056 STATS_INC_FREEHIT(cachep);
3057 ac->entry[ac->avail++] = objp;
3058 return;
3059 } else {
3060 STATS_INC_FREEMISS(cachep);
3061 cache_flusharray(cachep, ac);
3062 ac->entry[ac->avail++] = objp;
3067 * kmem_cache_alloc - Allocate an object
3068 * @cachep: The cache to allocate from.
3069 * @flags: See kmalloc().
3071 * Allocate an object from this cache. The flags are only relevant
3072 * if the cache has no available objects.
3074 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3076 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3078 EXPORT_SYMBOL(kmem_cache_alloc);
3081 * kmem_ptr_validate - check if an untrusted pointer might
3082 * be a slab entry.
3083 * @cachep: the cache we're checking against
3084 * @ptr: pointer to validate
3086 * This verifies that the untrusted pointer looks sane:
3087 * it is _not_ a guarantee that the pointer is actually
3088 * part of the slab cache in question, but it at least
3089 * validates that the pointer can be dereferenced and
3090 * looks half-way sane.
3092 * Currently only used for dentry validation.
3094 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3096 unsigned long addr = (unsigned long)ptr;
3097 unsigned long min_addr = PAGE_OFFSET;
3098 unsigned long align_mask = BYTES_PER_WORD - 1;
3099 unsigned long size = cachep->buffer_size;
3100 struct page *page;
3102 if (unlikely(addr < min_addr))
3103 goto out;
3104 if (unlikely(addr > (unsigned long)high_memory - size))
3105 goto out;
3106 if (unlikely(addr & align_mask))
3107 goto out;
3108 if (unlikely(!kern_addr_valid(addr)))
3109 goto out;
3110 if (unlikely(!kern_addr_valid(addr + size - 1)))
3111 goto out;
3112 page = virt_to_page(ptr);
3113 if (unlikely(!PageSlab(page)))
3114 goto out;
3115 if (unlikely(page_get_cache(page) != cachep))
3116 goto out;
3117 return 1;
3118 out:
3119 return 0;
3122 #ifdef CONFIG_NUMA
3124 * kmem_cache_alloc_node - Allocate an object on the specified node
3125 * @cachep: The cache to allocate from.
3126 * @flags: See kmalloc().
3127 * @nodeid: node number of the target node.
3129 * Identical to kmem_cache_alloc, except that this function is slow
3130 * and can sleep. And it will allocate memory on the given node, which
3131 * can improve the performance for cpu bound structures.
3132 * New and improved: it will now make sure that the object gets
3133 * put on the correct node list so that there is no false sharing.
3135 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3137 unsigned long save_flags;
3138 void *ptr;
3140 cache_alloc_debugcheck_before(cachep, flags);
3141 local_irq_save(save_flags);
3143 if (nodeid == -1 || nodeid == numa_node_id() ||
3144 !cachep->nodelists[nodeid])
3145 ptr = ____cache_alloc(cachep, flags);
3146 else
3147 ptr = __cache_alloc_node(cachep, flags, nodeid);
3148 local_irq_restore(save_flags);
3150 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3151 __builtin_return_address(0));
3153 return ptr;
3155 EXPORT_SYMBOL(kmem_cache_alloc_node);
3157 void *kmalloc_node(size_t size, gfp_t flags, int node)
3159 struct kmem_cache *cachep;
3161 cachep = kmem_find_general_cachep(size, flags);
3162 if (unlikely(cachep == NULL))
3163 return NULL;
3164 return kmem_cache_alloc_node(cachep, flags, node);
3166 EXPORT_SYMBOL(kmalloc_node);
3167 #endif
3170 * kmalloc - allocate memory
3171 * @size: how many bytes of memory are required.
3172 * @flags: the type of memory to allocate.
3174 * kmalloc is the normal method of allocating memory
3175 * in the kernel.
3177 * The @flags argument may be one of:
3179 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3181 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3183 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3185 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3186 * must be suitable for DMA. This can mean different things on different
3187 * platforms. For example, on i386, it means that the memory must come
3188 * from the first 16MB.
3190 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3191 void *caller)
3193 struct kmem_cache *cachep;
3195 /* If you want to save a few bytes .text space: replace
3196 * __ with kmem_.
3197 * Then kmalloc uses the uninlined functions instead of the inline
3198 * functions.
3200 cachep = __find_general_cachep(size, flags);
3201 if (unlikely(cachep == NULL))
3202 return NULL;
3203 return __cache_alloc(cachep, flags, caller);
3206 #ifndef CONFIG_DEBUG_SLAB
3208 void *__kmalloc(size_t size, gfp_t flags)
3210 return __do_kmalloc(size, flags, NULL);
3212 EXPORT_SYMBOL(__kmalloc);
3214 #else
3216 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3218 return __do_kmalloc(size, flags, caller);
3220 EXPORT_SYMBOL(__kmalloc_track_caller);
3222 #endif
3224 #ifdef CONFIG_SMP
3226 * __alloc_percpu - allocate one copy of the object for every present
3227 * cpu in the system, zeroing them.
3228 * Objects should be dereferenced using the per_cpu_ptr macro only.
3230 * @size: how many bytes of memory are required.
3232 void *__alloc_percpu(size_t size)
3234 int i;
3235 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3237 if (!pdata)
3238 return NULL;
3241 * Cannot use for_each_online_cpu since a cpu may come online
3242 * and we have no way of figuring out how to fix the array
3243 * that we have allocated then....
3245 for_each_cpu(i) {
3246 int node = cpu_to_node(i);
3248 if (node_online(node))
3249 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3250 else
3251 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3253 if (!pdata->ptrs[i])
3254 goto unwind_oom;
3255 memset(pdata->ptrs[i], 0, size);
3258 /* Catch derefs w/o wrappers */
3259 return (void *)(~(unsigned long)pdata);
3261 unwind_oom:
3262 while (--i >= 0) {
3263 if (!cpu_possible(i))
3264 continue;
3265 kfree(pdata->ptrs[i]);
3267 kfree(pdata);
3268 return NULL;
3270 EXPORT_SYMBOL(__alloc_percpu);
3271 #endif
3274 * kmem_cache_free - Deallocate an object
3275 * @cachep: The cache the allocation was from.
3276 * @objp: The previously allocated object.
3278 * Free an object which was previously allocated from this
3279 * cache.
3281 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3283 unsigned long flags;
3285 local_irq_save(flags);
3286 __cache_free(cachep, objp);
3287 local_irq_restore(flags);
3289 EXPORT_SYMBOL(kmem_cache_free);
3292 * kfree - free previously allocated memory
3293 * @objp: pointer returned by kmalloc.
3295 * If @objp is NULL, no operation is performed.
3297 * Don't free memory not originally allocated by kmalloc()
3298 * or you will run into trouble.
3300 void kfree(const void *objp)
3302 struct kmem_cache *c;
3303 unsigned long flags;
3305 if (unlikely(!objp))
3306 return;
3307 local_irq_save(flags);
3308 kfree_debugcheck(objp);
3309 c = virt_to_cache(objp);
3310 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3311 __cache_free(c, (void *)objp);
3312 local_irq_restore(flags);
3314 EXPORT_SYMBOL(kfree);
3316 #ifdef CONFIG_SMP
3318 * free_percpu - free previously allocated percpu memory
3319 * @objp: pointer returned by alloc_percpu.
3321 * Don't free memory not originally allocated by alloc_percpu()
3322 * The complemented objp is to check for that.
3324 void free_percpu(const void *objp)
3326 int i;
3327 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3330 * We allocate for all cpus so we cannot use for online cpu here.
3332 for_each_cpu(i)
3333 kfree(p->ptrs[i]);
3334 kfree(p);
3336 EXPORT_SYMBOL(free_percpu);
3337 #endif
3339 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3341 return obj_size(cachep);
3343 EXPORT_SYMBOL(kmem_cache_size);
3345 const char *kmem_cache_name(struct kmem_cache *cachep)
3347 return cachep->name;
3349 EXPORT_SYMBOL_GPL(kmem_cache_name);
3352 * This initializes kmem_list3 for all nodes.
3354 static int alloc_kmemlist(struct kmem_cache *cachep)
3356 int node;
3357 struct kmem_list3 *l3;
3358 int err = 0;
3360 for_each_online_node(node) {
3361 struct array_cache *nc = NULL, *new;
3362 struct array_cache **new_alien = NULL;
3363 #ifdef CONFIG_NUMA
3364 new_alien = alloc_alien_cache(node, cachep->limit);
3365 if (!new_alien)
3366 goto fail;
3367 #endif
3368 new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
3369 0xbaadf00d);
3370 if (!new)
3371 goto fail;
3372 l3 = cachep->nodelists[node];
3373 if (l3) {
3374 spin_lock_irq(&l3->list_lock);
3376 nc = cachep->nodelists[node]->shared;
3377 if (nc)
3378 free_block(cachep, nc->entry, nc->avail, node);
3380 l3->shared = new;
3381 if (!cachep->nodelists[node]->alien) {
3382 l3->alien = new_alien;
3383 new_alien = NULL;
3385 l3->free_limit = (1 + nr_cpus_node(node)) *
3386 cachep->batchcount + cachep->num;
3387 spin_unlock_irq(&l3->list_lock);
3388 kfree(nc);
3389 free_alien_cache(new_alien);
3390 continue;
3392 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3393 if (!l3)
3394 goto fail;
3396 kmem_list3_init(l3);
3397 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3398 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3399 l3->shared = new;
3400 l3->alien = new_alien;
3401 l3->free_limit = (1 + nr_cpus_node(node)) *
3402 cachep->batchcount + cachep->num;
3403 cachep->nodelists[node] = l3;
3405 return err;
3406 fail:
3407 err = -ENOMEM;
3408 return err;
3411 struct ccupdate_struct {
3412 struct kmem_cache *cachep;
3413 struct array_cache *new[NR_CPUS];
3416 static void do_ccupdate_local(void *info)
3418 struct ccupdate_struct *new = info;
3419 struct array_cache *old;
3421 check_irq_off();
3422 old = cpu_cache_get(new->cachep);
3424 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3425 new->new[smp_processor_id()] = old;
3428 /* Always called with the cache_chain_mutex held */
3429 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3430 int batchcount, int shared)
3432 struct ccupdate_struct new;
3433 int i, err;
3435 memset(&new.new, 0, sizeof(new.new));
3436 for_each_online_cpu(i) {
3437 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3438 batchcount);
3439 if (!new.new[i]) {
3440 for (i--; i >= 0; i--)
3441 kfree(new.new[i]);
3442 return -ENOMEM;
3445 new.cachep = cachep;
3447 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3449 check_irq_on();
3450 cachep->batchcount = batchcount;
3451 cachep->limit = limit;
3452 cachep->shared = shared;
3454 for_each_online_cpu(i) {
3455 struct array_cache *ccold = new.new[i];
3456 if (!ccold)
3457 continue;
3458 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3459 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3460 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3461 kfree(ccold);
3464 err = alloc_kmemlist(cachep);
3465 if (err) {
3466 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3467 cachep->name, -err);
3468 BUG();
3470 return 0;
3473 /* Called with cache_chain_mutex held always */
3474 static void enable_cpucache(struct kmem_cache *cachep)
3476 int err;
3477 int limit, shared;
3480 * The head array serves three purposes:
3481 * - create a LIFO ordering, i.e. return objects that are cache-warm
3482 * - reduce the number of spinlock operations.
3483 * - reduce the number of linked list operations on the slab and
3484 * bufctl chains: array operations are cheaper.
3485 * The numbers are guessed, we should auto-tune as described by
3486 * Bonwick.
3488 if (cachep->buffer_size > 131072)
3489 limit = 1;
3490 else if (cachep->buffer_size > PAGE_SIZE)
3491 limit = 8;
3492 else if (cachep->buffer_size > 1024)
3493 limit = 24;
3494 else if (cachep->buffer_size > 256)
3495 limit = 54;
3496 else
3497 limit = 120;
3500 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3501 * allocation behaviour: Most allocs on one cpu, most free operations
3502 * on another cpu. For these cases, an efficient object passing between
3503 * cpus is necessary. This is provided by a shared array. The array
3504 * replaces Bonwick's magazine layer.
3505 * On uniprocessor, it's functionally equivalent (but less efficient)
3506 * to a larger limit. Thus disabled by default.
3508 shared = 0;
3509 #ifdef CONFIG_SMP
3510 if (cachep->buffer_size <= PAGE_SIZE)
3511 shared = 8;
3512 #endif
3514 #if DEBUG
3516 * With debugging enabled, large batchcount lead to excessively long
3517 * periods with disabled local interrupts. Limit the batchcount
3519 if (limit > 32)
3520 limit = 32;
3521 #endif
3522 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3523 if (err)
3524 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3525 cachep->name, -err);
3528 static void drain_array_locked(struct kmem_cache *cachep,
3529 struct array_cache *ac, int force, int node)
3531 int tofree;
3533 check_spinlock_acquired_node(cachep, node);
3534 if (ac->touched && !force) {
3535 ac->touched = 0;
3536 } else if (ac->avail) {
3537 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3538 if (tofree > ac->avail)
3539 tofree = (ac->avail + 1) / 2;
3540 free_block(cachep, ac->entry, tofree, node);
3541 ac->avail -= tofree;
3542 memmove(ac->entry, &(ac->entry[tofree]),
3543 sizeof(void *) * ac->avail);
3548 * cache_reap - Reclaim memory from caches.
3549 * @unused: unused parameter
3551 * Called from workqueue/eventd every few seconds.
3552 * Purpose:
3553 * - clear the per-cpu caches for this CPU.
3554 * - return freeable pages to the main free memory pool.
3556 * If we cannot acquire the cache chain mutex then just give up - we'll try
3557 * again on the next iteration.
3559 static void cache_reap(void *unused)
3561 struct list_head *walk;
3562 struct kmem_list3 *l3;
3564 if (!mutex_trylock(&cache_chain_mutex)) {
3565 /* Give up. Setup the next iteration. */
3566 schedule_delayed_work(&__get_cpu_var(reap_work),
3567 REAPTIMEOUT_CPUC);
3568 return;
3571 list_for_each(walk, &cache_chain) {
3572 struct kmem_cache *searchp;
3573 struct list_head *p;
3574 int tofree;
3575 struct slab *slabp;
3577 searchp = list_entry(walk, struct kmem_cache, next);
3579 if (searchp->flags & SLAB_NO_REAP)
3580 goto next;
3582 check_irq_on();
3584 l3 = searchp->nodelists[numa_node_id()];
3585 reap_alien(searchp, l3);
3586 spin_lock_irq(&l3->list_lock);
3588 drain_array_locked(searchp, cpu_cache_get(searchp), 0,
3589 numa_node_id());
3591 if (time_after(l3->next_reap, jiffies))
3592 goto next_unlock;
3594 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3596 if (l3->shared)
3597 drain_array_locked(searchp, l3->shared, 0,
3598 numa_node_id());
3600 if (l3->free_touched) {
3601 l3->free_touched = 0;
3602 goto next_unlock;
3605 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3606 (5 * searchp->num);
3607 do {
3608 p = l3->slabs_free.next;
3609 if (p == &(l3->slabs_free))
3610 break;
3612 slabp = list_entry(p, struct slab, list);
3613 BUG_ON(slabp->inuse);
3614 list_del(&slabp->list);
3615 STATS_INC_REAPED(searchp);
3618 * Safe to drop the lock. The slab is no longer linked
3619 * to the cache. searchp cannot disappear, we hold
3620 * cache_chain_lock
3622 l3->free_objects -= searchp->num;
3623 spin_unlock_irq(&l3->list_lock);
3624 slab_destroy(searchp, slabp);
3625 spin_lock_irq(&l3->list_lock);
3626 } while (--tofree > 0);
3627 next_unlock:
3628 spin_unlock_irq(&l3->list_lock);
3629 next:
3630 cond_resched();
3632 check_irq_on();
3633 mutex_unlock(&cache_chain_mutex);
3634 next_reap_node();
3635 /* Set up the next iteration */
3636 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3639 #ifdef CONFIG_PROC_FS
3641 static void print_slabinfo_header(struct seq_file *m)
3644 * Output format version, so at least we can change it
3645 * without _too_ many complaints.
3647 #if STATS
3648 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3649 #else
3650 seq_puts(m, "slabinfo - version: 2.1\n");
3651 #endif
3652 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3653 "<objperslab> <pagesperslab>");
3654 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3655 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3656 #if STATS
3657 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3658 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3659 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3660 #endif
3661 seq_putc(m, '\n');
3664 static void *s_start(struct seq_file *m, loff_t *pos)
3666 loff_t n = *pos;
3667 struct list_head *p;
3669 mutex_lock(&cache_chain_mutex);
3670 if (!n)
3671 print_slabinfo_header(m);
3672 p = cache_chain.next;
3673 while (n--) {
3674 p = p->next;
3675 if (p == &cache_chain)
3676 return NULL;
3678 return list_entry(p, struct kmem_cache, next);
3681 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3683 struct kmem_cache *cachep = p;
3684 ++*pos;
3685 return cachep->next.next == &cache_chain ?
3686 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3689 static void s_stop(struct seq_file *m, void *p)
3691 mutex_unlock(&cache_chain_mutex);
3694 static int s_show(struct seq_file *m, void *p)
3696 struct kmem_cache *cachep = p;
3697 struct list_head *q;
3698 struct slab *slabp;
3699 unsigned long active_objs;
3700 unsigned long num_objs;
3701 unsigned long active_slabs = 0;
3702 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3703 const char *name;
3704 char *error = NULL;
3705 int node;
3706 struct kmem_list3 *l3;
3708 active_objs = 0;
3709 num_slabs = 0;
3710 for_each_online_node(node) {
3711 l3 = cachep->nodelists[node];
3712 if (!l3)
3713 continue;
3715 check_irq_on();
3716 spin_lock_irq(&l3->list_lock);
3718 list_for_each(q, &l3->slabs_full) {
3719 slabp = list_entry(q, struct slab, list);
3720 if (slabp->inuse != cachep->num && !error)
3721 error = "slabs_full accounting error";
3722 active_objs += cachep->num;
3723 active_slabs++;
3725 list_for_each(q, &l3->slabs_partial) {
3726 slabp = list_entry(q, struct slab, list);
3727 if (slabp->inuse == cachep->num && !error)
3728 error = "slabs_partial inuse accounting error";
3729 if (!slabp->inuse && !error)
3730 error = "slabs_partial/inuse accounting error";
3731 active_objs += slabp->inuse;
3732 active_slabs++;
3734 list_for_each(q, &l3->slabs_free) {
3735 slabp = list_entry(q, struct slab, list);
3736 if (slabp->inuse && !error)
3737 error = "slabs_free/inuse accounting error";
3738 num_slabs++;
3740 free_objects += l3->free_objects;
3741 if (l3->shared)
3742 shared_avail += l3->shared->avail;
3744 spin_unlock_irq(&l3->list_lock);
3746 num_slabs += active_slabs;
3747 num_objs = num_slabs * cachep->num;
3748 if (num_objs - active_objs != free_objects && !error)
3749 error = "free_objects accounting error";
3751 name = cachep->name;
3752 if (error)
3753 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3755 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3756 name, active_objs, num_objs, cachep->buffer_size,
3757 cachep->num, (1 << cachep->gfporder));
3758 seq_printf(m, " : tunables %4u %4u %4u",
3759 cachep->limit, cachep->batchcount, cachep->shared);
3760 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3761 active_slabs, num_slabs, shared_avail);
3762 #if STATS
3763 { /* list3 stats */
3764 unsigned long high = cachep->high_mark;
3765 unsigned long allocs = cachep->num_allocations;
3766 unsigned long grown = cachep->grown;
3767 unsigned long reaped = cachep->reaped;
3768 unsigned long errors = cachep->errors;
3769 unsigned long max_freeable = cachep->max_freeable;
3770 unsigned long node_allocs = cachep->node_allocs;
3771 unsigned long node_frees = cachep->node_frees;
3773 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3774 %4lu %4lu %4lu %4lu", allocs, high, grown,
3775 reaped, errors, max_freeable, node_allocs,
3776 node_frees);
3778 /* cpu stats */
3780 unsigned long allochit = atomic_read(&cachep->allochit);
3781 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3782 unsigned long freehit = atomic_read(&cachep->freehit);
3783 unsigned long freemiss = atomic_read(&cachep->freemiss);
3785 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3786 allochit, allocmiss, freehit, freemiss);
3788 #endif
3789 seq_putc(m, '\n');
3790 return 0;
3794 * slabinfo_op - iterator that generates /proc/slabinfo
3796 * Output layout:
3797 * cache-name
3798 * num-active-objs
3799 * total-objs
3800 * object size
3801 * num-active-slabs
3802 * total-slabs
3803 * num-pages-per-slab
3804 * + further values on SMP and with statistics enabled
3807 struct seq_operations slabinfo_op = {
3808 .start = s_start,
3809 .next = s_next,
3810 .stop = s_stop,
3811 .show = s_show,
3814 #define MAX_SLABINFO_WRITE 128
3816 * slabinfo_write - Tuning for the slab allocator
3817 * @file: unused
3818 * @buffer: user buffer
3819 * @count: data length
3820 * @ppos: unused
3822 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3823 size_t count, loff_t *ppos)
3825 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3826 int limit, batchcount, shared, res;
3827 struct list_head *p;
3829 if (count > MAX_SLABINFO_WRITE)
3830 return -EINVAL;
3831 if (copy_from_user(&kbuf, buffer, count))
3832 return -EFAULT;
3833 kbuf[MAX_SLABINFO_WRITE] = '\0';
3835 tmp = strchr(kbuf, ' ');
3836 if (!tmp)
3837 return -EINVAL;
3838 *tmp = '\0';
3839 tmp++;
3840 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3841 return -EINVAL;
3843 /* Find the cache in the chain of caches. */
3844 mutex_lock(&cache_chain_mutex);
3845 res = -EINVAL;
3846 list_for_each(p, &cache_chain) {
3847 struct kmem_cache *cachep;
3849 cachep = list_entry(p, struct kmem_cache, next);
3850 if (!strcmp(cachep->name, kbuf)) {
3851 if (limit < 1 || batchcount < 1 ||
3852 batchcount > limit || shared < 0) {
3853 res = 0;
3854 } else {
3855 res = do_tune_cpucache(cachep, limit,
3856 batchcount, shared);
3858 break;
3861 mutex_unlock(&cache_chain_mutex);
3862 if (res >= 0)
3863 res = count;
3864 return res;
3866 #endif
3869 * ksize - get the actual amount of memory allocated for a given object
3870 * @objp: Pointer to the object
3872 * kmalloc may internally round up allocations and return more memory
3873 * than requested. ksize() can be used to determine the actual amount of
3874 * memory allocated. The caller may use this additional memory, even though
3875 * a smaller amount of memory was initially specified with the kmalloc call.
3876 * The caller must guarantee that objp points to a valid object previously
3877 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3878 * must not be freed during the duration of the call.
3880 unsigned int ksize(const void *objp)
3882 if (unlikely(objp == NULL))
3883 return 0;
3885 return obj_size(virt_to_cache(objp));