1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name
[] = "e1000";
33 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
37 #define DRIVERNAPI "-NAPI"
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 char e1000_driver_version
[] = DRV_VERSION
;
41 static char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
43 /* e1000_pci_tbl - PCI Device ID Table
45 * Last entry must be all 0s
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
50 static struct pci_device_id e1000_pci_tbl
[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1049),
77 INTEL_E1000_ETHERNET_DEVICE(0x104A),
78 INTEL_E1000_ETHERNET_DEVICE(0x104B),
79 INTEL_E1000_ETHERNET_DEVICE(0x104C),
80 INTEL_E1000_ETHERNET_DEVICE(0x104D),
81 INTEL_E1000_ETHERNET_DEVICE(0x105E),
82 INTEL_E1000_ETHERNET_DEVICE(0x105F),
83 INTEL_E1000_ETHERNET_DEVICE(0x1060),
84 INTEL_E1000_ETHERNET_DEVICE(0x1075),
85 INTEL_E1000_ETHERNET_DEVICE(0x1076),
86 INTEL_E1000_ETHERNET_DEVICE(0x1077),
87 INTEL_E1000_ETHERNET_DEVICE(0x1078),
88 INTEL_E1000_ETHERNET_DEVICE(0x1079),
89 INTEL_E1000_ETHERNET_DEVICE(0x107A),
90 INTEL_E1000_ETHERNET_DEVICE(0x107B),
91 INTEL_E1000_ETHERNET_DEVICE(0x107C),
92 INTEL_E1000_ETHERNET_DEVICE(0x107D),
93 INTEL_E1000_ETHERNET_DEVICE(0x107E),
94 INTEL_E1000_ETHERNET_DEVICE(0x107F),
95 INTEL_E1000_ETHERNET_DEVICE(0x108A),
96 INTEL_E1000_ETHERNET_DEVICE(0x108B),
97 INTEL_E1000_ETHERNET_DEVICE(0x108C),
98 INTEL_E1000_ETHERNET_DEVICE(0x1096),
99 INTEL_E1000_ETHERNET_DEVICE(0x1098),
100 INTEL_E1000_ETHERNET_DEVICE(0x1099),
101 INTEL_E1000_ETHERNET_DEVICE(0x109A),
102 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107 INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108 INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109 INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110 /* required last entry */
114 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
116 int e1000_up(struct e1000_adapter
*adapter
);
117 void e1000_down(struct e1000_adapter
*adapter
);
118 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
119 void e1000_reset(struct e1000_adapter
*adapter
);
120 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
);
121 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
122 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
123 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
124 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
125 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
126 struct e1000_tx_ring
*txdr
);
127 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
128 struct e1000_rx_ring
*rxdr
);
129 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
130 struct e1000_tx_ring
*tx_ring
);
131 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
132 struct e1000_rx_ring
*rx_ring
);
133 void e1000_update_stats(struct e1000_adapter
*adapter
);
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
138 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
139 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
140 static int e1000_sw_init(struct e1000_adapter
*adapter
);
141 static int e1000_open(struct net_device
*netdev
);
142 static int e1000_close(struct net_device
*netdev
);
143 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
144 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
145 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
148 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
149 struct e1000_tx_ring
*tx_ring
);
150 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
151 struct e1000_rx_ring
*rx_ring
);
152 static void e1000_set_multi(struct net_device
*netdev
);
153 static void e1000_update_phy_info(unsigned long data
);
154 static void e1000_watchdog(unsigned long data
);
155 static void e1000_82547_tx_fifo_stall(unsigned long data
);
156 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
157 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
158 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
159 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
160 static irqreturn_t
e1000_intr(int irq
, void *data
);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t
e1000_intr_msi(int irq
, void *data
);
164 static boolean_t
e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
165 struct e1000_tx_ring
*tx_ring
);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device
*poll_dev
, int *budget
);
168 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
169 struct e1000_rx_ring
*rx_ring
,
170 int *work_done
, int work_to_do
);
171 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
172 struct e1000_rx_ring
*rx_ring
,
173 int *work_done
, int work_to_do
);
175 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
176 struct e1000_rx_ring
*rx_ring
);
177 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
178 struct e1000_rx_ring
*rx_ring
);
180 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
181 struct e1000_rx_ring
*rx_ring
,
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
184 struct e1000_rx_ring
*rx_ring
,
186 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
187 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
189 void e1000_set_ethtool_ops(struct net_device
*netdev
);
190 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
191 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
192 static void e1000_tx_timeout(struct net_device
*dev
);
193 static void e1000_reset_task(struct work_struct
*work
);
194 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
196 struct sk_buff
*skb
);
198 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
199 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
);
200 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
201 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
203 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
205 static int e1000_resume(struct pci_dev
*pdev
);
207 static void e1000_shutdown(struct pci_dev
*pdev
);
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device
*netdev
);
214 extern void e1000_check_options(struct e1000_adapter
*adapter
);
216 #define COPYBREAK_DEFAULT 256
217 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
218 module_param(copybreak
, uint
, 0644);
219 MODULE_PARM_DESC(copybreak
,
220 "Maximum size of packet that is copied to a new buffer on receive");
222 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
223 pci_channel_state_t state
);
224 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
225 static void e1000_io_resume(struct pci_dev
*pdev
);
227 static struct pci_error_handlers e1000_err_handler
= {
228 .error_detected
= e1000_io_error_detected
,
229 .slot_reset
= e1000_io_slot_reset
,
230 .resume
= e1000_io_resume
,
233 static struct pci_driver e1000_driver
= {
234 .name
= e1000_driver_name
,
235 .id_table
= e1000_pci_tbl
,
236 .probe
= e1000_probe
,
237 .remove
= __devexit_p(e1000_remove
),
239 /* Power Managment Hooks */
240 .suspend
= e1000_suspend
,
241 .resume
= e1000_resume
,
243 .shutdown
= e1000_shutdown
,
244 .err_handler
= &e1000_err_handler
247 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
248 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION
);
252 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
253 module_param(debug
, int, 0);
254 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
257 * e1000_init_module - Driver Registration Routine
259 * e1000_init_module is the first routine called when the driver is
260 * loaded. All it does is register with the PCI subsystem.
264 e1000_init_module(void)
267 printk(KERN_INFO
"%s - version %s\n",
268 e1000_driver_string
, e1000_driver_version
);
270 printk(KERN_INFO
"%s\n", e1000_copyright
);
272 ret
= pci_register_driver(&e1000_driver
);
273 if (copybreak
!= COPYBREAK_DEFAULT
) {
275 printk(KERN_INFO
"e1000: copybreak disabled\n");
277 printk(KERN_INFO
"e1000: copybreak enabled for "
278 "packets <= %u bytes\n", copybreak
);
283 module_init(e1000_init_module
);
286 * e1000_exit_module - Driver Exit Cleanup Routine
288 * e1000_exit_module is called just before the driver is removed
293 e1000_exit_module(void)
295 pci_unregister_driver(&e1000_driver
);
298 module_exit(e1000_exit_module
);
300 static int e1000_request_irq(struct e1000_adapter
*adapter
)
302 struct net_device
*netdev
= adapter
->netdev
;
306 #ifdef CONFIG_PCI_MSI
307 if (adapter
->hw
.mac_type
>= e1000_82571
) {
308 adapter
->have_msi
= TRUE
;
309 if ((err
= pci_enable_msi(adapter
->pdev
))) {
311 "Unable to allocate MSI interrupt Error: %d\n", err
);
312 adapter
->have_msi
= FALSE
;
315 if (adapter
->have_msi
) {
316 flags
&= ~IRQF_SHARED
;
317 err
= request_irq(adapter
->pdev
->irq
, &e1000_intr_msi
, flags
,
318 netdev
->name
, netdev
);
321 "Unable to allocate interrupt Error: %d\n", err
);
324 if ((err
= request_irq(adapter
->pdev
->irq
, &e1000_intr
, flags
,
325 netdev
->name
, netdev
)))
327 "Unable to allocate interrupt Error: %d\n", err
);
332 static void e1000_free_irq(struct e1000_adapter
*adapter
)
334 struct net_device
*netdev
= adapter
->netdev
;
336 free_irq(adapter
->pdev
->irq
, netdev
);
338 #ifdef CONFIG_PCI_MSI
339 if (adapter
->have_msi
)
340 pci_disable_msi(adapter
->pdev
);
345 * e1000_irq_disable - Mask off interrupt generation on the NIC
346 * @adapter: board private structure
350 e1000_irq_disable(struct e1000_adapter
*adapter
)
352 atomic_inc(&adapter
->irq_sem
);
353 E1000_WRITE_REG(&adapter
->hw
, IMC
, ~0);
354 E1000_WRITE_FLUSH(&adapter
->hw
);
355 synchronize_irq(adapter
->pdev
->irq
);
359 * e1000_irq_enable - Enable default interrupt generation settings
360 * @adapter: board private structure
364 e1000_irq_enable(struct e1000_adapter
*adapter
)
366 if (likely(atomic_dec_and_test(&adapter
->irq_sem
))) {
367 E1000_WRITE_REG(&adapter
->hw
, IMS
, IMS_ENABLE_MASK
);
368 E1000_WRITE_FLUSH(&adapter
->hw
);
373 e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
375 struct net_device
*netdev
= adapter
->netdev
;
376 uint16_t vid
= adapter
->hw
.mng_cookie
.vlan_id
;
377 uint16_t old_vid
= adapter
->mng_vlan_id
;
378 if (adapter
->vlgrp
) {
379 if (!adapter
->vlgrp
->vlan_devices
[vid
]) {
380 if (adapter
->hw
.mng_cookie
.status
&
381 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
382 e1000_vlan_rx_add_vid(netdev
, vid
);
383 adapter
->mng_vlan_id
= vid
;
385 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
387 if ((old_vid
!= (uint16_t)E1000_MNG_VLAN_NONE
) &&
389 !adapter
->vlgrp
->vlan_devices
[old_vid
])
390 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
392 adapter
->mng_vlan_id
= vid
;
397 * e1000_release_hw_control - release control of the h/w to f/w
398 * @adapter: address of board private structure
400 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
401 * For ASF and Pass Through versions of f/w this means that the
402 * driver is no longer loaded. For AMT version (only with 82573) i
403 * of the f/w this means that the network i/f is closed.
408 e1000_release_hw_control(struct e1000_adapter
*adapter
)
414 /* Let firmware taken over control of h/w */
415 switch (adapter
->hw
.mac_type
) {
418 case e1000_80003es2lan
:
419 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
420 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
421 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
424 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
425 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
426 swsm
& ~E1000_SWSM_DRV_LOAD
);
428 extcnf
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
429 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
430 extcnf
& ~E1000_CTRL_EXT_DRV_LOAD
);
438 * e1000_get_hw_control - get control of the h/w from f/w
439 * @adapter: address of board private structure
441 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
442 * For ASF and Pass Through versions of f/w this means that
443 * the driver is loaded. For AMT version (only with 82573)
444 * of the f/w this means that the network i/f is open.
449 e1000_get_hw_control(struct e1000_adapter
*adapter
)
455 /* Let firmware know the driver has taken over */
456 switch (adapter
->hw
.mac_type
) {
459 case e1000_80003es2lan
:
460 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
461 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
462 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
465 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
466 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
467 swsm
| E1000_SWSM_DRV_LOAD
);
470 extcnf
= E1000_READ_REG(&adapter
->hw
, EXTCNF_CTRL
);
471 E1000_WRITE_REG(&adapter
->hw
, EXTCNF_CTRL
,
472 extcnf
| E1000_EXTCNF_CTRL_SWFLAG
);
480 e1000_init_manageability(struct e1000_adapter
*adapter
)
482 if (adapter
->en_mng_pt
) {
483 uint32_t manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
485 /* disable hardware interception of ARP */
486 manc
&= ~(E1000_MANC_ARP_EN
);
488 /* enable receiving management packets to the host */
489 /* this will probably generate destination unreachable messages
490 * from the host OS, but the packets will be handled on SMBUS */
491 if (adapter
->hw
.has_manc2h
) {
492 uint32_t manc2h
= E1000_READ_REG(&adapter
->hw
, MANC2H
);
494 manc
|= E1000_MANC_EN_MNG2HOST
;
495 #define E1000_MNG2HOST_PORT_623 (1 << 5)
496 #define E1000_MNG2HOST_PORT_664 (1 << 6)
497 manc2h
|= E1000_MNG2HOST_PORT_623
;
498 manc2h
|= E1000_MNG2HOST_PORT_664
;
499 E1000_WRITE_REG(&adapter
->hw
, MANC2H
, manc2h
);
502 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
507 e1000_release_manageability(struct e1000_adapter
*adapter
)
509 if (adapter
->en_mng_pt
) {
510 uint32_t manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
512 /* re-enable hardware interception of ARP */
513 manc
|= E1000_MANC_ARP_EN
;
515 if (adapter
->hw
.has_manc2h
)
516 manc
&= ~E1000_MANC_EN_MNG2HOST
;
518 /* don't explicitly have to mess with MANC2H since
519 * MANC has an enable disable that gates MANC2H */
521 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
526 e1000_up(struct e1000_adapter
*adapter
)
528 struct net_device
*netdev
= adapter
->netdev
;
531 /* hardware has been reset, we need to reload some things */
533 e1000_set_multi(netdev
);
535 e1000_restore_vlan(adapter
);
536 e1000_init_manageability(adapter
);
538 e1000_configure_tx(adapter
);
539 e1000_setup_rctl(adapter
);
540 e1000_configure_rx(adapter
);
541 /* call E1000_DESC_UNUSED which always leaves
542 * at least 1 descriptor unused to make sure
543 * next_to_use != next_to_clean */
544 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
545 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
546 adapter
->alloc_rx_buf(adapter
, ring
,
547 E1000_DESC_UNUSED(ring
));
550 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
552 #ifdef CONFIG_E1000_NAPI
553 netif_poll_enable(netdev
);
555 e1000_irq_enable(adapter
);
557 clear_bit(__E1000_DOWN
, &adapter
->flags
);
559 /* fire a link change interrupt to start the watchdog */
560 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_LSC
);
565 * e1000_power_up_phy - restore link in case the phy was powered down
566 * @adapter: address of board private structure
568 * The phy may be powered down to save power and turn off link when the
569 * driver is unloaded and wake on lan is not enabled (among others)
570 * *** this routine MUST be followed by a call to e1000_reset ***
574 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
576 uint16_t mii_reg
= 0;
578 /* Just clear the power down bit to wake the phy back up */
579 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
580 /* according to the manual, the phy will retain its
581 * settings across a power-down/up cycle */
582 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
583 mii_reg
&= ~MII_CR_POWER_DOWN
;
584 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
588 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
590 /* Power down the PHY so no link is implied when interface is down *
591 * The PHY cannot be powered down if any of the following is TRUE *
594 * (c) SoL/IDER session is active */
595 if (!adapter
->wol
&& adapter
->hw
.mac_type
>= e1000_82540
&&
596 adapter
->hw
.media_type
== e1000_media_type_copper
) {
597 uint16_t mii_reg
= 0;
599 switch (adapter
->hw
.mac_type
) {
602 case e1000_82545_rev_3
:
604 case e1000_82546_rev_3
:
606 case e1000_82541_rev_2
:
608 case e1000_82547_rev_2
:
609 if (E1000_READ_REG(&adapter
->hw
, MANC
) &
616 case e1000_80003es2lan
:
618 if (e1000_check_mng_mode(&adapter
->hw
) ||
619 e1000_check_phy_reset_block(&adapter
->hw
))
625 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
626 mii_reg
|= MII_CR_POWER_DOWN
;
627 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
635 e1000_down(struct e1000_adapter
*adapter
)
637 struct net_device
*netdev
= adapter
->netdev
;
639 /* signal that we're down so the interrupt handler does not
640 * reschedule our watchdog timer */
641 set_bit(__E1000_DOWN
, &adapter
->flags
);
643 e1000_irq_disable(adapter
);
645 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
646 del_timer_sync(&adapter
->watchdog_timer
);
647 del_timer_sync(&adapter
->phy_info_timer
);
649 #ifdef CONFIG_E1000_NAPI
650 netif_poll_disable(netdev
);
652 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
653 adapter
->link_speed
= 0;
654 adapter
->link_duplex
= 0;
655 netif_carrier_off(netdev
);
656 netif_stop_queue(netdev
);
658 e1000_reset(adapter
);
659 e1000_clean_all_tx_rings(adapter
);
660 e1000_clean_all_rx_rings(adapter
);
664 e1000_reinit_locked(struct e1000_adapter
*adapter
)
666 WARN_ON(in_interrupt());
667 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
671 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
675 e1000_reset(struct e1000_adapter
*adapter
)
677 uint32_t pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
678 uint16_t fc_high_water_mark
= E1000_FC_HIGH_DIFF
;
679 boolean_t legacy_pba_adjust
= FALSE
;
681 /* Repartition Pba for greater than 9k mtu
682 * To take effect CTRL.RST is required.
685 switch (adapter
->hw
.mac_type
) {
686 case e1000_82542_rev2_0
:
687 case e1000_82542_rev2_1
:
692 case e1000_82541_rev_2
:
693 legacy_pba_adjust
= TRUE
;
697 case e1000_82545_rev_3
:
699 case e1000_82546_rev_3
:
703 case e1000_82547_rev_2
:
704 legacy_pba_adjust
= TRUE
;
709 case e1000_80003es2lan
:
717 case e1000_undefined
:
722 if (legacy_pba_adjust
== TRUE
) {
723 if (adapter
->netdev
->mtu
> E1000_RXBUFFER_8192
)
724 pba
-= 8; /* allocate more FIFO for Tx */
726 if (adapter
->hw
.mac_type
== e1000_82547
) {
727 adapter
->tx_fifo_head
= 0;
728 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
729 adapter
->tx_fifo_size
=
730 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
731 atomic_set(&adapter
->tx_fifo_stall
, 0);
733 } else if (adapter
->hw
.max_frame_size
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
734 /* adjust PBA for jumbo frames */
735 E1000_WRITE_REG(&adapter
->hw
, PBA
, pba
);
737 /* To maintain wire speed transmits, the Tx FIFO should be
738 * large enough to accomodate two full transmit packets,
739 * rounded up to the next 1KB and expressed in KB. Likewise,
740 * the Rx FIFO should be large enough to accomodate at least
741 * one full receive packet and is similarly rounded up and
742 * expressed in KB. */
743 pba
= E1000_READ_REG(&adapter
->hw
, PBA
);
744 /* upper 16 bits has Tx packet buffer allocation size in KB */
745 tx_space
= pba
>> 16;
746 /* lower 16 bits has Rx packet buffer allocation size in KB */
748 /* don't include ethernet FCS because hardware appends/strips */
749 min_rx_space
= adapter
->netdev
->mtu
+ ENET_HEADER_SIZE
+
751 min_tx_space
= min_rx_space
;
753 E1000_ROUNDUP(min_tx_space
, 1024);
755 E1000_ROUNDUP(min_rx_space
, 1024);
758 /* If current Tx allocation is less than the min Tx FIFO size,
759 * and the min Tx FIFO size is less than the current Rx FIFO
760 * allocation, take space away from current Rx allocation */
761 if (tx_space
< min_tx_space
&&
762 ((min_tx_space
- tx_space
) < pba
)) {
763 pba
= pba
- (min_tx_space
- tx_space
);
765 /* PCI/PCIx hardware has PBA alignment constraints */
766 switch (adapter
->hw
.mac_type
) {
767 case e1000_82545
... e1000_82546_rev_3
:
768 pba
&= ~(E1000_PBA_8K
- 1);
774 /* if short on rx space, rx wins and must trump tx
775 * adjustment or use Early Receive if available */
776 if (pba
< min_rx_space
) {
777 switch (adapter
->hw
.mac_type
) {
779 /* ERT enabled in e1000_configure_rx */
789 E1000_WRITE_REG(&adapter
->hw
, PBA
, pba
);
791 /* flow control settings */
792 /* Set the FC high water mark to 90% of the FIFO size.
793 * Required to clear last 3 LSB */
794 fc_high_water_mark
= ((pba
* 9216)/10) & 0xFFF8;
795 /* We can't use 90% on small FIFOs because the remainder
796 * would be less than 1 full frame. In this case, we size
797 * it to allow at least a full frame above the high water
799 if (pba
< E1000_PBA_16K
)
800 fc_high_water_mark
= (pba
* 1024) - 1600;
802 adapter
->hw
.fc_high_water
= fc_high_water_mark
;
803 adapter
->hw
.fc_low_water
= fc_high_water_mark
- 8;
804 if (adapter
->hw
.mac_type
== e1000_80003es2lan
)
805 adapter
->hw
.fc_pause_time
= 0xFFFF;
807 adapter
->hw
.fc_pause_time
= E1000_FC_PAUSE_TIME
;
808 adapter
->hw
.fc_send_xon
= 1;
809 adapter
->hw
.fc
= adapter
->hw
.original_fc
;
811 /* Allow time for pending master requests to run */
812 e1000_reset_hw(&adapter
->hw
);
813 if (adapter
->hw
.mac_type
>= e1000_82544
)
814 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
816 if (e1000_init_hw(&adapter
->hw
))
817 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
818 e1000_update_mng_vlan(adapter
);
820 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
821 if (adapter
->hw
.mac_type
>= e1000_82544
&&
822 adapter
->hw
.mac_type
<= e1000_82547_rev_2
&&
823 adapter
->hw
.autoneg
== 1 &&
824 adapter
->hw
.autoneg_advertised
== ADVERTISE_1000_FULL
) {
825 uint32_t ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
826 /* clear phy power management bit if we are in gig only mode,
827 * which if enabled will attempt negotiation to 100Mb, which
828 * can cause a loss of link at power off or driver unload */
829 ctrl
&= ~E1000_CTRL_SWDPIN3
;
830 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
833 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
834 E1000_WRITE_REG(&adapter
->hw
, VET
, ETHERNET_IEEE_VLAN_TYPE
);
836 e1000_reset_adaptive(&adapter
->hw
);
837 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
839 if (!adapter
->smart_power_down
&&
840 (adapter
->hw
.mac_type
== e1000_82571
||
841 adapter
->hw
.mac_type
== e1000_82572
)) {
842 uint16_t phy_data
= 0;
843 /* speed up time to link by disabling smart power down, ignore
844 * the return value of this function because there is nothing
845 * different we would do if it failed */
846 e1000_read_phy_reg(&adapter
->hw
, IGP02E1000_PHY_POWER_MGMT
,
848 phy_data
&= ~IGP02E1000_PM_SPD
;
849 e1000_write_phy_reg(&adapter
->hw
, IGP02E1000_PHY_POWER_MGMT
,
853 e1000_release_manageability(adapter
);
857 * e1000_probe - Device Initialization Routine
858 * @pdev: PCI device information struct
859 * @ent: entry in e1000_pci_tbl
861 * Returns 0 on success, negative on failure
863 * e1000_probe initializes an adapter identified by a pci_dev structure.
864 * The OS initialization, configuring of the adapter private structure,
865 * and a hardware reset occur.
869 e1000_probe(struct pci_dev
*pdev
,
870 const struct pci_device_id
*ent
)
872 struct net_device
*netdev
;
873 struct e1000_adapter
*adapter
;
874 unsigned long mmio_start
, mmio_len
;
875 unsigned long flash_start
, flash_len
;
877 static int cards_found
= 0;
878 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
879 int i
, err
, pci_using_dac
;
880 uint16_t eeprom_data
= 0;
881 uint16_t eeprom_apme_mask
= E1000_EEPROM_APME
;
882 if ((err
= pci_enable_device(pdev
)))
885 if (!(err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) &&
886 !(err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
))) {
889 if ((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) &&
890 (err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
))) {
891 E1000_ERR("No usable DMA configuration, aborting\n");
897 if ((err
= pci_request_regions(pdev
, e1000_driver_name
)))
900 pci_set_master(pdev
);
903 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
905 goto err_alloc_etherdev
;
907 SET_MODULE_OWNER(netdev
);
908 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
910 pci_set_drvdata(pdev
, netdev
);
911 adapter
= netdev_priv(netdev
);
912 adapter
->netdev
= netdev
;
913 adapter
->pdev
= pdev
;
914 adapter
->hw
.back
= adapter
;
915 adapter
->msg_enable
= (1 << debug
) - 1;
917 mmio_start
= pci_resource_start(pdev
, BAR_0
);
918 mmio_len
= pci_resource_len(pdev
, BAR_0
);
921 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
922 if (!adapter
->hw
.hw_addr
)
925 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
926 if (pci_resource_len(pdev
, i
) == 0)
928 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
929 adapter
->hw
.io_base
= pci_resource_start(pdev
, i
);
934 netdev
->open
= &e1000_open
;
935 netdev
->stop
= &e1000_close
;
936 netdev
->hard_start_xmit
= &e1000_xmit_frame
;
937 netdev
->get_stats
= &e1000_get_stats
;
938 netdev
->set_multicast_list
= &e1000_set_multi
;
939 netdev
->set_mac_address
= &e1000_set_mac
;
940 netdev
->change_mtu
= &e1000_change_mtu
;
941 netdev
->do_ioctl
= &e1000_ioctl
;
942 e1000_set_ethtool_ops(netdev
);
943 netdev
->tx_timeout
= &e1000_tx_timeout
;
944 netdev
->watchdog_timeo
= 5 * HZ
;
945 #ifdef CONFIG_E1000_NAPI
946 netdev
->poll
= &e1000_clean
;
949 netdev
->vlan_rx_register
= e1000_vlan_rx_register
;
950 netdev
->vlan_rx_add_vid
= e1000_vlan_rx_add_vid
;
951 netdev
->vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
;
952 #ifdef CONFIG_NET_POLL_CONTROLLER
953 netdev
->poll_controller
= e1000_netpoll
;
955 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
957 netdev
->mem_start
= mmio_start
;
958 netdev
->mem_end
= mmio_start
+ mmio_len
;
959 netdev
->base_addr
= adapter
->hw
.io_base
;
961 adapter
->bd_number
= cards_found
;
963 /* setup the private structure */
965 if ((err
= e1000_sw_init(adapter
)))
969 /* Flash BAR mapping must happen after e1000_sw_init
970 * because it depends on mac_type */
971 if ((adapter
->hw
.mac_type
== e1000_ich8lan
) &&
972 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
973 flash_start
= pci_resource_start(pdev
, 1);
974 flash_len
= pci_resource_len(pdev
, 1);
975 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
976 if (!adapter
->hw
.flash_address
)
980 if (e1000_check_phy_reset_block(&adapter
->hw
))
981 DPRINTK(PROBE
, INFO
, "PHY reset is blocked due to SOL/IDER session.\n");
983 if (adapter
->hw
.mac_type
>= e1000_82543
) {
984 netdev
->features
= NETIF_F_SG
|
988 NETIF_F_HW_VLAN_FILTER
;
989 if (adapter
->hw
.mac_type
== e1000_ich8lan
)
990 netdev
->features
&= ~NETIF_F_HW_VLAN_FILTER
;
993 if ((adapter
->hw
.mac_type
>= e1000_82544
) &&
994 (adapter
->hw
.mac_type
!= e1000_82547
))
995 netdev
->features
|= NETIF_F_TSO
;
997 if (adapter
->hw
.mac_type
> e1000_82547_rev_2
)
998 netdev
->features
|= NETIF_F_TSO6
;
1000 netdev
->features
|= NETIF_F_HIGHDMA
;
1002 netdev
->features
|= NETIF_F_LLTX
;
1004 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(&adapter
->hw
);
1006 /* initialize eeprom parameters */
1008 if (e1000_init_eeprom_params(&adapter
->hw
)) {
1009 E1000_ERR("EEPROM initialization failed\n");
1013 /* before reading the EEPROM, reset the controller to
1014 * put the device in a known good starting state */
1016 e1000_reset_hw(&adapter
->hw
);
1018 /* make sure the EEPROM is good */
1020 if (e1000_validate_eeprom_checksum(&adapter
->hw
) < 0) {
1021 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
1025 /* copy the MAC address out of the EEPROM */
1027 if (e1000_read_mac_addr(&adapter
->hw
))
1028 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
1029 memcpy(netdev
->dev_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
1030 memcpy(netdev
->perm_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
1032 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1033 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
1037 e1000_get_bus_info(&adapter
->hw
);
1039 init_timer(&adapter
->tx_fifo_stall_timer
);
1040 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
1041 adapter
->tx_fifo_stall_timer
.data
= (unsigned long) adapter
;
1043 init_timer(&adapter
->watchdog_timer
);
1044 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
1045 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1047 init_timer(&adapter
->phy_info_timer
);
1048 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
1049 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
1051 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1053 e1000_check_options(adapter
);
1055 /* Initial Wake on LAN setting
1056 * If APM wake is enabled in the EEPROM,
1057 * enable the ACPI Magic Packet filter
1060 switch (adapter
->hw
.mac_type
) {
1061 case e1000_82542_rev2_0
:
1062 case e1000_82542_rev2_1
:
1066 e1000_read_eeprom(&adapter
->hw
,
1067 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1068 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1071 e1000_read_eeprom(&adapter
->hw
,
1072 EEPROM_INIT_CONTROL1_REG
, 1, &eeprom_data
);
1073 eeprom_apme_mask
= E1000_EEPROM_ICH8_APME
;
1076 case e1000_82546_rev_3
:
1078 case e1000_80003es2lan
:
1079 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
){
1080 e1000_read_eeprom(&adapter
->hw
,
1081 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1086 e1000_read_eeprom(&adapter
->hw
,
1087 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1090 if (eeprom_data
& eeprom_apme_mask
)
1091 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1093 /* now that we have the eeprom settings, apply the special cases
1094 * where the eeprom may be wrong or the board simply won't support
1095 * wake on lan on a particular port */
1096 switch (pdev
->device
) {
1097 case E1000_DEV_ID_82546GB_PCIE
:
1098 adapter
->eeprom_wol
= 0;
1100 case E1000_DEV_ID_82546EB_FIBER
:
1101 case E1000_DEV_ID_82546GB_FIBER
:
1102 case E1000_DEV_ID_82571EB_FIBER
:
1103 /* Wake events only supported on port A for dual fiber
1104 * regardless of eeprom setting */
1105 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
)
1106 adapter
->eeprom_wol
= 0;
1108 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1109 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
1110 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE
:
1111 /* if quad port adapter, disable WoL on all but port A */
1112 if (global_quad_port_a
!= 0)
1113 adapter
->eeprom_wol
= 0;
1115 adapter
->quad_port_a
= 1;
1116 /* Reset for multiple quad port adapters */
1117 if (++global_quad_port_a
== 4)
1118 global_quad_port_a
= 0;
1122 /* initialize the wol settings based on the eeprom settings */
1123 adapter
->wol
= adapter
->eeprom_wol
;
1125 /* print bus type/speed/width info */
1127 struct e1000_hw
*hw
= &adapter
->hw
;
1128 DPRINTK(PROBE
, INFO
, "(PCI%s:%s:%s) ",
1129 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" :
1130 (hw
->bus_type
== e1000_bus_type_pci_express
? " Express":"")),
1131 ((hw
->bus_speed
== e1000_bus_speed_2500
) ? "2.5Gb/s" :
1132 (hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
1133 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
1134 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
1135 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
1136 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" :
1137 (hw
->bus_width
== e1000_bus_width_pciex_4
) ? "Width x4" :
1138 (hw
->bus_width
== e1000_bus_width_pciex_1
) ? "Width x1" :
1142 for (i
= 0; i
< 6; i
++)
1143 printk("%2.2x%c", netdev
->dev_addr
[i
], i
== 5 ? '\n' : ':');
1145 /* reset the hardware with the new settings */
1146 e1000_reset(adapter
);
1148 /* If the controller is 82573 and f/w is AMT, do not set
1149 * DRV_LOAD until the interface is up. For all other cases,
1150 * let the f/w know that the h/w is now under the control
1152 if (adapter
->hw
.mac_type
!= e1000_82573
||
1153 !e1000_check_mng_mode(&adapter
->hw
))
1154 e1000_get_hw_control(adapter
);
1156 strcpy(netdev
->name
, "eth%d");
1157 if ((err
= register_netdev(netdev
)))
1160 /* tell the stack to leave us alone until e1000_open() is called */
1161 netif_carrier_off(netdev
);
1162 netif_stop_queue(netdev
);
1164 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
1170 e1000_release_hw_control(adapter
);
1172 if (!e1000_check_phy_reset_block(&adapter
->hw
))
1173 e1000_phy_hw_reset(&adapter
->hw
);
1175 if (adapter
->hw
.flash_address
)
1176 iounmap(adapter
->hw
.flash_address
);
1178 #ifdef CONFIG_E1000_NAPI
1179 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1180 dev_put(&adapter
->polling_netdev
[i
]);
1183 kfree(adapter
->tx_ring
);
1184 kfree(adapter
->rx_ring
);
1185 #ifdef CONFIG_E1000_NAPI
1186 kfree(adapter
->polling_netdev
);
1189 iounmap(adapter
->hw
.hw_addr
);
1191 free_netdev(netdev
);
1193 pci_release_regions(pdev
);
1196 pci_disable_device(pdev
);
1201 * e1000_remove - Device Removal Routine
1202 * @pdev: PCI device information struct
1204 * e1000_remove is called by the PCI subsystem to alert the driver
1205 * that it should release a PCI device. The could be caused by a
1206 * Hot-Plug event, or because the driver is going to be removed from
1210 static void __devexit
1211 e1000_remove(struct pci_dev
*pdev
)
1213 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1214 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1215 #ifdef CONFIG_E1000_NAPI
1219 flush_scheduled_work();
1221 e1000_release_manageability(adapter
);
1223 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1224 * would have already happened in close and is redundant. */
1225 e1000_release_hw_control(adapter
);
1227 unregister_netdev(netdev
);
1228 #ifdef CONFIG_E1000_NAPI
1229 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1230 dev_put(&adapter
->polling_netdev
[i
]);
1233 if (!e1000_check_phy_reset_block(&adapter
->hw
))
1234 e1000_phy_hw_reset(&adapter
->hw
);
1236 kfree(adapter
->tx_ring
);
1237 kfree(adapter
->rx_ring
);
1238 #ifdef CONFIG_E1000_NAPI
1239 kfree(adapter
->polling_netdev
);
1242 iounmap(adapter
->hw
.hw_addr
);
1243 if (adapter
->hw
.flash_address
)
1244 iounmap(adapter
->hw
.flash_address
);
1245 pci_release_regions(pdev
);
1247 free_netdev(netdev
);
1249 pci_disable_device(pdev
);
1253 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1254 * @adapter: board private structure to initialize
1256 * e1000_sw_init initializes the Adapter private data structure.
1257 * Fields are initialized based on PCI device information and
1258 * OS network device settings (MTU size).
1261 static int __devinit
1262 e1000_sw_init(struct e1000_adapter
*adapter
)
1264 struct e1000_hw
*hw
= &adapter
->hw
;
1265 struct net_device
*netdev
= adapter
->netdev
;
1266 struct pci_dev
*pdev
= adapter
->pdev
;
1267 #ifdef CONFIG_E1000_NAPI
1271 /* PCI config space info */
1273 hw
->vendor_id
= pdev
->vendor
;
1274 hw
->device_id
= pdev
->device
;
1275 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1276 hw
->subsystem_id
= pdev
->subsystem_device
;
1278 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &hw
->revision_id
);
1280 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
1282 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1283 adapter
->rx_ps_bsize0
= E1000_RXBUFFER_128
;
1284 hw
->max_frame_size
= netdev
->mtu
+
1285 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
1286 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
1288 /* identify the MAC */
1290 if (e1000_set_mac_type(hw
)) {
1291 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
1295 switch (hw
->mac_type
) {
1300 case e1000_82541_rev_2
:
1301 case e1000_82547_rev_2
:
1302 hw
->phy_init_script
= 1;
1306 e1000_set_media_type(hw
);
1308 hw
->wait_autoneg_complete
= FALSE
;
1309 hw
->tbi_compatibility_en
= TRUE
;
1310 hw
->adaptive_ifs
= TRUE
;
1312 /* Copper options */
1314 if (hw
->media_type
== e1000_media_type_copper
) {
1315 hw
->mdix
= AUTO_ALL_MODES
;
1316 hw
->disable_polarity_correction
= FALSE
;
1317 hw
->master_slave
= E1000_MASTER_SLAVE
;
1320 adapter
->num_tx_queues
= 1;
1321 adapter
->num_rx_queues
= 1;
1323 if (e1000_alloc_queues(adapter
)) {
1324 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
1328 #ifdef CONFIG_E1000_NAPI
1329 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1330 adapter
->polling_netdev
[i
].priv
= adapter
;
1331 adapter
->polling_netdev
[i
].poll
= &e1000_clean
;
1332 adapter
->polling_netdev
[i
].weight
= 64;
1333 dev_hold(&adapter
->polling_netdev
[i
]);
1334 set_bit(__LINK_STATE_START
, &adapter
->polling_netdev
[i
].state
);
1336 spin_lock_init(&adapter
->tx_queue_lock
);
1339 atomic_set(&adapter
->irq_sem
, 1);
1340 spin_lock_init(&adapter
->stats_lock
);
1342 set_bit(__E1000_DOWN
, &adapter
->flags
);
1348 * e1000_alloc_queues - Allocate memory for all rings
1349 * @adapter: board private structure to initialize
1351 * We allocate one ring per queue at run-time since we don't know the
1352 * number of queues at compile-time. The polling_netdev array is
1353 * intended for Multiqueue, but should work fine with a single queue.
1356 static int __devinit
1357 e1000_alloc_queues(struct e1000_adapter
*adapter
)
1361 size
= sizeof(struct e1000_tx_ring
) * adapter
->num_tx_queues
;
1362 adapter
->tx_ring
= kmalloc(size
, GFP_KERNEL
);
1363 if (!adapter
->tx_ring
)
1365 memset(adapter
->tx_ring
, 0, size
);
1367 size
= sizeof(struct e1000_rx_ring
) * adapter
->num_rx_queues
;
1368 adapter
->rx_ring
= kmalloc(size
, GFP_KERNEL
);
1369 if (!adapter
->rx_ring
) {
1370 kfree(adapter
->tx_ring
);
1373 memset(adapter
->rx_ring
, 0, size
);
1375 #ifdef CONFIG_E1000_NAPI
1376 size
= sizeof(struct net_device
) * adapter
->num_rx_queues
;
1377 adapter
->polling_netdev
= kmalloc(size
, GFP_KERNEL
);
1378 if (!adapter
->polling_netdev
) {
1379 kfree(adapter
->tx_ring
);
1380 kfree(adapter
->rx_ring
);
1383 memset(adapter
->polling_netdev
, 0, size
);
1386 return E1000_SUCCESS
;
1390 * e1000_open - Called when a network interface is made active
1391 * @netdev: network interface device structure
1393 * Returns 0 on success, negative value on failure
1395 * The open entry point is called when a network interface is made
1396 * active by the system (IFF_UP). At this point all resources needed
1397 * for transmit and receive operations are allocated, the interrupt
1398 * handler is registered with the OS, the watchdog timer is started,
1399 * and the stack is notified that the interface is ready.
1403 e1000_open(struct net_device
*netdev
)
1405 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1408 /* disallow open during test */
1409 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1412 /* allocate transmit descriptors */
1413 if ((err
= e1000_setup_all_tx_resources(adapter
)))
1416 /* allocate receive descriptors */
1417 if ((err
= e1000_setup_all_rx_resources(adapter
)))
1420 err
= e1000_request_irq(adapter
);
1424 e1000_power_up_phy(adapter
);
1426 if ((err
= e1000_up(adapter
)))
1428 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1429 if ((adapter
->hw
.mng_cookie
.status
&
1430 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1431 e1000_update_mng_vlan(adapter
);
1434 /* If AMT is enabled, let the firmware know that the network
1435 * interface is now open */
1436 if (adapter
->hw
.mac_type
== e1000_82573
&&
1437 e1000_check_mng_mode(&adapter
->hw
))
1438 e1000_get_hw_control(adapter
);
1440 return E1000_SUCCESS
;
1443 e1000_power_down_phy(adapter
);
1444 e1000_free_irq(adapter
);
1446 e1000_free_all_rx_resources(adapter
);
1448 e1000_free_all_tx_resources(adapter
);
1450 e1000_reset(adapter
);
1456 * e1000_close - Disables a network interface
1457 * @netdev: network interface device structure
1459 * Returns 0, this is not allowed to fail
1461 * The close entry point is called when an interface is de-activated
1462 * by the OS. The hardware is still under the drivers control, but
1463 * needs to be disabled. A global MAC reset is issued to stop the
1464 * hardware, and all transmit and receive resources are freed.
1468 e1000_close(struct net_device
*netdev
)
1470 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1472 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1473 e1000_down(adapter
);
1474 e1000_power_down_phy(adapter
);
1475 e1000_free_irq(adapter
);
1477 e1000_free_all_tx_resources(adapter
);
1478 e1000_free_all_rx_resources(adapter
);
1480 /* kill manageability vlan ID if supported, but not if a vlan with
1481 * the same ID is registered on the host OS (let 8021q kill it) */
1482 if ((adapter
->hw
.mng_cookie
.status
&
1483 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1485 adapter
->vlgrp
->vlan_devices
[adapter
->mng_vlan_id
])) {
1486 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1489 /* If AMT is enabled, let the firmware know that the network
1490 * interface is now closed */
1491 if (adapter
->hw
.mac_type
== e1000_82573
&&
1492 e1000_check_mng_mode(&adapter
->hw
))
1493 e1000_release_hw_control(adapter
);
1499 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1500 * @adapter: address of board private structure
1501 * @start: address of beginning of memory
1502 * @len: length of memory
1505 e1000_check_64k_bound(struct e1000_adapter
*adapter
,
1506 void *start
, unsigned long len
)
1508 unsigned long begin
= (unsigned long) start
;
1509 unsigned long end
= begin
+ len
;
1511 /* First rev 82545 and 82546 need to not allow any memory
1512 * write location to cross 64k boundary due to errata 23 */
1513 if (adapter
->hw
.mac_type
== e1000_82545
||
1514 adapter
->hw
.mac_type
== e1000_82546
) {
1515 return ((begin
^ (end
- 1)) >> 16) != 0 ? FALSE
: TRUE
;
1522 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1523 * @adapter: board private structure
1524 * @txdr: tx descriptor ring (for a specific queue) to setup
1526 * Return 0 on success, negative on failure
1530 e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1531 struct e1000_tx_ring
*txdr
)
1533 struct pci_dev
*pdev
= adapter
->pdev
;
1536 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1537 txdr
->buffer_info
= vmalloc(size
);
1538 if (!txdr
->buffer_info
) {
1540 "Unable to allocate memory for the transmit descriptor ring\n");
1543 memset(txdr
->buffer_info
, 0, size
);
1545 /* round up to nearest 4K */
1547 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1548 E1000_ROUNDUP(txdr
->size
, 4096);
1550 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1553 vfree(txdr
->buffer_info
);
1555 "Unable to allocate memory for the transmit descriptor ring\n");
1559 /* Fix for errata 23, can't cross 64kB boundary */
1560 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1561 void *olddesc
= txdr
->desc
;
1562 dma_addr_t olddma
= txdr
->dma
;
1563 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1564 "at %p\n", txdr
->size
, txdr
->desc
);
1565 /* Try again, without freeing the previous */
1566 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1567 /* Failed allocation, critical failure */
1569 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1570 goto setup_tx_desc_die
;
1573 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1575 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1577 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1579 "Unable to allocate aligned memory "
1580 "for the transmit descriptor ring\n");
1581 vfree(txdr
->buffer_info
);
1584 /* Free old allocation, new allocation was successful */
1585 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1588 memset(txdr
->desc
, 0, txdr
->size
);
1590 txdr
->next_to_use
= 0;
1591 txdr
->next_to_clean
= 0;
1592 spin_lock_init(&txdr
->tx_lock
);
1598 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1599 * (Descriptors) for all queues
1600 * @adapter: board private structure
1602 * Return 0 on success, negative on failure
1606 e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1610 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1611 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1614 "Allocation for Tx Queue %u failed\n", i
);
1615 for (i
-- ; i
>= 0; i
--)
1616 e1000_free_tx_resources(adapter
,
1617 &adapter
->tx_ring
[i
]);
1626 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1627 * @adapter: board private structure
1629 * Configure the Tx unit of the MAC after a reset.
1633 e1000_configure_tx(struct e1000_adapter
*adapter
)
1636 struct e1000_hw
*hw
= &adapter
->hw
;
1637 uint32_t tdlen
, tctl
, tipg
, tarc
;
1638 uint32_t ipgr1
, ipgr2
;
1640 /* Setup the HW Tx Head and Tail descriptor pointers */
1642 switch (adapter
->num_tx_queues
) {
1645 tdba
= adapter
->tx_ring
[0].dma
;
1646 tdlen
= adapter
->tx_ring
[0].count
*
1647 sizeof(struct e1000_tx_desc
);
1648 E1000_WRITE_REG(hw
, TDLEN
, tdlen
);
1649 E1000_WRITE_REG(hw
, TDBAH
, (tdba
>> 32));
1650 E1000_WRITE_REG(hw
, TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1651 E1000_WRITE_REG(hw
, TDT
, 0);
1652 E1000_WRITE_REG(hw
, TDH
, 0);
1653 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1654 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1658 /* Set the default values for the Tx Inter Packet Gap timer */
1659 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
&&
1660 (hw
->media_type
== e1000_media_type_fiber
||
1661 hw
->media_type
== e1000_media_type_internal_serdes
))
1662 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1664 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1666 switch (hw
->mac_type
) {
1667 case e1000_82542_rev2_0
:
1668 case e1000_82542_rev2_1
:
1669 tipg
= DEFAULT_82542_TIPG_IPGT
;
1670 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1671 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1673 case e1000_80003es2lan
:
1674 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1675 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
;
1678 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1679 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1682 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1683 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1684 E1000_WRITE_REG(hw
, TIPG
, tipg
);
1686 /* Set the Tx Interrupt Delay register */
1688 E1000_WRITE_REG(hw
, TIDV
, adapter
->tx_int_delay
);
1689 if (hw
->mac_type
>= e1000_82540
)
1690 E1000_WRITE_REG(hw
, TADV
, adapter
->tx_abs_int_delay
);
1692 /* Program the Transmit Control Register */
1694 tctl
= E1000_READ_REG(hw
, TCTL
);
1695 tctl
&= ~E1000_TCTL_CT
;
1696 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1697 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1699 if (hw
->mac_type
== e1000_82571
|| hw
->mac_type
== e1000_82572
) {
1700 tarc
= E1000_READ_REG(hw
, TARC0
);
1701 /* set the speed mode bit, we'll clear it if we're not at
1702 * gigabit link later */
1704 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1705 } else if (hw
->mac_type
== e1000_80003es2lan
) {
1706 tarc
= E1000_READ_REG(hw
, TARC0
);
1708 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1709 tarc
= E1000_READ_REG(hw
, TARC1
);
1711 E1000_WRITE_REG(hw
, TARC1
, tarc
);
1714 e1000_config_collision_dist(hw
);
1716 /* Setup Transmit Descriptor Settings for eop descriptor */
1717 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1719 /* only set IDE if we are delaying interrupts using the timers */
1720 if (adapter
->tx_int_delay
)
1721 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1723 if (hw
->mac_type
< e1000_82543
)
1724 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1726 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1728 /* Cache if we're 82544 running in PCI-X because we'll
1729 * need this to apply a workaround later in the send path. */
1730 if (hw
->mac_type
== e1000_82544
&&
1731 hw
->bus_type
== e1000_bus_type_pcix
)
1732 adapter
->pcix_82544
= 1;
1734 E1000_WRITE_REG(hw
, TCTL
, tctl
);
1739 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1740 * @adapter: board private structure
1741 * @rxdr: rx descriptor ring (for a specific queue) to setup
1743 * Returns 0 on success, negative on failure
1747 e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1748 struct e1000_rx_ring
*rxdr
)
1750 struct pci_dev
*pdev
= adapter
->pdev
;
1753 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1754 rxdr
->buffer_info
= vmalloc(size
);
1755 if (!rxdr
->buffer_info
) {
1757 "Unable to allocate memory for the receive descriptor ring\n");
1760 memset(rxdr
->buffer_info
, 0, size
);
1762 size
= sizeof(struct e1000_ps_page
) * rxdr
->count
;
1763 rxdr
->ps_page
= kmalloc(size
, GFP_KERNEL
);
1764 if (!rxdr
->ps_page
) {
1765 vfree(rxdr
->buffer_info
);
1767 "Unable to allocate memory for the receive descriptor ring\n");
1770 memset(rxdr
->ps_page
, 0, size
);
1772 size
= sizeof(struct e1000_ps_page_dma
) * rxdr
->count
;
1773 rxdr
->ps_page_dma
= kmalloc(size
, GFP_KERNEL
);
1774 if (!rxdr
->ps_page_dma
) {
1775 vfree(rxdr
->buffer_info
);
1776 kfree(rxdr
->ps_page
);
1778 "Unable to allocate memory for the receive descriptor ring\n");
1781 memset(rxdr
->ps_page_dma
, 0, size
);
1783 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
)
1784 desc_len
= sizeof(struct e1000_rx_desc
);
1786 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1788 /* Round up to nearest 4K */
1790 rxdr
->size
= rxdr
->count
* desc_len
;
1791 E1000_ROUNDUP(rxdr
->size
, 4096);
1793 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1797 "Unable to allocate memory for the receive descriptor ring\n");
1799 vfree(rxdr
->buffer_info
);
1800 kfree(rxdr
->ps_page
);
1801 kfree(rxdr
->ps_page_dma
);
1805 /* Fix for errata 23, can't cross 64kB boundary */
1806 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1807 void *olddesc
= rxdr
->desc
;
1808 dma_addr_t olddma
= rxdr
->dma
;
1809 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1810 "at %p\n", rxdr
->size
, rxdr
->desc
);
1811 /* Try again, without freeing the previous */
1812 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1813 /* Failed allocation, critical failure */
1815 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1817 "Unable to allocate memory "
1818 "for the receive descriptor ring\n");
1819 goto setup_rx_desc_die
;
1822 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1824 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1826 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1828 "Unable to allocate aligned memory "
1829 "for the receive descriptor ring\n");
1830 goto setup_rx_desc_die
;
1832 /* Free old allocation, new allocation was successful */
1833 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1836 memset(rxdr
->desc
, 0, rxdr
->size
);
1838 rxdr
->next_to_clean
= 0;
1839 rxdr
->next_to_use
= 0;
1845 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1846 * (Descriptors) for all queues
1847 * @adapter: board private structure
1849 * Return 0 on success, negative on failure
1853 e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1857 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1858 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1861 "Allocation for Rx Queue %u failed\n", i
);
1862 for (i
-- ; i
>= 0; i
--)
1863 e1000_free_rx_resources(adapter
,
1864 &adapter
->rx_ring
[i
]);
1873 * e1000_setup_rctl - configure the receive control registers
1874 * @adapter: Board private structure
1876 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1877 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1879 e1000_setup_rctl(struct e1000_adapter
*adapter
)
1881 uint32_t rctl
, rfctl
;
1882 uint32_t psrctl
= 0;
1883 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1887 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1889 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1891 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1892 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1893 (adapter
->hw
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1895 if (adapter
->hw
.tbi_compatibility_on
== 1)
1896 rctl
|= E1000_RCTL_SBP
;
1898 rctl
&= ~E1000_RCTL_SBP
;
1900 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1901 rctl
&= ~E1000_RCTL_LPE
;
1903 rctl
|= E1000_RCTL_LPE
;
1905 /* Setup buffer sizes */
1906 rctl
&= ~E1000_RCTL_SZ_4096
;
1907 rctl
|= E1000_RCTL_BSEX
;
1908 switch (adapter
->rx_buffer_len
) {
1909 case E1000_RXBUFFER_256
:
1910 rctl
|= E1000_RCTL_SZ_256
;
1911 rctl
&= ~E1000_RCTL_BSEX
;
1913 case E1000_RXBUFFER_512
:
1914 rctl
|= E1000_RCTL_SZ_512
;
1915 rctl
&= ~E1000_RCTL_BSEX
;
1917 case E1000_RXBUFFER_1024
:
1918 rctl
|= E1000_RCTL_SZ_1024
;
1919 rctl
&= ~E1000_RCTL_BSEX
;
1921 case E1000_RXBUFFER_2048
:
1923 rctl
|= E1000_RCTL_SZ_2048
;
1924 rctl
&= ~E1000_RCTL_BSEX
;
1926 case E1000_RXBUFFER_4096
:
1927 rctl
|= E1000_RCTL_SZ_4096
;
1929 case E1000_RXBUFFER_8192
:
1930 rctl
|= E1000_RCTL_SZ_8192
;
1932 case E1000_RXBUFFER_16384
:
1933 rctl
|= E1000_RCTL_SZ_16384
;
1937 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1938 /* 82571 and greater support packet-split where the protocol
1939 * header is placed in skb->data and the packet data is
1940 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1941 * In the case of a non-split, skb->data is linearly filled,
1942 * followed by the page buffers. Therefore, skb->data is
1943 * sized to hold the largest protocol header.
1945 /* allocations using alloc_page take too long for regular MTU
1946 * so only enable packet split for jumbo frames */
1947 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
1948 if ((adapter
->hw
.mac_type
>= e1000_82571
) && (pages
<= 3) &&
1949 PAGE_SIZE
<= 16384 && (rctl
& E1000_RCTL_LPE
))
1950 adapter
->rx_ps_pages
= pages
;
1952 adapter
->rx_ps_pages
= 0;
1954 if (adapter
->rx_ps_pages
) {
1955 /* Configure extra packet-split registers */
1956 rfctl
= E1000_READ_REG(&adapter
->hw
, RFCTL
);
1957 rfctl
|= E1000_RFCTL_EXTEN
;
1958 /* disable packet split support for IPv6 extension headers,
1959 * because some malformed IPv6 headers can hang the RX */
1960 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
1961 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
1963 E1000_WRITE_REG(&adapter
->hw
, RFCTL
, rfctl
);
1965 rctl
|= E1000_RCTL_DTYP_PS
;
1967 psrctl
|= adapter
->rx_ps_bsize0
>>
1968 E1000_PSRCTL_BSIZE0_SHIFT
;
1970 switch (adapter
->rx_ps_pages
) {
1972 psrctl
|= PAGE_SIZE
<<
1973 E1000_PSRCTL_BSIZE3_SHIFT
;
1975 psrctl
|= PAGE_SIZE
<<
1976 E1000_PSRCTL_BSIZE2_SHIFT
;
1978 psrctl
|= PAGE_SIZE
>>
1979 E1000_PSRCTL_BSIZE1_SHIFT
;
1983 E1000_WRITE_REG(&adapter
->hw
, PSRCTL
, psrctl
);
1986 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1990 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1991 * @adapter: board private structure
1993 * Configure the Rx unit of the MAC after a reset.
1997 e1000_configure_rx(struct e1000_adapter
*adapter
)
2000 struct e1000_hw
*hw
= &adapter
->hw
;
2001 uint32_t rdlen
, rctl
, rxcsum
, ctrl_ext
;
2003 if (adapter
->rx_ps_pages
) {
2004 /* this is a 32 byte descriptor */
2005 rdlen
= adapter
->rx_ring
[0].count
*
2006 sizeof(union e1000_rx_desc_packet_split
);
2007 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2008 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2010 rdlen
= adapter
->rx_ring
[0].count
*
2011 sizeof(struct e1000_rx_desc
);
2012 adapter
->clean_rx
= e1000_clean_rx_irq
;
2013 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2016 /* disable receives while setting up the descriptors */
2017 rctl
= E1000_READ_REG(hw
, RCTL
);
2018 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
2020 /* set the Receive Delay Timer Register */
2021 E1000_WRITE_REG(hw
, RDTR
, adapter
->rx_int_delay
);
2023 if (hw
->mac_type
>= e1000_82540
) {
2024 E1000_WRITE_REG(hw
, RADV
, adapter
->rx_abs_int_delay
);
2025 if (adapter
->itr_setting
!= 0)
2026 E1000_WRITE_REG(hw
, ITR
,
2027 1000000000 / (adapter
->itr
* 256));
2030 if (hw
->mac_type
>= e1000_82571
) {
2031 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
2032 /* Reset delay timers after every interrupt */
2033 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
2034 #ifdef CONFIG_E1000_NAPI
2035 /* Auto-Mask interrupts upon ICR access */
2036 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2037 E1000_WRITE_REG(hw
, IAM
, 0xffffffff);
2039 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
2040 E1000_WRITE_FLUSH(hw
);
2043 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2044 * the Base and Length of the Rx Descriptor Ring */
2045 switch (adapter
->num_rx_queues
) {
2048 rdba
= adapter
->rx_ring
[0].dma
;
2049 E1000_WRITE_REG(hw
, RDLEN
, rdlen
);
2050 E1000_WRITE_REG(hw
, RDBAH
, (rdba
>> 32));
2051 E1000_WRITE_REG(hw
, RDBAL
, (rdba
& 0x00000000ffffffffULL
));
2052 E1000_WRITE_REG(hw
, RDT
, 0);
2053 E1000_WRITE_REG(hw
, RDH
, 0);
2054 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
2055 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
2059 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2060 if (hw
->mac_type
>= e1000_82543
) {
2061 rxcsum
= E1000_READ_REG(hw
, RXCSUM
);
2062 if (adapter
->rx_csum
== TRUE
) {
2063 rxcsum
|= E1000_RXCSUM_TUOFL
;
2065 /* Enable 82571 IPv4 payload checksum for UDP fragments
2066 * Must be used in conjunction with packet-split. */
2067 if ((hw
->mac_type
>= e1000_82571
) &&
2068 (adapter
->rx_ps_pages
)) {
2069 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2072 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2073 /* don't need to clear IPPCSE as it defaults to 0 */
2075 E1000_WRITE_REG(hw
, RXCSUM
, rxcsum
);
2078 /* enable early receives on 82573, only takes effect if using > 2048
2079 * byte total frame size. for example only for jumbo frames */
2080 #define E1000_ERT_2048 0x100
2081 if (hw
->mac_type
== e1000_82573
)
2082 E1000_WRITE_REG(hw
, ERT
, E1000_ERT_2048
);
2084 /* Enable Receives */
2085 E1000_WRITE_REG(hw
, RCTL
, rctl
);
2089 * e1000_free_tx_resources - Free Tx Resources per Queue
2090 * @adapter: board private structure
2091 * @tx_ring: Tx descriptor ring for a specific queue
2093 * Free all transmit software resources
2097 e1000_free_tx_resources(struct e1000_adapter
*adapter
,
2098 struct e1000_tx_ring
*tx_ring
)
2100 struct pci_dev
*pdev
= adapter
->pdev
;
2102 e1000_clean_tx_ring(adapter
, tx_ring
);
2104 vfree(tx_ring
->buffer_info
);
2105 tx_ring
->buffer_info
= NULL
;
2107 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
2109 tx_ring
->desc
= NULL
;
2113 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2114 * @adapter: board private structure
2116 * Free all transmit software resources
2120 e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
2124 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2125 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
2129 e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
2130 struct e1000_buffer
*buffer_info
)
2132 if (buffer_info
->dma
) {
2133 pci_unmap_page(adapter
->pdev
,
2135 buffer_info
->length
,
2137 buffer_info
->dma
= 0;
2139 if (buffer_info
->skb
) {
2140 dev_kfree_skb_any(buffer_info
->skb
);
2141 buffer_info
->skb
= NULL
;
2143 /* buffer_info must be completely set up in the transmit path */
2147 * e1000_clean_tx_ring - Free Tx Buffers
2148 * @adapter: board private structure
2149 * @tx_ring: ring to be cleaned
2153 e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
2154 struct e1000_tx_ring
*tx_ring
)
2156 struct e1000_buffer
*buffer_info
;
2160 /* Free all the Tx ring sk_buffs */
2162 for (i
= 0; i
< tx_ring
->count
; i
++) {
2163 buffer_info
= &tx_ring
->buffer_info
[i
];
2164 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2167 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2168 memset(tx_ring
->buffer_info
, 0, size
);
2170 /* Zero out the descriptor ring */
2172 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2174 tx_ring
->next_to_use
= 0;
2175 tx_ring
->next_to_clean
= 0;
2176 tx_ring
->last_tx_tso
= 0;
2178 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdh
);
2179 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
2183 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2184 * @adapter: board private structure
2188 e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2192 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2193 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2197 * e1000_free_rx_resources - Free Rx Resources
2198 * @adapter: board private structure
2199 * @rx_ring: ring to clean the resources from
2201 * Free all receive software resources
2205 e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2206 struct e1000_rx_ring
*rx_ring
)
2208 struct pci_dev
*pdev
= adapter
->pdev
;
2210 e1000_clean_rx_ring(adapter
, rx_ring
);
2212 vfree(rx_ring
->buffer_info
);
2213 rx_ring
->buffer_info
= NULL
;
2214 kfree(rx_ring
->ps_page
);
2215 rx_ring
->ps_page
= NULL
;
2216 kfree(rx_ring
->ps_page_dma
);
2217 rx_ring
->ps_page_dma
= NULL
;
2219 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2221 rx_ring
->desc
= NULL
;
2225 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2226 * @adapter: board private structure
2228 * Free all receive software resources
2232 e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2236 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2237 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2241 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2242 * @adapter: board private structure
2243 * @rx_ring: ring to free buffers from
2247 e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2248 struct e1000_rx_ring
*rx_ring
)
2250 struct e1000_buffer
*buffer_info
;
2251 struct e1000_ps_page
*ps_page
;
2252 struct e1000_ps_page_dma
*ps_page_dma
;
2253 struct pci_dev
*pdev
= adapter
->pdev
;
2257 /* Free all the Rx ring sk_buffs */
2258 for (i
= 0; i
< rx_ring
->count
; i
++) {
2259 buffer_info
= &rx_ring
->buffer_info
[i
];
2260 if (buffer_info
->skb
) {
2261 pci_unmap_single(pdev
,
2263 buffer_info
->length
,
2264 PCI_DMA_FROMDEVICE
);
2266 dev_kfree_skb(buffer_info
->skb
);
2267 buffer_info
->skb
= NULL
;
2269 ps_page
= &rx_ring
->ps_page
[i
];
2270 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
2271 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
2272 if (!ps_page
->ps_page
[j
]) break;
2273 pci_unmap_page(pdev
,
2274 ps_page_dma
->ps_page_dma
[j
],
2275 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2276 ps_page_dma
->ps_page_dma
[j
] = 0;
2277 put_page(ps_page
->ps_page
[j
]);
2278 ps_page
->ps_page
[j
] = NULL
;
2282 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2283 memset(rx_ring
->buffer_info
, 0, size
);
2284 size
= sizeof(struct e1000_ps_page
) * rx_ring
->count
;
2285 memset(rx_ring
->ps_page
, 0, size
);
2286 size
= sizeof(struct e1000_ps_page_dma
) * rx_ring
->count
;
2287 memset(rx_ring
->ps_page_dma
, 0, size
);
2289 /* Zero out the descriptor ring */
2291 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2293 rx_ring
->next_to_clean
= 0;
2294 rx_ring
->next_to_use
= 0;
2296 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdh
);
2297 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
2301 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2302 * @adapter: board private structure
2306 e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2310 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2311 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2314 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2315 * and memory write and invalidate disabled for certain operations
2318 e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2320 struct net_device
*netdev
= adapter
->netdev
;
2323 e1000_pci_clear_mwi(&adapter
->hw
);
2325 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2326 rctl
|= E1000_RCTL_RST
;
2327 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2328 E1000_WRITE_FLUSH(&adapter
->hw
);
2331 if (netif_running(netdev
))
2332 e1000_clean_all_rx_rings(adapter
);
2336 e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2338 struct net_device
*netdev
= adapter
->netdev
;
2341 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2342 rctl
&= ~E1000_RCTL_RST
;
2343 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2344 E1000_WRITE_FLUSH(&adapter
->hw
);
2347 if (adapter
->hw
.pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2348 e1000_pci_set_mwi(&adapter
->hw
);
2350 if (netif_running(netdev
)) {
2351 /* No need to loop, because 82542 supports only 1 queue */
2352 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2353 e1000_configure_rx(adapter
);
2354 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2359 * e1000_set_mac - Change the Ethernet Address of the NIC
2360 * @netdev: network interface device structure
2361 * @p: pointer to an address structure
2363 * Returns 0 on success, negative on failure
2367 e1000_set_mac(struct net_device
*netdev
, void *p
)
2369 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2370 struct sockaddr
*addr
= p
;
2372 if (!is_valid_ether_addr(addr
->sa_data
))
2373 return -EADDRNOTAVAIL
;
2375 /* 82542 2.0 needs to be in reset to write receive address registers */
2377 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2378 e1000_enter_82542_rst(adapter
);
2380 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2381 memcpy(adapter
->hw
.mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2383 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2385 /* With 82571 controllers, LAA may be overwritten (with the default)
2386 * due to controller reset from the other port. */
2387 if (adapter
->hw
.mac_type
== e1000_82571
) {
2388 /* activate the work around */
2389 adapter
->hw
.laa_is_present
= 1;
2391 /* Hold a copy of the LAA in RAR[14] This is done so that
2392 * between the time RAR[0] gets clobbered and the time it
2393 * gets fixed (in e1000_watchdog), the actual LAA is in one
2394 * of the RARs and no incoming packets directed to this port
2395 * are dropped. Eventaully the LAA will be in RAR[0] and
2397 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
,
2398 E1000_RAR_ENTRIES
- 1);
2401 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2402 e1000_leave_82542_rst(adapter
);
2408 * e1000_set_multi - Multicast and Promiscuous mode set
2409 * @netdev: network interface device structure
2411 * The set_multi entry point is called whenever the multicast address
2412 * list or the network interface flags are updated. This routine is
2413 * responsible for configuring the hardware for proper multicast,
2414 * promiscuous mode, and all-multi behavior.
2418 e1000_set_multi(struct net_device
*netdev
)
2420 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2421 struct e1000_hw
*hw
= &adapter
->hw
;
2422 struct dev_mc_list
*mc_ptr
;
2424 uint32_t hash_value
;
2425 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2426 int mta_reg_count
= (hw
->mac_type
== e1000_ich8lan
) ?
2427 E1000_NUM_MTA_REGISTERS_ICH8LAN
:
2428 E1000_NUM_MTA_REGISTERS
;
2430 if (adapter
->hw
.mac_type
== e1000_ich8lan
)
2431 rar_entries
= E1000_RAR_ENTRIES_ICH8LAN
;
2433 /* reserve RAR[14] for LAA over-write work-around */
2434 if (adapter
->hw
.mac_type
== e1000_82571
)
2437 /* Check for Promiscuous and All Multicast modes */
2439 rctl
= E1000_READ_REG(hw
, RCTL
);
2441 if (netdev
->flags
& IFF_PROMISC
) {
2442 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2443 } else if (netdev
->flags
& IFF_ALLMULTI
) {
2444 rctl
|= E1000_RCTL_MPE
;
2445 rctl
&= ~E1000_RCTL_UPE
;
2447 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2450 E1000_WRITE_REG(hw
, RCTL
, rctl
);
2452 /* 82542 2.0 needs to be in reset to write receive address registers */
2454 if (hw
->mac_type
== e1000_82542_rev2_0
)
2455 e1000_enter_82542_rst(adapter
);
2457 /* load the first 14 multicast address into the exact filters 1-14
2458 * RAR 0 is used for the station MAC adddress
2459 * if there are not 14 addresses, go ahead and clear the filters
2460 * -- with 82571 controllers only 0-13 entries are filled here
2462 mc_ptr
= netdev
->mc_list
;
2464 for (i
= 1; i
< rar_entries
; i
++) {
2466 e1000_rar_set(hw
, mc_ptr
->dmi_addr
, i
);
2467 mc_ptr
= mc_ptr
->next
;
2469 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2470 E1000_WRITE_FLUSH(hw
);
2471 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2472 E1000_WRITE_FLUSH(hw
);
2476 /* clear the old settings from the multicast hash table */
2478 for (i
= 0; i
< mta_reg_count
; i
++) {
2479 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
2480 E1000_WRITE_FLUSH(hw
);
2483 /* load any remaining addresses into the hash table */
2485 for (; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2486 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->dmi_addr
);
2487 e1000_mta_set(hw
, hash_value
);
2490 if (hw
->mac_type
== e1000_82542_rev2_0
)
2491 e1000_leave_82542_rst(adapter
);
2494 /* Need to wait a few seconds after link up to get diagnostic information from
2498 e1000_update_phy_info(unsigned long data
)
2500 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2501 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
2505 * e1000_82547_tx_fifo_stall - Timer Call-back
2506 * @data: pointer to adapter cast into an unsigned long
2510 e1000_82547_tx_fifo_stall(unsigned long data
)
2512 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2513 struct net_device
*netdev
= adapter
->netdev
;
2516 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2517 if ((E1000_READ_REG(&adapter
->hw
, TDT
) ==
2518 E1000_READ_REG(&adapter
->hw
, TDH
)) &&
2519 (E1000_READ_REG(&adapter
->hw
, TDFT
) ==
2520 E1000_READ_REG(&adapter
->hw
, TDFH
)) &&
2521 (E1000_READ_REG(&adapter
->hw
, TDFTS
) ==
2522 E1000_READ_REG(&adapter
->hw
, TDFHS
))) {
2523 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2524 E1000_WRITE_REG(&adapter
->hw
, TCTL
,
2525 tctl
& ~E1000_TCTL_EN
);
2526 E1000_WRITE_REG(&adapter
->hw
, TDFT
,
2527 adapter
->tx_head_addr
);
2528 E1000_WRITE_REG(&adapter
->hw
, TDFH
,
2529 adapter
->tx_head_addr
);
2530 E1000_WRITE_REG(&adapter
->hw
, TDFTS
,
2531 adapter
->tx_head_addr
);
2532 E1000_WRITE_REG(&adapter
->hw
, TDFHS
,
2533 adapter
->tx_head_addr
);
2534 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2535 E1000_WRITE_FLUSH(&adapter
->hw
);
2537 adapter
->tx_fifo_head
= 0;
2538 atomic_set(&adapter
->tx_fifo_stall
, 0);
2539 netif_wake_queue(netdev
);
2541 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2547 * e1000_watchdog - Timer Call-back
2548 * @data: pointer to adapter cast into an unsigned long
2551 e1000_watchdog(unsigned long data
)
2553 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2554 struct net_device
*netdev
= adapter
->netdev
;
2555 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2556 uint32_t link
, tctl
;
2559 ret_val
= e1000_check_for_link(&adapter
->hw
);
2560 if ((ret_val
== E1000_ERR_PHY
) &&
2561 (adapter
->hw
.phy_type
== e1000_phy_igp_3
) &&
2562 (E1000_READ_REG(&adapter
->hw
, CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
2563 /* See e1000_kumeran_lock_loss_workaround() */
2565 "Gigabit has been disabled, downgrading speed\n");
2568 if (adapter
->hw
.mac_type
== e1000_82573
) {
2569 e1000_enable_tx_pkt_filtering(&adapter
->hw
);
2570 if (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
)
2571 e1000_update_mng_vlan(adapter
);
2574 if ((adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) &&
2575 !(E1000_READ_REG(&adapter
->hw
, TXCW
) & E1000_TXCW_ANE
))
2576 link
= !adapter
->hw
.serdes_link_down
;
2578 link
= E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
;
2581 if (!netif_carrier_ok(netdev
)) {
2583 boolean_t txb2b
= 1;
2584 e1000_get_speed_and_duplex(&adapter
->hw
,
2585 &adapter
->link_speed
,
2586 &adapter
->link_duplex
);
2588 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
2589 DPRINTK(LINK
, INFO
, "NIC Link is Up %d Mbps %s, "
2590 "Flow Control: %s\n",
2591 adapter
->link_speed
,
2592 adapter
->link_duplex
== FULL_DUPLEX
?
2593 "Full Duplex" : "Half Duplex",
2594 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2595 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2596 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2597 E1000_CTRL_TFCE
) ? "TX" : "None" )));
2599 /* tweak tx_queue_len according to speed/duplex
2600 * and adjust the timeout factor */
2601 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2602 adapter
->tx_timeout_factor
= 1;
2603 switch (adapter
->link_speed
) {
2606 netdev
->tx_queue_len
= 10;
2607 adapter
->tx_timeout_factor
= 8;
2611 netdev
->tx_queue_len
= 100;
2612 /* maybe add some timeout factor ? */
2616 if ((adapter
->hw
.mac_type
== e1000_82571
||
2617 adapter
->hw
.mac_type
== e1000_82572
) &&
2620 tarc0
= E1000_READ_REG(&adapter
->hw
, TARC0
);
2621 tarc0
&= ~(1 << 21);
2622 E1000_WRITE_REG(&adapter
->hw
, TARC0
, tarc0
);
2625 /* disable TSO for pcie and 10/100 speeds, to avoid
2626 * some hardware issues */
2627 if (!adapter
->tso_force
&&
2628 adapter
->hw
.bus_type
== e1000_bus_type_pci_express
){
2629 switch (adapter
->link_speed
) {
2633 "10/100 speed: disabling TSO\n");
2634 netdev
->features
&= ~NETIF_F_TSO
;
2635 netdev
->features
&= ~NETIF_F_TSO6
;
2638 netdev
->features
|= NETIF_F_TSO
;
2639 netdev
->features
|= NETIF_F_TSO6
;
2647 /* enable transmits in the hardware, need to do this
2648 * after setting TARC0 */
2649 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2650 tctl
|= E1000_TCTL_EN
;
2651 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2653 netif_carrier_on(netdev
);
2654 netif_wake_queue(netdev
);
2655 mod_timer(&adapter
->phy_info_timer
, jiffies
+ 2 * HZ
);
2656 adapter
->smartspeed
= 0;
2658 /* make sure the receive unit is started */
2659 if (adapter
->hw
.rx_needs_kicking
) {
2660 struct e1000_hw
*hw
= &adapter
->hw
;
2661 uint32_t rctl
= E1000_READ_REG(hw
, RCTL
);
2662 E1000_WRITE_REG(hw
, RCTL
, rctl
| E1000_RCTL_EN
);
2666 if (netif_carrier_ok(netdev
)) {
2667 adapter
->link_speed
= 0;
2668 adapter
->link_duplex
= 0;
2669 DPRINTK(LINK
, INFO
, "NIC Link is Down\n");
2670 netif_carrier_off(netdev
);
2671 netif_stop_queue(netdev
);
2672 mod_timer(&adapter
->phy_info_timer
, jiffies
+ 2 * HZ
);
2674 /* 80003ES2LAN workaround--
2675 * For packet buffer work-around on link down event;
2676 * disable receives in the ISR and
2677 * reset device here in the watchdog
2679 if (adapter
->hw
.mac_type
== e1000_80003es2lan
)
2681 schedule_work(&adapter
->reset_task
);
2684 e1000_smartspeed(adapter
);
2687 e1000_update_stats(adapter
);
2689 adapter
->hw
.tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2690 adapter
->tpt_old
= adapter
->stats
.tpt
;
2691 adapter
->hw
.collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2692 adapter
->colc_old
= adapter
->stats
.colc
;
2694 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2695 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2696 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2697 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2699 e1000_update_adaptive(&adapter
->hw
);
2701 if (!netif_carrier_ok(netdev
)) {
2702 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2703 /* We've lost link, so the controller stops DMA,
2704 * but we've got queued Tx work that's never going
2705 * to get done, so reset controller to flush Tx.
2706 * (Do the reset outside of interrupt context). */
2707 adapter
->tx_timeout_count
++;
2708 schedule_work(&adapter
->reset_task
);
2712 /* Cause software interrupt to ensure rx ring is cleaned */
2713 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_RXDMT0
);
2715 /* Force detection of hung controller every watchdog period */
2716 adapter
->detect_tx_hung
= TRUE
;
2718 /* With 82571 controllers, LAA may be overwritten due to controller
2719 * reset from the other port. Set the appropriate LAA in RAR[0] */
2720 if (adapter
->hw
.mac_type
== e1000_82571
&& adapter
->hw
.laa_is_present
)
2721 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2723 /* Reset the timer */
2724 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 2 * HZ
);
2727 enum latency_range
{
2731 latency_invalid
= 255
2735 * e1000_update_itr - update the dynamic ITR value based on statistics
2736 * Stores a new ITR value based on packets and byte
2737 * counts during the last interrupt. The advantage of per interrupt
2738 * computation is faster updates and more accurate ITR for the current
2739 * traffic pattern. Constants in this function were computed
2740 * based on theoretical maximum wire speed and thresholds were set based
2741 * on testing data as well as attempting to minimize response time
2742 * while increasing bulk throughput.
2743 * this functionality is controlled by the InterruptThrottleRate module
2744 * parameter (see e1000_param.c)
2745 * @adapter: pointer to adapter
2746 * @itr_setting: current adapter->itr
2747 * @packets: the number of packets during this measurement interval
2748 * @bytes: the number of bytes during this measurement interval
2750 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2751 uint16_t itr_setting
,
2755 unsigned int retval
= itr_setting
;
2756 struct e1000_hw
*hw
= &adapter
->hw
;
2758 if (unlikely(hw
->mac_type
< e1000_82540
))
2759 goto update_itr_done
;
2762 goto update_itr_done
;
2764 switch (itr_setting
) {
2765 case lowest_latency
:
2766 /* jumbo frames get bulk treatment*/
2767 if (bytes
/packets
> 8000)
2768 retval
= bulk_latency
;
2769 else if ((packets
< 5) && (bytes
> 512))
2770 retval
= low_latency
;
2772 case low_latency
: /* 50 usec aka 20000 ints/s */
2773 if (bytes
> 10000) {
2774 /* jumbo frames need bulk latency setting */
2775 if (bytes
/packets
> 8000)
2776 retval
= bulk_latency
;
2777 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2778 retval
= bulk_latency
;
2779 else if ((packets
> 35))
2780 retval
= lowest_latency
;
2781 } else if (bytes
/packets
> 2000)
2782 retval
= bulk_latency
;
2783 else if (packets
<= 2 && bytes
< 512)
2784 retval
= lowest_latency
;
2786 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2787 if (bytes
> 25000) {
2789 retval
= low_latency
;
2790 } else if (bytes
< 6000) {
2791 retval
= low_latency
;
2800 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2802 struct e1000_hw
*hw
= &adapter
->hw
;
2803 uint16_t current_itr
;
2804 uint32_t new_itr
= adapter
->itr
;
2806 if (unlikely(hw
->mac_type
< e1000_82540
))
2809 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2810 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2816 adapter
->tx_itr
= e1000_update_itr(adapter
,
2818 adapter
->total_tx_packets
,
2819 adapter
->total_tx_bytes
);
2820 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2821 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2822 adapter
->tx_itr
= low_latency
;
2824 adapter
->rx_itr
= e1000_update_itr(adapter
,
2826 adapter
->total_rx_packets
,
2827 adapter
->total_rx_bytes
);
2828 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2829 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2830 adapter
->rx_itr
= low_latency
;
2832 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2834 switch (current_itr
) {
2835 /* counts and packets in update_itr are dependent on these numbers */
2836 case lowest_latency
:
2840 new_itr
= 20000; /* aka hwitr = ~200 */
2850 if (new_itr
!= adapter
->itr
) {
2851 /* this attempts to bias the interrupt rate towards Bulk
2852 * by adding intermediate steps when interrupt rate is
2854 new_itr
= new_itr
> adapter
->itr
?
2855 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2857 adapter
->itr
= new_itr
;
2858 E1000_WRITE_REG(hw
, ITR
, 1000000000 / (new_itr
* 256));
2864 #define E1000_TX_FLAGS_CSUM 0x00000001
2865 #define E1000_TX_FLAGS_VLAN 0x00000002
2866 #define E1000_TX_FLAGS_TSO 0x00000004
2867 #define E1000_TX_FLAGS_IPV4 0x00000008
2868 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2869 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2872 e1000_tso(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2873 struct sk_buff
*skb
)
2875 struct e1000_context_desc
*context_desc
;
2876 struct e1000_buffer
*buffer_info
;
2878 uint32_t cmd_length
= 0;
2879 uint16_t ipcse
= 0, tucse
, mss
;
2880 uint8_t ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2883 if (skb_is_gso(skb
)) {
2884 if (skb_header_cloned(skb
)) {
2885 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2890 hdr_len
= ((skb
->h
.raw
- skb
->data
) + (skb
->h
.th
->doff
<< 2));
2891 mss
= skb_shinfo(skb
)->gso_size
;
2892 if (skb
->protocol
== htons(ETH_P_IP
)) {
2893 skb
->nh
.iph
->tot_len
= 0;
2894 skb
->nh
.iph
->check
= 0;
2896 ~csum_tcpudp_magic(skb
->nh
.iph
->saddr
,
2901 cmd_length
= E1000_TXD_CMD_IP
;
2902 ipcse
= skb
->h
.raw
- skb
->data
- 1;
2903 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2904 skb
->nh
.ipv6h
->payload_len
= 0;
2906 ~csum_ipv6_magic(&skb
->nh
.ipv6h
->saddr
,
2907 &skb
->nh
.ipv6h
->daddr
,
2913 ipcss
= skb
->nh
.raw
- skb
->data
;
2914 ipcso
= (void *)&(skb
->nh
.iph
->check
) - (void *)skb
->data
;
2915 tucss
= skb
->h
.raw
- skb
->data
;
2916 tucso
= (void *)&(skb
->h
.th
->check
) - (void *)skb
->data
;
2919 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2920 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2922 i
= tx_ring
->next_to_use
;
2923 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2924 buffer_info
= &tx_ring
->buffer_info
[i
];
2926 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2927 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2928 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2929 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2930 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2931 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2932 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2933 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2934 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2936 buffer_info
->time_stamp
= jiffies
;
2937 buffer_info
->next_to_watch
= i
;
2939 if (++i
== tx_ring
->count
) i
= 0;
2940 tx_ring
->next_to_use
= i
;
2948 e1000_tx_csum(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2949 struct sk_buff
*skb
)
2951 struct e1000_context_desc
*context_desc
;
2952 struct e1000_buffer
*buffer_info
;
2956 if (likely(skb
->ip_summed
== CHECKSUM_PARTIAL
)) {
2957 css
= skb
->h
.raw
- skb
->data
;
2959 i
= tx_ring
->next_to_use
;
2960 buffer_info
= &tx_ring
->buffer_info
[i
];
2961 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2963 context_desc
->lower_setup
.ip_config
= 0;
2964 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2965 context_desc
->upper_setup
.tcp_fields
.tucso
= css
+ skb
->csum
;
2966 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2967 context_desc
->tcp_seg_setup
.data
= 0;
2968 context_desc
->cmd_and_length
= cpu_to_le32(E1000_TXD_CMD_DEXT
);
2970 buffer_info
->time_stamp
= jiffies
;
2971 buffer_info
->next_to_watch
= i
;
2973 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2974 tx_ring
->next_to_use
= i
;
2982 #define E1000_MAX_TXD_PWR 12
2983 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2986 e1000_tx_map(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2987 struct sk_buff
*skb
, unsigned int first
, unsigned int max_per_txd
,
2988 unsigned int nr_frags
, unsigned int mss
)
2990 struct e1000_buffer
*buffer_info
;
2991 unsigned int len
= skb
->len
;
2992 unsigned int offset
= 0, size
, count
= 0, i
;
2994 len
-= skb
->data_len
;
2996 i
= tx_ring
->next_to_use
;
2999 buffer_info
= &tx_ring
->buffer_info
[i
];
3000 size
= min(len
, max_per_txd
);
3001 /* Workaround for Controller erratum --
3002 * descriptor for non-tso packet in a linear SKB that follows a
3003 * tso gets written back prematurely before the data is fully
3004 * DMA'd to the controller */
3005 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
3007 tx_ring
->last_tx_tso
= 0;
3011 /* Workaround for premature desc write-backs
3012 * in TSO mode. Append 4-byte sentinel desc */
3013 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
3015 /* work-around for errata 10 and it applies
3016 * to all controllers in PCI-X mode
3017 * The fix is to make sure that the first descriptor of a
3018 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3020 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
3021 (size
> 2015) && count
== 0))
3024 /* Workaround for potential 82544 hang in PCI-X. Avoid
3025 * terminating buffers within evenly-aligned dwords. */
3026 if (unlikely(adapter
->pcix_82544
&&
3027 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
3031 buffer_info
->length
= size
;
3033 pci_map_single(adapter
->pdev
,
3037 buffer_info
->time_stamp
= jiffies
;
3038 buffer_info
->next_to_watch
= i
;
3043 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3046 for (f
= 0; f
< nr_frags
; f
++) {
3047 struct skb_frag_struct
*frag
;
3049 frag
= &skb_shinfo(skb
)->frags
[f
];
3051 offset
= frag
->page_offset
;
3054 buffer_info
= &tx_ring
->buffer_info
[i
];
3055 size
= min(len
, max_per_txd
);
3056 /* Workaround for premature desc write-backs
3057 * in TSO mode. Append 4-byte sentinel desc */
3058 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
3060 /* Workaround for potential 82544 hang in PCI-X.
3061 * Avoid terminating buffers within evenly-aligned
3063 if (unlikely(adapter
->pcix_82544
&&
3064 !((unsigned long)(frag
->page
+offset
+size
-1) & 4) &&
3068 buffer_info
->length
= size
;
3070 pci_map_page(adapter
->pdev
,
3075 buffer_info
->time_stamp
= jiffies
;
3076 buffer_info
->next_to_watch
= i
;
3081 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3085 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
3086 tx_ring
->buffer_info
[i
].skb
= skb
;
3087 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3093 e1000_tx_queue(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
3094 int tx_flags
, int count
)
3096 struct e1000_tx_desc
*tx_desc
= NULL
;
3097 struct e1000_buffer
*buffer_info
;
3098 uint32_t txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3101 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
3102 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3104 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3106 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
3107 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3110 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
3111 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3112 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3115 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
3116 txd_lower
|= E1000_TXD_CMD_VLE
;
3117 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3120 i
= tx_ring
->next_to_use
;
3123 buffer_info
= &tx_ring
->buffer_info
[i
];
3124 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3125 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3126 tx_desc
->lower
.data
=
3127 cpu_to_le32(txd_lower
| buffer_info
->length
);
3128 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3129 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3132 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3134 /* Force memory writes to complete before letting h/w
3135 * know there are new descriptors to fetch. (Only
3136 * applicable for weak-ordered memory model archs,
3137 * such as IA-64). */
3140 tx_ring
->next_to_use
= i
;
3141 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
3142 /* we need this if more than one processor can write to our tail
3143 * at a time, it syncronizes IO on IA64/Altix systems */
3148 * 82547 workaround to avoid controller hang in half-duplex environment.
3149 * The workaround is to avoid queuing a large packet that would span
3150 * the internal Tx FIFO ring boundary by notifying the stack to resend
3151 * the packet at a later time. This gives the Tx FIFO an opportunity to
3152 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3153 * to the beginning of the Tx FIFO.
3156 #define E1000_FIFO_HDR 0x10
3157 #define E1000_82547_PAD_LEN 0x3E0
3160 e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3162 uint32_t fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
3163 uint32_t skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
3165 E1000_ROUNDUP(skb_fifo_len
, E1000_FIFO_HDR
);
3167 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3168 goto no_fifo_stall_required
;
3170 if (atomic_read(&adapter
->tx_fifo_stall
))
3173 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3174 atomic_set(&adapter
->tx_fifo_stall
, 1);
3178 no_fifo_stall_required
:
3179 adapter
->tx_fifo_head
+= skb_fifo_len
;
3180 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3181 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3185 #define MINIMUM_DHCP_PACKET_SIZE 282
3187 e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3189 struct e1000_hw
*hw
= &adapter
->hw
;
3190 uint16_t length
, offset
;
3191 if (vlan_tx_tag_present(skb
)) {
3192 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
3193 ( adapter
->hw
.mng_cookie
.status
&
3194 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) )
3197 if (skb
->len
> MINIMUM_DHCP_PACKET_SIZE
) {
3198 struct ethhdr
*eth
= (struct ethhdr
*) skb
->data
;
3199 if ((htons(ETH_P_IP
) == eth
->h_proto
)) {
3200 const struct iphdr
*ip
=
3201 (struct iphdr
*)((uint8_t *)skb
->data
+14);
3202 if (IPPROTO_UDP
== ip
->protocol
) {
3203 struct udphdr
*udp
=
3204 (struct udphdr
*)((uint8_t *)ip
+
3206 if (ntohs(udp
->dest
) == 67) {
3207 offset
= (uint8_t *)udp
+ 8 - skb
->data
;
3208 length
= skb
->len
- offset
;
3210 return e1000_mng_write_dhcp_info(hw
,
3220 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3222 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3223 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3225 netif_stop_queue(netdev
);
3226 /* Herbert's original patch had:
3227 * smp_mb__after_netif_stop_queue();
3228 * but since that doesn't exist yet, just open code it. */
3231 /* We need to check again in a case another CPU has just
3232 * made room available. */
3233 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3237 netif_start_queue(netdev
);
3238 ++adapter
->restart_queue
;
3242 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3243 struct e1000_tx_ring
*tx_ring
, int size
)
3245 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3247 return __e1000_maybe_stop_tx(netdev
, size
);
3250 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3252 e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
3254 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3255 struct e1000_tx_ring
*tx_ring
;
3256 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3257 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3258 unsigned int tx_flags
= 0;
3259 unsigned int len
= skb
->len
;
3260 unsigned long flags
;
3261 unsigned int nr_frags
= 0;
3262 unsigned int mss
= 0;
3266 len
-= skb
->data_len
;
3268 /* This goes back to the question of how to logically map a tx queue
3269 * to a flow. Right now, performance is impacted slightly negatively
3270 * if using multiple tx queues. If the stack breaks away from a
3271 * single qdisc implementation, we can look at this again. */
3272 tx_ring
= adapter
->tx_ring
;
3274 if (unlikely(skb
->len
<= 0)) {
3275 dev_kfree_skb_any(skb
);
3276 return NETDEV_TX_OK
;
3279 /* 82571 and newer doesn't need the workaround that limited descriptor
3281 if (adapter
->hw
.mac_type
>= e1000_82571
)
3284 mss
= skb_shinfo(skb
)->gso_size
;
3285 /* The controller does a simple calculation to
3286 * make sure there is enough room in the FIFO before
3287 * initiating the DMA for each buffer. The calc is:
3288 * 4 = ceil(buffer len/mss). To make sure we don't
3289 * overrun the FIFO, adjust the max buffer len if mss
3293 max_per_txd
= min(mss
<< 2, max_per_txd
);
3294 max_txd_pwr
= fls(max_per_txd
) - 1;
3296 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3297 * points to just header, pull a few bytes of payload from
3298 * frags into skb->data */
3299 hdr_len
= ((skb
->h
.raw
- skb
->data
) + (skb
->h
.th
->doff
<< 2));
3300 if (skb
->data_len
&& (hdr_len
== (skb
->len
- skb
->data_len
))) {
3301 switch (adapter
->hw
.mac_type
) {
3302 unsigned int pull_size
;
3304 /* Make sure we have room to chop off 4 bytes,
3305 * and that the end alignment will work out to
3306 * this hardware's requirements
3307 * NOTE: this is a TSO only workaround
3308 * if end byte alignment not correct move us
3309 * into the next dword */
3310 if ((unsigned long)(skb
->tail
- 1) & 4)
3317 pull_size
= min((unsigned int)4, skb
->data_len
);
3318 if (!__pskb_pull_tail(skb
, pull_size
)) {
3320 "__pskb_pull_tail failed.\n");
3321 dev_kfree_skb_any(skb
);
3322 return NETDEV_TX_OK
;
3324 len
= skb
->len
- skb
->data_len
;
3333 /* reserve a descriptor for the offload context */
3334 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3338 /* Controller Erratum workaround */
3339 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3342 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3344 if (adapter
->pcix_82544
)
3347 /* work-around for errata 10 and it applies to all controllers
3348 * in PCI-X mode, so add one more descriptor to the count
3350 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
3354 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3355 for (f
= 0; f
< nr_frags
; f
++)
3356 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3358 if (adapter
->pcix_82544
)
3362 if (adapter
->hw
.tx_pkt_filtering
&&
3363 (adapter
->hw
.mac_type
== e1000_82573
))
3364 e1000_transfer_dhcp_info(adapter
, skb
);
3366 local_irq_save(flags
);
3367 if (!spin_trylock(&tx_ring
->tx_lock
)) {
3368 /* Collision - tell upper layer to requeue */
3369 local_irq_restore(flags
);
3370 return NETDEV_TX_LOCKED
;
3373 /* need: count + 2 desc gap to keep tail from touching
3374 * head, otherwise try next time */
3375 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2))) {
3376 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3377 return NETDEV_TX_BUSY
;
3380 if (unlikely(adapter
->hw
.mac_type
== e1000_82547
)) {
3381 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3382 netif_stop_queue(netdev
);
3383 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
3384 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3385 return NETDEV_TX_BUSY
;
3389 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
3390 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3391 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3394 first
= tx_ring
->next_to_use
;
3396 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3398 dev_kfree_skb_any(skb
);
3399 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3400 return NETDEV_TX_OK
;
3404 tx_ring
->last_tx_tso
= 1;
3405 tx_flags
|= E1000_TX_FLAGS_TSO
;
3406 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3407 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3409 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3410 * 82571 hardware supports TSO capabilities for IPv6 as well...
3411 * no longer assume, we must. */
3412 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3413 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3415 e1000_tx_queue(adapter
, tx_ring
, tx_flags
,
3416 e1000_tx_map(adapter
, tx_ring
, skb
, first
,
3417 max_per_txd
, nr_frags
, mss
));
3419 netdev
->trans_start
= jiffies
;
3421 /* Make sure there is space in the ring for the next send. */
3422 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3424 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3425 return NETDEV_TX_OK
;
3429 * e1000_tx_timeout - Respond to a Tx Hang
3430 * @netdev: network interface device structure
3434 e1000_tx_timeout(struct net_device
*netdev
)
3436 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3438 /* Do the reset outside of interrupt context */
3439 adapter
->tx_timeout_count
++;
3440 schedule_work(&adapter
->reset_task
);
3444 e1000_reset_task(struct work_struct
*work
)
3446 struct e1000_adapter
*adapter
=
3447 container_of(work
, struct e1000_adapter
, reset_task
);
3449 e1000_reinit_locked(adapter
);
3453 * e1000_get_stats - Get System Network Statistics
3454 * @netdev: network interface device structure
3456 * Returns the address of the device statistics structure.
3457 * The statistics are actually updated from the timer callback.
3460 static struct net_device_stats
*
3461 e1000_get_stats(struct net_device
*netdev
)
3463 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3465 /* only return the current stats */
3466 return &adapter
->net_stats
;
3470 * e1000_change_mtu - Change the Maximum Transfer Unit
3471 * @netdev: network interface device structure
3472 * @new_mtu: new value for maximum frame size
3474 * Returns 0 on success, negative on failure
3478 e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3480 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3481 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3482 uint16_t eeprom_data
= 0;
3484 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3485 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3486 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
3490 /* Adapter-specific max frame size limits. */
3491 switch (adapter
->hw
.mac_type
) {
3492 case e1000_undefined
... e1000_82542_rev2_1
:
3494 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3495 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported.\n");
3500 /* Jumbo Frames not supported if:
3501 * - this is not an 82573L device
3502 * - ASPM is enabled in any way (0x1A bits 3:2) */
3503 e1000_read_eeprom(&adapter
->hw
, EEPROM_INIT_3GIO_3
, 1,
3505 if ((adapter
->hw
.device_id
!= E1000_DEV_ID_82573L
) ||
3506 (eeprom_data
& EEPROM_WORD1A_ASPM_MASK
)) {
3507 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3509 "Jumbo Frames not supported.\n");
3514 /* ERT will be enabled later to enable wire speed receives */
3516 /* fall through to get support */
3519 case e1000_80003es2lan
:
3520 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3521 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3522 DPRINTK(PROBE
, ERR
, "MTU > 9216 not supported.\n");
3527 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3531 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3532 * means we reserve 2 more, this pushes us to allocate from the next
3534 * i.e. RXBUFFER_2048 --> size-4096 slab */
3536 if (max_frame
<= E1000_RXBUFFER_256
)
3537 adapter
->rx_buffer_len
= E1000_RXBUFFER_256
;
3538 else if (max_frame
<= E1000_RXBUFFER_512
)
3539 adapter
->rx_buffer_len
= E1000_RXBUFFER_512
;
3540 else if (max_frame
<= E1000_RXBUFFER_1024
)
3541 adapter
->rx_buffer_len
= E1000_RXBUFFER_1024
;
3542 else if (max_frame
<= E1000_RXBUFFER_2048
)
3543 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3544 else if (max_frame
<= E1000_RXBUFFER_4096
)
3545 adapter
->rx_buffer_len
= E1000_RXBUFFER_4096
;
3546 else if (max_frame
<= E1000_RXBUFFER_8192
)
3547 adapter
->rx_buffer_len
= E1000_RXBUFFER_8192
;
3548 else if (max_frame
<= E1000_RXBUFFER_16384
)
3549 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3551 /* adjust allocation if LPE protects us, and we aren't using SBP */
3552 if (!adapter
->hw
.tbi_compatibility_on
&&
3553 ((max_frame
== MAXIMUM_ETHERNET_FRAME_SIZE
) ||
3554 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3555 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3557 netdev
->mtu
= new_mtu
;
3558 adapter
->hw
.max_frame_size
= max_frame
;
3560 if (netif_running(netdev
))
3561 e1000_reinit_locked(adapter
);
3567 * e1000_update_stats - Update the board statistics counters
3568 * @adapter: board private structure
3572 e1000_update_stats(struct e1000_adapter
*adapter
)
3574 struct e1000_hw
*hw
= &adapter
->hw
;
3575 struct pci_dev
*pdev
= adapter
->pdev
;
3576 unsigned long flags
;
3579 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3582 * Prevent stats update while adapter is being reset, or if the pci
3583 * connection is down.
3585 if (adapter
->link_speed
== 0)
3587 if (pci_channel_offline(pdev
))
3590 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3592 /* these counters are modified from e1000_adjust_tbi_stats,
3593 * called from the interrupt context, so they must only
3594 * be written while holding adapter->stats_lock
3597 adapter
->stats
.crcerrs
+= E1000_READ_REG(hw
, CRCERRS
);
3598 adapter
->stats
.gprc
+= E1000_READ_REG(hw
, GPRC
);
3599 adapter
->stats
.gorcl
+= E1000_READ_REG(hw
, GORCL
);
3600 adapter
->stats
.gorch
+= E1000_READ_REG(hw
, GORCH
);
3601 adapter
->stats
.bprc
+= E1000_READ_REG(hw
, BPRC
);
3602 adapter
->stats
.mprc
+= E1000_READ_REG(hw
, MPRC
);
3603 adapter
->stats
.roc
+= E1000_READ_REG(hw
, ROC
);
3605 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3606 adapter
->stats
.prc64
+= E1000_READ_REG(hw
, PRC64
);
3607 adapter
->stats
.prc127
+= E1000_READ_REG(hw
, PRC127
);
3608 adapter
->stats
.prc255
+= E1000_READ_REG(hw
, PRC255
);
3609 adapter
->stats
.prc511
+= E1000_READ_REG(hw
, PRC511
);
3610 adapter
->stats
.prc1023
+= E1000_READ_REG(hw
, PRC1023
);
3611 adapter
->stats
.prc1522
+= E1000_READ_REG(hw
, PRC1522
);
3614 adapter
->stats
.symerrs
+= E1000_READ_REG(hw
, SYMERRS
);
3615 adapter
->stats
.mpc
+= E1000_READ_REG(hw
, MPC
);
3616 adapter
->stats
.scc
+= E1000_READ_REG(hw
, SCC
);
3617 adapter
->stats
.ecol
+= E1000_READ_REG(hw
, ECOL
);
3618 adapter
->stats
.mcc
+= E1000_READ_REG(hw
, MCC
);
3619 adapter
->stats
.latecol
+= E1000_READ_REG(hw
, LATECOL
);
3620 adapter
->stats
.dc
+= E1000_READ_REG(hw
, DC
);
3621 adapter
->stats
.sec
+= E1000_READ_REG(hw
, SEC
);
3622 adapter
->stats
.rlec
+= E1000_READ_REG(hw
, RLEC
);
3623 adapter
->stats
.xonrxc
+= E1000_READ_REG(hw
, XONRXC
);
3624 adapter
->stats
.xontxc
+= E1000_READ_REG(hw
, XONTXC
);
3625 adapter
->stats
.xoffrxc
+= E1000_READ_REG(hw
, XOFFRXC
);
3626 adapter
->stats
.xofftxc
+= E1000_READ_REG(hw
, XOFFTXC
);
3627 adapter
->stats
.fcruc
+= E1000_READ_REG(hw
, FCRUC
);
3628 adapter
->stats
.gptc
+= E1000_READ_REG(hw
, GPTC
);
3629 adapter
->stats
.gotcl
+= E1000_READ_REG(hw
, GOTCL
);
3630 adapter
->stats
.gotch
+= E1000_READ_REG(hw
, GOTCH
);
3631 adapter
->stats
.rnbc
+= E1000_READ_REG(hw
, RNBC
);
3632 adapter
->stats
.ruc
+= E1000_READ_REG(hw
, RUC
);
3633 adapter
->stats
.rfc
+= E1000_READ_REG(hw
, RFC
);
3634 adapter
->stats
.rjc
+= E1000_READ_REG(hw
, RJC
);
3635 adapter
->stats
.torl
+= E1000_READ_REG(hw
, TORL
);
3636 adapter
->stats
.torh
+= E1000_READ_REG(hw
, TORH
);
3637 adapter
->stats
.totl
+= E1000_READ_REG(hw
, TOTL
);
3638 adapter
->stats
.toth
+= E1000_READ_REG(hw
, TOTH
);
3639 adapter
->stats
.tpr
+= E1000_READ_REG(hw
, TPR
);
3641 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3642 adapter
->stats
.ptc64
+= E1000_READ_REG(hw
, PTC64
);
3643 adapter
->stats
.ptc127
+= E1000_READ_REG(hw
, PTC127
);
3644 adapter
->stats
.ptc255
+= E1000_READ_REG(hw
, PTC255
);
3645 adapter
->stats
.ptc511
+= E1000_READ_REG(hw
, PTC511
);
3646 adapter
->stats
.ptc1023
+= E1000_READ_REG(hw
, PTC1023
);
3647 adapter
->stats
.ptc1522
+= E1000_READ_REG(hw
, PTC1522
);
3650 adapter
->stats
.mptc
+= E1000_READ_REG(hw
, MPTC
);
3651 adapter
->stats
.bptc
+= E1000_READ_REG(hw
, BPTC
);
3653 /* used for adaptive IFS */
3655 hw
->tx_packet_delta
= E1000_READ_REG(hw
, TPT
);
3656 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3657 hw
->collision_delta
= E1000_READ_REG(hw
, COLC
);
3658 adapter
->stats
.colc
+= hw
->collision_delta
;
3660 if (hw
->mac_type
>= e1000_82543
) {
3661 adapter
->stats
.algnerrc
+= E1000_READ_REG(hw
, ALGNERRC
);
3662 adapter
->stats
.rxerrc
+= E1000_READ_REG(hw
, RXERRC
);
3663 adapter
->stats
.tncrs
+= E1000_READ_REG(hw
, TNCRS
);
3664 adapter
->stats
.cexterr
+= E1000_READ_REG(hw
, CEXTERR
);
3665 adapter
->stats
.tsctc
+= E1000_READ_REG(hw
, TSCTC
);
3666 adapter
->stats
.tsctfc
+= E1000_READ_REG(hw
, TSCTFC
);
3668 if (hw
->mac_type
> e1000_82547_rev_2
) {
3669 adapter
->stats
.iac
+= E1000_READ_REG(hw
, IAC
);
3670 adapter
->stats
.icrxoc
+= E1000_READ_REG(hw
, ICRXOC
);
3672 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3673 adapter
->stats
.icrxptc
+= E1000_READ_REG(hw
, ICRXPTC
);
3674 adapter
->stats
.icrxatc
+= E1000_READ_REG(hw
, ICRXATC
);
3675 adapter
->stats
.ictxptc
+= E1000_READ_REG(hw
, ICTXPTC
);
3676 adapter
->stats
.ictxatc
+= E1000_READ_REG(hw
, ICTXATC
);
3677 adapter
->stats
.ictxqec
+= E1000_READ_REG(hw
, ICTXQEC
);
3678 adapter
->stats
.ictxqmtc
+= E1000_READ_REG(hw
, ICTXQMTC
);
3679 adapter
->stats
.icrxdmtc
+= E1000_READ_REG(hw
, ICRXDMTC
);
3683 /* Fill out the OS statistics structure */
3684 adapter
->net_stats
.rx_packets
= adapter
->stats
.gprc
;
3685 adapter
->net_stats
.tx_packets
= adapter
->stats
.gptc
;
3686 adapter
->net_stats
.rx_bytes
= adapter
->stats
.gorcl
;
3687 adapter
->net_stats
.tx_bytes
= adapter
->stats
.gotcl
;
3688 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3689 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3693 /* RLEC on some newer hardware can be incorrect so build
3694 * our own version based on RUC and ROC */
3695 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3696 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3697 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3698 adapter
->stats
.cexterr
;
3699 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3700 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3701 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3702 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3703 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3706 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3707 adapter
->net_stats
.tx_errors
= adapter
->stats
.txerrc
;
3708 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3709 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3710 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3711 if (adapter
->hw
.bad_tx_carr_stats_fd
&&
3712 adapter
->link_duplex
== FULL_DUPLEX
) {
3713 adapter
->net_stats
.tx_carrier_errors
= 0;
3714 adapter
->stats
.tncrs
= 0;
3717 /* Tx Dropped needs to be maintained elsewhere */
3720 if (hw
->media_type
== e1000_media_type_copper
) {
3721 if ((adapter
->link_speed
== SPEED_1000
) &&
3722 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3723 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3724 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3727 if ((hw
->mac_type
<= e1000_82546
) &&
3728 (hw
->phy_type
== e1000_phy_m88
) &&
3729 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3730 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3733 /* Management Stats */
3734 if (adapter
->hw
.has_smbus
) {
3735 adapter
->stats
.mgptc
+= E1000_READ_REG(hw
, MGTPTC
);
3736 adapter
->stats
.mgprc
+= E1000_READ_REG(hw
, MGTPRC
);
3737 adapter
->stats
.mgpdc
+= E1000_READ_REG(hw
, MGTPDC
);
3740 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3742 #ifdef CONFIG_PCI_MSI
3745 * e1000_intr_msi - Interrupt Handler
3746 * @irq: interrupt number
3747 * @data: pointer to a network interface device structure
3751 e1000_intr_msi(int irq
, void *data
)
3753 struct net_device
*netdev
= data
;
3754 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3755 struct e1000_hw
*hw
= &adapter
->hw
;
3756 #ifndef CONFIG_E1000_NAPI
3759 uint32_t icr
= E1000_READ_REG(hw
, ICR
);
3761 #ifdef CONFIG_E1000_NAPI
3762 /* read ICR disables interrupts using IAM, so keep up with our
3763 * enable/disable accounting */
3764 atomic_inc(&adapter
->irq_sem
);
3766 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3767 hw
->get_link_status
= 1;
3768 /* 80003ES2LAN workaround-- For packet buffer work-around on
3769 * link down event; disable receives here in the ISR and reset
3770 * adapter in watchdog */
3771 if (netif_carrier_ok(netdev
) &&
3772 (adapter
->hw
.mac_type
== e1000_80003es2lan
)) {
3773 /* disable receives */
3774 uint32_t rctl
= E1000_READ_REG(hw
, RCTL
);
3775 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
3777 /* guard against interrupt when we're going down */
3778 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3779 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3782 #ifdef CONFIG_E1000_NAPI
3783 if (likely(netif_rx_schedule_prep(netdev
))) {
3784 adapter
->total_tx_bytes
= 0;
3785 adapter
->total_tx_packets
= 0;
3786 adapter
->total_rx_bytes
= 0;
3787 adapter
->total_rx_packets
= 0;
3788 __netif_rx_schedule(netdev
);
3790 e1000_irq_enable(adapter
);
3792 adapter
->total_tx_bytes
= 0;
3793 adapter
->total_rx_bytes
= 0;
3794 adapter
->total_tx_packets
= 0;
3795 adapter
->total_rx_packets
= 0;
3797 for (i
= 0; i
< E1000_MAX_INTR
; i
++)
3798 if (unlikely(!adapter
->clean_rx(adapter
, adapter
->rx_ring
) &
3799 e1000_clean_tx_irq(adapter
, adapter
->tx_ring
)))
3802 if (likely(adapter
->itr_setting
& 3))
3803 e1000_set_itr(adapter
);
3811 * e1000_intr - Interrupt Handler
3812 * @irq: interrupt number
3813 * @data: pointer to a network interface device structure
3817 e1000_intr(int irq
, void *data
)
3819 struct net_device
*netdev
= data
;
3820 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3821 struct e1000_hw
*hw
= &adapter
->hw
;
3822 uint32_t rctl
, icr
= E1000_READ_REG(hw
, ICR
);
3823 #ifndef CONFIG_E1000_NAPI
3827 return IRQ_NONE
; /* Not our interrupt */
3829 #ifdef CONFIG_E1000_NAPI
3830 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3831 * not set, then the adapter didn't send an interrupt */
3832 if (unlikely(hw
->mac_type
>= e1000_82571
&&
3833 !(icr
& E1000_ICR_INT_ASSERTED
)))
3836 /* Interrupt Auto-Mask...upon reading ICR,
3837 * interrupts are masked. No need for the
3838 * IMC write, but it does mean we should
3839 * account for it ASAP. */
3840 if (likely(hw
->mac_type
>= e1000_82571
))
3841 atomic_inc(&adapter
->irq_sem
);
3844 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3845 hw
->get_link_status
= 1;
3846 /* 80003ES2LAN workaround--
3847 * For packet buffer work-around on link down event;
3848 * disable receives here in the ISR and
3849 * reset adapter in watchdog
3851 if (netif_carrier_ok(netdev
) &&
3852 (adapter
->hw
.mac_type
== e1000_80003es2lan
)) {
3853 /* disable receives */
3854 rctl
= E1000_READ_REG(hw
, RCTL
);
3855 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
3857 /* guard against interrupt when we're going down */
3858 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3859 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3862 #ifdef CONFIG_E1000_NAPI
3863 if (unlikely(hw
->mac_type
< e1000_82571
)) {
3864 /* disable interrupts, without the synchronize_irq bit */
3865 atomic_inc(&adapter
->irq_sem
);
3866 E1000_WRITE_REG(hw
, IMC
, ~0);
3867 E1000_WRITE_FLUSH(hw
);
3869 if (likely(netif_rx_schedule_prep(netdev
))) {
3870 adapter
->total_tx_bytes
= 0;
3871 adapter
->total_tx_packets
= 0;
3872 adapter
->total_rx_bytes
= 0;
3873 adapter
->total_rx_packets
= 0;
3874 __netif_rx_schedule(netdev
);
3876 /* this really should not happen! if it does it is basically a
3877 * bug, but not a hard error, so enable ints and continue */
3878 e1000_irq_enable(adapter
);
3880 /* Writing IMC and IMS is needed for 82547.
3881 * Due to Hub Link bus being occupied, an interrupt
3882 * de-assertion message is not able to be sent.
3883 * When an interrupt assertion message is generated later,
3884 * two messages are re-ordered and sent out.
3885 * That causes APIC to think 82547 is in de-assertion
3886 * state, while 82547 is in assertion state, resulting
3887 * in dead lock. Writing IMC forces 82547 into
3888 * de-assertion state.
3890 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
) {
3891 atomic_inc(&adapter
->irq_sem
);
3892 E1000_WRITE_REG(hw
, IMC
, ~0);
3895 adapter
->total_tx_bytes
= 0;
3896 adapter
->total_rx_bytes
= 0;
3897 adapter
->total_tx_packets
= 0;
3898 adapter
->total_rx_packets
= 0;
3900 for (i
= 0; i
< E1000_MAX_INTR
; i
++)
3901 if (unlikely(!adapter
->clean_rx(adapter
, adapter
->rx_ring
) &
3902 e1000_clean_tx_irq(adapter
, adapter
->tx_ring
)))
3905 if (likely(adapter
->itr_setting
& 3))
3906 e1000_set_itr(adapter
);
3908 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
)
3909 e1000_irq_enable(adapter
);
3915 #ifdef CONFIG_E1000_NAPI
3917 * e1000_clean - NAPI Rx polling callback
3918 * @adapter: board private structure
3922 e1000_clean(struct net_device
*poll_dev
, int *budget
)
3924 struct e1000_adapter
*adapter
;
3925 int work_to_do
= min(*budget
, poll_dev
->quota
);
3926 int tx_cleaned
= 0, work_done
= 0;
3928 /* Must NOT use netdev_priv macro here. */
3929 adapter
= poll_dev
->priv
;
3931 /* Keep link state information with original netdev */
3932 if (!netif_carrier_ok(poll_dev
))
3935 /* e1000_clean is called per-cpu. This lock protects
3936 * tx_ring[0] from being cleaned by multiple cpus
3937 * simultaneously. A failure obtaining the lock means
3938 * tx_ring[0] is currently being cleaned anyway. */
3939 if (spin_trylock(&adapter
->tx_queue_lock
)) {
3940 tx_cleaned
= e1000_clean_tx_irq(adapter
,
3941 &adapter
->tx_ring
[0]);
3942 spin_unlock(&adapter
->tx_queue_lock
);
3945 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0],
3946 &work_done
, work_to_do
);
3948 *budget
-= work_done
;
3949 poll_dev
->quota
-= work_done
;
3951 /* If no Tx and not enough Rx work done, exit the polling mode */
3952 if ((tx_cleaned
&& (work_done
< work_to_do
)) ||
3953 !netif_running(poll_dev
)) {
3955 if (likely(adapter
->itr_setting
& 3))
3956 e1000_set_itr(adapter
);
3957 netif_rx_complete(poll_dev
);
3958 e1000_irq_enable(adapter
);
3967 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3968 * @adapter: board private structure
3972 e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3973 struct e1000_tx_ring
*tx_ring
)
3975 struct net_device
*netdev
= adapter
->netdev
;
3976 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3977 struct e1000_buffer
*buffer_info
;
3978 unsigned int i
, eop
;
3979 #ifdef CONFIG_E1000_NAPI
3980 unsigned int count
= 0;
3982 boolean_t cleaned
= TRUE
;
3983 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3985 i
= tx_ring
->next_to_clean
;
3986 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3987 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3989 while (eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) {
3990 for (cleaned
= FALSE
; !cleaned
; ) {
3991 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3992 buffer_info
= &tx_ring
->buffer_info
[i
];
3993 cleaned
= (i
== eop
);
3996 struct sk_buff
*skb
= buffer_info
->skb
;
3997 unsigned int segs
, bytecount
;
3998 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3999 /* multiply data chunks by size of headers */
4000 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
4002 total_tx_packets
+= segs
;
4003 total_tx_bytes
+= bytecount
;
4005 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
4006 tx_desc
->upper
.data
= 0;
4008 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
4011 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
4012 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
4013 #ifdef CONFIG_E1000_NAPI
4014 #define E1000_TX_WEIGHT 64
4015 /* weight of a sort for tx, to avoid endless transmit cleanup */
4016 if (count
++ == E1000_TX_WEIGHT
) {
4023 tx_ring
->next_to_clean
= i
;
4025 #define TX_WAKE_THRESHOLD 32
4026 if (unlikely(cleaned
&& netif_carrier_ok(netdev
) &&
4027 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
4028 /* Make sure that anybody stopping the queue after this
4029 * sees the new next_to_clean.
4032 if (netif_queue_stopped(netdev
)) {
4033 netif_wake_queue(netdev
);
4034 ++adapter
->restart_queue
;
4038 if (adapter
->detect_tx_hung
) {
4039 /* Detect a transmit hang in hardware, this serializes the
4040 * check with the clearing of time_stamp and movement of i */
4041 adapter
->detect_tx_hung
= FALSE
;
4042 if (tx_ring
->buffer_info
[eop
].dma
&&
4043 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
4044 (adapter
->tx_timeout_factor
* HZ
))
4045 && !(E1000_READ_REG(&adapter
->hw
, STATUS
) &
4046 E1000_STATUS_TXOFF
)) {
4048 /* detected Tx unit hang */
4049 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
4053 " next_to_use <%x>\n"
4054 " next_to_clean <%x>\n"
4055 "buffer_info[next_to_clean]\n"
4056 " time_stamp <%lx>\n"
4057 " next_to_watch <%x>\n"
4059 " next_to_watch.status <%x>\n",
4060 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
4061 sizeof(struct e1000_tx_ring
)),
4062 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdh
),
4063 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdt
),
4064 tx_ring
->next_to_use
,
4065 tx_ring
->next_to_clean
,
4066 tx_ring
->buffer_info
[eop
].time_stamp
,
4069 eop_desc
->upper
.fields
.status
);
4070 netif_stop_queue(netdev
);
4073 adapter
->total_tx_bytes
+= total_tx_bytes
;
4074 adapter
->total_tx_packets
+= total_tx_packets
;
4079 * e1000_rx_checksum - Receive Checksum Offload for 82543
4080 * @adapter: board private structure
4081 * @status_err: receive descriptor status and error fields
4082 * @csum: receive descriptor csum field
4083 * @sk_buff: socket buffer with received data
4087 e1000_rx_checksum(struct e1000_adapter
*adapter
,
4088 uint32_t status_err
, uint32_t csum
,
4089 struct sk_buff
*skb
)
4091 uint16_t status
= (uint16_t)status_err
;
4092 uint8_t errors
= (uint8_t)(status_err
>> 24);
4093 skb
->ip_summed
= CHECKSUM_NONE
;
4095 /* 82543 or newer only */
4096 if (unlikely(adapter
->hw
.mac_type
< e1000_82543
)) return;
4097 /* Ignore Checksum bit is set */
4098 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
4099 /* TCP/UDP checksum error bit is set */
4100 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
4101 /* let the stack verify checksum errors */
4102 adapter
->hw_csum_err
++;
4105 /* TCP/UDP Checksum has not been calculated */
4106 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
) {
4107 if (!(status
& E1000_RXD_STAT_TCPCS
))
4110 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
4113 /* It must be a TCP or UDP packet with a valid checksum */
4114 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
4115 /* TCP checksum is good */
4116 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
4117 } else if (adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
4118 /* IP fragment with UDP payload */
4119 /* Hardware complements the payload checksum, so we undo it
4120 * and then put the value in host order for further stack use.
4122 csum
= ntohl(csum
^ 0xFFFF);
4124 skb
->ip_summed
= CHECKSUM_COMPLETE
;
4126 adapter
->hw_csum_good
++;
4130 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4131 * @adapter: board private structure
4135 #ifdef CONFIG_E1000_NAPI
4136 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
4137 struct e1000_rx_ring
*rx_ring
,
4138 int *work_done
, int work_to_do
)
4140 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
4141 struct e1000_rx_ring
*rx_ring
)
4144 struct net_device
*netdev
= adapter
->netdev
;
4145 struct pci_dev
*pdev
= adapter
->pdev
;
4146 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
4147 struct e1000_buffer
*buffer_info
, *next_buffer
;
4148 unsigned long flags
;
4152 int cleaned_count
= 0;
4153 boolean_t cleaned
= FALSE
;
4154 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4156 i
= rx_ring
->next_to_clean
;
4157 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4158 buffer_info
= &rx_ring
->buffer_info
[i
];
4160 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4161 struct sk_buff
*skb
;
4164 #ifdef CONFIG_E1000_NAPI
4165 if (*work_done
>= work_to_do
)
4169 status
= rx_desc
->status
;
4170 skb
= buffer_info
->skb
;
4171 buffer_info
->skb
= NULL
;
4173 prefetch(skb
->data
- NET_IP_ALIGN
);
4175 if (++i
== rx_ring
->count
) i
= 0;
4176 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4179 next_buffer
= &rx_ring
->buffer_info
[i
];
4183 pci_unmap_single(pdev
,
4185 buffer_info
->length
,
4186 PCI_DMA_FROMDEVICE
);
4188 length
= le16_to_cpu(rx_desc
->length
);
4190 if (unlikely(!(status
& E1000_RXD_STAT_EOP
))) {
4191 /* All receives must fit into a single buffer */
4192 E1000_DBG("%s: Receive packet consumed multiple"
4193 " buffers\n", netdev
->name
);
4195 buffer_info
->skb
= skb
;
4199 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4200 last_byte
= *(skb
->data
+ length
- 1);
4201 if (TBI_ACCEPT(&adapter
->hw
, status
,
4202 rx_desc
->errors
, length
, last_byte
)) {
4203 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4204 e1000_tbi_adjust_stats(&adapter
->hw
,
4207 spin_unlock_irqrestore(&adapter
->stats_lock
,
4212 buffer_info
->skb
= skb
;
4217 /* adjust length to remove Ethernet CRC, this must be
4218 * done after the TBI_ACCEPT workaround above */
4221 /* probably a little skewed due to removing CRC */
4222 total_rx_bytes
+= length
;
4225 /* code added for copybreak, this should improve
4226 * performance for small packets with large amounts
4227 * of reassembly being done in the stack */
4228 if (length
< copybreak
) {
4229 struct sk_buff
*new_skb
=
4230 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
4232 skb_reserve(new_skb
, NET_IP_ALIGN
);
4233 memcpy(new_skb
->data
- NET_IP_ALIGN
,
4234 skb
->data
- NET_IP_ALIGN
,
4235 length
+ NET_IP_ALIGN
);
4236 /* save the skb in buffer_info as good */
4237 buffer_info
->skb
= skb
;
4240 /* else just continue with the old one */
4242 /* end copybreak code */
4243 skb_put(skb
, length
);
4245 /* Receive Checksum Offload */
4246 e1000_rx_checksum(adapter
,
4247 (uint32_t)(status
) |
4248 ((uint32_t)(rx_desc
->errors
) << 24),
4249 le16_to_cpu(rx_desc
->csum
), skb
);
4251 skb
->protocol
= eth_type_trans(skb
, netdev
);
4252 #ifdef CONFIG_E1000_NAPI
4253 if (unlikely(adapter
->vlgrp
&&
4254 (status
& E1000_RXD_STAT_VP
))) {
4255 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
4256 le16_to_cpu(rx_desc
->special
) &
4257 E1000_RXD_SPC_VLAN_MASK
);
4259 netif_receive_skb(skb
);
4261 #else /* CONFIG_E1000_NAPI */
4262 if (unlikely(adapter
->vlgrp
&&
4263 (status
& E1000_RXD_STAT_VP
))) {
4264 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
4265 le16_to_cpu(rx_desc
->special
) &
4266 E1000_RXD_SPC_VLAN_MASK
);
4270 #endif /* CONFIG_E1000_NAPI */
4271 netdev
->last_rx
= jiffies
;
4274 rx_desc
->status
= 0;
4276 /* return some buffers to hardware, one at a time is too slow */
4277 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4278 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4282 /* use prefetched values */
4284 buffer_info
= next_buffer
;
4286 rx_ring
->next_to_clean
= i
;
4288 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4290 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4292 adapter
->total_rx_packets
+= total_rx_packets
;
4293 adapter
->total_rx_bytes
+= total_rx_bytes
;
4298 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4299 * @adapter: board private structure
4303 #ifdef CONFIG_E1000_NAPI
4304 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
4305 struct e1000_rx_ring
*rx_ring
,
4306 int *work_done
, int work_to_do
)
4308 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
4309 struct e1000_rx_ring
*rx_ring
)
4312 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
4313 struct net_device
*netdev
= adapter
->netdev
;
4314 struct pci_dev
*pdev
= adapter
->pdev
;
4315 struct e1000_buffer
*buffer_info
, *next_buffer
;
4316 struct e1000_ps_page
*ps_page
;
4317 struct e1000_ps_page_dma
*ps_page_dma
;
4318 struct sk_buff
*skb
;
4320 uint32_t length
, staterr
;
4321 int cleaned_count
= 0;
4322 boolean_t cleaned
= FALSE
;
4323 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4325 i
= rx_ring
->next_to_clean
;
4326 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
4327 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
4328 buffer_info
= &rx_ring
->buffer_info
[i
];
4330 while (staterr
& E1000_RXD_STAT_DD
) {
4331 ps_page
= &rx_ring
->ps_page
[i
];
4332 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4333 #ifdef CONFIG_E1000_NAPI
4334 if (unlikely(*work_done
>= work_to_do
))
4338 skb
= buffer_info
->skb
;
4340 /* in the packet split case this is header only */
4341 prefetch(skb
->data
- NET_IP_ALIGN
);
4343 if (++i
== rx_ring
->count
) i
= 0;
4344 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
4347 next_buffer
= &rx_ring
->buffer_info
[i
];
4351 pci_unmap_single(pdev
, buffer_info
->dma
,
4352 buffer_info
->length
,
4353 PCI_DMA_FROMDEVICE
);
4355 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
))) {
4356 E1000_DBG("%s: Packet Split buffers didn't pick up"
4357 " the full packet\n", netdev
->name
);
4358 dev_kfree_skb_irq(skb
);
4362 if (unlikely(staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
)) {
4363 dev_kfree_skb_irq(skb
);
4367 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
4369 if (unlikely(!length
)) {
4370 E1000_DBG("%s: Last part of the packet spanning"
4371 " multiple descriptors\n", netdev
->name
);
4372 dev_kfree_skb_irq(skb
);
4377 skb_put(skb
, length
);
4380 /* this looks ugly, but it seems compiler issues make it
4381 more efficient than reusing j */
4382 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
4384 /* page alloc/put takes too long and effects small packet
4385 * throughput, so unsplit small packets and save the alloc/put*/
4386 if (l1
&& (l1
<= copybreak
) && ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
4388 /* there is no documentation about how to call
4389 * kmap_atomic, so we can't hold the mapping
4391 pci_dma_sync_single_for_cpu(pdev
,
4392 ps_page_dma
->ps_page_dma
[0],
4394 PCI_DMA_FROMDEVICE
);
4395 vaddr
= kmap_atomic(ps_page
->ps_page
[0],
4396 KM_SKB_DATA_SOFTIRQ
);
4397 memcpy(skb
->tail
, vaddr
, l1
);
4398 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
4399 pci_dma_sync_single_for_device(pdev
,
4400 ps_page_dma
->ps_page_dma
[0],
4401 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
4402 /* remove the CRC */
4409 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
4410 if (!(length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
])))
4412 pci_unmap_page(pdev
, ps_page_dma
->ps_page_dma
[j
],
4413 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
4414 ps_page_dma
->ps_page_dma
[j
] = 0;
4415 skb_fill_page_desc(skb
, j
, ps_page
->ps_page
[j
], 0,
4417 ps_page
->ps_page
[j
] = NULL
;
4419 skb
->data_len
+= length
;
4420 skb
->truesize
+= length
;
4423 /* strip the ethernet crc, problem is we're using pages now so
4424 * this whole operation can get a little cpu intensive */
4425 pskb_trim(skb
, skb
->len
- 4);
4428 total_rx_bytes
+= skb
->len
;
4431 e1000_rx_checksum(adapter
, staterr
,
4432 le16_to_cpu(rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
4433 skb
->protocol
= eth_type_trans(skb
, netdev
);
4435 if (likely(rx_desc
->wb
.upper
.header_status
&
4436 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
)))
4437 adapter
->rx_hdr_split
++;
4438 #ifdef CONFIG_E1000_NAPI
4439 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
4440 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
4441 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
4442 E1000_RXD_SPC_VLAN_MASK
);
4444 netif_receive_skb(skb
);
4446 #else /* CONFIG_E1000_NAPI */
4447 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
4448 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
4449 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
4450 E1000_RXD_SPC_VLAN_MASK
);
4454 #endif /* CONFIG_E1000_NAPI */
4455 netdev
->last_rx
= jiffies
;
4458 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
4459 buffer_info
->skb
= NULL
;
4461 /* return some buffers to hardware, one at a time is too slow */
4462 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4463 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4467 /* use prefetched values */
4469 buffer_info
= next_buffer
;
4471 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
4473 rx_ring
->next_to_clean
= i
;
4475 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4477 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4479 adapter
->total_rx_packets
+= total_rx_packets
;
4480 adapter
->total_rx_bytes
+= total_rx_bytes
;
4485 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4486 * @adapter: address of board private structure
4490 e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4491 struct e1000_rx_ring
*rx_ring
,
4494 struct net_device
*netdev
= adapter
->netdev
;
4495 struct pci_dev
*pdev
= adapter
->pdev
;
4496 struct e1000_rx_desc
*rx_desc
;
4497 struct e1000_buffer
*buffer_info
;
4498 struct sk_buff
*skb
;
4500 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
4502 i
= rx_ring
->next_to_use
;
4503 buffer_info
= &rx_ring
->buffer_info
[i
];
4505 while (cleaned_count
--) {
4506 skb
= buffer_info
->skb
;
4512 skb
= netdev_alloc_skb(netdev
, bufsz
);
4513 if (unlikely(!skb
)) {
4514 /* Better luck next round */
4515 adapter
->alloc_rx_buff_failed
++;
4519 /* Fix for errata 23, can't cross 64kB boundary */
4520 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4521 struct sk_buff
*oldskb
= skb
;
4522 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
4523 "at %p\n", bufsz
, skb
->data
);
4524 /* Try again, without freeing the previous */
4525 skb
= netdev_alloc_skb(netdev
, bufsz
);
4526 /* Failed allocation, critical failure */
4528 dev_kfree_skb(oldskb
);
4532 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4535 dev_kfree_skb(oldskb
);
4536 break; /* while !buffer_info->skb */
4539 /* Use new allocation */
4540 dev_kfree_skb(oldskb
);
4542 /* Make buffer alignment 2 beyond a 16 byte boundary
4543 * this will result in a 16 byte aligned IP header after
4544 * the 14 byte MAC header is removed
4546 skb_reserve(skb
, NET_IP_ALIGN
);
4548 buffer_info
->skb
= skb
;
4549 buffer_info
->length
= adapter
->rx_buffer_len
;
4551 buffer_info
->dma
= pci_map_single(pdev
,
4553 adapter
->rx_buffer_len
,
4554 PCI_DMA_FROMDEVICE
);
4556 /* Fix for errata 23, can't cross 64kB boundary */
4557 if (!e1000_check_64k_bound(adapter
,
4558 (void *)(unsigned long)buffer_info
->dma
,
4559 adapter
->rx_buffer_len
)) {
4560 DPRINTK(RX_ERR
, ERR
,
4561 "dma align check failed: %u bytes at %p\n",
4562 adapter
->rx_buffer_len
,
4563 (void *)(unsigned long)buffer_info
->dma
);
4565 buffer_info
->skb
= NULL
;
4567 pci_unmap_single(pdev
, buffer_info
->dma
,
4568 adapter
->rx_buffer_len
,
4569 PCI_DMA_FROMDEVICE
);
4571 break; /* while !buffer_info->skb */
4573 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4574 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4576 if (unlikely(++i
== rx_ring
->count
))
4578 buffer_info
= &rx_ring
->buffer_info
[i
];
4581 if (likely(rx_ring
->next_to_use
!= i
)) {
4582 rx_ring
->next_to_use
= i
;
4583 if (unlikely(i
-- == 0))
4584 i
= (rx_ring
->count
- 1);
4586 /* Force memory writes to complete before letting h/w
4587 * know there are new descriptors to fetch. (Only
4588 * applicable for weak-ordered memory model archs,
4589 * such as IA-64). */
4591 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4596 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4597 * @adapter: address of board private structure
4601 e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
4602 struct e1000_rx_ring
*rx_ring
,
4605 struct net_device
*netdev
= adapter
->netdev
;
4606 struct pci_dev
*pdev
= adapter
->pdev
;
4607 union e1000_rx_desc_packet_split
*rx_desc
;
4608 struct e1000_buffer
*buffer_info
;
4609 struct e1000_ps_page
*ps_page
;
4610 struct e1000_ps_page_dma
*ps_page_dma
;
4611 struct sk_buff
*skb
;
4614 i
= rx_ring
->next_to_use
;
4615 buffer_info
= &rx_ring
->buffer_info
[i
];
4616 ps_page
= &rx_ring
->ps_page
[i
];
4617 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4619 while (cleaned_count
--) {
4620 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
4622 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
4623 if (j
< adapter
->rx_ps_pages
) {
4624 if (likely(!ps_page
->ps_page
[j
])) {
4625 ps_page
->ps_page
[j
] =
4626 alloc_page(GFP_ATOMIC
);
4627 if (unlikely(!ps_page
->ps_page
[j
])) {
4628 adapter
->alloc_rx_buff_failed
++;
4631 ps_page_dma
->ps_page_dma
[j
] =
4633 ps_page
->ps_page
[j
],
4635 PCI_DMA_FROMDEVICE
);
4637 /* Refresh the desc even if buffer_addrs didn't
4638 * change because each write-back erases
4641 rx_desc
->read
.buffer_addr
[j
+1] =
4642 cpu_to_le64(ps_page_dma
->ps_page_dma
[j
]);
4644 rx_desc
->read
.buffer_addr
[j
+1] = ~0;
4647 skb
= netdev_alloc_skb(netdev
,
4648 adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
4650 if (unlikely(!skb
)) {
4651 adapter
->alloc_rx_buff_failed
++;
4655 /* Make buffer alignment 2 beyond a 16 byte boundary
4656 * this will result in a 16 byte aligned IP header after
4657 * the 14 byte MAC header is removed
4659 skb_reserve(skb
, NET_IP_ALIGN
);
4661 buffer_info
->skb
= skb
;
4662 buffer_info
->length
= adapter
->rx_ps_bsize0
;
4663 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4664 adapter
->rx_ps_bsize0
,
4665 PCI_DMA_FROMDEVICE
);
4667 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
4669 if (unlikely(++i
== rx_ring
->count
)) i
= 0;
4670 buffer_info
= &rx_ring
->buffer_info
[i
];
4671 ps_page
= &rx_ring
->ps_page
[i
];
4672 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4676 if (likely(rx_ring
->next_to_use
!= i
)) {
4677 rx_ring
->next_to_use
= i
;
4678 if (unlikely(i
-- == 0)) i
= (rx_ring
->count
- 1);
4680 /* Force memory writes to complete before letting h/w
4681 * know there are new descriptors to fetch. (Only
4682 * applicable for weak-ordered memory model archs,
4683 * such as IA-64). */
4685 /* Hardware increments by 16 bytes, but packet split
4686 * descriptors are 32 bytes...so we increment tail
4689 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4694 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4699 e1000_smartspeed(struct e1000_adapter
*adapter
)
4701 uint16_t phy_status
;
4704 if ((adapter
->hw
.phy_type
!= e1000_phy_igp
) || !adapter
->hw
.autoneg
||
4705 !(adapter
->hw
.autoneg_advertised
& ADVERTISE_1000_FULL
))
4708 if (adapter
->smartspeed
== 0) {
4709 /* If Master/Slave config fault is asserted twice,
4710 * we assume back-to-back */
4711 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4712 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4713 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4714 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4715 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4716 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4717 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4718 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
,
4720 adapter
->smartspeed
++;
4721 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4722 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
,
4724 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4725 MII_CR_RESTART_AUTO_NEG
);
4726 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
,
4731 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4732 /* If still no link, perhaps using 2/3 pair cable */
4733 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4734 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4735 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, phy_ctrl
);
4736 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4737 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_ctrl
)) {
4738 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4739 MII_CR_RESTART_AUTO_NEG
);
4740 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_ctrl
);
4743 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4744 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4745 adapter
->smartspeed
= 0;
4756 e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4762 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4776 e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4778 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4779 struct mii_ioctl_data
*data
= if_mii(ifr
);
4783 unsigned long flags
;
4785 if (adapter
->hw
.media_type
!= e1000_media_type_copper
)
4790 data
->phy_id
= adapter
->hw
.phy_addr
;
4793 if (!capable(CAP_NET_ADMIN
))
4795 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4796 if (e1000_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
4798 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4801 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4804 if (!capable(CAP_NET_ADMIN
))
4806 if (data
->reg_num
& ~(0x1F))
4808 mii_reg
= data
->val_in
;
4809 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4810 if (e1000_write_phy_reg(&adapter
->hw
, data
->reg_num
,
4812 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4815 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
4816 switch (data
->reg_num
) {
4818 if (mii_reg
& MII_CR_POWER_DOWN
)
4820 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4821 adapter
->hw
.autoneg
= 1;
4822 adapter
->hw
.autoneg_advertised
= 0x2F;
4825 spddplx
= SPEED_1000
;
4826 else if (mii_reg
& 0x2000)
4827 spddplx
= SPEED_100
;
4830 spddplx
+= (mii_reg
& 0x100)
4833 retval
= e1000_set_spd_dplx(adapter
,
4836 spin_unlock_irqrestore(
4837 &adapter
->stats_lock
,
4842 if (netif_running(adapter
->netdev
))
4843 e1000_reinit_locked(adapter
);
4845 e1000_reset(adapter
);
4847 case M88E1000_PHY_SPEC_CTRL
:
4848 case M88E1000_EXT_PHY_SPEC_CTRL
:
4849 if (e1000_phy_reset(&adapter
->hw
)) {
4850 spin_unlock_irqrestore(
4851 &adapter
->stats_lock
, flags
);
4857 switch (data
->reg_num
) {
4859 if (mii_reg
& MII_CR_POWER_DOWN
)
4861 if (netif_running(adapter
->netdev
))
4862 e1000_reinit_locked(adapter
);
4864 e1000_reset(adapter
);
4868 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4873 return E1000_SUCCESS
;
4877 e1000_pci_set_mwi(struct e1000_hw
*hw
)
4879 struct e1000_adapter
*adapter
= hw
->back
;
4880 int ret_val
= pci_set_mwi(adapter
->pdev
);
4883 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4887 e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4889 struct e1000_adapter
*adapter
= hw
->back
;
4891 pci_clear_mwi(adapter
->pdev
);
4895 e1000_read_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4897 struct e1000_adapter
*adapter
= hw
->back
;
4899 pci_read_config_word(adapter
->pdev
, reg
, value
);
4903 e1000_write_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4905 struct e1000_adapter
*adapter
= hw
->back
;
4907 pci_write_config_word(adapter
->pdev
, reg
, *value
);
4911 e1000_read_pcie_cap_reg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4913 struct e1000_adapter
*adapter
= hw
->back
;
4914 uint16_t cap_offset
;
4916 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
4918 return -E1000_ERR_CONFIG
;
4920 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
4922 return E1000_SUCCESS
;
4926 e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, uint32_t value
)
4932 e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
)
4934 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4935 uint32_t ctrl
, rctl
;
4937 e1000_irq_disable(adapter
);
4938 adapter
->vlgrp
= grp
;
4941 /* enable VLAN tag insert/strip */
4942 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4943 ctrl
|= E1000_CTRL_VME
;
4944 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4946 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4947 /* enable VLAN receive filtering */
4948 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4949 rctl
|= E1000_RCTL_VFE
;
4950 rctl
&= ~E1000_RCTL_CFIEN
;
4951 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4952 e1000_update_mng_vlan(adapter
);
4955 /* disable VLAN tag insert/strip */
4956 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4957 ctrl
&= ~E1000_CTRL_VME
;
4958 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4960 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4961 /* disable VLAN filtering */
4962 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4963 rctl
&= ~E1000_RCTL_VFE
;
4964 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4965 if (adapter
->mng_vlan_id
!=
4966 (uint16_t)E1000_MNG_VLAN_NONE
) {
4967 e1000_vlan_rx_kill_vid(netdev
,
4968 adapter
->mng_vlan_id
);
4969 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4974 e1000_irq_enable(adapter
);
4978 e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
)
4980 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4981 uint32_t vfta
, index
;
4983 if ((adapter
->hw
.mng_cookie
.status
&
4984 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4985 (vid
== adapter
->mng_vlan_id
))
4987 /* add VID to filter table */
4988 index
= (vid
>> 5) & 0x7F;
4989 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
4990 vfta
|= (1 << (vid
& 0x1F));
4991 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
4995 e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
)
4997 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4998 uint32_t vfta
, index
;
5000 e1000_irq_disable(adapter
);
5003 adapter
->vlgrp
->vlan_devices
[vid
] = NULL
;
5005 e1000_irq_enable(adapter
);
5007 if ((adapter
->hw
.mng_cookie
.status
&
5008 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
5009 (vid
== adapter
->mng_vlan_id
)) {
5010 /* release control to f/w */
5011 e1000_release_hw_control(adapter
);
5015 /* remove VID from filter table */
5016 index
= (vid
>> 5) & 0x7F;
5017 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
5018 vfta
&= ~(1 << (vid
& 0x1F));
5019 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
5023 e1000_restore_vlan(struct e1000_adapter
*adapter
)
5025 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
5027 if (adapter
->vlgrp
) {
5029 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
5030 if (!adapter
->vlgrp
->vlan_devices
[vid
])
5032 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
5038 e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
)
5040 adapter
->hw
.autoneg
= 0;
5042 /* Fiber NICs only allow 1000 gbps Full duplex */
5043 if ((adapter
->hw
.media_type
== e1000_media_type_fiber
) &&
5044 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
5045 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
5050 case SPEED_10
+ DUPLEX_HALF
:
5051 adapter
->hw
.forced_speed_duplex
= e1000_10_half
;
5053 case SPEED_10
+ DUPLEX_FULL
:
5054 adapter
->hw
.forced_speed_duplex
= e1000_10_full
;
5056 case SPEED_100
+ DUPLEX_HALF
:
5057 adapter
->hw
.forced_speed_duplex
= e1000_100_half
;
5059 case SPEED_100
+ DUPLEX_FULL
:
5060 adapter
->hw
.forced_speed_duplex
= e1000_100_full
;
5062 case SPEED_1000
+ DUPLEX_FULL
:
5063 adapter
->hw
.autoneg
= 1;
5064 adapter
->hw
.autoneg_advertised
= ADVERTISE_1000_FULL
;
5066 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
5068 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
5075 e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5077 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5078 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5079 uint32_t ctrl
, ctrl_ext
, rctl
, status
;
5080 uint32_t wufc
= adapter
->wol
;
5085 netif_device_detach(netdev
);
5087 if (netif_running(netdev
)) {
5088 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
5089 e1000_down(adapter
);
5093 retval
= pci_save_state(pdev
);
5098 status
= E1000_READ_REG(&adapter
->hw
, STATUS
);
5099 if (status
& E1000_STATUS_LU
)
5100 wufc
&= ~E1000_WUFC_LNKC
;
5103 e1000_setup_rctl(adapter
);
5104 e1000_set_multi(netdev
);
5106 /* turn on all-multi mode if wake on multicast is enabled */
5107 if (wufc
& E1000_WUFC_MC
) {
5108 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
5109 rctl
|= E1000_RCTL_MPE
;
5110 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
5113 if (adapter
->hw
.mac_type
>= e1000_82540
) {
5114 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
5115 /* advertise wake from D3Cold */
5116 #define E1000_CTRL_ADVD3WUC 0x00100000
5117 /* phy power management enable */
5118 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5119 ctrl
|= E1000_CTRL_ADVD3WUC
|
5120 E1000_CTRL_EN_PHY_PWR_MGMT
;
5121 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
5124 if (adapter
->hw
.media_type
== e1000_media_type_fiber
||
5125 adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
5126 /* keep the laser running in D3 */
5127 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
5128 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
5129 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
, ctrl_ext
);
5132 /* Allow time for pending master requests to run */
5133 e1000_disable_pciex_master(&adapter
->hw
);
5135 E1000_WRITE_REG(&adapter
->hw
, WUC
, E1000_WUC_PME_EN
);
5136 E1000_WRITE_REG(&adapter
->hw
, WUFC
, wufc
);
5137 pci_enable_wake(pdev
, PCI_D3hot
, 1);
5138 pci_enable_wake(pdev
, PCI_D3cold
, 1);
5140 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
5141 E1000_WRITE_REG(&adapter
->hw
, WUFC
, 0);
5142 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5143 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5146 e1000_release_manageability(adapter
);
5148 /* make sure adapter isn't asleep if manageability is enabled */
5149 if (adapter
->en_mng_pt
) {
5150 pci_enable_wake(pdev
, PCI_D3hot
, 1);
5151 pci_enable_wake(pdev
, PCI_D3cold
, 1);
5154 if (adapter
->hw
.phy_type
== e1000_phy_igp_3
)
5155 e1000_phy_powerdown_workaround(&adapter
->hw
);
5157 if (netif_running(netdev
))
5158 e1000_free_irq(adapter
);
5160 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5161 * would have already happened in close and is redundant. */
5162 e1000_release_hw_control(adapter
);
5164 pci_disable_device(pdev
);
5166 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
5173 e1000_resume(struct pci_dev
*pdev
)
5175 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5176 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5179 pci_set_power_state(pdev
, PCI_D0
);
5180 pci_restore_state(pdev
);
5181 if ((err
= pci_enable_device(pdev
))) {
5182 printk(KERN_ERR
"e1000: Cannot enable PCI device from suspend\n");
5185 pci_set_master(pdev
);
5187 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5188 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5190 if (netif_running(netdev
) && (err
= e1000_request_irq(adapter
)))
5193 e1000_power_up_phy(adapter
);
5194 e1000_reset(adapter
);
5195 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
5197 e1000_init_manageability(adapter
);
5199 if (netif_running(netdev
))
5202 netif_device_attach(netdev
);
5204 /* If the controller is 82573 and f/w is AMT, do not set
5205 * DRV_LOAD until the interface is up. For all other cases,
5206 * let the f/w know that the h/w is now under the control
5208 if (adapter
->hw
.mac_type
!= e1000_82573
||
5209 !e1000_check_mng_mode(&adapter
->hw
))
5210 e1000_get_hw_control(adapter
);
5216 static void e1000_shutdown(struct pci_dev
*pdev
)
5218 e1000_suspend(pdev
, PMSG_SUSPEND
);
5221 #ifdef CONFIG_NET_POLL_CONTROLLER
5223 * Polling 'interrupt' - used by things like netconsole to send skbs
5224 * without having to re-enable interrupts. It's not called while
5225 * the interrupt routine is executing.
5228 e1000_netpoll(struct net_device
*netdev
)
5230 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5232 disable_irq(adapter
->pdev
->irq
);
5233 e1000_intr(adapter
->pdev
->irq
, netdev
);
5234 e1000_clean_tx_irq(adapter
, adapter
->tx_ring
);
5235 #ifndef CONFIG_E1000_NAPI
5236 adapter
->clean_rx(adapter
, adapter
->rx_ring
);
5238 enable_irq(adapter
->pdev
->irq
);
5243 * e1000_io_error_detected - called when PCI error is detected
5244 * @pdev: Pointer to PCI device
5245 * @state: The current pci conneection state
5247 * This function is called after a PCI bus error affecting
5248 * this device has been detected.
5250 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
5252 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5253 struct e1000_adapter
*adapter
= netdev
->priv
;
5255 netif_device_detach(netdev
);
5257 if (netif_running(netdev
))
5258 e1000_down(adapter
);
5259 pci_disable_device(pdev
);
5261 /* Request a slot slot reset. */
5262 return PCI_ERS_RESULT_NEED_RESET
;
5266 * e1000_io_slot_reset - called after the pci bus has been reset.
5267 * @pdev: Pointer to PCI device
5269 * Restart the card from scratch, as if from a cold-boot. Implementation
5270 * resembles the first-half of the e1000_resume routine.
5272 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5274 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5275 struct e1000_adapter
*adapter
= netdev
->priv
;
5277 if (pci_enable_device(pdev
)) {
5278 printk(KERN_ERR
"e1000: Cannot re-enable PCI device after reset.\n");
5279 return PCI_ERS_RESULT_DISCONNECT
;
5281 pci_set_master(pdev
);
5283 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5284 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5286 e1000_reset(adapter
);
5287 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
5289 return PCI_ERS_RESULT_RECOVERED
;
5293 * e1000_io_resume - called when traffic can start flowing again.
5294 * @pdev: Pointer to PCI device
5296 * This callback is called when the error recovery driver tells us that
5297 * its OK to resume normal operation. Implementation resembles the
5298 * second-half of the e1000_resume routine.
5300 static void e1000_io_resume(struct pci_dev
*pdev
)
5302 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5303 struct e1000_adapter
*adapter
= netdev
->priv
;
5305 e1000_init_manageability(adapter
);
5307 if (netif_running(netdev
)) {
5308 if (e1000_up(adapter
)) {
5309 printk("e1000: can't bring device back up after reset\n");
5314 netif_device_attach(netdev
);
5316 /* If the controller is 82573 and f/w is AMT, do not set
5317 * DRV_LOAD until the interface is up. For all other cases,
5318 * let the f/w know that the h/w is now under the control
5320 if (adapter
->hw
.mac_type
!= e1000_82573
||
5321 !e1000_check_mng_mode(&adapter
->hw
))
5322 e1000_get_hw_control(adapter
);