Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / timer.c
blobd6459923d2452bd4c0b6c71f48c45ee8d8f505da
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
55 EXPORT_SYMBOL(jiffies_64);
58 * per-CPU timer vector definitions:
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
67 struct tvec {
68 struct list_head vec[TVN_SIZE];
71 struct tvec_root {
72 struct list_head vec[TVR_SIZE];
75 struct tvec_base {
76 spinlock_t lock;
77 struct timer_list *running_timer;
78 unsigned long timer_jiffies;
79 unsigned long next_timer;
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
85 } ____cacheline_aligned;
87 struct tvec_base boot_tvec_bases;
88 EXPORT_SYMBOL(boot_tvec_bases);
89 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
97 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
102 static inline void timer_set_deferrable(struct timer_list *timer)
104 timer->base = TBASE_MAKE_DEFERRED(timer->base);
107 static inline void
108 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
110 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
111 tbase_get_deferrable(timer->base));
114 static unsigned long round_jiffies_common(unsigned long j, int cpu,
115 bool force_up)
117 int rem;
118 unsigned long original = j;
121 * We don't want all cpus firing their timers at once hitting the
122 * same lock or cachelines, so we skew each extra cpu with an extra
123 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
124 * already did this.
125 * The skew is done by adding 3*cpunr, then round, then subtract this
126 * extra offset again.
128 j += cpu * 3;
130 rem = j % HZ;
133 * If the target jiffie is just after a whole second (which can happen
134 * due to delays of the timer irq, long irq off times etc etc) then
135 * we should round down to the whole second, not up. Use 1/4th second
136 * as cutoff for this rounding as an extreme upper bound for this.
137 * But never round down if @force_up is set.
139 if (rem < HZ/4 && !force_up) /* round down */
140 j = j - rem;
141 else /* round up */
142 j = j - rem + HZ;
144 /* now that we have rounded, subtract the extra skew again */
145 j -= cpu * 3;
147 if (j <= jiffies) /* rounding ate our timeout entirely; */
148 return original;
149 return j;
153 * __round_jiffies - function to round jiffies to a full second
154 * @j: the time in (absolute) jiffies that should be rounded
155 * @cpu: the processor number on which the timeout will happen
157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
158 * up or down to (approximately) full seconds. This is useful for timers
159 * for which the exact time they fire does not matter too much, as long as
160 * they fire approximately every X seconds.
162 * By rounding these timers to whole seconds, all such timers will fire
163 * at the same time, rather than at various times spread out. The goal
164 * of this is to have the CPU wake up less, which saves power.
166 * The exact rounding is skewed for each processor to avoid all
167 * processors firing at the exact same time, which could lead
168 * to lock contention or spurious cache line bouncing.
170 * The return value is the rounded version of the @j parameter.
172 unsigned long __round_jiffies(unsigned long j, int cpu)
174 return round_jiffies_common(j, cpu, false);
176 EXPORT_SYMBOL_GPL(__round_jiffies);
179 * __round_jiffies_relative - function to round jiffies to a full second
180 * @j: the time in (relative) jiffies that should be rounded
181 * @cpu: the processor number on which the timeout will happen
183 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
184 * up or down to (approximately) full seconds. This is useful for timers
185 * for which the exact time they fire does not matter too much, as long as
186 * they fire approximately every X seconds.
188 * By rounding these timers to whole seconds, all such timers will fire
189 * at the same time, rather than at various times spread out. The goal
190 * of this is to have the CPU wake up less, which saves power.
192 * The exact rounding is skewed for each processor to avoid all
193 * processors firing at the exact same time, which could lead
194 * to lock contention or spurious cache line bouncing.
196 * The return value is the rounded version of the @j parameter.
198 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
200 unsigned long j0 = jiffies;
202 /* Use j0 because jiffies might change while we run */
203 return round_jiffies_common(j + j0, cpu, false) - j0;
205 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
208 * round_jiffies - function to round jiffies to a full second
209 * @j: the time in (absolute) jiffies that should be rounded
211 * round_jiffies() rounds an absolute time in the future (in jiffies)
212 * up or down to (approximately) full seconds. This is useful for timers
213 * for which the exact time they fire does not matter too much, as long as
214 * they fire approximately every X seconds.
216 * By rounding these timers to whole seconds, all such timers will fire
217 * at the same time, rather than at various times spread out. The goal
218 * of this is to have the CPU wake up less, which saves power.
220 * The return value is the rounded version of the @j parameter.
222 unsigned long round_jiffies(unsigned long j)
224 return round_jiffies_common(j, raw_smp_processor_id(), false);
226 EXPORT_SYMBOL_GPL(round_jiffies);
229 * round_jiffies_relative - function to round jiffies to a full second
230 * @j: the time in (relative) jiffies that should be rounded
232 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
241 * The return value is the rounded version of the @j parameter.
243 unsigned long round_jiffies_relative(unsigned long j)
245 return __round_jiffies_relative(j, raw_smp_processor_id());
247 EXPORT_SYMBOL_GPL(round_jiffies_relative);
250 * __round_jiffies_up - function to round jiffies up to a full second
251 * @j: the time in (absolute) jiffies that should be rounded
252 * @cpu: the processor number on which the timeout will happen
254 * This is the same as __round_jiffies() except that it will never
255 * round down. This is useful for timeouts for which the exact time
256 * of firing does not matter too much, as long as they don't fire too
257 * early.
259 unsigned long __round_jiffies_up(unsigned long j, int cpu)
261 return round_jiffies_common(j, cpu, true);
263 EXPORT_SYMBOL_GPL(__round_jiffies_up);
266 * __round_jiffies_up_relative - function to round jiffies up to a full second
267 * @j: the time in (relative) jiffies that should be rounded
268 * @cpu: the processor number on which the timeout will happen
270 * This is the same as __round_jiffies_relative() except that it will never
271 * round down. This is useful for timeouts for which the exact time
272 * of firing does not matter too much, as long as they don't fire too
273 * early.
275 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
277 unsigned long j0 = jiffies;
279 /* Use j0 because jiffies might change while we run */
280 return round_jiffies_common(j + j0, cpu, true) - j0;
282 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
285 * round_jiffies_up - function to round jiffies up to a full second
286 * @j: the time in (absolute) jiffies that should be rounded
288 * This is the same as round_jiffies() except that it will never
289 * round down. This is useful for timeouts for which the exact time
290 * of firing does not matter too much, as long as they don't fire too
291 * early.
293 unsigned long round_jiffies_up(unsigned long j)
295 return round_jiffies_common(j, raw_smp_processor_id(), true);
297 EXPORT_SYMBOL_GPL(round_jiffies_up);
300 * round_jiffies_up_relative - function to round jiffies up to a full second
301 * @j: the time in (relative) jiffies that should be rounded
303 * This is the same as round_jiffies_relative() except that it will never
304 * round down. This is useful for timeouts for which the exact time
305 * of firing does not matter too much, as long as they don't fire too
306 * early.
308 unsigned long round_jiffies_up_relative(unsigned long j)
310 return __round_jiffies_up_relative(j, raw_smp_processor_id());
312 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
315 * set_timer_slack - set the allowed slack for a timer
316 * @timer: the timer to be modified
317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
319 * Set the amount of time, in jiffies, that a certain timer has
320 * in terms of slack. By setting this value, the timer subsystem
321 * will schedule the actual timer somewhere between
322 * the time mod_timer() asks for, and that time plus the slack.
324 * By setting the slack to -1, a percentage of the delay is used
325 * instead.
327 void set_timer_slack(struct timer_list *timer, int slack_hz)
329 timer->slack = slack_hz;
331 EXPORT_SYMBOL_GPL(set_timer_slack);
333 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
335 unsigned long expires = timer->expires;
336 unsigned long idx = expires - base->timer_jiffies;
337 struct list_head *vec;
339 if (idx < TVR_SIZE) {
340 int i = expires & TVR_MASK;
341 vec = base->tv1.vec + i;
342 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
343 int i = (expires >> TVR_BITS) & TVN_MASK;
344 vec = base->tv2.vec + i;
345 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
346 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
347 vec = base->tv3.vec + i;
348 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
349 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
350 vec = base->tv4.vec + i;
351 } else if ((signed long) idx < 0) {
353 * Can happen if you add a timer with expires == jiffies,
354 * or you set a timer to go off in the past
356 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
357 } else {
358 int i;
359 /* If the timeout is larger than 0xffffffff on 64-bit
360 * architectures then we use the maximum timeout:
362 if (idx > 0xffffffffUL) {
363 idx = 0xffffffffUL;
364 expires = idx + base->timer_jiffies;
366 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
367 vec = base->tv5.vec + i;
370 * Timers are FIFO:
372 list_add_tail(&timer->entry, vec);
375 #ifdef CONFIG_TIMER_STATS
376 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
378 if (timer->start_site)
379 return;
381 timer->start_site = addr;
382 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
383 timer->start_pid = current->pid;
386 static void timer_stats_account_timer(struct timer_list *timer)
388 unsigned int flag = 0;
390 if (likely(!timer->start_site))
391 return;
392 if (unlikely(tbase_get_deferrable(timer->base)))
393 flag |= TIMER_STATS_FLAG_DEFERRABLE;
395 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
396 timer->function, timer->start_comm, flag);
399 #else
400 static void timer_stats_account_timer(struct timer_list *timer) {}
401 #endif
403 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
405 static struct debug_obj_descr timer_debug_descr;
408 * fixup_init is called when:
409 * - an active object is initialized
411 static int timer_fixup_init(void *addr, enum debug_obj_state state)
413 struct timer_list *timer = addr;
415 switch (state) {
416 case ODEBUG_STATE_ACTIVE:
417 del_timer_sync(timer);
418 debug_object_init(timer, &timer_debug_descr);
419 return 1;
420 default:
421 return 0;
426 * fixup_activate is called when:
427 * - an active object is activated
428 * - an unknown object is activated (might be a statically initialized object)
430 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
432 struct timer_list *timer = addr;
434 switch (state) {
436 case ODEBUG_STATE_NOTAVAILABLE:
438 * This is not really a fixup. The timer was
439 * statically initialized. We just make sure that it
440 * is tracked in the object tracker.
442 if (timer->entry.next == NULL &&
443 timer->entry.prev == TIMER_ENTRY_STATIC) {
444 debug_object_init(timer, &timer_debug_descr);
445 debug_object_activate(timer, &timer_debug_descr);
446 return 0;
447 } else {
448 WARN_ON_ONCE(1);
450 return 0;
452 case ODEBUG_STATE_ACTIVE:
453 WARN_ON(1);
455 default:
456 return 0;
461 * fixup_free is called when:
462 * - an active object is freed
464 static int timer_fixup_free(void *addr, enum debug_obj_state state)
466 struct timer_list *timer = addr;
468 switch (state) {
469 case ODEBUG_STATE_ACTIVE:
470 del_timer_sync(timer);
471 debug_object_free(timer, &timer_debug_descr);
472 return 1;
473 default:
474 return 0;
478 static struct debug_obj_descr timer_debug_descr = {
479 .name = "timer_list",
480 .fixup_init = timer_fixup_init,
481 .fixup_activate = timer_fixup_activate,
482 .fixup_free = timer_fixup_free,
485 static inline void debug_timer_init(struct timer_list *timer)
487 debug_object_init(timer, &timer_debug_descr);
490 static inline void debug_timer_activate(struct timer_list *timer)
492 debug_object_activate(timer, &timer_debug_descr);
495 static inline void debug_timer_deactivate(struct timer_list *timer)
497 debug_object_deactivate(timer, &timer_debug_descr);
500 static inline void debug_timer_free(struct timer_list *timer)
502 debug_object_free(timer, &timer_debug_descr);
505 static void __init_timer(struct timer_list *timer,
506 const char *name,
507 struct lock_class_key *key);
509 void init_timer_on_stack_key(struct timer_list *timer,
510 const char *name,
511 struct lock_class_key *key)
513 debug_object_init_on_stack(timer, &timer_debug_descr);
514 __init_timer(timer, name, key);
516 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
518 void destroy_timer_on_stack(struct timer_list *timer)
520 debug_object_free(timer, &timer_debug_descr);
522 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
524 #else
525 static inline void debug_timer_init(struct timer_list *timer) { }
526 static inline void debug_timer_activate(struct timer_list *timer) { }
527 static inline void debug_timer_deactivate(struct timer_list *timer) { }
528 #endif
530 static inline void debug_init(struct timer_list *timer)
532 debug_timer_init(timer);
533 trace_timer_init(timer);
536 static inline void
537 debug_activate(struct timer_list *timer, unsigned long expires)
539 debug_timer_activate(timer);
540 trace_timer_start(timer, expires);
543 static inline void debug_deactivate(struct timer_list *timer)
545 debug_timer_deactivate(timer);
546 trace_timer_cancel(timer);
549 static void __init_timer(struct timer_list *timer,
550 const char *name,
551 struct lock_class_key *key)
553 timer->entry.next = NULL;
554 timer->base = __raw_get_cpu_var(tvec_bases);
555 timer->slack = -1;
556 #ifdef CONFIG_TIMER_STATS
557 timer->start_site = NULL;
558 timer->start_pid = -1;
559 memset(timer->start_comm, 0, TASK_COMM_LEN);
560 #endif
561 lockdep_init_map(&timer->lockdep_map, name, key, 0);
564 void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
565 const char *name,
566 struct lock_class_key *key,
567 void (*function)(unsigned long),
568 unsigned long data)
570 timer->function = function;
571 timer->data = data;
572 init_timer_on_stack_key(timer, name, key);
573 timer_set_deferrable(timer);
575 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
578 * init_timer_key - initialize a timer
579 * @timer: the timer to be initialized
580 * @name: name of the timer
581 * @key: lockdep class key of the fake lock used for tracking timer
582 * sync lock dependencies
584 * init_timer_key() must be done to a timer prior calling *any* of the
585 * other timer functions.
587 void init_timer_key(struct timer_list *timer,
588 const char *name,
589 struct lock_class_key *key)
591 debug_init(timer);
592 __init_timer(timer, name, key);
594 EXPORT_SYMBOL(init_timer_key);
596 void init_timer_deferrable_key(struct timer_list *timer,
597 const char *name,
598 struct lock_class_key *key)
600 init_timer_key(timer, name, key);
601 timer_set_deferrable(timer);
603 EXPORT_SYMBOL(init_timer_deferrable_key);
605 static inline void detach_timer(struct timer_list *timer,
606 int clear_pending)
608 struct list_head *entry = &timer->entry;
610 debug_deactivate(timer);
612 __list_del(entry->prev, entry->next);
613 if (clear_pending)
614 entry->next = NULL;
615 entry->prev = LIST_POISON2;
619 * We are using hashed locking: holding per_cpu(tvec_bases).lock
620 * means that all timers which are tied to this base via timer->base are
621 * locked, and the base itself is locked too.
623 * So __run_timers/migrate_timers can safely modify all timers which could
624 * be found on ->tvX lists.
626 * When the timer's base is locked, and the timer removed from list, it is
627 * possible to set timer->base = NULL and drop the lock: the timer remains
628 * locked.
630 static struct tvec_base *lock_timer_base(struct timer_list *timer,
631 unsigned long *flags)
632 __acquires(timer->base->lock)
634 struct tvec_base *base;
636 for (;;) {
637 struct tvec_base *prelock_base = timer->base;
638 base = tbase_get_base(prelock_base);
639 if (likely(base != NULL)) {
640 spin_lock_irqsave(&base->lock, *flags);
641 if (likely(prelock_base == timer->base))
642 return base;
643 /* The timer has migrated to another CPU */
644 spin_unlock_irqrestore(&base->lock, *flags);
646 cpu_relax();
650 static inline int
651 __mod_timer(struct timer_list *timer, unsigned long expires,
652 bool pending_only, int pinned)
654 struct tvec_base *base, *new_base;
655 unsigned long flags;
656 int ret = 0 , cpu;
658 timer_stats_timer_set_start_info(timer);
659 BUG_ON(!timer->function);
661 base = lock_timer_base(timer, &flags);
663 if (timer_pending(timer)) {
664 detach_timer(timer, 0);
665 if (timer->expires == base->next_timer &&
666 !tbase_get_deferrable(timer->base))
667 base->next_timer = base->timer_jiffies;
668 ret = 1;
669 } else {
670 if (pending_only)
671 goto out_unlock;
674 debug_activate(timer, expires);
676 cpu = smp_processor_id();
678 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
679 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
680 cpu = get_nohz_timer_target();
681 #endif
682 new_base = per_cpu(tvec_bases, cpu);
684 if (base != new_base) {
686 * We are trying to schedule the timer on the local CPU.
687 * However we can't change timer's base while it is running,
688 * otherwise del_timer_sync() can't detect that the timer's
689 * handler yet has not finished. This also guarantees that
690 * the timer is serialized wrt itself.
692 if (likely(base->running_timer != timer)) {
693 /* See the comment in lock_timer_base() */
694 timer_set_base(timer, NULL);
695 spin_unlock(&base->lock);
696 base = new_base;
697 spin_lock(&base->lock);
698 timer_set_base(timer, base);
702 timer->expires = expires;
703 if (time_before(timer->expires, base->next_timer) &&
704 !tbase_get_deferrable(timer->base))
705 base->next_timer = timer->expires;
706 internal_add_timer(base, timer);
708 out_unlock:
709 spin_unlock_irqrestore(&base->lock, flags);
711 return ret;
715 * mod_timer_pending - modify a pending timer's timeout
716 * @timer: the pending timer to be modified
717 * @expires: new timeout in jiffies
719 * mod_timer_pending() is the same for pending timers as mod_timer(),
720 * but will not re-activate and modify already deleted timers.
722 * It is useful for unserialized use of timers.
724 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
726 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
728 EXPORT_SYMBOL(mod_timer_pending);
731 * Decide where to put the timer while taking the slack into account
733 * Algorithm:
734 * 1) calculate the maximum (absolute) time
735 * 2) calculate the highest bit where the expires and new max are different
736 * 3) use this bit to make a mask
737 * 4) use the bitmask to round down the maximum time, so that all last
738 * bits are zeros
740 static inline
741 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
743 unsigned long expires_limit, mask;
744 int bit;
746 expires_limit = expires;
748 if (timer->slack >= 0) {
749 expires_limit = expires + timer->slack;
750 } else {
751 unsigned long now = jiffies;
753 /* No slack, if already expired else auto slack 0.4% */
754 if (time_after(expires, now))
755 expires_limit = expires + (expires - now)/256;
757 mask = expires ^ expires_limit;
758 if (mask == 0)
759 return expires;
761 bit = find_last_bit(&mask, BITS_PER_LONG);
763 mask = (1 << bit) - 1;
765 expires_limit = expires_limit & ~(mask);
767 return expires_limit;
771 * mod_timer - modify a timer's timeout
772 * @timer: the timer to be modified
773 * @expires: new timeout in jiffies
775 * mod_timer() is a more efficient way to update the expire field of an
776 * active timer (if the timer is inactive it will be activated)
778 * mod_timer(timer, expires) is equivalent to:
780 * del_timer(timer); timer->expires = expires; add_timer(timer);
782 * Note that if there are multiple unserialized concurrent users of the
783 * same timer, then mod_timer() is the only safe way to modify the timeout,
784 * since add_timer() cannot modify an already running timer.
786 * The function returns whether it has modified a pending timer or not.
787 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
788 * active timer returns 1.)
790 int mod_timer(struct timer_list *timer, unsigned long expires)
793 * This is a common optimization triggered by the
794 * networking code - if the timer is re-modified
795 * to be the same thing then just return:
797 if (timer_pending(timer) && timer->expires == expires)
798 return 1;
800 expires = apply_slack(timer, expires);
802 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
804 EXPORT_SYMBOL(mod_timer);
807 * mod_timer_pinned - modify a timer's timeout
808 * @timer: the timer to be modified
809 * @expires: new timeout in jiffies
811 * mod_timer_pinned() is a way to update the expire field of an
812 * active timer (if the timer is inactive it will be activated)
813 * and not allow the timer to be migrated to a different CPU.
815 * mod_timer_pinned(timer, expires) is equivalent to:
817 * del_timer(timer); timer->expires = expires; add_timer(timer);
819 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
821 if (timer->expires == expires && timer_pending(timer))
822 return 1;
824 return __mod_timer(timer, expires, false, TIMER_PINNED);
826 EXPORT_SYMBOL(mod_timer_pinned);
829 * add_timer - start a timer
830 * @timer: the timer to be added
832 * The kernel will do a ->function(->data) callback from the
833 * timer interrupt at the ->expires point in the future. The
834 * current time is 'jiffies'.
836 * The timer's ->expires, ->function (and if the handler uses it, ->data)
837 * fields must be set prior calling this function.
839 * Timers with an ->expires field in the past will be executed in the next
840 * timer tick.
842 void add_timer(struct timer_list *timer)
844 BUG_ON(timer_pending(timer));
845 mod_timer(timer, timer->expires);
847 EXPORT_SYMBOL(add_timer);
850 * add_timer_on - start a timer on a particular CPU
851 * @timer: the timer to be added
852 * @cpu: the CPU to start it on
854 * This is not very scalable on SMP. Double adds are not possible.
856 void add_timer_on(struct timer_list *timer, int cpu)
858 struct tvec_base *base = per_cpu(tvec_bases, cpu);
859 unsigned long flags;
861 timer_stats_timer_set_start_info(timer);
862 BUG_ON(timer_pending(timer) || !timer->function);
863 spin_lock_irqsave(&base->lock, flags);
864 timer_set_base(timer, base);
865 debug_activate(timer, timer->expires);
866 if (time_before(timer->expires, base->next_timer) &&
867 !tbase_get_deferrable(timer->base))
868 base->next_timer = timer->expires;
869 internal_add_timer(base, timer);
871 * Check whether the other CPU is idle and needs to be
872 * triggered to reevaluate the timer wheel when nohz is
873 * active. We are protected against the other CPU fiddling
874 * with the timer by holding the timer base lock. This also
875 * makes sure that a CPU on the way to idle can not evaluate
876 * the timer wheel.
878 wake_up_idle_cpu(cpu);
879 spin_unlock_irqrestore(&base->lock, flags);
881 EXPORT_SYMBOL_GPL(add_timer_on);
884 * del_timer - deactive a timer.
885 * @timer: the timer to be deactivated
887 * del_timer() deactivates a timer - this works on both active and inactive
888 * timers.
890 * The function returns whether it has deactivated a pending timer or not.
891 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
892 * active timer returns 1.)
894 int del_timer(struct timer_list *timer)
896 struct tvec_base *base;
897 unsigned long flags;
898 int ret = 0;
900 timer_stats_timer_clear_start_info(timer);
901 if (timer_pending(timer)) {
902 base = lock_timer_base(timer, &flags);
903 if (timer_pending(timer)) {
904 detach_timer(timer, 1);
905 if (timer->expires == base->next_timer &&
906 !tbase_get_deferrable(timer->base))
907 base->next_timer = base->timer_jiffies;
908 ret = 1;
910 spin_unlock_irqrestore(&base->lock, flags);
913 return ret;
915 EXPORT_SYMBOL(del_timer);
918 * try_to_del_timer_sync - Try to deactivate a timer
919 * @timer: timer do del
921 * This function tries to deactivate a timer. Upon successful (ret >= 0)
922 * exit the timer is not queued and the handler is not running on any CPU.
924 int try_to_del_timer_sync(struct timer_list *timer)
926 struct tvec_base *base;
927 unsigned long flags;
928 int ret = -1;
930 base = lock_timer_base(timer, &flags);
932 if (base->running_timer == timer)
933 goto out;
935 timer_stats_timer_clear_start_info(timer);
936 ret = 0;
937 if (timer_pending(timer)) {
938 detach_timer(timer, 1);
939 if (timer->expires == base->next_timer &&
940 !tbase_get_deferrable(timer->base))
941 base->next_timer = base->timer_jiffies;
942 ret = 1;
944 out:
945 spin_unlock_irqrestore(&base->lock, flags);
947 return ret;
949 EXPORT_SYMBOL(try_to_del_timer_sync);
951 #ifdef CONFIG_SMP
953 * del_timer_sync - deactivate a timer and wait for the handler to finish.
954 * @timer: the timer to be deactivated
956 * This function only differs from del_timer() on SMP: besides deactivating
957 * the timer it also makes sure the handler has finished executing on other
958 * CPUs.
960 * Synchronization rules: Callers must prevent restarting of the timer,
961 * otherwise this function is meaningless. It must not be called from
962 * interrupt contexts. The caller must not hold locks which would prevent
963 * completion of the timer's handler. The timer's handler must not call
964 * add_timer_on(). Upon exit the timer is not queued and the handler is
965 * not running on any CPU.
967 * The function returns whether it has deactivated a pending timer or not.
969 int del_timer_sync(struct timer_list *timer)
971 #ifdef CONFIG_LOCKDEP
972 unsigned long flags;
974 local_irq_save(flags);
975 lock_map_acquire(&timer->lockdep_map);
976 lock_map_release(&timer->lockdep_map);
977 local_irq_restore(flags);
978 #endif
980 * don't use it in hardirq context, because it
981 * could lead to deadlock.
983 WARN_ON(in_irq());
984 for (;;) {
985 int ret = try_to_del_timer_sync(timer);
986 if (ret >= 0)
987 return ret;
988 cpu_relax();
991 EXPORT_SYMBOL(del_timer_sync);
992 #endif
994 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
996 /* cascade all the timers from tv up one level */
997 struct timer_list *timer, *tmp;
998 struct list_head tv_list;
1000 list_replace_init(tv->vec + index, &tv_list);
1003 * We are removing _all_ timers from the list, so we
1004 * don't have to detach them individually.
1006 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1007 BUG_ON(tbase_get_base(timer->base) != base);
1008 internal_add_timer(base, timer);
1011 return index;
1014 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1015 unsigned long data)
1017 int preempt_count = preempt_count();
1019 #ifdef CONFIG_LOCKDEP
1021 * It is permissible to free the timer from inside the
1022 * function that is called from it, this we need to take into
1023 * account for lockdep too. To avoid bogus "held lock freed"
1024 * warnings as well as problems when looking into
1025 * timer->lockdep_map, make a copy and use that here.
1027 struct lockdep_map lockdep_map = timer->lockdep_map;
1028 #endif
1030 * Couple the lock chain with the lock chain at
1031 * del_timer_sync() by acquiring the lock_map around the fn()
1032 * call here and in del_timer_sync().
1034 lock_map_acquire(&lockdep_map);
1036 trace_timer_expire_entry(timer);
1037 fn(data);
1038 trace_timer_expire_exit(timer);
1040 lock_map_release(&lockdep_map);
1042 if (preempt_count != preempt_count()) {
1043 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1044 fn, preempt_count, preempt_count());
1046 * Restore the preempt count. That gives us a decent
1047 * chance to survive and extract information. If the
1048 * callback kept a lock held, bad luck, but not worse
1049 * than the BUG() we had.
1051 preempt_count() = preempt_count;
1055 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1058 * __run_timers - run all expired timers (if any) on this CPU.
1059 * @base: the timer vector to be processed.
1061 * This function cascades all vectors and executes all expired timer
1062 * vectors.
1064 static inline void __run_timers(struct tvec_base *base)
1066 struct timer_list *timer;
1068 spin_lock_irq(&base->lock);
1069 while (time_after_eq(jiffies, base->timer_jiffies)) {
1070 struct list_head work_list;
1071 struct list_head *head = &work_list;
1072 int index = base->timer_jiffies & TVR_MASK;
1075 * Cascade timers:
1077 if (!index &&
1078 (!cascade(base, &base->tv2, INDEX(0))) &&
1079 (!cascade(base, &base->tv3, INDEX(1))) &&
1080 !cascade(base, &base->tv4, INDEX(2)))
1081 cascade(base, &base->tv5, INDEX(3));
1082 ++base->timer_jiffies;
1083 list_replace_init(base->tv1.vec + index, &work_list);
1084 while (!list_empty(head)) {
1085 void (*fn)(unsigned long);
1086 unsigned long data;
1088 timer = list_first_entry(head, struct timer_list,entry);
1089 fn = timer->function;
1090 data = timer->data;
1092 timer_stats_account_timer(timer);
1094 base->running_timer = timer;
1095 detach_timer(timer, 1);
1097 spin_unlock_irq(&base->lock);
1098 call_timer_fn(timer, fn, data);
1099 spin_lock_irq(&base->lock);
1102 base->running_timer = NULL;
1103 spin_unlock_irq(&base->lock);
1106 #ifdef CONFIG_NO_HZ
1108 * Find out when the next timer event is due to happen. This
1109 * is used on S/390 to stop all activity when a CPU is idle.
1110 * This function needs to be called with interrupts disabled.
1112 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1114 unsigned long timer_jiffies = base->timer_jiffies;
1115 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1116 int index, slot, array, found = 0;
1117 struct timer_list *nte;
1118 struct tvec *varray[4];
1120 /* Look for timer events in tv1. */
1121 index = slot = timer_jiffies & TVR_MASK;
1122 do {
1123 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1124 if (tbase_get_deferrable(nte->base))
1125 continue;
1127 found = 1;
1128 expires = nte->expires;
1129 /* Look at the cascade bucket(s)? */
1130 if (!index || slot < index)
1131 goto cascade;
1132 return expires;
1134 slot = (slot + 1) & TVR_MASK;
1135 } while (slot != index);
1137 cascade:
1138 /* Calculate the next cascade event */
1139 if (index)
1140 timer_jiffies += TVR_SIZE - index;
1141 timer_jiffies >>= TVR_BITS;
1143 /* Check tv2-tv5. */
1144 varray[0] = &base->tv2;
1145 varray[1] = &base->tv3;
1146 varray[2] = &base->tv4;
1147 varray[3] = &base->tv5;
1149 for (array = 0; array < 4; array++) {
1150 struct tvec *varp = varray[array];
1152 index = slot = timer_jiffies & TVN_MASK;
1153 do {
1154 list_for_each_entry(nte, varp->vec + slot, entry) {
1155 if (tbase_get_deferrable(nte->base))
1156 continue;
1158 found = 1;
1159 if (time_before(nte->expires, expires))
1160 expires = nte->expires;
1163 * Do we still search for the first timer or are
1164 * we looking up the cascade buckets ?
1166 if (found) {
1167 /* Look at the cascade bucket(s)? */
1168 if (!index || slot < index)
1169 break;
1170 return expires;
1172 slot = (slot + 1) & TVN_MASK;
1173 } while (slot != index);
1175 if (index)
1176 timer_jiffies += TVN_SIZE - index;
1177 timer_jiffies >>= TVN_BITS;
1179 return expires;
1183 * Check, if the next hrtimer event is before the next timer wheel
1184 * event:
1186 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1187 unsigned long expires)
1189 ktime_t hr_delta = hrtimer_get_next_event();
1190 struct timespec tsdelta;
1191 unsigned long delta;
1193 if (hr_delta.tv64 == KTIME_MAX)
1194 return expires;
1197 * Expired timer available, let it expire in the next tick
1199 if (hr_delta.tv64 <= 0)
1200 return now + 1;
1202 tsdelta = ktime_to_timespec(hr_delta);
1203 delta = timespec_to_jiffies(&tsdelta);
1206 * Limit the delta to the max value, which is checked in
1207 * tick_nohz_stop_sched_tick():
1209 if (delta > NEXT_TIMER_MAX_DELTA)
1210 delta = NEXT_TIMER_MAX_DELTA;
1213 * Take rounding errors in to account and make sure, that it
1214 * expires in the next tick. Otherwise we go into an endless
1215 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1216 * the timer softirq
1218 if (delta < 1)
1219 delta = 1;
1220 now += delta;
1221 if (time_before(now, expires))
1222 return now;
1223 return expires;
1227 * get_next_timer_interrupt - return the jiffy of the next pending timer
1228 * @now: current time (in jiffies)
1230 unsigned long get_next_timer_interrupt(unsigned long now)
1232 struct tvec_base *base = __this_cpu_read(tvec_bases);
1233 unsigned long expires;
1236 * Pretend that there is no timer pending if the cpu is offline.
1237 * Possible pending timers will be migrated later to an active cpu.
1239 if (cpu_is_offline(smp_processor_id()))
1240 return now + NEXT_TIMER_MAX_DELTA;
1241 spin_lock(&base->lock);
1242 if (time_before_eq(base->next_timer, base->timer_jiffies))
1243 base->next_timer = __next_timer_interrupt(base);
1244 expires = base->next_timer;
1245 spin_unlock(&base->lock);
1247 if (time_before_eq(expires, now))
1248 return now;
1250 return cmp_next_hrtimer_event(now, expires);
1252 #endif
1255 * Called from the timer interrupt handler to charge one tick to the current
1256 * process. user_tick is 1 if the tick is user time, 0 for system.
1258 void update_process_times(int user_tick)
1260 struct task_struct *p = current;
1261 int cpu = smp_processor_id();
1263 /* Note: this timer irq context must be accounted for as well. */
1264 account_process_tick(p, user_tick);
1265 run_local_timers();
1266 rcu_check_callbacks(cpu, user_tick);
1267 printk_tick();
1268 #ifdef CONFIG_IRQ_WORK
1269 if (in_irq())
1270 irq_work_run();
1271 #endif
1272 scheduler_tick();
1273 run_posix_cpu_timers(p);
1277 * This function runs timers and the timer-tq in bottom half context.
1279 static void run_timer_softirq(struct softirq_action *h)
1281 struct tvec_base *base = __this_cpu_read(tvec_bases);
1283 hrtimer_run_pending();
1285 if (time_after_eq(jiffies, base->timer_jiffies))
1286 __run_timers(base);
1290 * Called by the local, per-CPU timer interrupt on SMP.
1292 void run_local_timers(void)
1294 hrtimer_run_queues();
1295 raise_softirq(TIMER_SOFTIRQ);
1299 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1300 * without sampling the sequence number in xtime_lock.
1301 * jiffies is defined in the linker script...
1304 void do_timer(unsigned long ticks)
1306 jiffies_64 += ticks;
1307 update_wall_time();
1308 calc_global_load(ticks);
1311 #ifdef __ARCH_WANT_SYS_ALARM
1314 * For backwards compatibility? This can be done in libc so Alpha
1315 * and all newer ports shouldn't need it.
1317 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1319 return alarm_setitimer(seconds);
1322 #endif
1324 #ifndef __alpha__
1327 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1328 * should be moved into arch/i386 instead?
1332 * sys_getpid - return the thread group id of the current process
1334 * Note, despite the name, this returns the tgid not the pid. The tgid and
1335 * the pid are identical unless CLONE_THREAD was specified on clone() in
1336 * which case the tgid is the same in all threads of the same group.
1338 * This is SMP safe as current->tgid does not change.
1340 SYSCALL_DEFINE0(getpid)
1342 return task_tgid_vnr(current);
1346 * Accessing ->real_parent is not SMP-safe, it could
1347 * change from under us. However, we can use a stale
1348 * value of ->real_parent under rcu_read_lock(), see
1349 * release_task()->call_rcu(delayed_put_task_struct).
1351 SYSCALL_DEFINE0(getppid)
1353 int pid;
1355 rcu_read_lock();
1356 pid = task_tgid_vnr(current->real_parent);
1357 rcu_read_unlock();
1359 return pid;
1362 SYSCALL_DEFINE0(getuid)
1364 /* Only we change this so SMP safe */
1365 return current_uid();
1368 SYSCALL_DEFINE0(geteuid)
1370 /* Only we change this so SMP safe */
1371 return current_euid();
1374 SYSCALL_DEFINE0(getgid)
1376 /* Only we change this so SMP safe */
1377 return current_gid();
1380 SYSCALL_DEFINE0(getegid)
1382 /* Only we change this so SMP safe */
1383 return current_egid();
1386 #endif
1388 static void process_timeout(unsigned long __data)
1390 wake_up_process((struct task_struct *)__data);
1394 * schedule_timeout - sleep until timeout
1395 * @timeout: timeout value in jiffies
1397 * Make the current task sleep until @timeout jiffies have
1398 * elapsed. The routine will return immediately unless
1399 * the current task state has been set (see set_current_state()).
1401 * You can set the task state as follows -
1403 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1404 * pass before the routine returns. The routine will return 0
1406 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1407 * delivered to the current task. In this case the remaining time
1408 * in jiffies will be returned, or 0 if the timer expired in time
1410 * The current task state is guaranteed to be TASK_RUNNING when this
1411 * routine returns.
1413 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1414 * the CPU away without a bound on the timeout. In this case the return
1415 * value will be %MAX_SCHEDULE_TIMEOUT.
1417 * In all cases the return value is guaranteed to be non-negative.
1419 signed long __sched schedule_timeout(signed long timeout)
1421 struct timer_list timer;
1422 unsigned long expire;
1424 switch (timeout)
1426 case MAX_SCHEDULE_TIMEOUT:
1428 * These two special cases are useful to be comfortable
1429 * in the caller. Nothing more. We could take
1430 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1431 * but I' d like to return a valid offset (>=0) to allow
1432 * the caller to do everything it want with the retval.
1434 schedule();
1435 goto out;
1436 default:
1438 * Another bit of PARANOID. Note that the retval will be
1439 * 0 since no piece of kernel is supposed to do a check
1440 * for a negative retval of schedule_timeout() (since it
1441 * should never happens anyway). You just have the printk()
1442 * that will tell you if something is gone wrong and where.
1444 if (timeout < 0) {
1445 printk(KERN_ERR "schedule_timeout: wrong timeout "
1446 "value %lx\n", timeout);
1447 dump_stack();
1448 current->state = TASK_RUNNING;
1449 goto out;
1453 expire = timeout + jiffies;
1455 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1456 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1457 schedule();
1458 del_singleshot_timer_sync(&timer);
1460 /* Remove the timer from the object tracker */
1461 destroy_timer_on_stack(&timer);
1463 timeout = expire - jiffies;
1465 out:
1466 return timeout < 0 ? 0 : timeout;
1468 EXPORT_SYMBOL(schedule_timeout);
1471 * We can use __set_current_state() here because schedule_timeout() calls
1472 * schedule() unconditionally.
1474 signed long __sched schedule_timeout_interruptible(signed long timeout)
1476 __set_current_state(TASK_INTERRUPTIBLE);
1477 return schedule_timeout(timeout);
1479 EXPORT_SYMBOL(schedule_timeout_interruptible);
1481 signed long __sched schedule_timeout_killable(signed long timeout)
1483 __set_current_state(TASK_KILLABLE);
1484 return schedule_timeout(timeout);
1486 EXPORT_SYMBOL(schedule_timeout_killable);
1488 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1490 __set_current_state(TASK_UNINTERRUPTIBLE);
1491 return schedule_timeout(timeout);
1493 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1495 /* Thread ID - the internal kernel "pid" */
1496 SYSCALL_DEFINE0(gettid)
1498 return task_pid_vnr(current);
1502 * do_sysinfo - fill in sysinfo struct
1503 * @info: pointer to buffer to fill
1505 int do_sysinfo(struct sysinfo *info)
1507 unsigned long mem_total, sav_total;
1508 unsigned int mem_unit, bitcount;
1509 struct timespec tp;
1511 memset(info, 0, sizeof(struct sysinfo));
1513 ktime_get_ts(&tp);
1514 monotonic_to_bootbased(&tp);
1515 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1517 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1519 info->procs = nr_threads;
1521 si_meminfo(info);
1522 si_swapinfo(info);
1525 * If the sum of all the available memory (i.e. ram + swap)
1526 * is less than can be stored in a 32 bit unsigned long then
1527 * we can be binary compatible with 2.2.x kernels. If not,
1528 * well, in that case 2.2.x was broken anyways...
1530 * -Erik Andersen <andersee@debian.org>
1533 mem_total = info->totalram + info->totalswap;
1534 if (mem_total < info->totalram || mem_total < info->totalswap)
1535 goto out;
1536 bitcount = 0;
1537 mem_unit = info->mem_unit;
1538 while (mem_unit > 1) {
1539 bitcount++;
1540 mem_unit >>= 1;
1541 sav_total = mem_total;
1542 mem_total <<= 1;
1543 if (mem_total < sav_total)
1544 goto out;
1548 * If mem_total did not overflow, multiply all memory values by
1549 * info->mem_unit and set it to 1. This leaves things compatible
1550 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1551 * kernels...
1554 info->mem_unit = 1;
1555 info->totalram <<= bitcount;
1556 info->freeram <<= bitcount;
1557 info->sharedram <<= bitcount;
1558 info->bufferram <<= bitcount;
1559 info->totalswap <<= bitcount;
1560 info->freeswap <<= bitcount;
1561 info->totalhigh <<= bitcount;
1562 info->freehigh <<= bitcount;
1564 out:
1565 return 0;
1568 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1570 struct sysinfo val;
1572 do_sysinfo(&val);
1574 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1575 return -EFAULT;
1577 return 0;
1580 static int __cpuinit init_timers_cpu(int cpu)
1582 int j;
1583 struct tvec_base *base;
1584 static char __cpuinitdata tvec_base_done[NR_CPUS];
1586 if (!tvec_base_done[cpu]) {
1587 static char boot_done;
1589 if (boot_done) {
1591 * The APs use this path later in boot
1593 base = kmalloc_node(sizeof(*base),
1594 GFP_KERNEL | __GFP_ZERO,
1595 cpu_to_node(cpu));
1596 if (!base)
1597 return -ENOMEM;
1599 /* Make sure that tvec_base is 2 byte aligned */
1600 if (tbase_get_deferrable(base)) {
1601 WARN_ON(1);
1602 kfree(base);
1603 return -ENOMEM;
1605 per_cpu(tvec_bases, cpu) = base;
1606 } else {
1608 * This is for the boot CPU - we use compile-time
1609 * static initialisation because per-cpu memory isn't
1610 * ready yet and because the memory allocators are not
1611 * initialised either.
1613 boot_done = 1;
1614 base = &boot_tvec_bases;
1616 tvec_base_done[cpu] = 1;
1617 } else {
1618 base = per_cpu(tvec_bases, cpu);
1621 spin_lock_init(&base->lock);
1623 for (j = 0; j < TVN_SIZE; j++) {
1624 INIT_LIST_HEAD(base->tv5.vec + j);
1625 INIT_LIST_HEAD(base->tv4.vec + j);
1626 INIT_LIST_HEAD(base->tv3.vec + j);
1627 INIT_LIST_HEAD(base->tv2.vec + j);
1629 for (j = 0; j < TVR_SIZE; j++)
1630 INIT_LIST_HEAD(base->tv1.vec + j);
1632 base->timer_jiffies = jiffies;
1633 base->next_timer = base->timer_jiffies;
1634 return 0;
1637 #ifdef CONFIG_HOTPLUG_CPU
1638 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1640 struct timer_list *timer;
1642 while (!list_empty(head)) {
1643 timer = list_first_entry(head, struct timer_list, entry);
1644 detach_timer(timer, 0);
1645 timer_set_base(timer, new_base);
1646 if (time_before(timer->expires, new_base->next_timer) &&
1647 !tbase_get_deferrable(timer->base))
1648 new_base->next_timer = timer->expires;
1649 internal_add_timer(new_base, timer);
1653 static void __cpuinit migrate_timers(int cpu)
1655 struct tvec_base *old_base;
1656 struct tvec_base *new_base;
1657 int i;
1659 BUG_ON(cpu_online(cpu));
1660 old_base = per_cpu(tvec_bases, cpu);
1661 new_base = get_cpu_var(tvec_bases);
1663 * The caller is globally serialized and nobody else
1664 * takes two locks at once, deadlock is not possible.
1666 spin_lock_irq(&new_base->lock);
1667 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1669 BUG_ON(old_base->running_timer);
1671 for (i = 0; i < TVR_SIZE; i++)
1672 migrate_timer_list(new_base, old_base->tv1.vec + i);
1673 for (i = 0; i < TVN_SIZE; i++) {
1674 migrate_timer_list(new_base, old_base->tv2.vec + i);
1675 migrate_timer_list(new_base, old_base->tv3.vec + i);
1676 migrate_timer_list(new_base, old_base->tv4.vec + i);
1677 migrate_timer_list(new_base, old_base->tv5.vec + i);
1680 spin_unlock(&old_base->lock);
1681 spin_unlock_irq(&new_base->lock);
1682 put_cpu_var(tvec_bases);
1684 #endif /* CONFIG_HOTPLUG_CPU */
1686 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1687 unsigned long action, void *hcpu)
1689 long cpu = (long)hcpu;
1690 int err;
1692 switch(action) {
1693 case CPU_UP_PREPARE:
1694 case CPU_UP_PREPARE_FROZEN:
1695 err = init_timers_cpu(cpu);
1696 if (err < 0)
1697 return notifier_from_errno(err);
1698 break;
1699 #ifdef CONFIG_HOTPLUG_CPU
1700 case CPU_DEAD:
1701 case CPU_DEAD_FROZEN:
1702 migrate_timers(cpu);
1703 break;
1704 #endif
1705 default:
1706 break;
1708 return NOTIFY_OK;
1711 static struct notifier_block __cpuinitdata timers_nb = {
1712 .notifier_call = timer_cpu_notify,
1716 void __init init_timers(void)
1718 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1719 (void *)(long)smp_processor_id());
1721 init_timer_stats();
1723 BUG_ON(err != NOTIFY_OK);
1724 register_cpu_notifier(&timers_nb);
1725 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1729 * msleep - sleep safely even with waitqueue interruptions
1730 * @msecs: Time in milliseconds to sleep for
1732 void msleep(unsigned int msecs)
1734 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1736 while (timeout)
1737 timeout = schedule_timeout_uninterruptible(timeout);
1740 EXPORT_SYMBOL(msleep);
1743 * msleep_interruptible - sleep waiting for signals
1744 * @msecs: Time in milliseconds to sleep for
1746 unsigned long msleep_interruptible(unsigned int msecs)
1748 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1750 while (timeout && !signal_pending(current))
1751 timeout = schedule_timeout_interruptible(timeout);
1752 return jiffies_to_msecs(timeout);
1755 EXPORT_SYMBOL(msleep_interruptible);
1757 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1759 ktime_t kmin;
1760 unsigned long delta;
1762 kmin = ktime_set(0, min * NSEC_PER_USEC);
1763 delta = (max - min) * NSEC_PER_USEC;
1764 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1768 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1769 * @min: Minimum time in usecs to sleep
1770 * @max: Maximum time in usecs to sleep
1772 void usleep_range(unsigned long min, unsigned long max)
1774 __set_current_state(TASK_UNINTERRUPTIBLE);
1775 do_usleep_range(min, max);
1777 EXPORT_SYMBOL(usleep_range);