xen/x86/PCI: Add support for the Xen PCI subsystem
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / xen / enlighten.c
blob1ccfa1bf0f894df6b6c8bba5757b840799316e63
1 /*
2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
34 #include <xen/xen.h>
35 #include <xen/interface/xen.h>
36 #include <xen/interface/version.h>
37 #include <xen/interface/physdev.h>
38 #include <xen/interface/vcpu.h>
39 #include <xen/interface/memory.h>
40 #include <xen/features.h>
41 #include <xen/page.h>
42 #include <xen/hvm.h>
43 #include <xen/hvc-console.h>
45 #include <asm/paravirt.h>
46 #include <asm/apic.h>
47 #include <asm/page.h>
48 #include <asm/xen/pci.h>
49 #include <asm/xen/hypercall.h>
50 #include <asm/xen/hypervisor.h>
51 #include <asm/fixmap.h>
52 #include <asm/processor.h>
53 #include <asm/proto.h>
54 #include <asm/msr-index.h>
55 #include <asm/traps.h>
56 #include <asm/setup.h>
57 #include <asm/desc.h>
58 #include <asm/pgalloc.h>
59 #include <asm/pgtable.h>
60 #include <asm/tlbflush.h>
61 #include <asm/reboot.h>
62 #include <asm/setup.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
66 #include "xen-ops.h"
67 #include "mmu.h"
68 #include "multicalls.h"
70 EXPORT_SYMBOL_GPL(hypercall_page);
72 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
73 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
75 enum xen_domain_type xen_domain_type = XEN_NATIVE;
76 EXPORT_SYMBOL_GPL(xen_domain_type);
78 struct start_info *xen_start_info;
79 EXPORT_SYMBOL_GPL(xen_start_info);
81 struct shared_info xen_dummy_shared_info;
83 void *xen_initial_gdt;
85 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
86 __read_mostly int xen_have_vector_callback;
87 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
90 * Point at some empty memory to start with. We map the real shared_info
91 * page as soon as fixmap is up and running.
93 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
96 * Flag to determine whether vcpu info placement is available on all
97 * VCPUs. We assume it is to start with, and then set it to zero on
98 * the first failure. This is because it can succeed on some VCPUs
99 * and not others, since it can involve hypervisor memory allocation,
100 * or because the guest failed to guarantee all the appropriate
101 * constraints on all VCPUs (ie buffer can't cross a page boundary).
103 * Note that any particular CPU may be using a placed vcpu structure,
104 * but we can only optimise if the all are.
106 * 0: not available, 1: available
108 static int have_vcpu_info_placement = 1;
110 static void clamp_max_cpus(void)
112 #ifdef CONFIG_SMP
113 if (setup_max_cpus > MAX_VIRT_CPUS)
114 setup_max_cpus = MAX_VIRT_CPUS;
115 #endif
118 static void xen_vcpu_setup(int cpu)
120 struct vcpu_register_vcpu_info info;
121 int err;
122 struct vcpu_info *vcpup;
124 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
126 if (cpu < MAX_VIRT_CPUS)
127 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
129 if (!have_vcpu_info_placement) {
130 if (cpu >= MAX_VIRT_CPUS)
131 clamp_max_cpus();
132 return;
135 vcpup = &per_cpu(xen_vcpu_info, cpu);
136 info.mfn = arbitrary_virt_to_mfn(vcpup);
137 info.offset = offset_in_page(vcpup);
139 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
140 cpu, vcpup, info.mfn, info.offset);
142 /* Check to see if the hypervisor will put the vcpu_info
143 structure where we want it, which allows direct access via
144 a percpu-variable. */
145 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
147 if (err) {
148 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
149 have_vcpu_info_placement = 0;
150 clamp_max_cpus();
151 } else {
152 /* This cpu is using the registered vcpu info, even if
153 later ones fail to. */
154 per_cpu(xen_vcpu, cpu) = vcpup;
156 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
157 cpu, vcpup);
162 * On restore, set the vcpu placement up again.
163 * If it fails, then we're in a bad state, since
164 * we can't back out from using it...
166 void xen_vcpu_restore(void)
168 int cpu;
170 for_each_online_cpu(cpu) {
171 bool other_cpu = (cpu != smp_processor_id());
173 if (other_cpu &&
174 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
175 BUG();
177 xen_setup_runstate_info(cpu);
179 if (have_vcpu_info_placement)
180 xen_vcpu_setup(cpu);
182 if (other_cpu &&
183 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
184 BUG();
188 static void __init xen_banner(void)
190 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
191 struct xen_extraversion extra;
192 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
194 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
195 pv_info.name);
196 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
197 version >> 16, version & 0xffff, extra.extraversion,
198 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
201 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
202 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
204 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
205 unsigned int *cx, unsigned int *dx)
207 unsigned maskebx = ~0;
208 unsigned maskecx = ~0;
209 unsigned maskedx = ~0;
212 * Mask out inconvenient features, to try and disable as many
213 * unsupported kernel subsystems as possible.
215 switch (*ax) {
216 case 1:
217 maskecx = cpuid_leaf1_ecx_mask;
218 maskedx = cpuid_leaf1_edx_mask;
219 break;
221 case 0xb:
222 /* Suppress extended topology stuff */
223 maskebx = 0;
224 break;
227 asm(XEN_EMULATE_PREFIX "cpuid"
228 : "=a" (*ax),
229 "=b" (*bx),
230 "=c" (*cx),
231 "=d" (*dx)
232 : "0" (*ax), "2" (*cx));
234 *bx &= maskebx;
235 *cx &= maskecx;
236 *dx &= maskedx;
239 static __init void xen_init_cpuid_mask(void)
241 unsigned int ax, bx, cx, dx;
243 cpuid_leaf1_edx_mask =
244 ~((1 << X86_FEATURE_MCE) | /* disable MCE */
245 (1 << X86_FEATURE_MCA) | /* disable MCA */
246 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
248 if (!xen_initial_domain())
249 cpuid_leaf1_edx_mask &=
250 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
251 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
253 ax = 1;
254 cx = 0;
255 xen_cpuid(&ax, &bx, &cx, &dx);
257 /* cpuid claims we support xsave; try enabling it to see what happens */
258 if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
259 unsigned long cr4;
261 set_in_cr4(X86_CR4_OSXSAVE);
263 cr4 = read_cr4();
265 if ((cr4 & X86_CR4_OSXSAVE) == 0)
266 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
268 clear_in_cr4(X86_CR4_OSXSAVE);
272 static void xen_set_debugreg(int reg, unsigned long val)
274 HYPERVISOR_set_debugreg(reg, val);
277 static unsigned long xen_get_debugreg(int reg)
279 return HYPERVISOR_get_debugreg(reg);
282 static void xen_end_context_switch(struct task_struct *next)
284 xen_mc_flush();
285 paravirt_end_context_switch(next);
288 static unsigned long xen_store_tr(void)
290 return 0;
294 * Set the page permissions for a particular virtual address. If the
295 * address is a vmalloc mapping (or other non-linear mapping), then
296 * find the linear mapping of the page and also set its protections to
297 * match.
299 static void set_aliased_prot(void *v, pgprot_t prot)
301 int level;
302 pte_t *ptep;
303 pte_t pte;
304 unsigned long pfn;
305 struct page *page;
307 ptep = lookup_address((unsigned long)v, &level);
308 BUG_ON(ptep == NULL);
310 pfn = pte_pfn(*ptep);
311 page = pfn_to_page(pfn);
313 pte = pfn_pte(pfn, prot);
315 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
316 BUG();
318 if (!PageHighMem(page)) {
319 void *av = __va(PFN_PHYS(pfn));
321 if (av != v)
322 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
323 BUG();
324 } else
325 kmap_flush_unused();
328 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
330 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
331 int i;
333 for(i = 0; i < entries; i += entries_per_page)
334 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
337 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
339 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
340 int i;
342 for(i = 0; i < entries; i += entries_per_page)
343 set_aliased_prot(ldt + i, PAGE_KERNEL);
346 static void xen_set_ldt(const void *addr, unsigned entries)
348 struct mmuext_op *op;
349 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
351 op = mcs.args;
352 op->cmd = MMUEXT_SET_LDT;
353 op->arg1.linear_addr = (unsigned long)addr;
354 op->arg2.nr_ents = entries;
356 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
358 xen_mc_issue(PARAVIRT_LAZY_CPU);
361 static void xen_load_gdt(const struct desc_ptr *dtr)
363 unsigned long va = dtr->address;
364 unsigned int size = dtr->size + 1;
365 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
366 unsigned long frames[pages];
367 int f;
370 * A GDT can be up to 64k in size, which corresponds to 8192
371 * 8-byte entries, or 16 4k pages..
374 BUG_ON(size > 65536);
375 BUG_ON(va & ~PAGE_MASK);
377 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
378 int level;
379 pte_t *ptep;
380 unsigned long pfn, mfn;
381 void *virt;
384 * The GDT is per-cpu and is in the percpu data area.
385 * That can be virtually mapped, so we need to do a
386 * page-walk to get the underlying MFN for the
387 * hypercall. The page can also be in the kernel's
388 * linear range, so we need to RO that mapping too.
390 ptep = lookup_address(va, &level);
391 BUG_ON(ptep == NULL);
393 pfn = pte_pfn(*ptep);
394 mfn = pfn_to_mfn(pfn);
395 virt = __va(PFN_PHYS(pfn));
397 frames[f] = mfn;
399 make_lowmem_page_readonly((void *)va);
400 make_lowmem_page_readonly(virt);
403 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
404 BUG();
408 * load_gdt for early boot, when the gdt is only mapped once
410 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
412 unsigned long va = dtr->address;
413 unsigned int size = dtr->size + 1;
414 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
415 unsigned long frames[pages];
416 int f;
419 * A GDT can be up to 64k in size, which corresponds to 8192
420 * 8-byte entries, or 16 4k pages..
423 BUG_ON(size > 65536);
424 BUG_ON(va & ~PAGE_MASK);
426 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
427 pte_t pte;
428 unsigned long pfn, mfn;
430 pfn = virt_to_pfn(va);
431 mfn = pfn_to_mfn(pfn);
433 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
435 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
436 BUG();
438 frames[f] = mfn;
441 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
442 BUG();
445 static void load_TLS_descriptor(struct thread_struct *t,
446 unsigned int cpu, unsigned int i)
448 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
449 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
450 struct multicall_space mc = __xen_mc_entry(0);
452 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
455 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
458 * XXX sleazy hack: If we're being called in a lazy-cpu zone
459 * and lazy gs handling is enabled, it means we're in a
460 * context switch, and %gs has just been saved. This means we
461 * can zero it out to prevent faults on exit from the
462 * hypervisor if the next process has no %gs. Either way, it
463 * has been saved, and the new value will get loaded properly.
464 * This will go away as soon as Xen has been modified to not
465 * save/restore %gs for normal hypercalls.
467 * On x86_64, this hack is not used for %gs, because gs points
468 * to KERNEL_GS_BASE (and uses it for PDA references), so we
469 * must not zero %gs on x86_64
471 * For x86_64, we need to zero %fs, otherwise we may get an
472 * exception between the new %fs descriptor being loaded and
473 * %fs being effectively cleared at __switch_to().
475 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
476 #ifdef CONFIG_X86_32
477 lazy_load_gs(0);
478 #else
479 loadsegment(fs, 0);
480 #endif
483 xen_mc_batch();
485 load_TLS_descriptor(t, cpu, 0);
486 load_TLS_descriptor(t, cpu, 1);
487 load_TLS_descriptor(t, cpu, 2);
489 xen_mc_issue(PARAVIRT_LAZY_CPU);
492 #ifdef CONFIG_X86_64
493 static void xen_load_gs_index(unsigned int idx)
495 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
496 BUG();
498 #endif
500 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
501 const void *ptr)
503 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
504 u64 entry = *(u64 *)ptr;
506 preempt_disable();
508 xen_mc_flush();
509 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
510 BUG();
512 preempt_enable();
515 static int cvt_gate_to_trap(int vector, const gate_desc *val,
516 struct trap_info *info)
518 unsigned long addr;
520 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
521 return 0;
523 info->vector = vector;
525 addr = gate_offset(*val);
526 #ifdef CONFIG_X86_64
528 * Look for known traps using IST, and substitute them
529 * appropriately. The debugger ones are the only ones we care
530 * about. Xen will handle faults like double_fault and
531 * machine_check, so we should never see them. Warn if
532 * there's an unexpected IST-using fault handler.
534 if (addr == (unsigned long)debug)
535 addr = (unsigned long)xen_debug;
536 else if (addr == (unsigned long)int3)
537 addr = (unsigned long)xen_int3;
538 else if (addr == (unsigned long)stack_segment)
539 addr = (unsigned long)xen_stack_segment;
540 else if (addr == (unsigned long)double_fault ||
541 addr == (unsigned long)nmi) {
542 /* Don't need to handle these */
543 return 0;
544 #ifdef CONFIG_X86_MCE
545 } else if (addr == (unsigned long)machine_check) {
546 return 0;
547 #endif
548 } else {
549 /* Some other trap using IST? */
550 if (WARN_ON(val->ist != 0))
551 return 0;
553 #endif /* CONFIG_X86_64 */
554 info->address = addr;
556 info->cs = gate_segment(*val);
557 info->flags = val->dpl;
558 /* interrupt gates clear IF */
559 if (val->type == GATE_INTERRUPT)
560 info->flags |= 1 << 2;
562 return 1;
565 /* Locations of each CPU's IDT */
566 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
568 /* Set an IDT entry. If the entry is part of the current IDT, then
569 also update Xen. */
570 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
572 unsigned long p = (unsigned long)&dt[entrynum];
573 unsigned long start, end;
575 preempt_disable();
577 start = __get_cpu_var(idt_desc).address;
578 end = start + __get_cpu_var(idt_desc).size + 1;
580 xen_mc_flush();
582 native_write_idt_entry(dt, entrynum, g);
584 if (p >= start && (p + 8) <= end) {
585 struct trap_info info[2];
587 info[1].address = 0;
589 if (cvt_gate_to_trap(entrynum, g, &info[0]))
590 if (HYPERVISOR_set_trap_table(info))
591 BUG();
594 preempt_enable();
597 static void xen_convert_trap_info(const struct desc_ptr *desc,
598 struct trap_info *traps)
600 unsigned in, out, count;
602 count = (desc->size+1) / sizeof(gate_desc);
603 BUG_ON(count > 256);
605 for (in = out = 0; in < count; in++) {
606 gate_desc *entry = (gate_desc*)(desc->address) + in;
608 if (cvt_gate_to_trap(in, entry, &traps[out]))
609 out++;
611 traps[out].address = 0;
614 void xen_copy_trap_info(struct trap_info *traps)
616 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
618 xen_convert_trap_info(desc, traps);
621 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
622 hold a spinlock to protect the static traps[] array (static because
623 it avoids allocation, and saves stack space). */
624 static void xen_load_idt(const struct desc_ptr *desc)
626 static DEFINE_SPINLOCK(lock);
627 static struct trap_info traps[257];
629 spin_lock(&lock);
631 __get_cpu_var(idt_desc) = *desc;
633 xen_convert_trap_info(desc, traps);
635 xen_mc_flush();
636 if (HYPERVISOR_set_trap_table(traps))
637 BUG();
639 spin_unlock(&lock);
642 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
643 they're handled differently. */
644 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
645 const void *desc, int type)
647 preempt_disable();
649 switch (type) {
650 case DESC_LDT:
651 case DESC_TSS:
652 /* ignore */
653 break;
655 default: {
656 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
658 xen_mc_flush();
659 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
660 BUG();
665 preempt_enable();
669 * Version of write_gdt_entry for use at early boot-time needed to
670 * update an entry as simply as possible.
672 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
673 const void *desc, int type)
675 switch (type) {
676 case DESC_LDT:
677 case DESC_TSS:
678 /* ignore */
679 break;
681 default: {
682 xmaddr_t maddr = virt_to_machine(&dt[entry]);
684 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
685 dt[entry] = *(struct desc_struct *)desc;
691 static void xen_load_sp0(struct tss_struct *tss,
692 struct thread_struct *thread)
694 struct multicall_space mcs = xen_mc_entry(0);
695 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
696 xen_mc_issue(PARAVIRT_LAZY_CPU);
699 static void xen_set_iopl_mask(unsigned mask)
701 struct physdev_set_iopl set_iopl;
703 /* Force the change at ring 0. */
704 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
705 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
708 static void xen_io_delay(void)
712 #ifdef CONFIG_X86_LOCAL_APIC
713 static u32 xen_apic_read(u32 reg)
715 return 0;
718 static void xen_apic_write(u32 reg, u32 val)
720 /* Warn to see if there's any stray references */
721 WARN_ON(1);
724 static u64 xen_apic_icr_read(void)
726 return 0;
729 static void xen_apic_icr_write(u32 low, u32 id)
731 /* Warn to see if there's any stray references */
732 WARN_ON(1);
735 static void xen_apic_wait_icr_idle(void)
737 return;
740 static u32 xen_safe_apic_wait_icr_idle(void)
742 return 0;
745 static void set_xen_basic_apic_ops(void)
747 apic->read = xen_apic_read;
748 apic->write = xen_apic_write;
749 apic->icr_read = xen_apic_icr_read;
750 apic->icr_write = xen_apic_icr_write;
751 apic->wait_icr_idle = xen_apic_wait_icr_idle;
752 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
755 #endif
757 static void xen_clts(void)
759 struct multicall_space mcs;
761 mcs = xen_mc_entry(0);
763 MULTI_fpu_taskswitch(mcs.mc, 0);
765 xen_mc_issue(PARAVIRT_LAZY_CPU);
768 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
770 static unsigned long xen_read_cr0(void)
772 unsigned long cr0 = percpu_read(xen_cr0_value);
774 if (unlikely(cr0 == 0)) {
775 cr0 = native_read_cr0();
776 percpu_write(xen_cr0_value, cr0);
779 return cr0;
782 static void xen_write_cr0(unsigned long cr0)
784 struct multicall_space mcs;
786 percpu_write(xen_cr0_value, cr0);
788 /* Only pay attention to cr0.TS; everything else is
789 ignored. */
790 mcs = xen_mc_entry(0);
792 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
794 xen_mc_issue(PARAVIRT_LAZY_CPU);
797 static void xen_write_cr4(unsigned long cr4)
799 cr4 &= ~X86_CR4_PGE;
800 cr4 &= ~X86_CR4_PSE;
802 native_write_cr4(cr4);
805 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
807 int ret;
809 ret = 0;
811 switch (msr) {
812 #ifdef CONFIG_X86_64
813 unsigned which;
814 u64 base;
816 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
817 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
818 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
820 set:
821 base = ((u64)high << 32) | low;
822 if (HYPERVISOR_set_segment_base(which, base) != 0)
823 ret = -EIO;
824 break;
825 #endif
827 case MSR_STAR:
828 case MSR_CSTAR:
829 case MSR_LSTAR:
830 case MSR_SYSCALL_MASK:
831 case MSR_IA32_SYSENTER_CS:
832 case MSR_IA32_SYSENTER_ESP:
833 case MSR_IA32_SYSENTER_EIP:
834 /* Fast syscall setup is all done in hypercalls, so
835 these are all ignored. Stub them out here to stop
836 Xen console noise. */
837 break;
839 default:
840 ret = native_write_msr_safe(msr, low, high);
843 return ret;
846 void xen_setup_shared_info(void)
848 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
849 set_fixmap(FIX_PARAVIRT_BOOTMAP,
850 xen_start_info->shared_info);
852 HYPERVISOR_shared_info =
853 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
854 } else
855 HYPERVISOR_shared_info =
856 (struct shared_info *)__va(xen_start_info->shared_info);
858 #ifndef CONFIG_SMP
859 /* In UP this is as good a place as any to set up shared info */
860 xen_setup_vcpu_info_placement();
861 #endif
863 xen_setup_mfn_list_list();
866 /* This is called once we have the cpu_possible_map */
867 void xen_setup_vcpu_info_placement(void)
869 int cpu;
871 for_each_possible_cpu(cpu)
872 xen_vcpu_setup(cpu);
874 /* xen_vcpu_setup managed to place the vcpu_info within the
875 percpu area for all cpus, so make use of it */
876 if (have_vcpu_info_placement) {
877 printk(KERN_INFO "Xen: using vcpu_info placement\n");
879 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
880 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
881 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
882 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
883 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
887 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
888 unsigned long addr, unsigned len)
890 char *start, *end, *reloc;
891 unsigned ret;
893 start = end = reloc = NULL;
895 #define SITE(op, x) \
896 case PARAVIRT_PATCH(op.x): \
897 if (have_vcpu_info_placement) { \
898 start = (char *)xen_##x##_direct; \
899 end = xen_##x##_direct_end; \
900 reloc = xen_##x##_direct_reloc; \
902 goto patch_site
904 switch (type) {
905 SITE(pv_irq_ops, irq_enable);
906 SITE(pv_irq_ops, irq_disable);
907 SITE(pv_irq_ops, save_fl);
908 SITE(pv_irq_ops, restore_fl);
909 #undef SITE
911 patch_site:
912 if (start == NULL || (end-start) > len)
913 goto default_patch;
915 ret = paravirt_patch_insns(insnbuf, len, start, end);
917 /* Note: because reloc is assigned from something that
918 appears to be an array, gcc assumes it's non-null,
919 but doesn't know its relationship with start and
920 end. */
921 if (reloc > start && reloc < end) {
922 int reloc_off = reloc - start;
923 long *relocp = (long *)(insnbuf + reloc_off);
924 long delta = start - (char *)addr;
926 *relocp += delta;
928 break;
930 default_patch:
931 default:
932 ret = paravirt_patch_default(type, clobbers, insnbuf,
933 addr, len);
934 break;
937 return ret;
940 static const struct pv_info xen_info __initdata = {
941 .paravirt_enabled = 1,
942 .shared_kernel_pmd = 0,
944 .name = "Xen",
947 static const struct pv_init_ops xen_init_ops __initdata = {
948 .patch = xen_patch,
951 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
952 .cpuid = xen_cpuid,
954 .set_debugreg = xen_set_debugreg,
955 .get_debugreg = xen_get_debugreg,
957 .clts = xen_clts,
959 .read_cr0 = xen_read_cr0,
960 .write_cr0 = xen_write_cr0,
962 .read_cr4 = native_read_cr4,
963 .read_cr4_safe = native_read_cr4_safe,
964 .write_cr4 = xen_write_cr4,
966 .wbinvd = native_wbinvd,
968 .read_msr = native_read_msr_safe,
969 .write_msr = xen_write_msr_safe,
970 .read_tsc = native_read_tsc,
971 .read_pmc = native_read_pmc,
973 .iret = xen_iret,
974 .irq_enable_sysexit = xen_sysexit,
975 #ifdef CONFIG_X86_64
976 .usergs_sysret32 = xen_sysret32,
977 .usergs_sysret64 = xen_sysret64,
978 #endif
980 .load_tr_desc = paravirt_nop,
981 .set_ldt = xen_set_ldt,
982 .load_gdt = xen_load_gdt,
983 .load_idt = xen_load_idt,
984 .load_tls = xen_load_tls,
985 #ifdef CONFIG_X86_64
986 .load_gs_index = xen_load_gs_index,
987 #endif
989 .alloc_ldt = xen_alloc_ldt,
990 .free_ldt = xen_free_ldt,
992 .store_gdt = native_store_gdt,
993 .store_idt = native_store_idt,
994 .store_tr = xen_store_tr,
996 .write_ldt_entry = xen_write_ldt_entry,
997 .write_gdt_entry = xen_write_gdt_entry,
998 .write_idt_entry = xen_write_idt_entry,
999 .load_sp0 = xen_load_sp0,
1001 .set_iopl_mask = xen_set_iopl_mask,
1002 .io_delay = xen_io_delay,
1004 /* Xen takes care of %gs when switching to usermode for us */
1005 .swapgs = paravirt_nop,
1007 .start_context_switch = paravirt_start_context_switch,
1008 .end_context_switch = xen_end_context_switch,
1011 static const struct pv_apic_ops xen_apic_ops __initdata = {
1012 #ifdef CONFIG_X86_LOCAL_APIC
1013 .startup_ipi_hook = paravirt_nop,
1014 #endif
1017 static void xen_reboot(int reason)
1019 struct sched_shutdown r = { .reason = reason };
1021 #ifdef CONFIG_SMP
1022 smp_send_stop();
1023 #endif
1025 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1026 BUG();
1029 static void xen_restart(char *msg)
1031 xen_reboot(SHUTDOWN_reboot);
1034 static void xen_emergency_restart(void)
1036 xen_reboot(SHUTDOWN_reboot);
1039 static void xen_machine_halt(void)
1041 xen_reboot(SHUTDOWN_poweroff);
1044 static void xen_crash_shutdown(struct pt_regs *regs)
1046 xen_reboot(SHUTDOWN_crash);
1049 static int
1050 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1052 xen_reboot(SHUTDOWN_crash);
1053 return NOTIFY_DONE;
1056 static struct notifier_block xen_panic_block = {
1057 .notifier_call= xen_panic_event,
1060 int xen_panic_handler_init(void)
1062 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1063 return 0;
1066 static const struct machine_ops __initdata xen_machine_ops = {
1067 .restart = xen_restart,
1068 .halt = xen_machine_halt,
1069 .power_off = xen_machine_halt,
1070 .shutdown = xen_machine_halt,
1071 .crash_shutdown = xen_crash_shutdown,
1072 .emergency_restart = xen_emergency_restart,
1076 * Set up the GDT and segment registers for -fstack-protector. Until
1077 * we do this, we have to be careful not to call any stack-protected
1078 * function, which is most of the kernel.
1080 static void __init xen_setup_stackprotector(void)
1082 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1083 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1085 setup_stack_canary_segment(0);
1086 switch_to_new_gdt(0);
1088 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1089 pv_cpu_ops.load_gdt = xen_load_gdt;
1092 /* First C function to be called on Xen boot */
1093 asmlinkage void __init xen_start_kernel(void)
1095 pgd_t *pgd;
1097 if (!xen_start_info)
1098 return;
1100 xen_domain_type = XEN_PV_DOMAIN;
1102 /* Install Xen paravirt ops */
1103 pv_info = xen_info;
1104 pv_init_ops = xen_init_ops;
1105 pv_cpu_ops = xen_cpu_ops;
1106 pv_apic_ops = xen_apic_ops;
1108 x86_init.resources.memory_setup = xen_memory_setup;
1109 x86_init.oem.arch_setup = xen_arch_setup;
1110 x86_init.oem.banner = xen_banner;
1112 xen_init_time_ops();
1115 * Set up some pagetable state before starting to set any ptes.
1118 xen_init_mmu_ops();
1120 /* Prevent unwanted bits from being set in PTEs. */
1121 __supported_pte_mask &= ~_PAGE_GLOBAL;
1122 if (!xen_initial_domain())
1123 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1125 __supported_pte_mask |= _PAGE_IOMAP;
1128 * Prevent page tables from being allocated in highmem, even
1129 * if CONFIG_HIGHPTE is enabled.
1131 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1133 /* Work out if we support NX */
1134 x86_configure_nx();
1136 xen_setup_features();
1138 /* Get mfn list */
1139 if (!xen_feature(XENFEAT_auto_translated_physmap))
1140 xen_build_dynamic_phys_to_machine();
1143 * Set up kernel GDT and segment registers, mainly so that
1144 * -fstack-protector code can be executed.
1146 xen_setup_stackprotector();
1148 xen_init_irq_ops();
1149 xen_init_cpuid_mask();
1151 #ifdef CONFIG_X86_LOCAL_APIC
1153 * set up the basic apic ops.
1155 set_xen_basic_apic_ops();
1156 #endif
1158 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1159 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1160 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1163 machine_ops = xen_machine_ops;
1166 * The only reliable way to retain the initial address of the
1167 * percpu gdt_page is to remember it here, so we can go and
1168 * mark it RW later, when the initial percpu area is freed.
1170 xen_initial_gdt = &per_cpu(gdt_page, 0);
1172 xen_smp_init();
1174 pgd = (pgd_t *)xen_start_info->pt_base;
1176 if (!xen_initial_domain())
1177 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1179 __supported_pte_mask |= _PAGE_IOMAP;
1180 /* Don't do the full vcpu_info placement stuff until we have a
1181 possible map and a non-dummy shared_info. */
1182 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1184 local_irq_disable();
1185 early_boot_irqs_off();
1187 xen_raw_console_write("mapping kernel into physical memory\n");
1188 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1190 init_mm.pgd = pgd;
1192 /* keep using Xen gdt for now; no urgent need to change it */
1194 #ifdef CONFIG_X86_32
1195 pv_info.kernel_rpl = 1;
1196 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1197 pv_info.kernel_rpl = 0;
1198 #else
1199 pv_info.kernel_rpl = 0;
1200 #endif
1202 /* set the limit of our address space */
1203 xen_reserve_top();
1205 #ifdef CONFIG_X86_32
1206 /* set up basic CPUID stuff */
1207 cpu_detect(&new_cpu_data);
1208 new_cpu_data.hard_math = 1;
1209 new_cpu_data.wp_works_ok = 1;
1210 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1211 #endif
1213 /* Poke various useful things into boot_params */
1214 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1215 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1216 ? __pa(xen_start_info->mod_start) : 0;
1217 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1218 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1220 if (!xen_initial_domain()) {
1221 add_preferred_console("xenboot", 0, NULL);
1222 add_preferred_console("tty", 0, NULL);
1223 add_preferred_console("hvc", 0, NULL);
1224 if (pci_xen)
1225 x86_init.pci.arch_init = pci_xen_init;
1226 } else {
1227 /* Make sure ACS will be enabled */
1228 pci_request_acs();
1232 xen_raw_console_write("about to get started...\n");
1234 xen_setup_runstate_info(0);
1236 /* Start the world */
1237 #ifdef CONFIG_X86_32
1238 i386_start_kernel();
1239 #else
1240 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1241 #endif
1244 static uint32_t xen_cpuid_base(void)
1246 uint32_t base, eax, ebx, ecx, edx;
1247 char signature[13];
1249 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
1250 cpuid(base, &eax, &ebx, &ecx, &edx);
1251 *(uint32_t *)(signature + 0) = ebx;
1252 *(uint32_t *)(signature + 4) = ecx;
1253 *(uint32_t *)(signature + 8) = edx;
1254 signature[12] = 0;
1256 if (!strcmp("XenVMMXenVMM", signature) && ((eax - base) >= 2))
1257 return base;
1260 return 0;
1263 static int init_hvm_pv_info(int *major, int *minor)
1265 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1266 u64 pfn;
1268 base = xen_cpuid_base();
1269 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1271 *major = eax >> 16;
1272 *minor = eax & 0xffff;
1273 printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1275 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1277 pfn = __pa(hypercall_page);
1278 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1280 xen_setup_features();
1282 pv_info = xen_info;
1283 pv_info.kernel_rpl = 0;
1285 xen_domain_type = XEN_HVM_DOMAIN;
1287 return 0;
1290 void xen_hvm_init_shared_info(void)
1292 int cpu;
1293 struct xen_add_to_physmap xatp;
1294 static struct shared_info *shared_info_page = 0;
1296 if (!shared_info_page)
1297 shared_info_page = (struct shared_info *)
1298 extend_brk(PAGE_SIZE, PAGE_SIZE);
1299 xatp.domid = DOMID_SELF;
1300 xatp.idx = 0;
1301 xatp.space = XENMAPSPACE_shared_info;
1302 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1303 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1304 BUG();
1306 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1308 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1309 * page, we use it in the event channel upcall and in some pvclock
1310 * related functions. We don't need the vcpu_info placement
1311 * optimizations because we don't use any pv_mmu or pv_irq op on
1312 * HVM.
1313 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1314 * online but xen_hvm_init_shared_info is run at resume time too and
1315 * in that case multiple vcpus might be online. */
1316 for_each_online_cpu(cpu) {
1317 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1321 #ifdef CONFIG_XEN_PVHVM
1322 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1323 unsigned long action, void *hcpu)
1325 int cpu = (long)hcpu;
1326 switch (action) {
1327 case CPU_UP_PREPARE:
1328 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1329 break;
1330 default:
1331 break;
1333 return NOTIFY_OK;
1336 static struct notifier_block __cpuinitdata xen_hvm_cpu_notifier = {
1337 .notifier_call = xen_hvm_cpu_notify,
1340 static void __init xen_hvm_guest_init(void)
1342 int r;
1343 int major, minor;
1345 r = init_hvm_pv_info(&major, &minor);
1346 if (r < 0)
1347 return;
1349 xen_hvm_init_shared_info();
1351 if (xen_feature(XENFEAT_hvm_callback_vector))
1352 xen_have_vector_callback = 1;
1353 register_cpu_notifier(&xen_hvm_cpu_notifier);
1354 xen_unplug_emulated_devices();
1355 have_vcpu_info_placement = 0;
1356 x86_init.irqs.intr_init = xen_init_IRQ;
1357 xen_hvm_init_time_ops();
1358 xen_hvm_init_mmu_ops();
1361 static bool __init xen_hvm_platform(void)
1363 if (xen_pv_domain())
1364 return false;
1366 if (!xen_cpuid_base())
1367 return false;
1369 return true;
1372 const __refconst struct hypervisor_x86 x86_hyper_xen_hvm = {
1373 .name = "Xen HVM",
1374 .detect = xen_hvm_platform,
1375 .init_platform = xen_hvm_guest_init,
1377 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1378 #endif