1 /* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2002 International Business Machines, Corp.
6 * This file is part of the SCTP kernel implementation
8 * These functions are the methods for accessing the SCTP inqueue.
10 * An SCTP inqueue is a queue into which you push SCTP packets
11 * (which might be bundles or fragments of chunks) and out of which you
12 * pop SCTP whole chunks.
14 * This SCTP implementation is free software;
15 * you can redistribute it and/or modify it under the terms of
16 * the GNU General Public License as published by
17 * the Free Software Foundation; either version 2, or (at your option)
20 * This SCTP implementation is distributed in the hope that it
21 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
22 * ************************
23 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
24 * See the GNU General Public License for more details.
26 * You should have received a copy of the GNU General Public License
27 * along with GNU CC; see the file COPYING. If not, write to
28 * the Free Software Foundation, 59 Temple Place - Suite 330,
29 * Boston, MA 02111-1307, USA.
31 * Please send any bug reports or fixes you make to the
33 * lksctp developers <lksctp-developers@lists.sourceforge.net>
35 * Or submit a bug report through the following website:
36 * http://www.sf.net/projects/lksctp
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Karl Knutson <karl@athena.chicago.il.us>
42 * Any bugs reported given to us we will try to fix... any fixes shared will
43 * be incorporated into the next SCTP release.
46 #include <net/sctp/sctp.h>
47 #include <net/sctp/sm.h>
48 #include <linux/interrupt.h>
49 #include <linux/slab.h>
51 /* Initialize an SCTP inqueue. */
52 void sctp_inq_init(struct sctp_inq
*queue
)
54 INIT_LIST_HEAD(&queue
->in_chunk_list
);
55 queue
->in_progress
= NULL
;
57 /* Create a task for delivering data. */
58 INIT_WORK(&queue
->immediate
, NULL
);
63 /* Release the memory associated with an SCTP inqueue. */
64 void sctp_inq_free(struct sctp_inq
*queue
)
66 struct sctp_chunk
*chunk
, *tmp
;
68 /* Empty the queue. */
69 list_for_each_entry_safe(chunk
, tmp
, &queue
->in_chunk_list
, list
) {
70 list_del_init(&chunk
->list
);
71 sctp_chunk_free(chunk
);
74 /* If there is a packet which is currently being worked on,
77 if (queue
->in_progress
) {
78 sctp_chunk_free(queue
->in_progress
);
79 queue
->in_progress
= NULL
;
82 if (queue
->malloced
) {
83 /* Dump the master memory segment. */
88 /* Put a new packet in an SCTP inqueue.
89 * We assume that packet->sctp_hdr is set and in host byte order.
91 void sctp_inq_push(struct sctp_inq
*q
, struct sctp_chunk
*chunk
)
93 /* Directly call the packet handling routine. */
94 if (chunk
->rcvr
->dead
) {
95 sctp_chunk_free(chunk
);
99 /* We are now calling this either from the soft interrupt
100 * or from the backlog processing.
101 * Eventually, we should clean up inqueue to not rely
102 * on the BH related data structures.
104 list_add_tail(&chunk
->list
, &q
->in_chunk_list
);
105 q
->immediate
.func(&q
->immediate
);
108 /* Peek at the next chunk on the inqeue. */
109 struct sctp_chunkhdr
*sctp_inq_peek(struct sctp_inq
*queue
)
111 struct sctp_chunk
*chunk
;
112 sctp_chunkhdr_t
*ch
= NULL
;
114 chunk
= queue
->in_progress
;
115 /* If there is no more chunks in this packet, say so */
116 if (chunk
->singleton
||
117 chunk
->end_of_packet
||
121 ch
= (sctp_chunkhdr_t
*)chunk
->chunk_end
;
127 /* Extract a chunk from an SCTP inqueue.
129 * WARNING: If you need to put the chunk on another queue, you need to
130 * make a shallow copy (clone) of it.
132 struct sctp_chunk
*sctp_inq_pop(struct sctp_inq
*queue
)
134 struct sctp_chunk
*chunk
;
135 sctp_chunkhdr_t
*ch
= NULL
;
137 /* The assumption is that we are safe to process the chunks
141 if ((chunk
= queue
->in_progress
)) {
142 /* There is a packet that we have been working on.
143 * Any post processing work to do before we move on?
145 if (chunk
->singleton
||
146 chunk
->end_of_packet
||
148 sctp_chunk_free(chunk
);
149 chunk
= queue
->in_progress
= NULL
;
151 /* Nothing to do. Next chunk in the packet, please. */
152 ch
= (sctp_chunkhdr_t
*) chunk
->chunk_end
;
154 /* Force chunk->skb->data to chunk->chunk_end. */
156 chunk
->chunk_end
- chunk
->skb
->data
);
158 /* Verify that we have at least chunk headers
159 * worth of buffer left.
161 if (skb_headlen(chunk
->skb
) < sizeof(sctp_chunkhdr_t
)) {
162 sctp_chunk_free(chunk
);
163 chunk
= queue
->in_progress
= NULL
;
168 /* Do we need to take the next packet out of the queue to process? */
170 struct list_head
*entry
;
172 /* Is the queue empty? */
173 if (list_empty(&queue
->in_chunk_list
))
176 entry
= queue
->in_chunk_list
.next
;
177 chunk
= queue
->in_progress
=
178 list_entry(entry
, struct sctp_chunk
, list
);
179 list_del_init(entry
);
181 /* This is the first chunk in the packet. */
182 chunk
->singleton
= 1;
183 ch
= (sctp_chunkhdr_t
*) chunk
->skb
->data
;
184 chunk
->data_accepted
= 0;
187 chunk
->chunk_hdr
= ch
;
188 chunk
->chunk_end
= ((__u8
*)ch
) + WORD_ROUND(ntohs(ch
->length
));
189 /* In the unlikely case of an IP reassembly, the skb could be
190 * non-linear. If so, update chunk_end so that it doesn't go past
193 if (unlikely(skb_is_nonlinear(chunk
->skb
))) {
194 if (chunk
->chunk_end
> skb_tail_pointer(chunk
->skb
))
195 chunk
->chunk_end
= skb_tail_pointer(chunk
->skb
);
197 skb_pull(chunk
->skb
, sizeof(sctp_chunkhdr_t
));
198 chunk
->subh
.v
= NULL
; /* Subheader is no longer valid. */
200 if (chunk
->chunk_end
< skb_tail_pointer(chunk
->skb
)) {
201 /* This is not a singleton */
202 chunk
->singleton
= 0;
203 } else if (chunk
->chunk_end
> skb_tail_pointer(chunk
->skb
)) {
204 /* RFC 2960, Section 6.10 Bundling
206 * Partial chunks MUST NOT be placed in an SCTP packet.
207 * If the receiver detects a partial chunk, it MUST drop
210 * Since the end of the chunk is past the end of our buffer
211 * (which contains the whole packet, we can freely discard
214 sctp_chunk_free(chunk
);
215 chunk
= queue
->in_progress
= NULL
;
219 /* We are at the end of the packet, so mark the chunk
220 * in case we need to send a SACK.
222 chunk
->end_of_packet
= 1;
225 SCTP_DEBUG_PRINTK("+++sctp_inq_pop+++ chunk %p[%s],"
226 " length %d, skb->len %d\n",chunk
,
227 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
)),
228 ntohs(chunk
->chunk_hdr
->length
), chunk
->skb
->len
);
232 /* Set a top-half handler.
234 * Originally, we the top-half handler was scheduled as a BH. We now
235 * call the handler directly in sctp_inq_push() at a time that
236 * we know we are lock safe.
237 * The intent is that this routine will pull stuff out of the
238 * inqueue and process it.
240 void sctp_inq_set_th_handler(struct sctp_inq
*q
, work_func_t callback
)
242 INIT_WORK(&q
->immediate
, callback
);