Merge branch 'for-3.2/core' of git://git.kernel.dk/linux-block
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid5.c
blobbb1b46143fb6477fcbf4b4acac8abb243cd68a81
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include <linux/ratelimit.h>
55 #include "md.h"
56 #include "raid5.h"
57 #include "raid0.h"
58 #include "bitmap.h"
61 * Stripe cache
64 #define NR_STRIPES 256
65 #define STRIPE_SIZE PAGE_SIZE
66 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
67 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
68 #define IO_THRESHOLD 1
69 #define BYPASS_THRESHOLD 1
70 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
71 #define HASH_MASK (NR_HASH - 1)
73 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
76 return &conf->stripe_hashtbl[hash];
79 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
80 * order without overlap. There may be several bio's per stripe+device, and
81 * a bio could span several devices.
82 * When walking this list for a particular stripe+device, we must never proceed
83 * beyond a bio that extends past this device, as the next bio might no longer
84 * be valid.
85 * This function is used to determine the 'next' bio in the list, given the sector
86 * of the current stripe+device
88 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 int sectors = bio->bi_size >> 9;
91 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
92 return bio->bi_next;
93 else
94 return NULL;
98 * We maintain a biased count of active stripes in the bottom 16 bits of
99 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 static inline int raid5_bi_phys_segments(struct bio *bio)
103 return bio->bi_phys_segments & 0xffff;
106 static inline int raid5_bi_hw_segments(struct bio *bio)
108 return (bio->bi_phys_segments >> 16) & 0xffff;
111 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 --bio->bi_phys_segments;
114 return raid5_bi_phys_segments(bio);
117 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 unsigned short val = raid5_bi_hw_segments(bio);
121 --val;
122 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123 return val;
126 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
131 /* Find first data disk in a raid6 stripe */
132 static inline int raid6_d0(struct stripe_head *sh)
134 if (sh->ddf_layout)
135 /* ddf always start from first device */
136 return 0;
137 /* md starts just after Q block */
138 if (sh->qd_idx == sh->disks - 1)
139 return 0;
140 else
141 return sh->qd_idx + 1;
143 static inline int raid6_next_disk(int disk, int raid_disks)
145 disk++;
146 return (disk < raid_disks) ? disk : 0;
149 /* When walking through the disks in a raid5, starting at raid6_d0,
150 * We need to map each disk to a 'slot', where the data disks are slot
151 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152 * is raid_disks-1. This help does that mapping.
154 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155 int *count, int syndrome_disks)
157 int slot = *count;
159 if (sh->ddf_layout)
160 (*count)++;
161 if (idx == sh->pd_idx)
162 return syndrome_disks;
163 if (idx == sh->qd_idx)
164 return syndrome_disks + 1;
165 if (!sh->ddf_layout)
166 (*count)++;
167 return slot;
170 static void return_io(struct bio *return_bi)
172 struct bio *bi = return_bi;
173 while (bi) {
175 return_bi = bi->bi_next;
176 bi->bi_next = NULL;
177 bi->bi_size = 0;
178 bio_endio(bi, 0);
179 bi = return_bi;
183 static void print_raid5_conf (struct r5conf *conf);
185 static int stripe_operations_active(struct stripe_head *sh)
187 return sh->check_state || sh->reconstruct_state ||
188 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
189 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
192 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 if (atomic_dec_and_test(&sh->count)) {
195 BUG_ON(!list_empty(&sh->lru));
196 BUG_ON(atomic_read(&conf->active_stripes)==0);
197 if (test_bit(STRIPE_HANDLE, &sh->state)) {
198 if (test_bit(STRIPE_DELAYED, &sh->state))
199 list_add_tail(&sh->lru, &conf->delayed_list);
200 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
201 sh->bm_seq - conf->seq_write > 0)
202 list_add_tail(&sh->lru, &conf->bitmap_list);
203 else {
204 clear_bit(STRIPE_BIT_DELAY, &sh->state);
205 list_add_tail(&sh->lru, &conf->handle_list);
207 md_wakeup_thread(conf->mddev->thread);
208 } else {
209 BUG_ON(stripe_operations_active(sh));
210 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
211 atomic_dec(&conf->preread_active_stripes);
212 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
213 md_wakeup_thread(conf->mddev->thread);
215 atomic_dec(&conf->active_stripes);
216 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
217 list_add_tail(&sh->lru, &conf->inactive_list);
218 wake_up(&conf->wait_for_stripe);
219 if (conf->retry_read_aligned)
220 md_wakeup_thread(conf->mddev->thread);
226 static void release_stripe(struct stripe_head *sh)
228 struct r5conf *conf = sh->raid_conf;
229 unsigned long flags;
231 spin_lock_irqsave(&conf->device_lock, flags);
232 __release_stripe(conf, sh);
233 spin_unlock_irqrestore(&conf->device_lock, flags);
236 static inline void remove_hash(struct stripe_head *sh)
238 pr_debug("remove_hash(), stripe %llu\n",
239 (unsigned long long)sh->sector);
241 hlist_del_init(&sh->hash);
244 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
246 struct hlist_head *hp = stripe_hash(conf, sh->sector);
248 pr_debug("insert_hash(), stripe %llu\n",
249 (unsigned long long)sh->sector);
251 hlist_add_head(&sh->hash, hp);
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(struct r5conf *conf)
258 struct stripe_head *sh = NULL;
259 struct list_head *first;
261 if (list_empty(&conf->inactive_list))
262 goto out;
263 first = conf->inactive_list.next;
264 sh = list_entry(first, struct stripe_head, lru);
265 list_del_init(first);
266 remove_hash(sh);
267 atomic_inc(&conf->active_stripes);
268 out:
269 return sh;
272 static void shrink_buffers(struct stripe_head *sh)
274 struct page *p;
275 int i;
276 int num = sh->raid_conf->pool_size;
278 for (i = 0; i < num ; i++) {
279 p = sh->dev[i].page;
280 if (!p)
281 continue;
282 sh->dev[i].page = NULL;
283 put_page(p);
287 static int grow_buffers(struct stripe_head *sh)
289 int i;
290 int num = sh->raid_conf->pool_size;
292 for (i = 0; i < num; i++) {
293 struct page *page;
295 if (!(page = alloc_page(GFP_KERNEL))) {
296 return 1;
298 sh->dev[i].page = page;
300 return 0;
303 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
305 struct stripe_head *sh);
307 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
309 struct r5conf *conf = sh->raid_conf;
310 int i;
312 BUG_ON(atomic_read(&sh->count) != 0);
313 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314 BUG_ON(stripe_operations_active(sh));
316 pr_debug("init_stripe called, stripe %llu\n",
317 (unsigned long long)sh->sector);
319 remove_hash(sh);
321 sh->generation = conf->generation - previous;
322 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323 sh->sector = sector;
324 stripe_set_idx(sector, conf, previous, sh);
325 sh->state = 0;
328 for (i = sh->disks; i--; ) {
329 struct r5dev *dev = &sh->dev[i];
331 if (dev->toread || dev->read || dev->towrite || dev->written ||
332 test_bit(R5_LOCKED, &dev->flags)) {
333 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334 (unsigned long long)sh->sector, i, dev->toread,
335 dev->read, dev->towrite, dev->written,
336 test_bit(R5_LOCKED, &dev->flags));
337 WARN_ON(1);
339 dev->flags = 0;
340 raid5_build_block(sh, i, previous);
342 insert_hash(conf, sh);
345 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
346 short generation)
348 struct stripe_head *sh;
349 struct hlist_node *hn;
351 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
352 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
353 if (sh->sector == sector && sh->generation == generation)
354 return sh;
355 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
356 return NULL;
360 * Need to check if array has failed when deciding whether to:
361 * - start an array
362 * - remove non-faulty devices
363 * - add a spare
364 * - allow a reshape
365 * This determination is simple when no reshape is happening.
366 * However if there is a reshape, we need to carefully check
367 * both the before and after sections.
368 * This is because some failed devices may only affect one
369 * of the two sections, and some non-in_sync devices may
370 * be insync in the section most affected by failed devices.
372 static int has_failed(struct r5conf *conf)
374 int degraded;
375 int i;
376 if (conf->mddev->reshape_position == MaxSector)
377 return conf->mddev->degraded > conf->max_degraded;
379 rcu_read_lock();
380 degraded = 0;
381 for (i = 0; i < conf->previous_raid_disks; i++) {
382 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
383 if (!rdev || test_bit(Faulty, &rdev->flags))
384 degraded++;
385 else if (test_bit(In_sync, &rdev->flags))
387 else
388 /* not in-sync or faulty.
389 * If the reshape increases the number of devices,
390 * this is being recovered by the reshape, so
391 * this 'previous' section is not in_sync.
392 * If the number of devices is being reduced however,
393 * the device can only be part of the array if
394 * we are reverting a reshape, so this section will
395 * be in-sync.
397 if (conf->raid_disks >= conf->previous_raid_disks)
398 degraded++;
400 rcu_read_unlock();
401 if (degraded > conf->max_degraded)
402 return 1;
403 rcu_read_lock();
404 degraded = 0;
405 for (i = 0; i < conf->raid_disks; i++) {
406 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
407 if (!rdev || test_bit(Faulty, &rdev->flags))
408 degraded++;
409 else if (test_bit(In_sync, &rdev->flags))
411 else
412 /* not in-sync or faulty.
413 * If reshape increases the number of devices, this
414 * section has already been recovered, else it
415 * almost certainly hasn't.
417 if (conf->raid_disks <= conf->previous_raid_disks)
418 degraded++;
420 rcu_read_unlock();
421 if (degraded > conf->max_degraded)
422 return 1;
423 return 0;
426 static struct stripe_head *
427 get_active_stripe(struct r5conf *conf, sector_t sector,
428 int previous, int noblock, int noquiesce)
430 struct stripe_head *sh;
432 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
434 spin_lock_irq(&conf->device_lock);
436 do {
437 wait_event_lock_irq(conf->wait_for_stripe,
438 conf->quiesce == 0 || noquiesce,
439 conf->device_lock, /* nothing */);
440 sh = __find_stripe(conf, sector, conf->generation - previous);
441 if (!sh) {
442 if (!conf->inactive_blocked)
443 sh = get_free_stripe(conf);
444 if (noblock && sh == NULL)
445 break;
446 if (!sh) {
447 conf->inactive_blocked = 1;
448 wait_event_lock_irq(conf->wait_for_stripe,
449 !list_empty(&conf->inactive_list) &&
450 (atomic_read(&conf->active_stripes)
451 < (conf->max_nr_stripes *3/4)
452 || !conf->inactive_blocked),
453 conf->device_lock,
455 conf->inactive_blocked = 0;
456 } else
457 init_stripe(sh, sector, previous);
458 } else {
459 if (atomic_read(&sh->count)) {
460 BUG_ON(!list_empty(&sh->lru)
461 && !test_bit(STRIPE_EXPANDING, &sh->state));
462 } else {
463 if (!test_bit(STRIPE_HANDLE, &sh->state))
464 atomic_inc(&conf->active_stripes);
465 if (list_empty(&sh->lru) &&
466 !test_bit(STRIPE_EXPANDING, &sh->state))
467 BUG();
468 list_del_init(&sh->lru);
471 } while (sh == NULL);
473 if (sh)
474 atomic_inc(&sh->count);
476 spin_unlock_irq(&conf->device_lock);
477 return sh;
480 static void
481 raid5_end_read_request(struct bio *bi, int error);
482 static void
483 raid5_end_write_request(struct bio *bi, int error);
485 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
487 struct r5conf *conf = sh->raid_conf;
488 int i, disks = sh->disks;
490 might_sleep();
492 for (i = disks; i--; ) {
493 int rw;
494 struct bio *bi;
495 struct md_rdev *rdev;
496 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
497 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
498 rw = WRITE_FUA;
499 else
500 rw = WRITE;
501 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
502 rw = READ;
503 else
504 continue;
506 bi = &sh->dev[i].req;
508 bi->bi_rw = rw;
509 if (rw & WRITE)
510 bi->bi_end_io = raid5_end_write_request;
511 else
512 bi->bi_end_io = raid5_end_read_request;
514 rcu_read_lock();
515 rdev = rcu_dereference(conf->disks[i].rdev);
516 if (rdev && test_bit(Faulty, &rdev->flags))
517 rdev = NULL;
518 if (rdev)
519 atomic_inc(&rdev->nr_pending);
520 rcu_read_unlock();
522 /* We have already checked bad blocks for reads. Now
523 * need to check for writes.
525 while ((rw & WRITE) && rdev &&
526 test_bit(WriteErrorSeen, &rdev->flags)) {
527 sector_t first_bad;
528 int bad_sectors;
529 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
530 &first_bad, &bad_sectors);
531 if (!bad)
532 break;
534 if (bad < 0) {
535 set_bit(BlockedBadBlocks, &rdev->flags);
536 if (!conf->mddev->external &&
537 conf->mddev->flags) {
538 /* It is very unlikely, but we might
539 * still need to write out the
540 * bad block log - better give it
541 * a chance*/
542 md_check_recovery(conf->mddev);
544 md_wait_for_blocked_rdev(rdev, conf->mddev);
545 } else {
546 /* Acknowledged bad block - skip the write */
547 rdev_dec_pending(rdev, conf->mddev);
548 rdev = NULL;
552 if (rdev) {
553 if (s->syncing || s->expanding || s->expanded)
554 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
556 set_bit(STRIPE_IO_STARTED, &sh->state);
558 bi->bi_bdev = rdev->bdev;
559 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
560 __func__, (unsigned long long)sh->sector,
561 bi->bi_rw, i);
562 atomic_inc(&sh->count);
563 bi->bi_sector = sh->sector + rdev->data_offset;
564 bi->bi_flags = 1 << BIO_UPTODATE;
565 bi->bi_vcnt = 1;
566 bi->bi_max_vecs = 1;
567 bi->bi_idx = 0;
568 bi->bi_io_vec = &sh->dev[i].vec;
569 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
570 bi->bi_io_vec[0].bv_offset = 0;
571 bi->bi_size = STRIPE_SIZE;
572 bi->bi_next = NULL;
573 generic_make_request(bi);
574 } else {
575 if (rw & WRITE)
576 set_bit(STRIPE_DEGRADED, &sh->state);
577 pr_debug("skip op %ld on disc %d for sector %llu\n",
578 bi->bi_rw, i, (unsigned long long)sh->sector);
579 clear_bit(R5_LOCKED, &sh->dev[i].flags);
580 set_bit(STRIPE_HANDLE, &sh->state);
585 static struct dma_async_tx_descriptor *
586 async_copy_data(int frombio, struct bio *bio, struct page *page,
587 sector_t sector, struct dma_async_tx_descriptor *tx)
589 struct bio_vec *bvl;
590 struct page *bio_page;
591 int i;
592 int page_offset;
593 struct async_submit_ctl submit;
594 enum async_tx_flags flags = 0;
596 if (bio->bi_sector >= sector)
597 page_offset = (signed)(bio->bi_sector - sector) * 512;
598 else
599 page_offset = (signed)(sector - bio->bi_sector) * -512;
601 if (frombio)
602 flags |= ASYNC_TX_FENCE;
603 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
605 bio_for_each_segment(bvl, bio, i) {
606 int len = bvl->bv_len;
607 int clen;
608 int b_offset = 0;
610 if (page_offset < 0) {
611 b_offset = -page_offset;
612 page_offset += b_offset;
613 len -= b_offset;
616 if (len > 0 && page_offset + len > STRIPE_SIZE)
617 clen = STRIPE_SIZE - page_offset;
618 else
619 clen = len;
621 if (clen > 0) {
622 b_offset += bvl->bv_offset;
623 bio_page = bvl->bv_page;
624 if (frombio)
625 tx = async_memcpy(page, bio_page, page_offset,
626 b_offset, clen, &submit);
627 else
628 tx = async_memcpy(bio_page, page, b_offset,
629 page_offset, clen, &submit);
631 /* chain the operations */
632 submit.depend_tx = tx;
634 if (clen < len) /* hit end of page */
635 break;
636 page_offset += len;
639 return tx;
642 static void ops_complete_biofill(void *stripe_head_ref)
644 struct stripe_head *sh = stripe_head_ref;
645 struct bio *return_bi = NULL;
646 struct r5conf *conf = sh->raid_conf;
647 int i;
649 pr_debug("%s: stripe %llu\n", __func__,
650 (unsigned long long)sh->sector);
652 /* clear completed biofills */
653 spin_lock_irq(&conf->device_lock);
654 for (i = sh->disks; i--; ) {
655 struct r5dev *dev = &sh->dev[i];
657 /* acknowledge completion of a biofill operation */
658 /* and check if we need to reply to a read request,
659 * new R5_Wantfill requests are held off until
660 * !STRIPE_BIOFILL_RUN
662 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
663 struct bio *rbi, *rbi2;
665 BUG_ON(!dev->read);
666 rbi = dev->read;
667 dev->read = NULL;
668 while (rbi && rbi->bi_sector <
669 dev->sector + STRIPE_SECTORS) {
670 rbi2 = r5_next_bio(rbi, dev->sector);
671 if (!raid5_dec_bi_phys_segments(rbi)) {
672 rbi->bi_next = return_bi;
673 return_bi = rbi;
675 rbi = rbi2;
679 spin_unlock_irq(&conf->device_lock);
680 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
682 return_io(return_bi);
684 set_bit(STRIPE_HANDLE, &sh->state);
685 release_stripe(sh);
688 static void ops_run_biofill(struct stripe_head *sh)
690 struct dma_async_tx_descriptor *tx = NULL;
691 struct r5conf *conf = sh->raid_conf;
692 struct async_submit_ctl submit;
693 int i;
695 pr_debug("%s: stripe %llu\n", __func__,
696 (unsigned long long)sh->sector);
698 for (i = sh->disks; i--; ) {
699 struct r5dev *dev = &sh->dev[i];
700 if (test_bit(R5_Wantfill, &dev->flags)) {
701 struct bio *rbi;
702 spin_lock_irq(&conf->device_lock);
703 dev->read = rbi = dev->toread;
704 dev->toread = NULL;
705 spin_unlock_irq(&conf->device_lock);
706 while (rbi && rbi->bi_sector <
707 dev->sector + STRIPE_SECTORS) {
708 tx = async_copy_data(0, rbi, dev->page,
709 dev->sector, tx);
710 rbi = r5_next_bio(rbi, dev->sector);
715 atomic_inc(&sh->count);
716 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
717 async_trigger_callback(&submit);
720 static void mark_target_uptodate(struct stripe_head *sh, int target)
722 struct r5dev *tgt;
724 if (target < 0)
725 return;
727 tgt = &sh->dev[target];
728 set_bit(R5_UPTODATE, &tgt->flags);
729 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
730 clear_bit(R5_Wantcompute, &tgt->flags);
733 static void ops_complete_compute(void *stripe_head_ref)
735 struct stripe_head *sh = stripe_head_ref;
737 pr_debug("%s: stripe %llu\n", __func__,
738 (unsigned long long)sh->sector);
740 /* mark the computed target(s) as uptodate */
741 mark_target_uptodate(sh, sh->ops.target);
742 mark_target_uptodate(sh, sh->ops.target2);
744 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
745 if (sh->check_state == check_state_compute_run)
746 sh->check_state = check_state_compute_result;
747 set_bit(STRIPE_HANDLE, &sh->state);
748 release_stripe(sh);
751 /* return a pointer to the address conversion region of the scribble buffer */
752 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
753 struct raid5_percpu *percpu)
755 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
758 static struct dma_async_tx_descriptor *
759 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
761 int disks = sh->disks;
762 struct page **xor_srcs = percpu->scribble;
763 int target = sh->ops.target;
764 struct r5dev *tgt = &sh->dev[target];
765 struct page *xor_dest = tgt->page;
766 int count = 0;
767 struct dma_async_tx_descriptor *tx;
768 struct async_submit_ctl submit;
769 int i;
771 pr_debug("%s: stripe %llu block: %d\n",
772 __func__, (unsigned long long)sh->sector, target);
773 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
775 for (i = disks; i--; )
776 if (i != target)
777 xor_srcs[count++] = sh->dev[i].page;
779 atomic_inc(&sh->count);
781 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
782 ops_complete_compute, sh, to_addr_conv(sh, percpu));
783 if (unlikely(count == 1))
784 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
785 else
786 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
788 return tx;
791 /* set_syndrome_sources - populate source buffers for gen_syndrome
792 * @srcs - (struct page *) array of size sh->disks
793 * @sh - stripe_head to parse
795 * Populates srcs in proper layout order for the stripe and returns the
796 * 'count' of sources to be used in a call to async_gen_syndrome. The P
797 * destination buffer is recorded in srcs[count] and the Q destination
798 * is recorded in srcs[count+1]].
800 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
802 int disks = sh->disks;
803 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
804 int d0_idx = raid6_d0(sh);
805 int count;
806 int i;
808 for (i = 0; i < disks; i++)
809 srcs[i] = NULL;
811 count = 0;
812 i = d0_idx;
813 do {
814 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
816 srcs[slot] = sh->dev[i].page;
817 i = raid6_next_disk(i, disks);
818 } while (i != d0_idx);
820 return syndrome_disks;
823 static struct dma_async_tx_descriptor *
824 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
826 int disks = sh->disks;
827 struct page **blocks = percpu->scribble;
828 int target;
829 int qd_idx = sh->qd_idx;
830 struct dma_async_tx_descriptor *tx;
831 struct async_submit_ctl submit;
832 struct r5dev *tgt;
833 struct page *dest;
834 int i;
835 int count;
837 if (sh->ops.target < 0)
838 target = sh->ops.target2;
839 else if (sh->ops.target2 < 0)
840 target = sh->ops.target;
841 else
842 /* we should only have one valid target */
843 BUG();
844 BUG_ON(target < 0);
845 pr_debug("%s: stripe %llu block: %d\n",
846 __func__, (unsigned long long)sh->sector, target);
848 tgt = &sh->dev[target];
849 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
850 dest = tgt->page;
852 atomic_inc(&sh->count);
854 if (target == qd_idx) {
855 count = set_syndrome_sources(blocks, sh);
856 blocks[count] = NULL; /* regenerating p is not necessary */
857 BUG_ON(blocks[count+1] != dest); /* q should already be set */
858 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
859 ops_complete_compute, sh,
860 to_addr_conv(sh, percpu));
861 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
862 } else {
863 /* Compute any data- or p-drive using XOR */
864 count = 0;
865 for (i = disks; i-- ; ) {
866 if (i == target || i == qd_idx)
867 continue;
868 blocks[count++] = sh->dev[i].page;
871 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
872 NULL, ops_complete_compute, sh,
873 to_addr_conv(sh, percpu));
874 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
877 return tx;
880 static struct dma_async_tx_descriptor *
881 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
883 int i, count, disks = sh->disks;
884 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
885 int d0_idx = raid6_d0(sh);
886 int faila = -1, failb = -1;
887 int target = sh->ops.target;
888 int target2 = sh->ops.target2;
889 struct r5dev *tgt = &sh->dev[target];
890 struct r5dev *tgt2 = &sh->dev[target2];
891 struct dma_async_tx_descriptor *tx;
892 struct page **blocks = percpu->scribble;
893 struct async_submit_ctl submit;
895 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
896 __func__, (unsigned long long)sh->sector, target, target2);
897 BUG_ON(target < 0 || target2 < 0);
898 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
899 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
901 /* we need to open-code set_syndrome_sources to handle the
902 * slot number conversion for 'faila' and 'failb'
904 for (i = 0; i < disks ; i++)
905 blocks[i] = NULL;
906 count = 0;
907 i = d0_idx;
908 do {
909 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
911 blocks[slot] = sh->dev[i].page;
913 if (i == target)
914 faila = slot;
915 if (i == target2)
916 failb = slot;
917 i = raid6_next_disk(i, disks);
918 } while (i != d0_idx);
920 BUG_ON(faila == failb);
921 if (failb < faila)
922 swap(faila, failb);
923 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
924 __func__, (unsigned long long)sh->sector, faila, failb);
926 atomic_inc(&sh->count);
928 if (failb == syndrome_disks+1) {
929 /* Q disk is one of the missing disks */
930 if (faila == syndrome_disks) {
931 /* Missing P+Q, just recompute */
932 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
933 ops_complete_compute, sh,
934 to_addr_conv(sh, percpu));
935 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
936 STRIPE_SIZE, &submit);
937 } else {
938 struct page *dest;
939 int data_target;
940 int qd_idx = sh->qd_idx;
942 /* Missing D+Q: recompute D from P, then recompute Q */
943 if (target == qd_idx)
944 data_target = target2;
945 else
946 data_target = target;
948 count = 0;
949 for (i = disks; i-- ; ) {
950 if (i == data_target || i == qd_idx)
951 continue;
952 blocks[count++] = sh->dev[i].page;
954 dest = sh->dev[data_target].page;
955 init_async_submit(&submit,
956 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
957 NULL, NULL, NULL,
958 to_addr_conv(sh, percpu));
959 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
960 &submit);
962 count = set_syndrome_sources(blocks, sh);
963 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
964 ops_complete_compute, sh,
965 to_addr_conv(sh, percpu));
966 return async_gen_syndrome(blocks, 0, count+2,
967 STRIPE_SIZE, &submit);
969 } else {
970 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
971 ops_complete_compute, sh,
972 to_addr_conv(sh, percpu));
973 if (failb == syndrome_disks) {
974 /* We're missing D+P. */
975 return async_raid6_datap_recov(syndrome_disks+2,
976 STRIPE_SIZE, faila,
977 blocks, &submit);
978 } else {
979 /* We're missing D+D. */
980 return async_raid6_2data_recov(syndrome_disks+2,
981 STRIPE_SIZE, faila, failb,
982 blocks, &submit);
988 static void ops_complete_prexor(void *stripe_head_ref)
990 struct stripe_head *sh = stripe_head_ref;
992 pr_debug("%s: stripe %llu\n", __func__,
993 (unsigned long long)sh->sector);
996 static struct dma_async_tx_descriptor *
997 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
998 struct dma_async_tx_descriptor *tx)
1000 int disks = sh->disks;
1001 struct page **xor_srcs = percpu->scribble;
1002 int count = 0, pd_idx = sh->pd_idx, i;
1003 struct async_submit_ctl submit;
1005 /* existing parity data subtracted */
1006 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1008 pr_debug("%s: stripe %llu\n", __func__,
1009 (unsigned long long)sh->sector);
1011 for (i = disks; i--; ) {
1012 struct r5dev *dev = &sh->dev[i];
1013 /* Only process blocks that are known to be uptodate */
1014 if (test_bit(R5_Wantdrain, &dev->flags))
1015 xor_srcs[count++] = dev->page;
1018 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1019 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1020 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1022 return tx;
1025 static struct dma_async_tx_descriptor *
1026 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1028 int disks = sh->disks;
1029 int i;
1031 pr_debug("%s: stripe %llu\n", __func__,
1032 (unsigned long long)sh->sector);
1034 for (i = disks; i--; ) {
1035 struct r5dev *dev = &sh->dev[i];
1036 struct bio *chosen;
1038 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1039 struct bio *wbi;
1041 spin_lock_irq(&sh->raid_conf->device_lock);
1042 chosen = dev->towrite;
1043 dev->towrite = NULL;
1044 BUG_ON(dev->written);
1045 wbi = dev->written = chosen;
1046 spin_unlock_irq(&sh->raid_conf->device_lock);
1048 while (wbi && wbi->bi_sector <
1049 dev->sector + STRIPE_SECTORS) {
1050 if (wbi->bi_rw & REQ_FUA)
1051 set_bit(R5_WantFUA, &dev->flags);
1052 tx = async_copy_data(1, wbi, dev->page,
1053 dev->sector, tx);
1054 wbi = r5_next_bio(wbi, dev->sector);
1059 return tx;
1062 static void ops_complete_reconstruct(void *stripe_head_ref)
1064 struct stripe_head *sh = stripe_head_ref;
1065 int disks = sh->disks;
1066 int pd_idx = sh->pd_idx;
1067 int qd_idx = sh->qd_idx;
1068 int i;
1069 bool fua = false;
1071 pr_debug("%s: stripe %llu\n", __func__,
1072 (unsigned long long)sh->sector);
1074 for (i = disks; i--; )
1075 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1077 for (i = disks; i--; ) {
1078 struct r5dev *dev = &sh->dev[i];
1080 if (dev->written || i == pd_idx || i == qd_idx) {
1081 set_bit(R5_UPTODATE, &dev->flags);
1082 if (fua)
1083 set_bit(R5_WantFUA, &dev->flags);
1087 if (sh->reconstruct_state == reconstruct_state_drain_run)
1088 sh->reconstruct_state = reconstruct_state_drain_result;
1089 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1090 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1091 else {
1092 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1093 sh->reconstruct_state = reconstruct_state_result;
1096 set_bit(STRIPE_HANDLE, &sh->state);
1097 release_stripe(sh);
1100 static void
1101 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1102 struct dma_async_tx_descriptor *tx)
1104 int disks = sh->disks;
1105 struct page **xor_srcs = percpu->scribble;
1106 struct async_submit_ctl submit;
1107 int count = 0, pd_idx = sh->pd_idx, i;
1108 struct page *xor_dest;
1109 int prexor = 0;
1110 unsigned long flags;
1112 pr_debug("%s: stripe %llu\n", __func__,
1113 (unsigned long long)sh->sector);
1115 /* check if prexor is active which means only process blocks
1116 * that are part of a read-modify-write (written)
1118 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1119 prexor = 1;
1120 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1121 for (i = disks; i--; ) {
1122 struct r5dev *dev = &sh->dev[i];
1123 if (dev->written)
1124 xor_srcs[count++] = dev->page;
1126 } else {
1127 xor_dest = sh->dev[pd_idx].page;
1128 for (i = disks; i--; ) {
1129 struct r5dev *dev = &sh->dev[i];
1130 if (i != pd_idx)
1131 xor_srcs[count++] = dev->page;
1135 /* 1/ if we prexor'd then the dest is reused as a source
1136 * 2/ if we did not prexor then we are redoing the parity
1137 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1138 * for the synchronous xor case
1140 flags = ASYNC_TX_ACK |
1141 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1143 atomic_inc(&sh->count);
1145 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1146 to_addr_conv(sh, percpu));
1147 if (unlikely(count == 1))
1148 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1149 else
1150 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1153 static void
1154 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1155 struct dma_async_tx_descriptor *tx)
1157 struct async_submit_ctl submit;
1158 struct page **blocks = percpu->scribble;
1159 int count;
1161 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1163 count = set_syndrome_sources(blocks, sh);
1165 atomic_inc(&sh->count);
1167 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1168 sh, to_addr_conv(sh, percpu));
1169 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1172 static void ops_complete_check(void *stripe_head_ref)
1174 struct stripe_head *sh = stripe_head_ref;
1176 pr_debug("%s: stripe %llu\n", __func__,
1177 (unsigned long long)sh->sector);
1179 sh->check_state = check_state_check_result;
1180 set_bit(STRIPE_HANDLE, &sh->state);
1181 release_stripe(sh);
1184 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1186 int disks = sh->disks;
1187 int pd_idx = sh->pd_idx;
1188 int qd_idx = sh->qd_idx;
1189 struct page *xor_dest;
1190 struct page **xor_srcs = percpu->scribble;
1191 struct dma_async_tx_descriptor *tx;
1192 struct async_submit_ctl submit;
1193 int count;
1194 int i;
1196 pr_debug("%s: stripe %llu\n", __func__,
1197 (unsigned long long)sh->sector);
1199 count = 0;
1200 xor_dest = sh->dev[pd_idx].page;
1201 xor_srcs[count++] = xor_dest;
1202 for (i = disks; i--; ) {
1203 if (i == pd_idx || i == qd_idx)
1204 continue;
1205 xor_srcs[count++] = sh->dev[i].page;
1208 init_async_submit(&submit, 0, NULL, NULL, NULL,
1209 to_addr_conv(sh, percpu));
1210 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1211 &sh->ops.zero_sum_result, &submit);
1213 atomic_inc(&sh->count);
1214 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1215 tx = async_trigger_callback(&submit);
1218 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1220 struct page **srcs = percpu->scribble;
1221 struct async_submit_ctl submit;
1222 int count;
1224 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1225 (unsigned long long)sh->sector, checkp);
1227 count = set_syndrome_sources(srcs, sh);
1228 if (!checkp)
1229 srcs[count] = NULL;
1231 atomic_inc(&sh->count);
1232 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1233 sh, to_addr_conv(sh, percpu));
1234 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1235 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1238 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1240 int overlap_clear = 0, i, disks = sh->disks;
1241 struct dma_async_tx_descriptor *tx = NULL;
1242 struct r5conf *conf = sh->raid_conf;
1243 int level = conf->level;
1244 struct raid5_percpu *percpu;
1245 unsigned long cpu;
1247 cpu = get_cpu();
1248 percpu = per_cpu_ptr(conf->percpu, cpu);
1249 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1250 ops_run_biofill(sh);
1251 overlap_clear++;
1254 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1255 if (level < 6)
1256 tx = ops_run_compute5(sh, percpu);
1257 else {
1258 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1259 tx = ops_run_compute6_1(sh, percpu);
1260 else
1261 tx = ops_run_compute6_2(sh, percpu);
1263 /* terminate the chain if reconstruct is not set to be run */
1264 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1265 async_tx_ack(tx);
1268 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1269 tx = ops_run_prexor(sh, percpu, tx);
1271 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1272 tx = ops_run_biodrain(sh, tx);
1273 overlap_clear++;
1276 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1277 if (level < 6)
1278 ops_run_reconstruct5(sh, percpu, tx);
1279 else
1280 ops_run_reconstruct6(sh, percpu, tx);
1283 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1284 if (sh->check_state == check_state_run)
1285 ops_run_check_p(sh, percpu);
1286 else if (sh->check_state == check_state_run_q)
1287 ops_run_check_pq(sh, percpu, 0);
1288 else if (sh->check_state == check_state_run_pq)
1289 ops_run_check_pq(sh, percpu, 1);
1290 else
1291 BUG();
1294 if (overlap_clear)
1295 for (i = disks; i--; ) {
1296 struct r5dev *dev = &sh->dev[i];
1297 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1298 wake_up(&sh->raid_conf->wait_for_overlap);
1300 put_cpu();
1303 #ifdef CONFIG_MULTICORE_RAID456
1304 static void async_run_ops(void *param, async_cookie_t cookie)
1306 struct stripe_head *sh = param;
1307 unsigned long ops_request = sh->ops.request;
1309 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1310 wake_up(&sh->ops.wait_for_ops);
1312 __raid_run_ops(sh, ops_request);
1313 release_stripe(sh);
1316 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1318 /* since handle_stripe can be called outside of raid5d context
1319 * we need to ensure sh->ops.request is de-staged before another
1320 * request arrives
1322 wait_event(sh->ops.wait_for_ops,
1323 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1324 sh->ops.request = ops_request;
1326 atomic_inc(&sh->count);
1327 async_schedule(async_run_ops, sh);
1329 #else
1330 #define raid_run_ops __raid_run_ops
1331 #endif
1333 static int grow_one_stripe(struct r5conf *conf)
1335 struct stripe_head *sh;
1336 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1337 if (!sh)
1338 return 0;
1340 sh->raid_conf = conf;
1341 #ifdef CONFIG_MULTICORE_RAID456
1342 init_waitqueue_head(&sh->ops.wait_for_ops);
1343 #endif
1345 if (grow_buffers(sh)) {
1346 shrink_buffers(sh);
1347 kmem_cache_free(conf->slab_cache, sh);
1348 return 0;
1350 /* we just created an active stripe so... */
1351 atomic_set(&sh->count, 1);
1352 atomic_inc(&conf->active_stripes);
1353 INIT_LIST_HEAD(&sh->lru);
1354 release_stripe(sh);
1355 return 1;
1358 static int grow_stripes(struct r5conf *conf, int num)
1360 struct kmem_cache *sc;
1361 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1363 if (conf->mddev->gendisk)
1364 sprintf(conf->cache_name[0],
1365 "raid%d-%s", conf->level, mdname(conf->mddev));
1366 else
1367 sprintf(conf->cache_name[0],
1368 "raid%d-%p", conf->level, conf->mddev);
1369 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1371 conf->active_name = 0;
1372 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1373 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1374 0, 0, NULL);
1375 if (!sc)
1376 return 1;
1377 conf->slab_cache = sc;
1378 conf->pool_size = devs;
1379 while (num--)
1380 if (!grow_one_stripe(conf))
1381 return 1;
1382 return 0;
1386 * scribble_len - return the required size of the scribble region
1387 * @num - total number of disks in the array
1389 * The size must be enough to contain:
1390 * 1/ a struct page pointer for each device in the array +2
1391 * 2/ room to convert each entry in (1) to its corresponding dma
1392 * (dma_map_page()) or page (page_address()) address.
1394 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1395 * calculate over all devices (not just the data blocks), using zeros in place
1396 * of the P and Q blocks.
1398 static size_t scribble_len(int num)
1400 size_t len;
1402 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1404 return len;
1407 static int resize_stripes(struct r5conf *conf, int newsize)
1409 /* Make all the stripes able to hold 'newsize' devices.
1410 * New slots in each stripe get 'page' set to a new page.
1412 * This happens in stages:
1413 * 1/ create a new kmem_cache and allocate the required number of
1414 * stripe_heads.
1415 * 2/ gather all the old stripe_heads and tranfer the pages across
1416 * to the new stripe_heads. This will have the side effect of
1417 * freezing the array as once all stripe_heads have been collected,
1418 * no IO will be possible. Old stripe heads are freed once their
1419 * pages have been transferred over, and the old kmem_cache is
1420 * freed when all stripes are done.
1421 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1422 * we simple return a failre status - no need to clean anything up.
1423 * 4/ allocate new pages for the new slots in the new stripe_heads.
1424 * If this fails, we don't bother trying the shrink the
1425 * stripe_heads down again, we just leave them as they are.
1426 * As each stripe_head is processed the new one is released into
1427 * active service.
1429 * Once step2 is started, we cannot afford to wait for a write,
1430 * so we use GFP_NOIO allocations.
1432 struct stripe_head *osh, *nsh;
1433 LIST_HEAD(newstripes);
1434 struct disk_info *ndisks;
1435 unsigned long cpu;
1436 int err;
1437 struct kmem_cache *sc;
1438 int i;
1440 if (newsize <= conf->pool_size)
1441 return 0; /* never bother to shrink */
1443 err = md_allow_write(conf->mddev);
1444 if (err)
1445 return err;
1447 /* Step 1 */
1448 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1449 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1450 0, 0, NULL);
1451 if (!sc)
1452 return -ENOMEM;
1454 for (i = conf->max_nr_stripes; i; i--) {
1455 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1456 if (!nsh)
1457 break;
1459 nsh->raid_conf = conf;
1460 #ifdef CONFIG_MULTICORE_RAID456
1461 init_waitqueue_head(&nsh->ops.wait_for_ops);
1462 #endif
1464 list_add(&nsh->lru, &newstripes);
1466 if (i) {
1467 /* didn't get enough, give up */
1468 while (!list_empty(&newstripes)) {
1469 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1470 list_del(&nsh->lru);
1471 kmem_cache_free(sc, nsh);
1473 kmem_cache_destroy(sc);
1474 return -ENOMEM;
1476 /* Step 2 - Must use GFP_NOIO now.
1477 * OK, we have enough stripes, start collecting inactive
1478 * stripes and copying them over
1480 list_for_each_entry(nsh, &newstripes, lru) {
1481 spin_lock_irq(&conf->device_lock);
1482 wait_event_lock_irq(conf->wait_for_stripe,
1483 !list_empty(&conf->inactive_list),
1484 conf->device_lock,
1486 osh = get_free_stripe(conf);
1487 spin_unlock_irq(&conf->device_lock);
1488 atomic_set(&nsh->count, 1);
1489 for(i=0; i<conf->pool_size; i++)
1490 nsh->dev[i].page = osh->dev[i].page;
1491 for( ; i<newsize; i++)
1492 nsh->dev[i].page = NULL;
1493 kmem_cache_free(conf->slab_cache, osh);
1495 kmem_cache_destroy(conf->slab_cache);
1497 /* Step 3.
1498 * At this point, we are holding all the stripes so the array
1499 * is completely stalled, so now is a good time to resize
1500 * conf->disks and the scribble region
1502 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1503 if (ndisks) {
1504 for (i=0; i<conf->raid_disks; i++)
1505 ndisks[i] = conf->disks[i];
1506 kfree(conf->disks);
1507 conf->disks = ndisks;
1508 } else
1509 err = -ENOMEM;
1511 get_online_cpus();
1512 conf->scribble_len = scribble_len(newsize);
1513 for_each_present_cpu(cpu) {
1514 struct raid5_percpu *percpu;
1515 void *scribble;
1517 percpu = per_cpu_ptr(conf->percpu, cpu);
1518 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1520 if (scribble) {
1521 kfree(percpu->scribble);
1522 percpu->scribble = scribble;
1523 } else {
1524 err = -ENOMEM;
1525 break;
1528 put_online_cpus();
1530 /* Step 4, return new stripes to service */
1531 while(!list_empty(&newstripes)) {
1532 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1533 list_del_init(&nsh->lru);
1535 for (i=conf->raid_disks; i < newsize; i++)
1536 if (nsh->dev[i].page == NULL) {
1537 struct page *p = alloc_page(GFP_NOIO);
1538 nsh->dev[i].page = p;
1539 if (!p)
1540 err = -ENOMEM;
1542 release_stripe(nsh);
1544 /* critical section pass, GFP_NOIO no longer needed */
1546 conf->slab_cache = sc;
1547 conf->active_name = 1-conf->active_name;
1548 conf->pool_size = newsize;
1549 return err;
1552 static int drop_one_stripe(struct r5conf *conf)
1554 struct stripe_head *sh;
1556 spin_lock_irq(&conf->device_lock);
1557 sh = get_free_stripe(conf);
1558 spin_unlock_irq(&conf->device_lock);
1559 if (!sh)
1560 return 0;
1561 BUG_ON(atomic_read(&sh->count));
1562 shrink_buffers(sh);
1563 kmem_cache_free(conf->slab_cache, sh);
1564 atomic_dec(&conf->active_stripes);
1565 return 1;
1568 static void shrink_stripes(struct r5conf *conf)
1570 while (drop_one_stripe(conf))
1573 if (conf->slab_cache)
1574 kmem_cache_destroy(conf->slab_cache);
1575 conf->slab_cache = NULL;
1578 static void raid5_end_read_request(struct bio * bi, int error)
1580 struct stripe_head *sh = bi->bi_private;
1581 struct r5conf *conf = sh->raid_conf;
1582 int disks = sh->disks, i;
1583 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1584 char b[BDEVNAME_SIZE];
1585 struct md_rdev *rdev;
1588 for (i=0 ; i<disks; i++)
1589 if (bi == &sh->dev[i].req)
1590 break;
1592 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1593 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1594 uptodate);
1595 if (i == disks) {
1596 BUG();
1597 return;
1600 if (uptodate) {
1601 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1602 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1603 rdev = conf->disks[i].rdev;
1604 printk_ratelimited(
1605 KERN_INFO
1606 "md/raid:%s: read error corrected"
1607 " (%lu sectors at %llu on %s)\n",
1608 mdname(conf->mddev), STRIPE_SECTORS,
1609 (unsigned long long)(sh->sector
1610 + rdev->data_offset),
1611 bdevname(rdev->bdev, b));
1612 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1613 clear_bit(R5_ReadError, &sh->dev[i].flags);
1614 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1616 if (atomic_read(&conf->disks[i].rdev->read_errors))
1617 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1618 } else {
1619 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1620 int retry = 0;
1621 rdev = conf->disks[i].rdev;
1623 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1624 atomic_inc(&rdev->read_errors);
1625 if (conf->mddev->degraded >= conf->max_degraded)
1626 printk_ratelimited(
1627 KERN_WARNING
1628 "md/raid:%s: read error not correctable "
1629 "(sector %llu on %s).\n",
1630 mdname(conf->mddev),
1631 (unsigned long long)(sh->sector
1632 + rdev->data_offset),
1633 bdn);
1634 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1635 /* Oh, no!!! */
1636 printk_ratelimited(
1637 KERN_WARNING
1638 "md/raid:%s: read error NOT corrected!! "
1639 "(sector %llu on %s).\n",
1640 mdname(conf->mddev),
1641 (unsigned long long)(sh->sector
1642 + rdev->data_offset),
1643 bdn);
1644 else if (atomic_read(&rdev->read_errors)
1645 > conf->max_nr_stripes)
1646 printk(KERN_WARNING
1647 "md/raid:%s: Too many read errors, failing device %s.\n",
1648 mdname(conf->mddev), bdn);
1649 else
1650 retry = 1;
1651 if (retry)
1652 set_bit(R5_ReadError, &sh->dev[i].flags);
1653 else {
1654 clear_bit(R5_ReadError, &sh->dev[i].flags);
1655 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1656 md_error(conf->mddev, rdev);
1659 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1660 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1661 set_bit(STRIPE_HANDLE, &sh->state);
1662 release_stripe(sh);
1665 static void raid5_end_write_request(struct bio *bi, int error)
1667 struct stripe_head *sh = bi->bi_private;
1668 struct r5conf *conf = sh->raid_conf;
1669 int disks = sh->disks, i;
1670 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1671 sector_t first_bad;
1672 int bad_sectors;
1674 for (i=0 ; i<disks; i++)
1675 if (bi == &sh->dev[i].req)
1676 break;
1678 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1679 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1680 uptodate);
1681 if (i == disks) {
1682 BUG();
1683 return;
1686 if (!uptodate) {
1687 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1688 set_bit(R5_WriteError, &sh->dev[i].flags);
1689 } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1690 &first_bad, &bad_sectors))
1691 set_bit(R5_MadeGood, &sh->dev[i].flags);
1693 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1695 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1696 set_bit(STRIPE_HANDLE, &sh->state);
1697 release_stripe(sh);
1701 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1703 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1705 struct r5dev *dev = &sh->dev[i];
1707 bio_init(&dev->req);
1708 dev->req.bi_io_vec = &dev->vec;
1709 dev->req.bi_vcnt++;
1710 dev->req.bi_max_vecs++;
1711 dev->vec.bv_page = dev->page;
1712 dev->vec.bv_len = STRIPE_SIZE;
1713 dev->vec.bv_offset = 0;
1715 dev->req.bi_sector = sh->sector;
1716 dev->req.bi_private = sh;
1718 dev->flags = 0;
1719 dev->sector = compute_blocknr(sh, i, previous);
1722 static void error(struct mddev *mddev, struct md_rdev *rdev)
1724 char b[BDEVNAME_SIZE];
1725 struct r5conf *conf = mddev->private;
1726 pr_debug("raid456: error called\n");
1728 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1729 unsigned long flags;
1730 spin_lock_irqsave(&conf->device_lock, flags);
1731 mddev->degraded++;
1732 spin_unlock_irqrestore(&conf->device_lock, flags);
1734 * if recovery was running, make sure it aborts.
1736 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1738 set_bit(Blocked, &rdev->flags);
1739 set_bit(Faulty, &rdev->flags);
1740 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1741 printk(KERN_ALERT
1742 "md/raid:%s: Disk failure on %s, disabling device.\n"
1743 "md/raid:%s: Operation continuing on %d devices.\n",
1744 mdname(mddev),
1745 bdevname(rdev->bdev, b),
1746 mdname(mddev),
1747 conf->raid_disks - mddev->degraded);
1751 * Input: a 'big' sector number,
1752 * Output: index of the data and parity disk, and the sector # in them.
1754 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1755 int previous, int *dd_idx,
1756 struct stripe_head *sh)
1758 sector_t stripe, stripe2;
1759 sector_t chunk_number;
1760 unsigned int chunk_offset;
1761 int pd_idx, qd_idx;
1762 int ddf_layout = 0;
1763 sector_t new_sector;
1764 int algorithm = previous ? conf->prev_algo
1765 : conf->algorithm;
1766 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1767 : conf->chunk_sectors;
1768 int raid_disks = previous ? conf->previous_raid_disks
1769 : conf->raid_disks;
1770 int data_disks = raid_disks - conf->max_degraded;
1772 /* First compute the information on this sector */
1775 * Compute the chunk number and the sector offset inside the chunk
1777 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1778 chunk_number = r_sector;
1781 * Compute the stripe number
1783 stripe = chunk_number;
1784 *dd_idx = sector_div(stripe, data_disks);
1785 stripe2 = stripe;
1787 * Select the parity disk based on the user selected algorithm.
1789 pd_idx = qd_idx = -1;
1790 switch(conf->level) {
1791 case 4:
1792 pd_idx = data_disks;
1793 break;
1794 case 5:
1795 switch (algorithm) {
1796 case ALGORITHM_LEFT_ASYMMETRIC:
1797 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1798 if (*dd_idx >= pd_idx)
1799 (*dd_idx)++;
1800 break;
1801 case ALGORITHM_RIGHT_ASYMMETRIC:
1802 pd_idx = sector_div(stripe2, raid_disks);
1803 if (*dd_idx >= pd_idx)
1804 (*dd_idx)++;
1805 break;
1806 case ALGORITHM_LEFT_SYMMETRIC:
1807 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1808 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1809 break;
1810 case ALGORITHM_RIGHT_SYMMETRIC:
1811 pd_idx = sector_div(stripe2, raid_disks);
1812 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1813 break;
1814 case ALGORITHM_PARITY_0:
1815 pd_idx = 0;
1816 (*dd_idx)++;
1817 break;
1818 case ALGORITHM_PARITY_N:
1819 pd_idx = data_disks;
1820 break;
1821 default:
1822 BUG();
1824 break;
1825 case 6:
1827 switch (algorithm) {
1828 case ALGORITHM_LEFT_ASYMMETRIC:
1829 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1830 qd_idx = pd_idx + 1;
1831 if (pd_idx == raid_disks-1) {
1832 (*dd_idx)++; /* Q D D D P */
1833 qd_idx = 0;
1834 } else if (*dd_idx >= pd_idx)
1835 (*dd_idx) += 2; /* D D P Q D */
1836 break;
1837 case ALGORITHM_RIGHT_ASYMMETRIC:
1838 pd_idx = sector_div(stripe2, raid_disks);
1839 qd_idx = pd_idx + 1;
1840 if (pd_idx == raid_disks-1) {
1841 (*dd_idx)++; /* Q D D D P */
1842 qd_idx = 0;
1843 } else if (*dd_idx >= pd_idx)
1844 (*dd_idx) += 2; /* D D P Q D */
1845 break;
1846 case ALGORITHM_LEFT_SYMMETRIC:
1847 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1848 qd_idx = (pd_idx + 1) % raid_disks;
1849 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1850 break;
1851 case ALGORITHM_RIGHT_SYMMETRIC:
1852 pd_idx = sector_div(stripe2, raid_disks);
1853 qd_idx = (pd_idx + 1) % raid_disks;
1854 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1855 break;
1857 case ALGORITHM_PARITY_0:
1858 pd_idx = 0;
1859 qd_idx = 1;
1860 (*dd_idx) += 2;
1861 break;
1862 case ALGORITHM_PARITY_N:
1863 pd_idx = data_disks;
1864 qd_idx = data_disks + 1;
1865 break;
1867 case ALGORITHM_ROTATING_ZERO_RESTART:
1868 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1869 * of blocks for computing Q is different.
1871 pd_idx = sector_div(stripe2, raid_disks);
1872 qd_idx = pd_idx + 1;
1873 if (pd_idx == raid_disks-1) {
1874 (*dd_idx)++; /* Q D D D P */
1875 qd_idx = 0;
1876 } else if (*dd_idx >= pd_idx)
1877 (*dd_idx) += 2; /* D D P Q D */
1878 ddf_layout = 1;
1879 break;
1881 case ALGORITHM_ROTATING_N_RESTART:
1882 /* Same a left_asymmetric, by first stripe is
1883 * D D D P Q rather than
1884 * Q D D D P
1886 stripe2 += 1;
1887 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1888 qd_idx = pd_idx + 1;
1889 if (pd_idx == raid_disks-1) {
1890 (*dd_idx)++; /* Q D D D P */
1891 qd_idx = 0;
1892 } else if (*dd_idx >= pd_idx)
1893 (*dd_idx) += 2; /* D D P Q D */
1894 ddf_layout = 1;
1895 break;
1897 case ALGORITHM_ROTATING_N_CONTINUE:
1898 /* Same as left_symmetric but Q is before P */
1899 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1900 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1901 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1902 ddf_layout = 1;
1903 break;
1905 case ALGORITHM_LEFT_ASYMMETRIC_6:
1906 /* RAID5 left_asymmetric, with Q on last device */
1907 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1908 if (*dd_idx >= pd_idx)
1909 (*dd_idx)++;
1910 qd_idx = raid_disks - 1;
1911 break;
1913 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1914 pd_idx = sector_div(stripe2, raid_disks-1);
1915 if (*dd_idx >= pd_idx)
1916 (*dd_idx)++;
1917 qd_idx = raid_disks - 1;
1918 break;
1920 case ALGORITHM_LEFT_SYMMETRIC_6:
1921 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1922 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1923 qd_idx = raid_disks - 1;
1924 break;
1926 case ALGORITHM_RIGHT_SYMMETRIC_6:
1927 pd_idx = sector_div(stripe2, raid_disks-1);
1928 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1929 qd_idx = raid_disks - 1;
1930 break;
1932 case ALGORITHM_PARITY_0_6:
1933 pd_idx = 0;
1934 (*dd_idx)++;
1935 qd_idx = raid_disks - 1;
1936 break;
1938 default:
1939 BUG();
1941 break;
1944 if (sh) {
1945 sh->pd_idx = pd_idx;
1946 sh->qd_idx = qd_idx;
1947 sh->ddf_layout = ddf_layout;
1950 * Finally, compute the new sector number
1952 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1953 return new_sector;
1957 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1959 struct r5conf *conf = sh->raid_conf;
1960 int raid_disks = sh->disks;
1961 int data_disks = raid_disks - conf->max_degraded;
1962 sector_t new_sector = sh->sector, check;
1963 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1964 : conf->chunk_sectors;
1965 int algorithm = previous ? conf->prev_algo
1966 : conf->algorithm;
1967 sector_t stripe;
1968 int chunk_offset;
1969 sector_t chunk_number;
1970 int dummy1, dd_idx = i;
1971 sector_t r_sector;
1972 struct stripe_head sh2;
1975 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1976 stripe = new_sector;
1978 if (i == sh->pd_idx)
1979 return 0;
1980 switch(conf->level) {
1981 case 4: break;
1982 case 5:
1983 switch (algorithm) {
1984 case ALGORITHM_LEFT_ASYMMETRIC:
1985 case ALGORITHM_RIGHT_ASYMMETRIC:
1986 if (i > sh->pd_idx)
1987 i--;
1988 break;
1989 case ALGORITHM_LEFT_SYMMETRIC:
1990 case ALGORITHM_RIGHT_SYMMETRIC:
1991 if (i < sh->pd_idx)
1992 i += raid_disks;
1993 i -= (sh->pd_idx + 1);
1994 break;
1995 case ALGORITHM_PARITY_0:
1996 i -= 1;
1997 break;
1998 case ALGORITHM_PARITY_N:
1999 break;
2000 default:
2001 BUG();
2003 break;
2004 case 6:
2005 if (i == sh->qd_idx)
2006 return 0; /* It is the Q disk */
2007 switch (algorithm) {
2008 case ALGORITHM_LEFT_ASYMMETRIC:
2009 case ALGORITHM_RIGHT_ASYMMETRIC:
2010 case ALGORITHM_ROTATING_ZERO_RESTART:
2011 case ALGORITHM_ROTATING_N_RESTART:
2012 if (sh->pd_idx == raid_disks-1)
2013 i--; /* Q D D D P */
2014 else if (i > sh->pd_idx)
2015 i -= 2; /* D D P Q D */
2016 break;
2017 case ALGORITHM_LEFT_SYMMETRIC:
2018 case ALGORITHM_RIGHT_SYMMETRIC:
2019 if (sh->pd_idx == raid_disks-1)
2020 i--; /* Q D D D P */
2021 else {
2022 /* D D P Q D */
2023 if (i < sh->pd_idx)
2024 i += raid_disks;
2025 i -= (sh->pd_idx + 2);
2027 break;
2028 case ALGORITHM_PARITY_0:
2029 i -= 2;
2030 break;
2031 case ALGORITHM_PARITY_N:
2032 break;
2033 case ALGORITHM_ROTATING_N_CONTINUE:
2034 /* Like left_symmetric, but P is before Q */
2035 if (sh->pd_idx == 0)
2036 i--; /* P D D D Q */
2037 else {
2038 /* D D Q P D */
2039 if (i < sh->pd_idx)
2040 i += raid_disks;
2041 i -= (sh->pd_idx + 1);
2043 break;
2044 case ALGORITHM_LEFT_ASYMMETRIC_6:
2045 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2046 if (i > sh->pd_idx)
2047 i--;
2048 break;
2049 case ALGORITHM_LEFT_SYMMETRIC_6:
2050 case ALGORITHM_RIGHT_SYMMETRIC_6:
2051 if (i < sh->pd_idx)
2052 i += data_disks + 1;
2053 i -= (sh->pd_idx + 1);
2054 break;
2055 case ALGORITHM_PARITY_0_6:
2056 i -= 1;
2057 break;
2058 default:
2059 BUG();
2061 break;
2064 chunk_number = stripe * data_disks + i;
2065 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2067 check = raid5_compute_sector(conf, r_sector,
2068 previous, &dummy1, &sh2);
2069 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2070 || sh2.qd_idx != sh->qd_idx) {
2071 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2072 mdname(conf->mddev));
2073 return 0;
2075 return r_sector;
2079 static void
2080 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2081 int rcw, int expand)
2083 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2084 struct r5conf *conf = sh->raid_conf;
2085 int level = conf->level;
2087 if (rcw) {
2088 /* if we are not expanding this is a proper write request, and
2089 * there will be bios with new data to be drained into the
2090 * stripe cache
2092 if (!expand) {
2093 sh->reconstruct_state = reconstruct_state_drain_run;
2094 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2095 } else
2096 sh->reconstruct_state = reconstruct_state_run;
2098 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2100 for (i = disks; i--; ) {
2101 struct r5dev *dev = &sh->dev[i];
2103 if (dev->towrite) {
2104 set_bit(R5_LOCKED, &dev->flags);
2105 set_bit(R5_Wantdrain, &dev->flags);
2106 if (!expand)
2107 clear_bit(R5_UPTODATE, &dev->flags);
2108 s->locked++;
2111 if (s->locked + conf->max_degraded == disks)
2112 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2113 atomic_inc(&conf->pending_full_writes);
2114 } else {
2115 BUG_ON(level == 6);
2116 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2117 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2119 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2120 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2121 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2122 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2124 for (i = disks; i--; ) {
2125 struct r5dev *dev = &sh->dev[i];
2126 if (i == pd_idx)
2127 continue;
2129 if (dev->towrite &&
2130 (test_bit(R5_UPTODATE, &dev->flags) ||
2131 test_bit(R5_Wantcompute, &dev->flags))) {
2132 set_bit(R5_Wantdrain, &dev->flags);
2133 set_bit(R5_LOCKED, &dev->flags);
2134 clear_bit(R5_UPTODATE, &dev->flags);
2135 s->locked++;
2140 /* keep the parity disk(s) locked while asynchronous operations
2141 * are in flight
2143 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2144 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2145 s->locked++;
2147 if (level == 6) {
2148 int qd_idx = sh->qd_idx;
2149 struct r5dev *dev = &sh->dev[qd_idx];
2151 set_bit(R5_LOCKED, &dev->flags);
2152 clear_bit(R5_UPTODATE, &dev->flags);
2153 s->locked++;
2156 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2157 __func__, (unsigned long long)sh->sector,
2158 s->locked, s->ops_request);
2162 * Each stripe/dev can have one or more bion attached.
2163 * toread/towrite point to the first in a chain.
2164 * The bi_next chain must be in order.
2166 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2168 struct bio **bip;
2169 struct r5conf *conf = sh->raid_conf;
2170 int firstwrite=0;
2172 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2173 (unsigned long long)bi->bi_sector,
2174 (unsigned long long)sh->sector);
2177 spin_lock_irq(&conf->device_lock);
2178 if (forwrite) {
2179 bip = &sh->dev[dd_idx].towrite;
2180 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2181 firstwrite = 1;
2182 } else
2183 bip = &sh->dev[dd_idx].toread;
2184 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2185 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2186 goto overlap;
2187 bip = & (*bip)->bi_next;
2189 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2190 goto overlap;
2192 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2193 if (*bip)
2194 bi->bi_next = *bip;
2195 *bip = bi;
2196 bi->bi_phys_segments++;
2198 if (forwrite) {
2199 /* check if page is covered */
2200 sector_t sector = sh->dev[dd_idx].sector;
2201 for (bi=sh->dev[dd_idx].towrite;
2202 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2203 bi && bi->bi_sector <= sector;
2204 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2205 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2206 sector = bi->bi_sector + (bi->bi_size>>9);
2208 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2209 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2211 spin_unlock_irq(&conf->device_lock);
2213 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2214 (unsigned long long)(*bip)->bi_sector,
2215 (unsigned long long)sh->sector, dd_idx);
2217 if (conf->mddev->bitmap && firstwrite) {
2218 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2219 STRIPE_SECTORS, 0);
2220 sh->bm_seq = conf->seq_flush+1;
2221 set_bit(STRIPE_BIT_DELAY, &sh->state);
2223 return 1;
2225 overlap:
2226 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2227 spin_unlock_irq(&conf->device_lock);
2228 return 0;
2231 static void end_reshape(struct r5conf *conf);
2233 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2234 struct stripe_head *sh)
2236 int sectors_per_chunk =
2237 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2238 int dd_idx;
2239 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2240 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2242 raid5_compute_sector(conf,
2243 stripe * (disks - conf->max_degraded)
2244 *sectors_per_chunk + chunk_offset,
2245 previous,
2246 &dd_idx, sh);
2249 static void
2250 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2251 struct stripe_head_state *s, int disks,
2252 struct bio **return_bi)
2254 int i;
2255 for (i = disks; i--; ) {
2256 struct bio *bi;
2257 int bitmap_end = 0;
2259 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2260 struct md_rdev *rdev;
2261 rcu_read_lock();
2262 rdev = rcu_dereference(conf->disks[i].rdev);
2263 if (rdev && test_bit(In_sync, &rdev->flags))
2264 atomic_inc(&rdev->nr_pending);
2265 else
2266 rdev = NULL;
2267 rcu_read_unlock();
2268 if (rdev) {
2269 if (!rdev_set_badblocks(
2270 rdev,
2271 sh->sector,
2272 STRIPE_SECTORS, 0))
2273 md_error(conf->mddev, rdev);
2274 rdev_dec_pending(rdev, conf->mddev);
2277 spin_lock_irq(&conf->device_lock);
2278 /* fail all writes first */
2279 bi = sh->dev[i].towrite;
2280 sh->dev[i].towrite = NULL;
2281 if (bi) {
2282 s->to_write--;
2283 bitmap_end = 1;
2286 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2287 wake_up(&conf->wait_for_overlap);
2289 while (bi && bi->bi_sector <
2290 sh->dev[i].sector + STRIPE_SECTORS) {
2291 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2292 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293 if (!raid5_dec_bi_phys_segments(bi)) {
2294 md_write_end(conf->mddev);
2295 bi->bi_next = *return_bi;
2296 *return_bi = bi;
2298 bi = nextbi;
2300 /* and fail all 'written' */
2301 bi = sh->dev[i].written;
2302 sh->dev[i].written = NULL;
2303 if (bi) bitmap_end = 1;
2304 while (bi && bi->bi_sector <
2305 sh->dev[i].sector + STRIPE_SECTORS) {
2306 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2307 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2308 if (!raid5_dec_bi_phys_segments(bi)) {
2309 md_write_end(conf->mddev);
2310 bi->bi_next = *return_bi;
2311 *return_bi = bi;
2313 bi = bi2;
2316 /* fail any reads if this device is non-operational and
2317 * the data has not reached the cache yet.
2319 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2320 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2321 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2322 bi = sh->dev[i].toread;
2323 sh->dev[i].toread = NULL;
2324 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2325 wake_up(&conf->wait_for_overlap);
2326 if (bi) s->to_read--;
2327 while (bi && bi->bi_sector <
2328 sh->dev[i].sector + STRIPE_SECTORS) {
2329 struct bio *nextbi =
2330 r5_next_bio(bi, sh->dev[i].sector);
2331 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2332 if (!raid5_dec_bi_phys_segments(bi)) {
2333 bi->bi_next = *return_bi;
2334 *return_bi = bi;
2336 bi = nextbi;
2339 spin_unlock_irq(&conf->device_lock);
2340 if (bitmap_end)
2341 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2342 STRIPE_SECTORS, 0, 0);
2343 /* If we were in the middle of a write the parity block might
2344 * still be locked - so just clear all R5_LOCKED flags
2346 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2349 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2350 if (atomic_dec_and_test(&conf->pending_full_writes))
2351 md_wakeup_thread(conf->mddev->thread);
2354 static void
2355 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2356 struct stripe_head_state *s)
2358 int abort = 0;
2359 int i;
2361 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2362 clear_bit(STRIPE_SYNCING, &sh->state);
2363 s->syncing = 0;
2364 /* There is nothing more to do for sync/check/repair.
2365 * For recover we need to record a bad block on all
2366 * non-sync devices, or abort the recovery
2368 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2369 return;
2370 /* During recovery devices cannot be removed, so locking and
2371 * refcounting of rdevs is not needed
2373 for (i = 0; i < conf->raid_disks; i++) {
2374 struct md_rdev *rdev = conf->disks[i].rdev;
2375 if (!rdev
2376 || test_bit(Faulty, &rdev->flags)
2377 || test_bit(In_sync, &rdev->flags))
2378 continue;
2379 if (!rdev_set_badblocks(rdev, sh->sector,
2380 STRIPE_SECTORS, 0))
2381 abort = 1;
2383 if (abort) {
2384 conf->recovery_disabled = conf->mddev->recovery_disabled;
2385 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2389 /* fetch_block - checks the given member device to see if its data needs
2390 * to be read or computed to satisfy a request.
2392 * Returns 1 when no more member devices need to be checked, otherwise returns
2393 * 0 to tell the loop in handle_stripe_fill to continue
2395 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2396 int disk_idx, int disks)
2398 struct r5dev *dev = &sh->dev[disk_idx];
2399 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2400 &sh->dev[s->failed_num[1]] };
2402 /* is the data in this block needed, and can we get it? */
2403 if (!test_bit(R5_LOCKED, &dev->flags) &&
2404 !test_bit(R5_UPTODATE, &dev->flags) &&
2405 (dev->toread ||
2406 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2407 s->syncing || s->expanding ||
2408 (s->failed >= 1 && fdev[0]->toread) ||
2409 (s->failed >= 2 && fdev[1]->toread) ||
2410 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2411 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2412 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2413 /* we would like to get this block, possibly by computing it,
2414 * otherwise read it if the backing disk is insync
2416 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2417 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2418 if ((s->uptodate == disks - 1) &&
2419 (s->failed && (disk_idx == s->failed_num[0] ||
2420 disk_idx == s->failed_num[1]))) {
2421 /* have disk failed, and we're requested to fetch it;
2422 * do compute it
2424 pr_debug("Computing stripe %llu block %d\n",
2425 (unsigned long long)sh->sector, disk_idx);
2426 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2427 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2428 set_bit(R5_Wantcompute, &dev->flags);
2429 sh->ops.target = disk_idx;
2430 sh->ops.target2 = -1; /* no 2nd target */
2431 s->req_compute = 1;
2432 /* Careful: from this point on 'uptodate' is in the eye
2433 * of raid_run_ops which services 'compute' operations
2434 * before writes. R5_Wantcompute flags a block that will
2435 * be R5_UPTODATE by the time it is needed for a
2436 * subsequent operation.
2438 s->uptodate++;
2439 return 1;
2440 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2441 /* Computing 2-failure is *very* expensive; only
2442 * do it if failed >= 2
2444 int other;
2445 for (other = disks; other--; ) {
2446 if (other == disk_idx)
2447 continue;
2448 if (!test_bit(R5_UPTODATE,
2449 &sh->dev[other].flags))
2450 break;
2452 BUG_ON(other < 0);
2453 pr_debug("Computing stripe %llu blocks %d,%d\n",
2454 (unsigned long long)sh->sector,
2455 disk_idx, other);
2456 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2457 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2458 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2459 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2460 sh->ops.target = disk_idx;
2461 sh->ops.target2 = other;
2462 s->uptodate += 2;
2463 s->req_compute = 1;
2464 return 1;
2465 } else if (test_bit(R5_Insync, &dev->flags)) {
2466 set_bit(R5_LOCKED, &dev->flags);
2467 set_bit(R5_Wantread, &dev->flags);
2468 s->locked++;
2469 pr_debug("Reading block %d (sync=%d)\n",
2470 disk_idx, s->syncing);
2474 return 0;
2478 * handle_stripe_fill - read or compute data to satisfy pending requests.
2480 static void handle_stripe_fill(struct stripe_head *sh,
2481 struct stripe_head_state *s,
2482 int disks)
2484 int i;
2486 /* look for blocks to read/compute, skip this if a compute
2487 * is already in flight, or if the stripe contents are in the
2488 * midst of changing due to a write
2490 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2491 !sh->reconstruct_state)
2492 for (i = disks; i--; )
2493 if (fetch_block(sh, s, i, disks))
2494 break;
2495 set_bit(STRIPE_HANDLE, &sh->state);
2499 /* handle_stripe_clean_event
2500 * any written block on an uptodate or failed drive can be returned.
2501 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2502 * never LOCKED, so we don't need to test 'failed' directly.
2504 static void handle_stripe_clean_event(struct r5conf *conf,
2505 struct stripe_head *sh, int disks, struct bio **return_bi)
2507 int i;
2508 struct r5dev *dev;
2510 for (i = disks; i--; )
2511 if (sh->dev[i].written) {
2512 dev = &sh->dev[i];
2513 if (!test_bit(R5_LOCKED, &dev->flags) &&
2514 test_bit(R5_UPTODATE, &dev->flags)) {
2515 /* We can return any write requests */
2516 struct bio *wbi, *wbi2;
2517 int bitmap_end = 0;
2518 pr_debug("Return write for disc %d\n", i);
2519 spin_lock_irq(&conf->device_lock);
2520 wbi = dev->written;
2521 dev->written = NULL;
2522 while (wbi && wbi->bi_sector <
2523 dev->sector + STRIPE_SECTORS) {
2524 wbi2 = r5_next_bio(wbi, dev->sector);
2525 if (!raid5_dec_bi_phys_segments(wbi)) {
2526 md_write_end(conf->mddev);
2527 wbi->bi_next = *return_bi;
2528 *return_bi = wbi;
2530 wbi = wbi2;
2532 if (dev->towrite == NULL)
2533 bitmap_end = 1;
2534 spin_unlock_irq(&conf->device_lock);
2535 if (bitmap_end)
2536 bitmap_endwrite(conf->mddev->bitmap,
2537 sh->sector,
2538 STRIPE_SECTORS,
2539 !test_bit(STRIPE_DEGRADED, &sh->state),
2544 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2545 if (atomic_dec_and_test(&conf->pending_full_writes))
2546 md_wakeup_thread(conf->mddev->thread);
2549 static void handle_stripe_dirtying(struct r5conf *conf,
2550 struct stripe_head *sh,
2551 struct stripe_head_state *s,
2552 int disks)
2554 int rmw = 0, rcw = 0, i;
2555 if (conf->max_degraded == 2) {
2556 /* RAID6 requires 'rcw' in current implementation
2557 * Calculate the real rcw later - for now fake it
2558 * look like rcw is cheaper
2560 rcw = 1; rmw = 2;
2561 } else for (i = disks; i--; ) {
2562 /* would I have to read this buffer for read_modify_write */
2563 struct r5dev *dev = &sh->dev[i];
2564 if ((dev->towrite || i == sh->pd_idx) &&
2565 !test_bit(R5_LOCKED, &dev->flags) &&
2566 !(test_bit(R5_UPTODATE, &dev->flags) ||
2567 test_bit(R5_Wantcompute, &dev->flags))) {
2568 if (test_bit(R5_Insync, &dev->flags))
2569 rmw++;
2570 else
2571 rmw += 2*disks; /* cannot read it */
2573 /* Would I have to read this buffer for reconstruct_write */
2574 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2575 !test_bit(R5_LOCKED, &dev->flags) &&
2576 !(test_bit(R5_UPTODATE, &dev->flags) ||
2577 test_bit(R5_Wantcompute, &dev->flags))) {
2578 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2579 else
2580 rcw += 2*disks;
2583 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2584 (unsigned long long)sh->sector, rmw, rcw);
2585 set_bit(STRIPE_HANDLE, &sh->state);
2586 if (rmw < rcw && rmw > 0)
2587 /* prefer read-modify-write, but need to get some data */
2588 for (i = disks; i--; ) {
2589 struct r5dev *dev = &sh->dev[i];
2590 if ((dev->towrite || i == sh->pd_idx) &&
2591 !test_bit(R5_LOCKED, &dev->flags) &&
2592 !(test_bit(R5_UPTODATE, &dev->flags) ||
2593 test_bit(R5_Wantcompute, &dev->flags)) &&
2594 test_bit(R5_Insync, &dev->flags)) {
2595 if (
2596 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2597 pr_debug("Read_old block "
2598 "%d for r-m-w\n", i);
2599 set_bit(R5_LOCKED, &dev->flags);
2600 set_bit(R5_Wantread, &dev->flags);
2601 s->locked++;
2602 } else {
2603 set_bit(STRIPE_DELAYED, &sh->state);
2604 set_bit(STRIPE_HANDLE, &sh->state);
2608 if (rcw <= rmw && rcw > 0) {
2609 /* want reconstruct write, but need to get some data */
2610 rcw = 0;
2611 for (i = disks; i--; ) {
2612 struct r5dev *dev = &sh->dev[i];
2613 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2614 i != sh->pd_idx && i != sh->qd_idx &&
2615 !test_bit(R5_LOCKED, &dev->flags) &&
2616 !(test_bit(R5_UPTODATE, &dev->flags) ||
2617 test_bit(R5_Wantcompute, &dev->flags))) {
2618 rcw++;
2619 if (!test_bit(R5_Insync, &dev->flags))
2620 continue; /* it's a failed drive */
2621 if (
2622 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2623 pr_debug("Read_old block "
2624 "%d for Reconstruct\n", i);
2625 set_bit(R5_LOCKED, &dev->flags);
2626 set_bit(R5_Wantread, &dev->flags);
2627 s->locked++;
2628 } else {
2629 set_bit(STRIPE_DELAYED, &sh->state);
2630 set_bit(STRIPE_HANDLE, &sh->state);
2635 /* now if nothing is locked, and if we have enough data,
2636 * we can start a write request
2638 /* since handle_stripe can be called at any time we need to handle the
2639 * case where a compute block operation has been submitted and then a
2640 * subsequent call wants to start a write request. raid_run_ops only
2641 * handles the case where compute block and reconstruct are requested
2642 * simultaneously. If this is not the case then new writes need to be
2643 * held off until the compute completes.
2645 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2646 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2647 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2648 schedule_reconstruction(sh, s, rcw == 0, 0);
2651 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2652 struct stripe_head_state *s, int disks)
2654 struct r5dev *dev = NULL;
2656 set_bit(STRIPE_HANDLE, &sh->state);
2658 switch (sh->check_state) {
2659 case check_state_idle:
2660 /* start a new check operation if there are no failures */
2661 if (s->failed == 0) {
2662 BUG_ON(s->uptodate != disks);
2663 sh->check_state = check_state_run;
2664 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2665 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2666 s->uptodate--;
2667 break;
2669 dev = &sh->dev[s->failed_num[0]];
2670 /* fall through */
2671 case check_state_compute_result:
2672 sh->check_state = check_state_idle;
2673 if (!dev)
2674 dev = &sh->dev[sh->pd_idx];
2676 /* check that a write has not made the stripe insync */
2677 if (test_bit(STRIPE_INSYNC, &sh->state))
2678 break;
2680 /* either failed parity check, or recovery is happening */
2681 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2682 BUG_ON(s->uptodate != disks);
2684 set_bit(R5_LOCKED, &dev->flags);
2685 s->locked++;
2686 set_bit(R5_Wantwrite, &dev->flags);
2688 clear_bit(STRIPE_DEGRADED, &sh->state);
2689 set_bit(STRIPE_INSYNC, &sh->state);
2690 break;
2691 case check_state_run:
2692 break; /* we will be called again upon completion */
2693 case check_state_check_result:
2694 sh->check_state = check_state_idle;
2696 /* if a failure occurred during the check operation, leave
2697 * STRIPE_INSYNC not set and let the stripe be handled again
2699 if (s->failed)
2700 break;
2702 /* handle a successful check operation, if parity is correct
2703 * we are done. Otherwise update the mismatch count and repair
2704 * parity if !MD_RECOVERY_CHECK
2706 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2707 /* parity is correct (on disc,
2708 * not in buffer any more)
2710 set_bit(STRIPE_INSYNC, &sh->state);
2711 else {
2712 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2713 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2714 /* don't try to repair!! */
2715 set_bit(STRIPE_INSYNC, &sh->state);
2716 else {
2717 sh->check_state = check_state_compute_run;
2718 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2719 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2720 set_bit(R5_Wantcompute,
2721 &sh->dev[sh->pd_idx].flags);
2722 sh->ops.target = sh->pd_idx;
2723 sh->ops.target2 = -1;
2724 s->uptodate++;
2727 break;
2728 case check_state_compute_run:
2729 break;
2730 default:
2731 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2732 __func__, sh->check_state,
2733 (unsigned long long) sh->sector);
2734 BUG();
2739 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2740 struct stripe_head_state *s,
2741 int disks)
2743 int pd_idx = sh->pd_idx;
2744 int qd_idx = sh->qd_idx;
2745 struct r5dev *dev;
2747 set_bit(STRIPE_HANDLE, &sh->state);
2749 BUG_ON(s->failed > 2);
2751 /* Want to check and possibly repair P and Q.
2752 * However there could be one 'failed' device, in which
2753 * case we can only check one of them, possibly using the
2754 * other to generate missing data
2757 switch (sh->check_state) {
2758 case check_state_idle:
2759 /* start a new check operation if there are < 2 failures */
2760 if (s->failed == s->q_failed) {
2761 /* The only possible failed device holds Q, so it
2762 * makes sense to check P (If anything else were failed,
2763 * we would have used P to recreate it).
2765 sh->check_state = check_state_run;
2767 if (!s->q_failed && s->failed < 2) {
2768 /* Q is not failed, and we didn't use it to generate
2769 * anything, so it makes sense to check it
2771 if (sh->check_state == check_state_run)
2772 sh->check_state = check_state_run_pq;
2773 else
2774 sh->check_state = check_state_run_q;
2777 /* discard potentially stale zero_sum_result */
2778 sh->ops.zero_sum_result = 0;
2780 if (sh->check_state == check_state_run) {
2781 /* async_xor_zero_sum destroys the contents of P */
2782 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2783 s->uptodate--;
2785 if (sh->check_state >= check_state_run &&
2786 sh->check_state <= check_state_run_pq) {
2787 /* async_syndrome_zero_sum preserves P and Q, so
2788 * no need to mark them !uptodate here
2790 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2791 break;
2794 /* we have 2-disk failure */
2795 BUG_ON(s->failed != 2);
2796 /* fall through */
2797 case check_state_compute_result:
2798 sh->check_state = check_state_idle;
2800 /* check that a write has not made the stripe insync */
2801 if (test_bit(STRIPE_INSYNC, &sh->state))
2802 break;
2804 /* now write out any block on a failed drive,
2805 * or P or Q if they were recomputed
2807 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2808 if (s->failed == 2) {
2809 dev = &sh->dev[s->failed_num[1]];
2810 s->locked++;
2811 set_bit(R5_LOCKED, &dev->flags);
2812 set_bit(R5_Wantwrite, &dev->flags);
2814 if (s->failed >= 1) {
2815 dev = &sh->dev[s->failed_num[0]];
2816 s->locked++;
2817 set_bit(R5_LOCKED, &dev->flags);
2818 set_bit(R5_Wantwrite, &dev->flags);
2820 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2821 dev = &sh->dev[pd_idx];
2822 s->locked++;
2823 set_bit(R5_LOCKED, &dev->flags);
2824 set_bit(R5_Wantwrite, &dev->flags);
2826 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2827 dev = &sh->dev[qd_idx];
2828 s->locked++;
2829 set_bit(R5_LOCKED, &dev->flags);
2830 set_bit(R5_Wantwrite, &dev->flags);
2832 clear_bit(STRIPE_DEGRADED, &sh->state);
2834 set_bit(STRIPE_INSYNC, &sh->state);
2835 break;
2836 case check_state_run:
2837 case check_state_run_q:
2838 case check_state_run_pq:
2839 break; /* we will be called again upon completion */
2840 case check_state_check_result:
2841 sh->check_state = check_state_idle;
2843 /* handle a successful check operation, if parity is correct
2844 * we are done. Otherwise update the mismatch count and repair
2845 * parity if !MD_RECOVERY_CHECK
2847 if (sh->ops.zero_sum_result == 0) {
2848 /* both parities are correct */
2849 if (!s->failed)
2850 set_bit(STRIPE_INSYNC, &sh->state);
2851 else {
2852 /* in contrast to the raid5 case we can validate
2853 * parity, but still have a failure to write
2854 * back
2856 sh->check_state = check_state_compute_result;
2857 /* Returning at this point means that we may go
2858 * off and bring p and/or q uptodate again so
2859 * we make sure to check zero_sum_result again
2860 * to verify if p or q need writeback
2863 } else {
2864 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2865 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2866 /* don't try to repair!! */
2867 set_bit(STRIPE_INSYNC, &sh->state);
2868 else {
2869 int *target = &sh->ops.target;
2871 sh->ops.target = -1;
2872 sh->ops.target2 = -1;
2873 sh->check_state = check_state_compute_run;
2874 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2875 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2876 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2877 set_bit(R5_Wantcompute,
2878 &sh->dev[pd_idx].flags);
2879 *target = pd_idx;
2880 target = &sh->ops.target2;
2881 s->uptodate++;
2883 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2884 set_bit(R5_Wantcompute,
2885 &sh->dev[qd_idx].flags);
2886 *target = qd_idx;
2887 s->uptodate++;
2891 break;
2892 case check_state_compute_run:
2893 break;
2894 default:
2895 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2896 __func__, sh->check_state,
2897 (unsigned long long) sh->sector);
2898 BUG();
2902 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
2904 int i;
2906 /* We have read all the blocks in this stripe and now we need to
2907 * copy some of them into a target stripe for expand.
2909 struct dma_async_tx_descriptor *tx = NULL;
2910 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2911 for (i = 0; i < sh->disks; i++)
2912 if (i != sh->pd_idx && i != sh->qd_idx) {
2913 int dd_idx, j;
2914 struct stripe_head *sh2;
2915 struct async_submit_ctl submit;
2917 sector_t bn = compute_blocknr(sh, i, 1);
2918 sector_t s = raid5_compute_sector(conf, bn, 0,
2919 &dd_idx, NULL);
2920 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2921 if (sh2 == NULL)
2922 /* so far only the early blocks of this stripe
2923 * have been requested. When later blocks
2924 * get requested, we will try again
2926 continue;
2927 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2928 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2929 /* must have already done this block */
2930 release_stripe(sh2);
2931 continue;
2934 /* place all the copies on one channel */
2935 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2936 tx = async_memcpy(sh2->dev[dd_idx].page,
2937 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2938 &submit);
2940 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2941 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2942 for (j = 0; j < conf->raid_disks; j++)
2943 if (j != sh2->pd_idx &&
2944 j != sh2->qd_idx &&
2945 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2946 break;
2947 if (j == conf->raid_disks) {
2948 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2949 set_bit(STRIPE_HANDLE, &sh2->state);
2951 release_stripe(sh2);
2954 /* done submitting copies, wait for them to complete */
2955 if (tx) {
2956 async_tx_ack(tx);
2957 dma_wait_for_async_tx(tx);
2963 * handle_stripe - do things to a stripe.
2965 * We lock the stripe and then examine the state of various bits
2966 * to see what needs to be done.
2967 * Possible results:
2968 * return some read request which now have data
2969 * return some write requests which are safely on disc
2970 * schedule a read on some buffers
2971 * schedule a write of some buffers
2972 * return confirmation of parity correctness
2974 * buffers are taken off read_list or write_list, and bh_cache buffers
2975 * get BH_Lock set before the stripe lock is released.
2979 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2981 struct r5conf *conf = sh->raid_conf;
2982 int disks = sh->disks;
2983 struct r5dev *dev;
2984 int i;
2986 memset(s, 0, sizeof(*s));
2988 s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2989 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2990 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2991 s->failed_num[0] = -1;
2992 s->failed_num[1] = -1;
2994 /* Now to look around and see what can be done */
2995 rcu_read_lock();
2996 spin_lock_irq(&conf->device_lock);
2997 for (i=disks; i--; ) {
2998 struct md_rdev *rdev;
2999 sector_t first_bad;
3000 int bad_sectors;
3001 int is_bad = 0;
3003 dev = &sh->dev[i];
3005 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3006 i, dev->flags, dev->toread, dev->towrite, dev->written);
3007 /* maybe we can reply to a read
3009 * new wantfill requests are only permitted while
3010 * ops_complete_biofill is guaranteed to be inactive
3012 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3013 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3014 set_bit(R5_Wantfill, &dev->flags);
3016 /* now count some things */
3017 if (test_bit(R5_LOCKED, &dev->flags))
3018 s->locked++;
3019 if (test_bit(R5_UPTODATE, &dev->flags))
3020 s->uptodate++;
3021 if (test_bit(R5_Wantcompute, &dev->flags)) {
3022 s->compute++;
3023 BUG_ON(s->compute > 2);
3026 if (test_bit(R5_Wantfill, &dev->flags))
3027 s->to_fill++;
3028 else if (dev->toread)
3029 s->to_read++;
3030 if (dev->towrite) {
3031 s->to_write++;
3032 if (!test_bit(R5_OVERWRITE, &dev->flags))
3033 s->non_overwrite++;
3035 if (dev->written)
3036 s->written++;
3037 rdev = rcu_dereference(conf->disks[i].rdev);
3038 if (rdev) {
3039 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3040 &first_bad, &bad_sectors);
3041 if (s->blocked_rdev == NULL
3042 && (test_bit(Blocked, &rdev->flags)
3043 || is_bad < 0)) {
3044 if (is_bad < 0)
3045 set_bit(BlockedBadBlocks,
3046 &rdev->flags);
3047 s->blocked_rdev = rdev;
3048 atomic_inc(&rdev->nr_pending);
3051 clear_bit(R5_Insync, &dev->flags);
3052 if (!rdev)
3053 /* Not in-sync */;
3054 else if (is_bad) {
3055 /* also not in-sync */
3056 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3057 /* treat as in-sync, but with a read error
3058 * which we can now try to correct
3060 set_bit(R5_Insync, &dev->flags);
3061 set_bit(R5_ReadError, &dev->flags);
3063 } else if (test_bit(In_sync, &rdev->flags))
3064 set_bit(R5_Insync, &dev->flags);
3065 else if (!test_bit(Faulty, &rdev->flags)) {
3066 /* in sync if before recovery_offset */
3067 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3068 set_bit(R5_Insync, &dev->flags);
3070 if (test_bit(R5_WriteError, &dev->flags)) {
3071 clear_bit(R5_Insync, &dev->flags);
3072 if (!test_bit(Faulty, &rdev->flags)) {
3073 s->handle_bad_blocks = 1;
3074 atomic_inc(&rdev->nr_pending);
3075 } else
3076 clear_bit(R5_WriteError, &dev->flags);
3078 if (test_bit(R5_MadeGood, &dev->flags)) {
3079 if (!test_bit(Faulty, &rdev->flags)) {
3080 s->handle_bad_blocks = 1;
3081 atomic_inc(&rdev->nr_pending);
3082 } else
3083 clear_bit(R5_MadeGood, &dev->flags);
3085 if (!test_bit(R5_Insync, &dev->flags)) {
3086 /* The ReadError flag will just be confusing now */
3087 clear_bit(R5_ReadError, &dev->flags);
3088 clear_bit(R5_ReWrite, &dev->flags);
3090 if (test_bit(R5_ReadError, &dev->flags))
3091 clear_bit(R5_Insync, &dev->flags);
3092 if (!test_bit(R5_Insync, &dev->flags)) {
3093 if (s->failed < 2)
3094 s->failed_num[s->failed] = i;
3095 s->failed++;
3098 spin_unlock_irq(&conf->device_lock);
3099 rcu_read_unlock();
3102 static void handle_stripe(struct stripe_head *sh)
3104 struct stripe_head_state s;
3105 struct r5conf *conf = sh->raid_conf;
3106 int i;
3107 int prexor;
3108 int disks = sh->disks;
3109 struct r5dev *pdev, *qdev;
3111 clear_bit(STRIPE_HANDLE, &sh->state);
3112 if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3113 /* already being handled, ensure it gets handled
3114 * again when current action finishes */
3115 set_bit(STRIPE_HANDLE, &sh->state);
3116 return;
3119 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3120 set_bit(STRIPE_SYNCING, &sh->state);
3121 clear_bit(STRIPE_INSYNC, &sh->state);
3123 clear_bit(STRIPE_DELAYED, &sh->state);
3125 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3126 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3127 (unsigned long long)sh->sector, sh->state,
3128 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3129 sh->check_state, sh->reconstruct_state);
3131 analyse_stripe(sh, &s);
3133 if (s.handle_bad_blocks) {
3134 set_bit(STRIPE_HANDLE, &sh->state);
3135 goto finish;
3138 if (unlikely(s.blocked_rdev)) {
3139 if (s.syncing || s.expanding || s.expanded ||
3140 s.to_write || s.written) {
3141 set_bit(STRIPE_HANDLE, &sh->state);
3142 goto finish;
3144 /* There is nothing for the blocked_rdev to block */
3145 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3146 s.blocked_rdev = NULL;
3149 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3150 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3151 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3154 pr_debug("locked=%d uptodate=%d to_read=%d"
3155 " to_write=%d failed=%d failed_num=%d,%d\n",
3156 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3157 s.failed_num[0], s.failed_num[1]);
3158 /* check if the array has lost more than max_degraded devices and,
3159 * if so, some requests might need to be failed.
3161 if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3162 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3163 if (s.failed > conf->max_degraded && s.syncing)
3164 handle_failed_sync(conf, sh, &s);
3167 * might be able to return some write requests if the parity blocks
3168 * are safe, or on a failed drive
3170 pdev = &sh->dev[sh->pd_idx];
3171 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3172 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3173 qdev = &sh->dev[sh->qd_idx];
3174 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3175 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3176 || conf->level < 6;
3178 if (s.written &&
3179 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3180 && !test_bit(R5_LOCKED, &pdev->flags)
3181 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3182 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3183 && !test_bit(R5_LOCKED, &qdev->flags)
3184 && test_bit(R5_UPTODATE, &qdev->flags)))))
3185 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3187 /* Now we might consider reading some blocks, either to check/generate
3188 * parity, or to satisfy requests
3189 * or to load a block that is being partially written.
3191 if (s.to_read || s.non_overwrite
3192 || (conf->level == 6 && s.to_write && s.failed)
3193 || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3194 handle_stripe_fill(sh, &s, disks);
3196 /* Now we check to see if any write operations have recently
3197 * completed
3199 prexor = 0;
3200 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3201 prexor = 1;
3202 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3203 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3204 sh->reconstruct_state = reconstruct_state_idle;
3206 /* All the 'written' buffers and the parity block are ready to
3207 * be written back to disk
3209 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3210 BUG_ON(sh->qd_idx >= 0 &&
3211 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3212 for (i = disks; i--; ) {
3213 struct r5dev *dev = &sh->dev[i];
3214 if (test_bit(R5_LOCKED, &dev->flags) &&
3215 (i == sh->pd_idx || i == sh->qd_idx ||
3216 dev->written)) {
3217 pr_debug("Writing block %d\n", i);
3218 set_bit(R5_Wantwrite, &dev->flags);
3219 if (prexor)
3220 continue;
3221 if (!test_bit(R5_Insync, &dev->flags) ||
3222 ((i == sh->pd_idx || i == sh->qd_idx) &&
3223 s.failed == 0))
3224 set_bit(STRIPE_INSYNC, &sh->state);
3227 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3228 s.dec_preread_active = 1;
3231 /* Now to consider new write requests and what else, if anything
3232 * should be read. We do not handle new writes when:
3233 * 1/ A 'write' operation (copy+xor) is already in flight.
3234 * 2/ A 'check' operation is in flight, as it may clobber the parity
3235 * block.
3237 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3238 handle_stripe_dirtying(conf, sh, &s, disks);
3240 /* maybe we need to check and possibly fix the parity for this stripe
3241 * Any reads will already have been scheduled, so we just see if enough
3242 * data is available. The parity check is held off while parity
3243 * dependent operations are in flight.
3245 if (sh->check_state ||
3246 (s.syncing && s.locked == 0 &&
3247 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3248 !test_bit(STRIPE_INSYNC, &sh->state))) {
3249 if (conf->level == 6)
3250 handle_parity_checks6(conf, sh, &s, disks);
3251 else
3252 handle_parity_checks5(conf, sh, &s, disks);
3255 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3256 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3257 clear_bit(STRIPE_SYNCING, &sh->state);
3260 /* If the failed drives are just a ReadError, then we might need
3261 * to progress the repair/check process
3263 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3264 for (i = 0; i < s.failed; i++) {
3265 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3266 if (test_bit(R5_ReadError, &dev->flags)
3267 && !test_bit(R5_LOCKED, &dev->flags)
3268 && test_bit(R5_UPTODATE, &dev->flags)
3270 if (!test_bit(R5_ReWrite, &dev->flags)) {
3271 set_bit(R5_Wantwrite, &dev->flags);
3272 set_bit(R5_ReWrite, &dev->flags);
3273 set_bit(R5_LOCKED, &dev->flags);
3274 s.locked++;
3275 } else {
3276 /* let's read it back */
3277 set_bit(R5_Wantread, &dev->flags);
3278 set_bit(R5_LOCKED, &dev->flags);
3279 s.locked++;
3285 /* Finish reconstruct operations initiated by the expansion process */
3286 if (sh->reconstruct_state == reconstruct_state_result) {
3287 struct stripe_head *sh_src
3288 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3289 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3290 /* sh cannot be written until sh_src has been read.
3291 * so arrange for sh to be delayed a little
3293 set_bit(STRIPE_DELAYED, &sh->state);
3294 set_bit(STRIPE_HANDLE, &sh->state);
3295 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3296 &sh_src->state))
3297 atomic_inc(&conf->preread_active_stripes);
3298 release_stripe(sh_src);
3299 goto finish;
3301 if (sh_src)
3302 release_stripe(sh_src);
3304 sh->reconstruct_state = reconstruct_state_idle;
3305 clear_bit(STRIPE_EXPANDING, &sh->state);
3306 for (i = conf->raid_disks; i--; ) {
3307 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3308 set_bit(R5_LOCKED, &sh->dev[i].flags);
3309 s.locked++;
3313 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3314 !sh->reconstruct_state) {
3315 /* Need to write out all blocks after computing parity */
3316 sh->disks = conf->raid_disks;
3317 stripe_set_idx(sh->sector, conf, 0, sh);
3318 schedule_reconstruction(sh, &s, 1, 1);
3319 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3320 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3321 atomic_dec(&conf->reshape_stripes);
3322 wake_up(&conf->wait_for_overlap);
3323 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3326 if (s.expanding && s.locked == 0 &&
3327 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3328 handle_stripe_expansion(conf, sh);
3330 finish:
3331 /* wait for this device to become unblocked */
3332 if (conf->mddev->external && unlikely(s.blocked_rdev))
3333 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3335 if (s.handle_bad_blocks)
3336 for (i = disks; i--; ) {
3337 struct md_rdev *rdev;
3338 struct r5dev *dev = &sh->dev[i];
3339 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3340 /* We own a safe reference to the rdev */
3341 rdev = conf->disks[i].rdev;
3342 if (!rdev_set_badblocks(rdev, sh->sector,
3343 STRIPE_SECTORS, 0))
3344 md_error(conf->mddev, rdev);
3345 rdev_dec_pending(rdev, conf->mddev);
3347 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3348 rdev = conf->disks[i].rdev;
3349 rdev_clear_badblocks(rdev, sh->sector,
3350 STRIPE_SECTORS);
3351 rdev_dec_pending(rdev, conf->mddev);
3355 if (s.ops_request)
3356 raid_run_ops(sh, s.ops_request);
3358 ops_run_io(sh, &s);
3360 if (s.dec_preread_active) {
3361 /* We delay this until after ops_run_io so that if make_request
3362 * is waiting on a flush, it won't continue until the writes
3363 * have actually been submitted.
3365 atomic_dec(&conf->preread_active_stripes);
3366 if (atomic_read(&conf->preread_active_stripes) <
3367 IO_THRESHOLD)
3368 md_wakeup_thread(conf->mddev->thread);
3371 return_io(s.return_bi);
3373 clear_bit(STRIPE_ACTIVE, &sh->state);
3376 static void raid5_activate_delayed(struct r5conf *conf)
3378 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3379 while (!list_empty(&conf->delayed_list)) {
3380 struct list_head *l = conf->delayed_list.next;
3381 struct stripe_head *sh;
3382 sh = list_entry(l, struct stripe_head, lru);
3383 list_del_init(l);
3384 clear_bit(STRIPE_DELAYED, &sh->state);
3385 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3386 atomic_inc(&conf->preread_active_stripes);
3387 list_add_tail(&sh->lru, &conf->hold_list);
3392 static void activate_bit_delay(struct r5conf *conf)
3394 /* device_lock is held */
3395 struct list_head head;
3396 list_add(&head, &conf->bitmap_list);
3397 list_del_init(&conf->bitmap_list);
3398 while (!list_empty(&head)) {
3399 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3400 list_del_init(&sh->lru);
3401 atomic_inc(&sh->count);
3402 __release_stripe(conf, sh);
3406 int md_raid5_congested(struct mddev *mddev, int bits)
3408 struct r5conf *conf = mddev->private;
3410 /* No difference between reads and writes. Just check
3411 * how busy the stripe_cache is
3414 if (conf->inactive_blocked)
3415 return 1;
3416 if (conf->quiesce)
3417 return 1;
3418 if (list_empty_careful(&conf->inactive_list))
3419 return 1;
3421 return 0;
3423 EXPORT_SYMBOL_GPL(md_raid5_congested);
3425 static int raid5_congested(void *data, int bits)
3427 struct mddev *mddev = data;
3429 return mddev_congested(mddev, bits) ||
3430 md_raid5_congested(mddev, bits);
3433 /* We want read requests to align with chunks where possible,
3434 * but write requests don't need to.
3436 static int raid5_mergeable_bvec(struct request_queue *q,
3437 struct bvec_merge_data *bvm,
3438 struct bio_vec *biovec)
3440 struct mddev *mddev = q->queuedata;
3441 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3442 int max;
3443 unsigned int chunk_sectors = mddev->chunk_sectors;
3444 unsigned int bio_sectors = bvm->bi_size >> 9;
3446 if ((bvm->bi_rw & 1) == WRITE)
3447 return biovec->bv_len; /* always allow writes to be mergeable */
3449 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3450 chunk_sectors = mddev->new_chunk_sectors;
3451 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3452 if (max < 0) max = 0;
3453 if (max <= biovec->bv_len && bio_sectors == 0)
3454 return biovec->bv_len;
3455 else
3456 return max;
3460 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3462 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3463 unsigned int chunk_sectors = mddev->chunk_sectors;
3464 unsigned int bio_sectors = bio->bi_size >> 9;
3466 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3467 chunk_sectors = mddev->new_chunk_sectors;
3468 return chunk_sectors >=
3469 ((sector & (chunk_sectors - 1)) + bio_sectors);
3473 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3474 * later sampled by raid5d.
3476 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3478 unsigned long flags;
3480 spin_lock_irqsave(&conf->device_lock, flags);
3482 bi->bi_next = conf->retry_read_aligned_list;
3483 conf->retry_read_aligned_list = bi;
3485 spin_unlock_irqrestore(&conf->device_lock, flags);
3486 md_wakeup_thread(conf->mddev->thread);
3490 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3492 struct bio *bi;
3494 bi = conf->retry_read_aligned;
3495 if (bi) {
3496 conf->retry_read_aligned = NULL;
3497 return bi;
3499 bi = conf->retry_read_aligned_list;
3500 if(bi) {
3501 conf->retry_read_aligned_list = bi->bi_next;
3502 bi->bi_next = NULL;
3504 * this sets the active strip count to 1 and the processed
3505 * strip count to zero (upper 8 bits)
3507 bi->bi_phys_segments = 1; /* biased count of active stripes */
3510 return bi;
3515 * The "raid5_align_endio" should check if the read succeeded and if it
3516 * did, call bio_endio on the original bio (having bio_put the new bio
3517 * first).
3518 * If the read failed..
3520 static void raid5_align_endio(struct bio *bi, int error)
3522 struct bio* raid_bi = bi->bi_private;
3523 struct mddev *mddev;
3524 struct r5conf *conf;
3525 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3526 struct md_rdev *rdev;
3528 bio_put(bi);
3530 rdev = (void*)raid_bi->bi_next;
3531 raid_bi->bi_next = NULL;
3532 mddev = rdev->mddev;
3533 conf = mddev->private;
3535 rdev_dec_pending(rdev, conf->mddev);
3537 if (!error && uptodate) {
3538 bio_endio(raid_bi, 0);
3539 if (atomic_dec_and_test(&conf->active_aligned_reads))
3540 wake_up(&conf->wait_for_stripe);
3541 return;
3545 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3547 add_bio_to_retry(raid_bi, conf);
3550 static int bio_fits_rdev(struct bio *bi)
3552 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3554 if ((bi->bi_size>>9) > queue_max_sectors(q))
3555 return 0;
3556 blk_recount_segments(q, bi);
3557 if (bi->bi_phys_segments > queue_max_segments(q))
3558 return 0;
3560 if (q->merge_bvec_fn)
3561 /* it's too hard to apply the merge_bvec_fn at this stage,
3562 * just just give up
3564 return 0;
3566 return 1;
3570 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3572 struct r5conf *conf = mddev->private;
3573 int dd_idx;
3574 struct bio* align_bi;
3575 struct md_rdev *rdev;
3577 if (!in_chunk_boundary(mddev, raid_bio)) {
3578 pr_debug("chunk_aligned_read : non aligned\n");
3579 return 0;
3582 * use bio_clone_mddev to make a copy of the bio
3584 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3585 if (!align_bi)
3586 return 0;
3588 * set bi_end_io to a new function, and set bi_private to the
3589 * original bio.
3591 align_bi->bi_end_io = raid5_align_endio;
3592 align_bi->bi_private = raid_bio;
3594 * compute position
3596 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3598 &dd_idx, NULL);
3600 rcu_read_lock();
3601 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3602 if (rdev && test_bit(In_sync, &rdev->flags)) {
3603 sector_t first_bad;
3604 int bad_sectors;
3606 atomic_inc(&rdev->nr_pending);
3607 rcu_read_unlock();
3608 raid_bio->bi_next = (void*)rdev;
3609 align_bi->bi_bdev = rdev->bdev;
3610 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3611 align_bi->bi_sector += rdev->data_offset;
3613 if (!bio_fits_rdev(align_bi) ||
3614 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3615 &first_bad, &bad_sectors)) {
3616 /* too big in some way, or has a known bad block */
3617 bio_put(align_bi);
3618 rdev_dec_pending(rdev, mddev);
3619 return 0;
3622 spin_lock_irq(&conf->device_lock);
3623 wait_event_lock_irq(conf->wait_for_stripe,
3624 conf->quiesce == 0,
3625 conf->device_lock, /* nothing */);
3626 atomic_inc(&conf->active_aligned_reads);
3627 spin_unlock_irq(&conf->device_lock);
3629 generic_make_request(align_bi);
3630 return 1;
3631 } else {
3632 rcu_read_unlock();
3633 bio_put(align_bi);
3634 return 0;
3638 /* __get_priority_stripe - get the next stripe to process
3640 * Full stripe writes are allowed to pass preread active stripes up until
3641 * the bypass_threshold is exceeded. In general the bypass_count
3642 * increments when the handle_list is handled before the hold_list; however, it
3643 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3644 * stripe with in flight i/o. The bypass_count will be reset when the
3645 * head of the hold_list has changed, i.e. the head was promoted to the
3646 * handle_list.
3648 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3650 struct stripe_head *sh;
3652 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3653 __func__,
3654 list_empty(&conf->handle_list) ? "empty" : "busy",
3655 list_empty(&conf->hold_list) ? "empty" : "busy",
3656 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3658 if (!list_empty(&conf->handle_list)) {
3659 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3661 if (list_empty(&conf->hold_list))
3662 conf->bypass_count = 0;
3663 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3664 if (conf->hold_list.next == conf->last_hold)
3665 conf->bypass_count++;
3666 else {
3667 conf->last_hold = conf->hold_list.next;
3668 conf->bypass_count -= conf->bypass_threshold;
3669 if (conf->bypass_count < 0)
3670 conf->bypass_count = 0;
3673 } else if (!list_empty(&conf->hold_list) &&
3674 ((conf->bypass_threshold &&
3675 conf->bypass_count > conf->bypass_threshold) ||
3676 atomic_read(&conf->pending_full_writes) == 0)) {
3677 sh = list_entry(conf->hold_list.next,
3678 typeof(*sh), lru);
3679 conf->bypass_count -= conf->bypass_threshold;
3680 if (conf->bypass_count < 0)
3681 conf->bypass_count = 0;
3682 } else
3683 return NULL;
3685 list_del_init(&sh->lru);
3686 atomic_inc(&sh->count);
3687 BUG_ON(atomic_read(&sh->count) != 1);
3688 return sh;
3691 static void make_request(struct mddev *mddev, struct bio * bi)
3693 struct r5conf *conf = mddev->private;
3694 int dd_idx;
3695 sector_t new_sector;
3696 sector_t logical_sector, last_sector;
3697 struct stripe_head *sh;
3698 const int rw = bio_data_dir(bi);
3699 int remaining;
3700 int plugged;
3702 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3703 md_flush_request(mddev, bi);
3704 return;
3707 md_write_start(mddev, bi);
3709 if (rw == READ &&
3710 mddev->reshape_position == MaxSector &&
3711 chunk_aligned_read(mddev,bi))
3712 return;
3714 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3715 last_sector = bi->bi_sector + (bi->bi_size>>9);
3716 bi->bi_next = NULL;
3717 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3719 plugged = mddev_check_plugged(mddev);
3720 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3721 DEFINE_WAIT(w);
3722 int disks, data_disks;
3723 int previous;
3725 retry:
3726 previous = 0;
3727 disks = conf->raid_disks;
3728 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3729 if (unlikely(conf->reshape_progress != MaxSector)) {
3730 /* spinlock is needed as reshape_progress may be
3731 * 64bit on a 32bit platform, and so it might be
3732 * possible to see a half-updated value
3733 * Of course reshape_progress could change after
3734 * the lock is dropped, so once we get a reference
3735 * to the stripe that we think it is, we will have
3736 * to check again.
3738 spin_lock_irq(&conf->device_lock);
3739 if (mddev->delta_disks < 0
3740 ? logical_sector < conf->reshape_progress
3741 : logical_sector >= conf->reshape_progress) {
3742 disks = conf->previous_raid_disks;
3743 previous = 1;
3744 } else {
3745 if (mddev->delta_disks < 0
3746 ? logical_sector < conf->reshape_safe
3747 : logical_sector >= conf->reshape_safe) {
3748 spin_unlock_irq(&conf->device_lock);
3749 schedule();
3750 goto retry;
3753 spin_unlock_irq(&conf->device_lock);
3755 data_disks = disks - conf->max_degraded;
3757 new_sector = raid5_compute_sector(conf, logical_sector,
3758 previous,
3759 &dd_idx, NULL);
3760 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3761 (unsigned long long)new_sector,
3762 (unsigned long long)logical_sector);
3764 sh = get_active_stripe(conf, new_sector, previous,
3765 (bi->bi_rw&RWA_MASK), 0);
3766 if (sh) {
3767 if (unlikely(previous)) {
3768 /* expansion might have moved on while waiting for a
3769 * stripe, so we must do the range check again.
3770 * Expansion could still move past after this
3771 * test, but as we are holding a reference to
3772 * 'sh', we know that if that happens,
3773 * STRIPE_EXPANDING will get set and the expansion
3774 * won't proceed until we finish with the stripe.
3776 int must_retry = 0;
3777 spin_lock_irq(&conf->device_lock);
3778 if (mddev->delta_disks < 0
3779 ? logical_sector >= conf->reshape_progress
3780 : logical_sector < conf->reshape_progress)
3781 /* mismatch, need to try again */
3782 must_retry = 1;
3783 spin_unlock_irq(&conf->device_lock);
3784 if (must_retry) {
3785 release_stripe(sh);
3786 schedule();
3787 goto retry;
3791 if (rw == WRITE &&
3792 logical_sector >= mddev->suspend_lo &&
3793 logical_sector < mddev->suspend_hi) {
3794 release_stripe(sh);
3795 /* As the suspend_* range is controlled by
3796 * userspace, we want an interruptible
3797 * wait.
3799 flush_signals(current);
3800 prepare_to_wait(&conf->wait_for_overlap,
3801 &w, TASK_INTERRUPTIBLE);
3802 if (logical_sector >= mddev->suspend_lo &&
3803 logical_sector < mddev->suspend_hi)
3804 schedule();
3805 goto retry;
3808 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3809 !add_stripe_bio(sh, bi, dd_idx, rw)) {
3810 /* Stripe is busy expanding or
3811 * add failed due to overlap. Flush everything
3812 * and wait a while
3814 md_wakeup_thread(mddev->thread);
3815 release_stripe(sh);
3816 schedule();
3817 goto retry;
3819 finish_wait(&conf->wait_for_overlap, &w);
3820 set_bit(STRIPE_HANDLE, &sh->state);
3821 clear_bit(STRIPE_DELAYED, &sh->state);
3822 if ((bi->bi_rw & REQ_SYNC) &&
3823 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3824 atomic_inc(&conf->preread_active_stripes);
3825 release_stripe(sh);
3826 } else {
3827 /* cannot get stripe for read-ahead, just give-up */
3828 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3829 finish_wait(&conf->wait_for_overlap, &w);
3830 break;
3834 if (!plugged)
3835 md_wakeup_thread(mddev->thread);
3837 spin_lock_irq(&conf->device_lock);
3838 remaining = raid5_dec_bi_phys_segments(bi);
3839 spin_unlock_irq(&conf->device_lock);
3840 if (remaining == 0) {
3842 if ( rw == WRITE )
3843 md_write_end(mddev);
3845 bio_endio(bi, 0);
3849 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
3851 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
3853 /* reshaping is quite different to recovery/resync so it is
3854 * handled quite separately ... here.
3856 * On each call to sync_request, we gather one chunk worth of
3857 * destination stripes and flag them as expanding.
3858 * Then we find all the source stripes and request reads.
3859 * As the reads complete, handle_stripe will copy the data
3860 * into the destination stripe and release that stripe.
3862 struct r5conf *conf = mddev->private;
3863 struct stripe_head *sh;
3864 sector_t first_sector, last_sector;
3865 int raid_disks = conf->previous_raid_disks;
3866 int data_disks = raid_disks - conf->max_degraded;
3867 int new_data_disks = conf->raid_disks - conf->max_degraded;
3868 int i;
3869 int dd_idx;
3870 sector_t writepos, readpos, safepos;
3871 sector_t stripe_addr;
3872 int reshape_sectors;
3873 struct list_head stripes;
3875 if (sector_nr == 0) {
3876 /* If restarting in the middle, skip the initial sectors */
3877 if (mddev->delta_disks < 0 &&
3878 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3879 sector_nr = raid5_size(mddev, 0, 0)
3880 - conf->reshape_progress;
3881 } else if (mddev->delta_disks >= 0 &&
3882 conf->reshape_progress > 0)
3883 sector_nr = conf->reshape_progress;
3884 sector_div(sector_nr, new_data_disks);
3885 if (sector_nr) {
3886 mddev->curr_resync_completed = sector_nr;
3887 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3888 *skipped = 1;
3889 return sector_nr;
3893 /* We need to process a full chunk at a time.
3894 * If old and new chunk sizes differ, we need to process the
3895 * largest of these
3897 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3898 reshape_sectors = mddev->new_chunk_sectors;
3899 else
3900 reshape_sectors = mddev->chunk_sectors;
3902 /* we update the metadata when there is more than 3Meg
3903 * in the block range (that is rather arbitrary, should
3904 * probably be time based) or when the data about to be
3905 * copied would over-write the source of the data at
3906 * the front of the range.
3907 * i.e. one new_stripe along from reshape_progress new_maps
3908 * to after where reshape_safe old_maps to
3910 writepos = conf->reshape_progress;
3911 sector_div(writepos, new_data_disks);
3912 readpos = conf->reshape_progress;
3913 sector_div(readpos, data_disks);
3914 safepos = conf->reshape_safe;
3915 sector_div(safepos, data_disks);
3916 if (mddev->delta_disks < 0) {
3917 writepos -= min_t(sector_t, reshape_sectors, writepos);
3918 readpos += reshape_sectors;
3919 safepos += reshape_sectors;
3920 } else {
3921 writepos += reshape_sectors;
3922 readpos -= min_t(sector_t, reshape_sectors, readpos);
3923 safepos -= min_t(sector_t, reshape_sectors, safepos);
3926 /* 'writepos' is the most advanced device address we might write.
3927 * 'readpos' is the least advanced device address we might read.
3928 * 'safepos' is the least address recorded in the metadata as having
3929 * been reshaped.
3930 * If 'readpos' is behind 'writepos', then there is no way that we can
3931 * ensure safety in the face of a crash - that must be done by userspace
3932 * making a backup of the data. So in that case there is no particular
3933 * rush to update metadata.
3934 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3935 * update the metadata to advance 'safepos' to match 'readpos' so that
3936 * we can be safe in the event of a crash.
3937 * So we insist on updating metadata if safepos is behind writepos and
3938 * readpos is beyond writepos.
3939 * In any case, update the metadata every 10 seconds.
3940 * Maybe that number should be configurable, but I'm not sure it is
3941 * worth it.... maybe it could be a multiple of safemode_delay???
3943 if ((mddev->delta_disks < 0
3944 ? (safepos > writepos && readpos < writepos)
3945 : (safepos < writepos && readpos > writepos)) ||
3946 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3947 /* Cannot proceed until we've updated the superblock... */
3948 wait_event(conf->wait_for_overlap,
3949 atomic_read(&conf->reshape_stripes)==0);
3950 mddev->reshape_position = conf->reshape_progress;
3951 mddev->curr_resync_completed = sector_nr;
3952 conf->reshape_checkpoint = jiffies;
3953 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3954 md_wakeup_thread(mddev->thread);
3955 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3956 kthread_should_stop());
3957 spin_lock_irq(&conf->device_lock);
3958 conf->reshape_safe = mddev->reshape_position;
3959 spin_unlock_irq(&conf->device_lock);
3960 wake_up(&conf->wait_for_overlap);
3961 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3964 if (mddev->delta_disks < 0) {
3965 BUG_ON(conf->reshape_progress == 0);
3966 stripe_addr = writepos;
3967 BUG_ON((mddev->dev_sectors &
3968 ~((sector_t)reshape_sectors - 1))
3969 - reshape_sectors - stripe_addr
3970 != sector_nr);
3971 } else {
3972 BUG_ON(writepos != sector_nr + reshape_sectors);
3973 stripe_addr = sector_nr;
3975 INIT_LIST_HEAD(&stripes);
3976 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3977 int j;
3978 int skipped_disk = 0;
3979 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3980 set_bit(STRIPE_EXPANDING, &sh->state);
3981 atomic_inc(&conf->reshape_stripes);
3982 /* If any of this stripe is beyond the end of the old
3983 * array, then we need to zero those blocks
3985 for (j=sh->disks; j--;) {
3986 sector_t s;
3987 if (j == sh->pd_idx)
3988 continue;
3989 if (conf->level == 6 &&
3990 j == sh->qd_idx)
3991 continue;
3992 s = compute_blocknr(sh, j, 0);
3993 if (s < raid5_size(mddev, 0, 0)) {
3994 skipped_disk = 1;
3995 continue;
3997 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3998 set_bit(R5_Expanded, &sh->dev[j].flags);
3999 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4001 if (!skipped_disk) {
4002 set_bit(STRIPE_EXPAND_READY, &sh->state);
4003 set_bit(STRIPE_HANDLE, &sh->state);
4005 list_add(&sh->lru, &stripes);
4007 spin_lock_irq(&conf->device_lock);
4008 if (mddev->delta_disks < 0)
4009 conf->reshape_progress -= reshape_sectors * new_data_disks;
4010 else
4011 conf->reshape_progress += reshape_sectors * new_data_disks;
4012 spin_unlock_irq(&conf->device_lock);
4013 /* Ok, those stripe are ready. We can start scheduling
4014 * reads on the source stripes.
4015 * The source stripes are determined by mapping the first and last
4016 * block on the destination stripes.
4018 first_sector =
4019 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4020 1, &dd_idx, NULL);
4021 last_sector =
4022 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4023 * new_data_disks - 1),
4024 1, &dd_idx, NULL);
4025 if (last_sector >= mddev->dev_sectors)
4026 last_sector = mddev->dev_sectors - 1;
4027 while (first_sector <= last_sector) {
4028 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4029 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4030 set_bit(STRIPE_HANDLE, &sh->state);
4031 release_stripe(sh);
4032 first_sector += STRIPE_SECTORS;
4034 /* Now that the sources are clearly marked, we can release
4035 * the destination stripes
4037 while (!list_empty(&stripes)) {
4038 sh = list_entry(stripes.next, struct stripe_head, lru);
4039 list_del_init(&sh->lru);
4040 release_stripe(sh);
4042 /* If this takes us to the resync_max point where we have to pause,
4043 * then we need to write out the superblock.
4045 sector_nr += reshape_sectors;
4046 if ((sector_nr - mddev->curr_resync_completed) * 2
4047 >= mddev->resync_max - mddev->curr_resync_completed) {
4048 /* Cannot proceed until we've updated the superblock... */
4049 wait_event(conf->wait_for_overlap,
4050 atomic_read(&conf->reshape_stripes) == 0);
4051 mddev->reshape_position = conf->reshape_progress;
4052 mddev->curr_resync_completed = sector_nr;
4053 conf->reshape_checkpoint = jiffies;
4054 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4055 md_wakeup_thread(mddev->thread);
4056 wait_event(mddev->sb_wait,
4057 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4058 || kthread_should_stop());
4059 spin_lock_irq(&conf->device_lock);
4060 conf->reshape_safe = mddev->reshape_position;
4061 spin_unlock_irq(&conf->device_lock);
4062 wake_up(&conf->wait_for_overlap);
4063 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4065 return reshape_sectors;
4068 /* FIXME go_faster isn't used */
4069 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4071 struct r5conf *conf = mddev->private;
4072 struct stripe_head *sh;
4073 sector_t max_sector = mddev->dev_sectors;
4074 sector_t sync_blocks;
4075 int still_degraded = 0;
4076 int i;
4078 if (sector_nr >= max_sector) {
4079 /* just being told to finish up .. nothing much to do */
4081 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4082 end_reshape(conf);
4083 return 0;
4086 if (mddev->curr_resync < max_sector) /* aborted */
4087 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4088 &sync_blocks, 1);
4089 else /* completed sync */
4090 conf->fullsync = 0;
4091 bitmap_close_sync(mddev->bitmap);
4093 return 0;
4096 /* Allow raid5_quiesce to complete */
4097 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4099 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4100 return reshape_request(mddev, sector_nr, skipped);
4102 /* No need to check resync_max as we never do more than one
4103 * stripe, and as resync_max will always be on a chunk boundary,
4104 * if the check in md_do_sync didn't fire, there is no chance
4105 * of overstepping resync_max here
4108 /* if there is too many failed drives and we are trying
4109 * to resync, then assert that we are finished, because there is
4110 * nothing we can do.
4112 if (mddev->degraded >= conf->max_degraded &&
4113 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4114 sector_t rv = mddev->dev_sectors - sector_nr;
4115 *skipped = 1;
4116 return rv;
4118 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4119 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4120 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4121 /* we can skip this block, and probably more */
4122 sync_blocks /= STRIPE_SECTORS;
4123 *skipped = 1;
4124 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4128 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4130 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4131 if (sh == NULL) {
4132 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4133 /* make sure we don't swamp the stripe cache if someone else
4134 * is trying to get access
4136 schedule_timeout_uninterruptible(1);
4138 /* Need to check if array will still be degraded after recovery/resync
4139 * We don't need to check the 'failed' flag as when that gets set,
4140 * recovery aborts.
4142 for (i = 0; i < conf->raid_disks; i++)
4143 if (conf->disks[i].rdev == NULL)
4144 still_degraded = 1;
4146 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4148 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4150 handle_stripe(sh);
4151 release_stripe(sh);
4153 return STRIPE_SECTORS;
4156 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4158 /* We may not be able to submit a whole bio at once as there
4159 * may not be enough stripe_heads available.
4160 * We cannot pre-allocate enough stripe_heads as we may need
4161 * more than exist in the cache (if we allow ever large chunks).
4162 * So we do one stripe head at a time and record in
4163 * ->bi_hw_segments how many have been done.
4165 * We *know* that this entire raid_bio is in one chunk, so
4166 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4168 struct stripe_head *sh;
4169 int dd_idx;
4170 sector_t sector, logical_sector, last_sector;
4171 int scnt = 0;
4172 int remaining;
4173 int handled = 0;
4175 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4176 sector = raid5_compute_sector(conf, logical_sector,
4177 0, &dd_idx, NULL);
4178 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4180 for (; logical_sector < last_sector;
4181 logical_sector += STRIPE_SECTORS,
4182 sector += STRIPE_SECTORS,
4183 scnt++) {
4185 if (scnt < raid5_bi_hw_segments(raid_bio))
4186 /* already done this stripe */
4187 continue;
4189 sh = get_active_stripe(conf, sector, 0, 1, 0);
4191 if (!sh) {
4192 /* failed to get a stripe - must wait */
4193 raid5_set_bi_hw_segments(raid_bio, scnt);
4194 conf->retry_read_aligned = raid_bio;
4195 return handled;
4198 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4199 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4200 release_stripe(sh);
4201 raid5_set_bi_hw_segments(raid_bio, scnt);
4202 conf->retry_read_aligned = raid_bio;
4203 return handled;
4206 handle_stripe(sh);
4207 release_stripe(sh);
4208 handled++;
4210 spin_lock_irq(&conf->device_lock);
4211 remaining = raid5_dec_bi_phys_segments(raid_bio);
4212 spin_unlock_irq(&conf->device_lock);
4213 if (remaining == 0)
4214 bio_endio(raid_bio, 0);
4215 if (atomic_dec_and_test(&conf->active_aligned_reads))
4216 wake_up(&conf->wait_for_stripe);
4217 return handled;
4222 * This is our raid5 kernel thread.
4224 * We scan the hash table for stripes which can be handled now.
4225 * During the scan, completed stripes are saved for us by the interrupt
4226 * handler, so that they will not have to wait for our next wakeup.
4228 static void raid5d(struct mddev *mddev)
4230 struct stripe_head *sh;
4231 struct r5conf *conf = mddev->private;
4232 int handled;
4233 struct blk_plug plug;
4235 pr_debug("+++ raid5d active\n");
4237 md_check_recovery(mddev);
4239 blk_start_plug(&plug);
4240 handled = 0;
4241 spin_lock_irq(&conf->device_lock);
4242 while (1) {
4243 struct bio *bio;
4245 if (atomic_read(&mddev->plug_cnt) == 0 &&
4246 !list_empty(&conf->bitmap_list)) {
4247 /* Now is a good time to flush some bitmap updates */
4248 conf->seq_flush++;
4249 spin_unlock_irq(&conf->device_lock);
4250 bitmap_unplug(mddev->bitmap);
4251 spin_lock_irq(&conf->device_lock);
4252 conf->seq_write = conf->seq_flush;
4253 activate_bit_delay(conf);
4255 if (atomic_read(&mddev->plug_cnt) == 0)
4256 raid5_activate_delayed(conf);
4258 while ((bio = remove_bio_from_retry(conf))) {
4259 int ok;
4260 spin_unlock_irq(&conf->device_lock);
4261 ok = retry_aligned_read(conf, bio);
4262 spin_lock_irq(&conf->device_lock);
4263 if (!ok)
4264 break;
4265 handled++;
4268 sh = __get_priority_stripe(conf);
4270 if (!sh)
4271 break;
4272 spin_unlock_irq(&conf->device_lock);
4274 handled++;
4275 handle_stripe(sh);
4276 release_stripe(sh);
4277 cond_resched();
4279 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4280 md_check_recovery(mddev);
4282 spin_lock_irq(&conf->device_lock);
4284 pr_debug("%d stripes handled\n", handled);
4286 spin_unlock_irq(&conf->device_lock);
4288 async_tx_issue_pending_all();
4289 blk_finish_plug(&plug);
4291 pr_debug("--- raid5d inactive\n");
4294 static ssize_t
4295 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4297 struct r5conf *conf = mddev->private;
4298 if (conf)
4299 return sprintf(page, "%d\n", conf->max_nr_stripes);
4300 else
4301 return 0;
4305 raid5_set_cache_size(struct mddev *mddev, int size)
4307 struct r5conf *conf = mddev->private;
4308 int err;
4310 if (size <= 16 || size > 32768)
4311 return -EINVAL;
4312 while (size < conf->max_nr_stripes) {
4313 if (drop_one_stripe(conf))
4314 conf->max_nr_stripes--;
4315 else
4316 break;
4318 err = md_allow_write(mddev);
4319 if (err)
4320 return err;
4321 while (size > conf->max_nr_stripes) {
4322 if (grow_one_stripe(conf))
4323 conf->max_nr_stripes++;
4324 else break;
4326 return 0;
4328 EXPORT_SYMBOL(raid5_set_cache_size);
4330 static ssize_t
4331 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4333 struct r5conf *conf = mddev->private;
4334 unsigned long new;
4335 int err;
4337 if (len >= PAGE_SIZE)
4338 return -EINVAL;
4339 if (!conf)
4340 return -ENODEV;
4342 if (strict_strtoul(page, 10, &new))
4343 return -EINVAL;
4344 err = raid5_set_cache_size(mddev, new);
4345 if (err)
4346 return err;
4347 return len;
4350 static struct md_sysfs_entry
4351 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4352 raid5_show_stripe_cache_size,
4353 raid5_store_stripe_cache_size);
4355 static ssize_t
4356 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4358 struct r5conf *conf = mddev->private;
4359 if (conf)
4360 return sprintf(page, "%d\n", conf->bypass_threshold);
4361 else
4362 return 0;
4365 static ssize_t
4366 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4368 struct r5conf *conf = mddev->private;
4369 unsigned long new;
4370 if (len >= PAGE_SIZE)
4371 return -EINVAL;
4372 if (!conf)
4373 return -ENODEV;
4375 if (strict_strtoul(page, 10, &new))
4376 return -EINVAL;
4377 if (new > conf->max_nr_stripes)
4378 return -EINVAL;
4379 conf->bypass_threshold = new;
4380 return len;
4383 static struct md_sysfs_entry
4384 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4385 S_IRUGO | S_IWUSR,
4386 raid5_show_preread_threshold,
4387 raid5_store_preread_threshold);
4389 static ssize_t
4390 stripe_cache_active_show(struct mddev *mddev, char *page)
4392 struct r5conf *conf = mddev->private;
4393 if (conf)
4394 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4395 else
4396 return 0;
4399 static struct md_sysfs_entry
4400 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4402 static struct attribute *raid5_attrs[] = {
4403 &raid5_stripecache_size.attr,
4404 &raid5_stripecache_active.attr,
4405 &raid5_preread_bypass_threshold.attr,
4406 NULL,
4408 static struct attribute_group raid5_attrs_group = {
4409 .name = NULL,
4410 .attrs = raid5_attrs,
4413 static sector_t
4414 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4416 struct r5conf *conf = mddev->private;
4418 if (!sectors)
4419 sectors = mddev->dev_sectors;
4420 if (!raid_disks)
4421 /* size is defined by the smallest of previous and new size */
4422 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4424 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4425 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4426 return sectors * (raid_disks - conf->max_degraded);
4429 static void raid5_free_percpu(struct r5conf *conf)
4431 struct raid5_percpu *percpu;
4432 unsigned long cpu;
4434 if (!conf->percpu)
4435 return;
4437 get_online_cpus();
4438 for_each_possible_cpu(cpu) {
4439 percpu = per_cpu_ptr(conf->percpu, cpu);
4440 safe_put_page(percpu->spare_page);
4441 kfree(percpu->scribble);
4443 #ifdef CONFIG_HOTPLUG_CPU
4444 unregister_cpu_notifier(&conf->cpu_notify);
4445 #endif
4446 put_online_cpus();
4448 free_percpu(conf->percpu);
4451 static void free_conf(struct r5conf *conf)
4453 shrink_stripes(conf);
4454 raid5_free_percpu(conf);
4455 kfree(conf->disks);
4456 kfree(conf->stripe_hashtbl);
4457 kfree(conf);
4460 #ifdef CONFIG_HOTPLUG_CPU
4461 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4462 void *hcpu)
4464 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4465 long cpu = (long)hcpu;
4466 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4468 switch (action) {
4469 case CPU_UP_PREPARE:
4470 case CPU_UP_PREPARE_FROZEN:
4471 if (conf->level == 6 && !percpu->spare_page)
4472 percpu->spare_page = alloc_page(GFP_KERNEL);
4473 if (!percpu->scribble)
4474 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4476 if (!percpu->scribble ||
4477 (conf->level == 6 && !percpu->spare_page)) {
4478 safe_put_page(percpu->spare_page);
4479 kfree(percpu->scribble);
4480 pr_err("%s: failed memory allocation for cpu%ld\n",
4481 __func__, cpu);
4482 return notifier_from_errno(-ENOMEM);
4484 break;
4485 case CPU_DEAD:
4486 case CPU_DEAD_FROZEN:
4487 safe_put_page(percpu->spare_page);
4488 kfree(percpu->scribble);
4489 percpu->spare_page = NULL;
4490 percpu->scribble = NULL;
4491 break;
4492 default:
4493 break;
4495 return NOTIFY_OK;
4497 #endif
4499 static int raid5_alloc_percpu(struct r5conf *conf)
4501 unsigned long cpu;
4502 struct page *spare_page;
4503 struct raid5_percpu __percpu *allcpus;
4504 void *scribble;
4505 int err;
4507 allcpus = alloc_percpu(struct raid5_percpu);
4508 if (!allcpus)
4509 return -ENOMEM;
4510 conf->percpu = allcpus;
4512 get_online_cpus();
4513 err = 0;
4514 for_each_present_cpu(cpu) {
4515 if (conf->level == 6) {
4516 spare_page = alloc_page(GFP_KERNEL);
4517 if (!spare_page) {
4518 err = -ENOMEM;
4519 break;
4521 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4523 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4524 if (!scribble) {
4525 err = -ENOMEM;
4526 break;
4528 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4530 #ifdef CONFIG_HOTPLUG_CPU
4531 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4532 conf->cpu_notify.priority = 0;
4533 if (err == 0)
4534 err = register_cpu_notifier(&conf->cpu_notify);
4535 #endif
4536 put_online_cpus();
4538 return err;
4541 static struct r5conf *setup_conf(struct mddev *mddev)
4543 struct r5conf *conf;
4544 int raid_disk, memory, max_disks;
4545 struct md_rdev *rdev;
4546 struct disk_info *disk;
4548 if (mddev->new_level != 5
4549 && mddev->new_level != 4
4550 && mddev->new_level != 6) {
4551 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4552 mdname(mddev), mddev->new_level);
4553 return ERR_PTR(-EIO);
4555 if ((mddev->new_level == 5
4556 && !algorithm_valid_raid5(mddev->new_layout)) ||
4557 (mddev->new_level == 6
4558 && !algorithm_valid_raid6(mddev->new_layout))) {
4559 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4560 mdname(mddev), mddev->new_layout);
4561 return ERR_PTR(-EIO);
4563 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4564 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4565 mdname(mddev), mddev->raid_disks);
4566 return ERR_PTR(-EINVAL);
4569 if (!mddev->new_chunk_sectors ||
4570 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4571 !is_power_of_2(mddev->new_chunk_sectors)) {
4572 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4573 mdname(mddev), mddev->new_chunk_sectors << 9);
4574 return ERR_PTR(-EINVAL);
4577 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4578 if (conf == NULL)
4579 goto abort;
4580 spin_lock_init(&conf->device_lock);
4581 init_waitqueue_head(&conf->wait_for_stripe);
4582 init_waitqueue_head(&conf->wait_for_overlap);
4583 INIT_LIST_HEAD(&conf->handle_list);
4584 INIT_LIST_HEAD(&conf->hold_list);
4585 INIT_LIST_HEAD(&conf->delayed_list);
4586 INIT_LIST_HEAD(&conf->bitmap_list);
4587 INIT_LIST_HEAD(&conf->inactive_list);
4588 atomic_set(&conf->active_stripes, 0);
4589 atomic_set(&conf->preread_active_stripes, 0);
4590 atomic_set(&conf->active_aligned_reads, 0);
4591 conf->bypass_threshold = BYPASS_THRESHOLD;
4592 conf->recovery_disabled = mddev->recovery_disabled - 1;
4594 conf->raid_disks = mddev->raid_disks;
4595 if (mddev->reshape_position == MaxSector)
4596 conf->previous_raid_disks = mddev->raid_disks;
4597 else
4598 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4599 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4600 conf->scribble_len = scribble_len(max_disks);
4602 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4603 GFP_KERNEL);
4604 if (!conf->disks)
4605 goto abort;
4607 conf->mddev = mddev;
4609 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4610 goto abort;
4612 conf->level = mddev->new_level;
4613 if (raid5_alloc_percpu(conf) != 0)
4614 goto abort;
4616 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4618 list_for_each_entry(rdev, &mddev->disks, same_set) {
4619 raid_disk = rdev->raid_disk;
4620 if (raid_disk >= max_disks
4621 || raid_disk < 0)
4622 continue;
4623 disk = conf->disks + raid_disk;
4625 disk->rdev = rdev;
4627 if (test_bit(In_sync, &rdev->flags)) {
4628 char b[BDEVNAME_SIZE];
4629 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4630 " disk %d\n",
4631 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4632 } else if (rdev->saved_raid_disk != raid_disk)
4633 /* Cannot rely on bitmap to complete recovery */
4634 conf->fullsync = 1;
4637 conf->chunk_sectors = mddev->new_chunk_sectors;
4638 conf->level = mddev->new_level;
4639 if (conf->level == 6)
4640 conf->max_degraded = 2;
4641 else
4642 conf->max_degraded = 1;
4643 conf->algorithm = mddev->new_layout;
4644 conf->max_nr_stripes = NR_STRIPES;
4645 conf->reshape_progress = mddev->reshape_position;
4646 if (conf->reshape_progress != MaxSector) {
4647 conf->prev_chunk_sectors = mddev->chunk_sectors;
4648 conf->prev_algo = mddev->layout;
4651 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4652 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4653 if (grow_stripes(conf, conf->max_nr_stripes)) {
4654 printk(KERN_ERR
4655 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4656 mdname(mddev), memory);
4657 goto abort;
4658 } else
4659 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4660 mdname(mddev), memory);
4662 conf->thread = md_register_thread(raid5d, mddev, NULL);
4663 if (!conf->thread) {
4664 printk(KERN_ERR
4665 "md/raid:%s: couldn't allocate thread.\n",
4666 mdname(mddev));
4667 goto abort;
4670 return conf;
4672 abort:
4673 if (conf) {
4674 free_conf(conf);
4675 return ERR_PTR(-EIO);
4676 } else
4677 return ERR_PTR(-ENOMEM);
4681 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4683 switch (algo) {
4684 case ALGORITHM_PARITY_0:
4685 if (raid_disk < max_degraded)
4686 return 1;
4687 break;
4688 case ALGORITHM_PARITY_N:
4689 if (raid_disk >= raid_disks - max_degraded)
4690 return 1;
4691 break;
4692 case ALGORITHM_PARITY_0_6:
4693 if (raid_disk == 0 ||
4694 raid_disk == raid_disks - 1)
4695 return 1;
4696 break;
4697 case ALGORITHM_LEFT_ASYMMETRIC_6:
4698 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4699 case ALGORITHM_LEFT_SYMMETRIC_6:
4700 case ALGORITHM_RIGHT_SYMMETRIC_6:
4701 if (raid_disk == raid_disks - 1)
4702 return 1;
4704 return 0;
4707 static int run(struct mddev *mddev)
4709 struct r5conf *conf;
4710 int working_disks = 0;
4711 int dirty_parity_disks = 0;
4712 struct md_rdev *rdev;
4713 sector_t reshape_offset = 0;
4715 if (mddev->recovery_cp != MaxSector)
4716 printk(KERN_NOTICE "md/raid:%s: not clean"
4717 " -- starting background reconstruction\n",
4718 mdname(mddev));
4719 if (mddev->reshape_position != MaxSector) {
4720 /* Check that we can continue the reshape.
4721 * Currently only disks can change, it must
4722 * increase, and we must be past the point where
4723 * a stripe over-writes itself
4725 sector_t here_new, here_old;
4726 int old_disks;
4727 int max_degraded = (mddev->level == 6 ? 2 : 1);
4729 if (mddev->new_level != mddev->level) {
4730 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4731 "required - aborting.\n",
4732 mdname(mddev));
4733 return -EINVAL;
4735 old_disks = mddev->raid_disks - mddev->delta_disks;
4736 /* reshape_position must be on a new-stripe boundary, and one
4737 * further up in new geometry must map after here in old
4738 * geometry.
4740 here_new = mddev->reshape_position;
4741 if (sector_div(here_new, mddev->new_chunk_sectors *
4742 (mddev->raid_disks - max_degraded))) {
4743 printk(KERN_ERR "md/raid:%s: reshape_position not "
4744 "on a stripe boundary\n", mdname(mddev));
4745 return -EINVAL;
4747 reshape_offset = here_new * mddev->new_chunk_sectors;
4748 /* here_new is the stripe we will write to */
4749 here_old = mddev->reshape_position;
4750 sector_div(here_old, mddev->chunk_sectors *
4751 (old_disks-max_degraded));
4752 /* here_old is the first stripe that we might need to read
4753 * from */
4754 if (mddev->delta_disks == 0) {
4755 /* We cannot be sure it is safe to start an in-place
4756 * reshape. It is only safe if user-space if monitoring
4757 * and taking constant backups.
4758 * mdadm always starts a situation like this in
4759 * readonly mode so it can take control before
4760 * allowing any writes. So just check for that.
4762 if ((here_new * mddev->new_chunk_sectors !=
4763 here_old * mddev->chunk_sectors) ||
4764 mddev->ro == 0) {
4765 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4766 " in read-only mode - aborting\n",
4767 mdname(mddev));
4768 return -EINVAL;
4770 } else if (mddev->delta_disks < 0
4771 ? (here_new * mddev->new_chunk_sectors <=
4772 here_old * mddev->chunk_sectors)
4773 : (here_new * mddev->new_chunk_sectors >=
4774 here_old * mddev->chunk_sectors)) {
4775 /* Reading from the same stripe as writing to - bad */
4776 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4777 "auto-recovery - aborting.\n",
4778 mdname(mddev));
4779 return -EINVAL;
4781 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4782 mdname(mddev));
4783 /* OK, we should be able to continue; */
4784 } else {
4785 BUG_ON(mddev->level != mddev->new_level);
4786 BUG_ON(mddev->layout != mddev->new_layout);
4787 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4788 BUG_ON(mddev->delta_disks != 0);
4791 if (mddev->private == NULL)
4792 conf = setup_conf(mddev);
4793 else
4794 conf = mddev->private;
4796 if (IS_ERR(conf))
4797 return PTR_ERR(conf);
4799 mddev->thread = conf->thread;
4800 conf->thread = NULL;
4801 mddev->private = conf;
4804 * 0 for a fully functional array, 1 or 2 for a degraded array.
4806 list_for_each_entry(rdev, &mddev->disks, same_set) {
4807 if (rdev->raid_disk < 0)
4808 continue;
4809 if (test_bit(In_sync, &rdev->flags)) {
4810 working_disks++;
4811 continue;
4813 /* This disc is not fully in-sync. However if it
4814 * just stored parity (beyond the recovery_offset),
4815 * when we don't need to be concerned about the
4816 * array being dirty.
4817 * When reshape goes 'backwards', we never have
4818 * partially completed devices, so we only need
4819 * to worry about reshape going forwards.
4821 /* Hack because v0.91 doesn't store recovery_offset properly. */
4822 if (mddev->major_version == 0 &&
4823 mddev->minor_version > 90)
4824 rdev->recovery_offset = reshape_offset;
4826 if (rdev->recovery_offset < reshape_offset) {
4827 /* We need to check old and new layout */
4828 if (!only_parity(rdev->raid_disk,
4829 conf->algorithm,
4830 conf->raid_disks,
4831 conf->max_degraded))
4832 continue;
4834 if (!only_parity(rdev->raid_disk,
4835 conf->prev_algo,
4836 conf->previous_raid_disks,
4837 conf->max_degraded))
4838 continue;
4839 dirty_parity_disks++;
4842 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4843 - working_disks);
4845 if (has_failed(conf)) {
4846 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4847 " (%d/%d failed)\n",
4848 mdname(mddev), mddev->degraded, conf->raid_disks);
4849 goto abort;
4852 /* device size must be a multiple of chunk size */
4853 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4854 mddev->resync_max_sectors = mddev->dev_sectors;
4856 if (mddev->degraded > dirty_parity_disks &&
4857 mddev->recovery_cp != MaxSector) {
4858 if (mddev->ok_start_degraded)
4859 printk(KERN_WARNING
4860 "md/raid:%s: starting dirty degraded array"
4861 " - data corruption possible.\n",
4862 mdname(mddev));
4863 else {
4864 printk(KERN_ERR
4865 "md/raid:%s: cannot start dirty degraded array.\n",
4866 mdname(mddev));
4867 goto abort;
4871 if (mddev->degraded == 0)
4872 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4873 " devices, algorithm %d\n", mdname(mddev), conf->level,
4874 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4875 mddev->new_layout);
4876 else
4877 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4878 " out of %d devices, algorithm %d\n",
4879 mdname(mddev), conf->level,
4880 mddev->raid_disks - mddev->degraded,
4881 mddev->raid_disks, mddev->new_layout);
4883 print_raid5_conf(conf);
4885 if (conf->reshape_progress != MaxSector) {
4886 conf->reshape_safe = conf->reshape_progress;
4887 atomic_set(&conf->reshape_stripes, 0);
4888 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4889 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4890 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4891 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4892 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4893 "reshape");
4897 /* Ok, everything is just fine now */
4898 if (mddev->to_remove == &raid5_attrs_group)
4899 mddev->to_remove = NULL;
4900 else if (mddev->kobj.sd &&
4901 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4902 printk(KERN_WARNING
4903 "raid5: failed to create sysfs attributes for %s\n",
4904 mdname(mddev));
4905 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4907 if (mddev->queue) {
4908 int chunk_size;
4909 /* read-ahead size must cover two whole stripes, which
4910 * is 2 * (datadisks) * chunksize where 'n' is the
4911 * number of raid devices
4913 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4914 int stripe = data_disks *
4915 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4916 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4917 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4919 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4921 mddev->queue->backing_dev_info.congested_data = mddev;
4922 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4924 chunk_size = mddev->chunk_sectors << 9;
4925 blk_queue_io_min(mddev->queue, chunk_size);
4926 blk_queue_io_opt(mddev->queue, chunk_size *
4927 (conf->raid_disks - conf->max_degraded));
4929 list_for_each_entry(rdev, &mddev->disks, same_set)
4930 disk_stack_limits(mddev->gendisk, rdev->bdev,
4931 rdev->data_offset << 9);
4934 return 0;
4935 abort:
4936 md_unregister_thread(&mddev->thread);
4937 print_raid5_conf(conf);
4938 free_conf(conf);
4939 mddev->private = NULL;
4940 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4941 return -EIO;
4944 static int stop(struct mddev *mddev)
4946 struct r5conf *conf = mddev->private;
4948 md_unregister_thread(&mddev->thread);
4949 if (mddev->queue)
4950 mddev->queue->backing_dev_info.congested_fn = NULL;
4951 free_conf(conf);
4952 mddev->private = NULL;
4953 mddev->to_remove = &raid5_attrs_group;
4954 return 0;
4957 static void status(struct seq_file *seq, struct mddev *mddev)
4959 struct r5conf *conf = mddev->private;
4960 int i;
4962 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4963 mddev->chunk_sectors / 2, mddev->layout);
4964 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4965 for (i = 0; i < conf->raid_disks; i++)
4966 seq_printf (seq, "%s",
4967 conf->disks[i].rdev &&
4968 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4969 seq_printf (seq, "]");
4972 static void print_raid5_conf (struct r5conf *conf)
4974 int i;
4975 struct disk_info *tmp;
4977 printk(KERN_DEBUG "RAID conf printout:\n");
4978 if (!conf) {
4979 printk("(conf==NULL)\n");
4980 return;
4982 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
4983 conf->raid_disks,
4984 conf->raid_disks - conf->mddev->degraded);
4986 for (i = 0; i < conf->raid_disks; i++) {
4987 char b[BDEVNAME_SIZE];
4988 tmp = conf->disks + i;
4989 if (tmp->rdev)
4990 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
4991 i, !test_bit(Faulty, &tmp->rdev->flags),
4992 bdevname(tmp->rdev->bdev, b));
4996 static int raid5_spare_active(struct mddev *mddev)
4998 int i;
4999 struct r5conf *conf = mddev->private;
5000 struct disk_info *tmp;
5001 int count = 0;
5002 unsigned long flags;
5004 for (i = 0; i < conf->raid_disks; i++) {
5005 tmp = conf->disks + i;
5006 if (tmp->rdev
5007 && tmp->rdev->recovery_offset == MaxSector
5008 && !test_bit(Faulty, &tmp->rdev->flags)
5009 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5010 count++;
5011 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5014 spin_lock_irqsave(&conf->device_lock, flags);
5015 mddev->degraded -= count;
5016 spin_unlock_irqrestore(&conf->device_lock, flags);
5017 print_raid5_conf(conf);
5018 return count;
5021 static int raid5_remove_disk(struct mddev *mddev, int number)
5023 struct r5conf *conf = mddev->private;
5024 int err = 0;
5025 struct md_rdev *rdev;
5026 struct disk_info *p = conf->disks + number;
5028 print_raid5_conf(conf);
5029 rdev = p->rdev;
5030 if (rdev) {
5031 if (number >= conf->raid_disks &&
5032 conf->reshape_progress == MaxSector)
5033 clear_bit(In_sync, &rdev->flags);
5035 if (test_bit(In_sync, &rdev->flags) ||
5036 atomic_read(&rdev->nr_pending)) {
5037 err = -EBUSY;
5038 goto abort;
5040 /* Only remove non-faulty devices if recovery
5041 * isn't possible.
5043 if (!test_bit(Faulty, &rdev->flags) &&
5044 mddev->recovery_disabled != conf->recovery_disabled &&
5045 !has_failed(conf) &&
5046 number < conf->raid_disks) {
5047 err = -EBUSY;
5048 goto abort;
5050 p->rdev = NULL;
5051 synchronize_rcu();
5052 if (atomic_read(&rdev->nr_pending)) {
5053 /* lost the race, try later */
5054 err = -EBUSY;
5055 p->rdev = rdev;
5058 abort:
5060 print_raid5_conf(conf);
5061 return err;
5064 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5066 struct r5conf *conf = mddev->private;
5067 int err = -EEXIST;
5068 int disk;
5069 struct disk_info *p;
5070 int first = 0;
5071 int last = conf->raid_disks - 1;
5073 if (mddev->recovery_disabled == conf->recovery_disabled)
5074 return -EBUSY;
5076 if (has_failed(conf))
5077 /* no point adding a device */
5078 return -EINVAL;
5080 if (rdev->raid_disk >= 0)
5081 first = last = rdev->raid_disk;
5084 * find the disk ... but prefer rdev->saved_raid_disk
5085 * if possible.
5087 if (rdev->saved_raid_disk >= 0 &&
5088 rdev->saved_raid_disk >= first &&
5089 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5090 disk = rdev->saved_raid_disk;
5091 else
5092 disk = first;
5093 for ( ; disk <= last ; disk++)
5094 if ((p=conf->disks + disk)->rdev == NULL) {
5095 clear_bit(In_sync, &rdev->flags);
5096 rdev->raid_disk = disk;
5097 err = 0;
5098 if (rdev->saved_raid_disk != disk)
5099 conf->fullsync = 1;
5100 rcu_assign_pointer(p->rdev, rdev);
5101 break;
5103 print_raid5_conf(conf);
5104 return err;
5107 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5109 /* no resync is happening, and there is enough space
5110 * on all devices, so we can resize.
5111 * We need to make sure resync covers any new space.
5112 * If the array is shrinking we should possibly wait until
5113 * any io in the removed space completes, but it hardly seems
5114 * worth it.
5116 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5117 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5118 mddev->raid_disks));
5119 if (mddev->array_sectors >
5120 raid5_size(mddev, sectors, mddev->raid_disks))
5121 return -EINVAL;
5122 set_capacity(mddev->gendisk, mddev->array_sectors);
5123 revalidate_disk(mddev->gendisk);
5124 if (sectors > mddev->dev_sectors &&
5125 mddev->recovery_cp > mddev->dev_sectors) {
5126 mddev->recovery_cp = mddev->dev_sectors;
5127 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5129 mddev->dev_sectors = sectors;
5130 mddev->resync_max_sectors = sectors;
5131 return 0;
5134 static int check_stripe_cache(struct mddev *mddev)
5136 /* Can only proceed if there are plenty of stripe_heads.
5137 * We need a minimum of one full stripe,, and for sensible progress
5138 * it is best to have about 4 times that.
5139 * If we require 4 times, then the default 256 4K stripe_heads will
5140 * allow for chunk sizes up to 256K, which is probably OK.
5141 * If the chunk size is greater, user-space should request more
5142 * stripe_heads first.
5144 struct r5conf *conf = mddev->private;
5145 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5146 > conf->max_nr_stripes ||
5147 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5148 > conf->max_nr_stripes) {
5149 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5150 mdname(mddev),
5151 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5152 / STRIPE_SIZE)*4);
5153 return 0;
5155 return 1;
5158 static int check_reshape(struct mddev *mddev)
5160 struct r5conf *conf = mddev->private;
5162 if (mddev->delta_disks == 0 &&
5163 mddev->new_layout == mddev->layout &&
5164 mddev->new_chunk_sectors == mddev->chunk_sectors)
5165 return 0; /* nothing to do */
5166 if (mddev->bitmap)
5167 /* Cannot grow a bitmap yet */
5168 return -EBUSY;
5169 if (has_failed(conf))
5170 return -EINVAL;
5171 if (mddev->delta_disks < 0) {
5172 /* We might be able to shrink, but the devices must
5173 * be made bigger first.
5174 * For raid6, 4 is the minimum size.
5175 * Otherwise 2 is the minimum
5177 int min = 2;
5178 if (mddev->level == 6)
5179 min = 4;
5180 if (mddev->raid_disks + mddev->delta_disks < min)
5181 return -EINVAL;
5184 if (!check_stripe_cache(mddev))
5185 return -ENOSPC;
5187 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5190 static int raid5_start_reshape(struct mddev *mddev)
5192 struct r5conf *conf = mddev->private;
5193 struct md_rdev *rdev;
5194 int spares = 0;
5195 unsigned long flags;
5197 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5198 return -EBUSY;
5200 if (!check_stripe_cache(mddev))
5201 return -ENOSPC;
5203 list_for_each_entry(rdev, &mddev->disks, same_set)
5204 if (!test_bit(In_sync, &rdev->flags)
5205 && !test_bit(Faulty, &rdev->flags))
5206 spares++;
5208 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5209 /* Not enough devices even to make a degraded array
5210 * of that size
5212 return -EINVAL;
5214 /* Refuse to reduce size of the array. Any reductions in
5215 * array size must be through explicit setting of array_size
5216 * attribute.
5218 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5219 < mddev->array_sectors) {
5220 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5221 "before number of disks\n", mdname(mddev));
5222 return -EINVAL;
5225 atomic_set(&conf->reshape_stripes, 0);
5226 spin_lock_irq(&conf->device_lock);
5227 conf->previous_raid_disks = conf->raid_disks;
5228 conf->raid_disks += mddev->delta_disks;
5229 conf->prev_chunk_sectors = conf->chunk_sectors;
5230 conf->chunk_sectors = mddev->new_chunk_sectors;
5231 conf->prev_algo = conf->algorithm;
5232 conf->algorithm = mddev->new_layout;
5233 if (mddev->delta_disks < 0)
5234 conf->reshape_progress = raid5_size(mddev, 0, 0);
5235 else
5236 conf->reshape_progress = 0;
5237 conf->reshape_safe = conf->reshape_progress;
5238 conf->generation++;
5239 spin_unlock_irq(&conf->device_lock);
5241 /* Add some new drives, as many as will fit.
5242 * We know there are enough to make the newly sized array work.
5243 * Don't add devices if we are reducing the number of
5244 * devices in the array. This is because it is not possible
5245 * to correctly record the "partially reconstructed" state of
5246 * such devices during the reshape and confusion could result.
5248 if (mddev->delta_disks >= 0) {
5249 int added_devices = 0;
5250 list_for_each_entry(rdev, &mddev->disks, same_set)
5251 if (rdev->raid_disk < 0 &&
5252 !test_bit(Faulty, &rdev->flags)) {
5253 if (raid5_add_disk(mddev, rdev) == 0) {
5254 if (rdev->raid_disk
5255 >= conf->previous_raid_disks) {
5256 set_bit(In_sync, &rdev->flags);
5257 added_devices++;
5258 } else
5259 rdev->recovery_offset = 0;
5261 if (sysfs_link_rdev(mddev, rdev))
5262 /* Failure here is OK */;
5264 } else if (rdev->raid_disk >= conf->previous_raid_disks
5265 && !test_bit(Faulty, &rdev->flags)) {
5266 /* This is a spare that was manually added */
5267 set_bit(In_sync, &rdev->flags);
5268 added_devices++;
5271 /* When a reshape changes the number of devices,
5272 * ->degraded is measured against the larger of the
5273 * pre and post number of devices.
5275 spin_lock_irqsave(&conf->device_lock, flags);
5276 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5277 - added_devices;
5278 spin_unlock_irqrestore(&conf->device_lock, flags);
5280 mddev->raid_disks = conf->raid_disks;
5281 mddev->reshape_position = conf->reshape_progress;
5282 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5284 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5285 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5286 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5287 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5288 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5289 "reshape");
5290 if (!mddev->sync_thread) {
5291 mddev->recovery = 0;
5292 spin_lock_irq(&conf->device_lock);
5293 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5294 conf->reshape_progress = MaxSector;
5295 spin_unlock_irq(&conf->device_lock);
5296 return -EAGAIN;
5298 conf->reshape_checkpoint = jiffies;
5299 md_wakeup_thread(mddev->sync_thread);
5300 md_new_event(mddev);
5301 return 0;
5304 /* This is called from the reshape thread and should make any
5305 * changes needed in 'conf'
5307 static void end_reshape(struct r5conf *conf)
5310 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5312 spin_lock_irq(&conf->device_lock);
5313 conf->previous_raid_disks = conf->raid_disks;
5314 conf->reshape_progress = MaxSector;
5315 spin_unlock_irq(&conf->device_lock);
5316 wake_up(&conf->wait_for_overlap);
5318 /* read-ahead size must cover two whole stripes, which is
5319 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5321 if (conf->mddev->queue) {
5322 int data_disks = conf->raid_disks - conf->max_degraded;
5323 int stripe = data_disks * ((conf->chunk_sectors << 9)
5324 / PAGE_SIZE);
5325 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5326 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5331 /* This is called from the raid5d thread with mddev_lock held.
5332 * It makes config changes to the device.
5334 static void raid5_finish_reshape(struct mddev *mddev)
5336 struct r5conf *conf = mddev->private;
5338 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5340 if (mddev->delta_disks > 0) {
5341 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5342 set_capacity(mddev->gendisk, mddev->array_sectors);
5343 revalidate_disk(mddev->gendisk);
5344 } else {
5345 int d;
5346 mddev->degraded = conf->raid_disks;
5347 for (d = 0; d < conf->raid_disks ; d++)
5348 if (conf->disks[d].rdev &&
5349 test_bit(In_sync,
5350 &conf->disks[d].rdev->flags))
5351 mddev->degraded--;
5352 for (d = conf->raid_disks ;
5353 d < conf->raid_disks - mddev->delta_disks;
5354 d++) {
5355 struct md_rdev *rdev = conf->disks[d].rdev;
5356 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5357 sysfs_unlink_rdev(mddev, rdev);
5358 rdev->raid_disk = -1;
5362 mddev->layout = conf->algorithm;
5363 mddev->chunk_sectors = conf->chunk_sectors;
5364 mddev->reshape_position = MaxSector;
5365 mddev->delta_disks = 0;
5369 static void raid5_quiesce(struct mddev *mddev, int state)
5371 struct r5conf *conf = mddev->private;
5373 switch(state) {
5374 case 2: /* resume for a suspend */
5375 wake_up(&conf->wait_for_overlap);
5376 break;
5378 case 1: /* stop all writes */
5379 spin_lock_irq(&conf->device_lock);
5380 /* '2' tells resync/reshape to pause so that all
5381 * active stripes can drain
5383 conf->quiesce = 2;
5384 wait_event_lock_irq(conf->wait_for_stripe,
5385 atomic_read(&conf->active_stripes) == 0 &&
5386 atomic_read(&conf->active_aligned_reads) == 0,
5387 conf->device_lock, /* nothing */);
5388 conf->quiesce = 1;
5389 spin_unlock_irq(&conf->device_lock);
5390 /* allow reshape to continue */
5391 wake_up(&conf->wait_for_overlap);
5392 break;
5394 case 0: /* re-enable writes */
5395 spin_lock_irq(&conf->device_lock);
5396 conf->quiesce = 0;
5397 wake_up(&conf->wait_for_stripe);
5398 wake_up(&conf->wait_for_overlap);
5399 spin_unlock_irq(&conf->device_lock);
5400 break;
5405 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5407 struct r0conf *raid0_conf = mddev->private;
5408 sector_t sectors;
5410 /* for raid0 takeover only one zone is supported */
5411 if (raid0_conf->nr_strip_zones > 1) {
5412 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5413 mdname(mddev));
5414 return ERR_PTR(-EINVAL);
5417 sectors = raid0_conf->strip_zone[0].zone_end;
5418 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5419 mddev->dev_sectors = sectors;
5420 mddev->new_level = level;
5421 mddev->new_layout = ALGORITHM_PARITY_N;
5422 mddev->new_chunk_sectors = mddev->chunk_sectors;
5423 mddev->raid_disks += 1;
5424 mddev->delta_disks = 1;
5425 /* make sure it will be not marked as dirty */
5426 mddev->recovery_cp = MaxSector;
5428 return setup_conf(mddev);
5432 static void *raid5_takeover_raid1(struct mddev *mddev)
5434 int chunksect;
5436 if (mddev->raid_disks != 2 ||
5437 mddev->degraded > 1)
5438 return ERR_PTR(-EINVAL);
5440 /* Should check if there are write-behind devices? */
5442 chunksect = 64*2; /* 64K by default */
5444 /* The array must be an exact multiple of chunksize */
5445 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5446 chunksect >>= 1;
5448 if ((chunksect<<9) < STRIPE_SIZE)
5449 /* array size does not allow a suitable chunk size */
5450 return ERR_PTR(-EINVAL);
5452 mddev->new_level = 5;
5453 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5454 mddev->new_chunk_sectors = chunksect;
5456 return setup_conf(mddev);
5459 static void *raid5_takeover_raid6(struct mddev *mddev)
5461 int new_layout;
5463 switch (mddev->layout) {
5464 case ALGORITHM_LEFT_ASYMMETRIC_6:
5465 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5466 break;
5467 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5468 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5469 break;
5470 case ALGORITHM_LEFT_SYMMETRIC_6:
5471 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5472 break;
5473 case ALGORITHM_RIGHT_SYMMETRIC_6:
5474 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5475 break;
5476 case ALGORITHM_PARITY_0_6:
5477 new_layout = ALGORITHM_PARITY_0;
5478 break;
5479 case ALGORITHM_PARITY_N:
5480 new_layout = ALGORITHM_PARITY_N;
5481 break;
5482 default:
5483 return ERR_PTR(-EINVAL);
5485 mddev->new_level = 5;
5486 mddev->new_layout = new_layout;
5487 mddev->delta_disks = -1;
5488 mddev->raid_disks -= 1;
5489 return setup_conf(mddev);
5493 static int raid5_check_reshape(struct mddev *mddev)
5495 /* For a 2-drive array, the layout and chunk size can be changed
5496 * immediately as not restriping is needed.
5497 * For larger arrays we record the new value - after validation
5498 * to be used by a reshape pass.
5500 struct r5conf *conf = mddev->private;
5501 int new_chunk = mddev->new_chunk_sectors;
5503 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5504 return -EINVAL;
5505 if (new_chunk > 0) {
5506 if (!is_power_of_2(new_chunk))
5507 return -EINVAL;
5508 if (new_chunk < (PAGE_SIZE>>9))
5509 return -EINVAL;
5510 if (mddev->array_sectors & (new_chunk-1))
5511 /* not factor of array size */
5512 return -EINVAL;
5515 /* They look valid */
5517 if (mddev->raid_disks == 2) {
5518 /* can make the change immediately */
5519 if (mddev->new_layout >= 0) {
5520 conf->algorithm = mddev->new_layout;
5521 mddev->layout = mddev->new_layout;
5523 if (new_chunk > 0) {
5524 conf->chunk_sectors = new_chunk ;
5525 mddev->chunk_sectors = new_chunk;
5527 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5528 md_wakeup_thread(mddev->thread);
5530 return check_reshape(mddev);
5533 static int raid6_check_reshape(struct mddev *mddev)
5535 int new_chunk = mddev->new_chunk_sectors;
5537 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5538 return -EINVAL;
5539 if (new_chunk > 0) {
5540 if (!is_power_of_2(new_chunk))
5541 return -EINVAL;
5542 if (new_chunk < (PAGE_SIZE >> 9))
5543 return -EINVAL;
5544 if (mddev->array_sectors & (new_chunk-1))
5545 /* not factor of array size */
5546 return -EINVAL;
5549 /* They look valid */
5550 return check_reshape(mddev);
5553 static void *raid5_takeover(struct mddev *mddev)
5555 /* raid5 can take over:
5556 * raid0 - if there is only one strip zone - make it a raid4 layout
5557 * raid1 - if there are two drives. We need to know the chunk size
5558 * raid4 - trivial - just use a raid4 layout.
5559 * raid6 - Providing it is a *_6 layout
5561 if (mddev->level == 0)
5562 return raid45_takeover_raid0(mddev, 5);
5563 if (mddev->level == 1)
5564 return raid5_takeover_raid1(mddev);
5565 if (mddev->level == 4) {
5566 mddev->new_layout = ALGORITHM_PARITY_N;
5567 mddev->new_level = 5;
5568 return setup_conf(mddev);
5570 if (mddev->level == 6)
5571 return raid5_takeover_raid6(mddev);
5573 return ERR_PTR(-EINVAL);
5576 static void *raid4_takeover(struct mddev *mddev)
5578 /* raid4 can take over:
5579 * raid0 - if there is only one strip zone
5580 * raid5 - if layout is right
5582 if (mddev->level == 0)
5583 return raid45_takeover_raid0(mddev, 4);
5584 if (mddev->level == 5 &&
5585 mddev->layout == ALGORITHM_PARITY_N) {
5586 mddev->new_layout = 0;
5587 mddev->new_level = 4;
5588 return setup_conf(mddev);
5590 return ERR_PTR(-EINVAL);
5593 static struct md_personality raid5_personality;
5595 static void *raid6_takeover(struct mddev *mddev)
5597 /* Currently can only take over a raid5. We map the
5598 * personality to an equivalent raid6 personality
5599 * with the Q block at the end.
5601 int new_layout;
5603 if (mddev->pers != &raid5_personality)
5604 return ERR_PTR(-EINVAL);
5605 if (mddev->degraded > 1)
5606 return ERR_PTR(-EINVAL);
5607 if (mddev->raid_disks > 253)
5608 return ERR_PTR(-EINVAL);
5609 if (mddev->raid_disks < 3)
5610 return ERR_PTR(-EINVAL);
5612 switch (mddev->layout) {
5613 case ALGORITHM_LEFT_ASYMMETRIC:
5614 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5615 break;
5616 case ALGORITHM_RIGHT_ASYMMETRIC:
5617 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5618 break;
5619 case ALGORITHM_LEFT_SYMMETRIC:
5620 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5621 break;
5622 case ALGORITHM_RIGHT_SYMMETRIC:
5623 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5624 break;
5625 case ALGORITHM_PARITY_0:
5626 new_layout = ALGORITHM_PARITY_0_6;
5627 break;
5628 case ALGORITHM_PARITY_N:
5629 new_layout = ALGORITHM_PARITY_N;
5630 break;
5631 default:
5632 return ERR_PTR(-EINVAL);
5634 mddev->new_level = 6;
5635 mddev->new_layout = new_layout;
5636 mddev->delta_disks = 1;
5637 mddev->raid_disks += 1;
5638 return setup_conf(mddev);
5642 static struct md_personality raid6_personality =
5644 .name = "raid6",
5645 .level = 6,
5646 .owner = THIS_MODULE,
5647 .make_request = make_request,
5648 .run = run,
5649 .stop = stop,
5650 .status = status,
5651 .error_handler = error,
5652 .hot_add_disk = raid5_add_disk,
5653 .hot_remove_disk= raid5_remove_disk,
5654 .spare_active = raid5_spare_active,
5655 .sync_request = sync_request,
5656 .resize = raid5_resize,
5657 .size = raid5_size,
5658 .check_reshape = raid6_check_reshape,
5659 .start_reshape = raid5_start_reshape,
5660 .finish_reshape = raid5_finish_reshape,
5661 .quiesce = raid5_quiesce,
5662 .takeover = raid6_takeover,
5664 static struct md_personality raid5_personality =
5666 .name = "raid5",
5667 .level = 5,
5668 .owner = THIS_MODULE,
5669 .make_request = make_request,
5670 .run = run,
5671 .stop = stop,
5672 .status = status,
5673 .error_handler = error,
5674 .hot_add_disk = raid5_add_disk,
5675 .hot_remove_disk= raid5_remove_disk,
5676 .spare_active = raid5_spare_active,
5677 .sync_request = sync_request,
5678 .resize = raid5_resize,
5679 .size = raid5_size,
5680 .check_reshape = raid5_check_reshape,
5681 .start_reshape = raid5_start_reshape,
5682 .finish_reshape = raid5_finish_reshape,
5683 .quiesce = raid5_quiesce,
5684 .takeover = raid5_takeover,
5687 static struct md_personality raid4_personality =
5689 .name = "raid4",
5690 .level = 4,
5691 .owner = THIS_MODULE,
5692 .make_request = make_request,
5693 .run = run,
5694 .stop = stop,
5695 .status = status,
5696 .error_handler = error,
5697 .hot_add_disk = raid5_add_disk,
5698 .hot_remove_disk= raid5_remove_disk,
5699 .spare_active = raid5_spare_active,
5700 .sync_request = sync_request,
5701 .resize = raid5_resize,
5702 .size = raid5_size,
5703 .check_reshape = raid5_check_reshape,
5704 .start_reshape = raid5_start_reshape,
5705 .finish_reshape = raid5_finish_reshape,
5706 .quiesce = raid5_quiesce,
5707 .takeover = raid4_takeover,
5710 static int __init raid5_init(void)
5712 register_md_personality(&raid6_personality);
5713 register_md_personality(&raid5_personality);
5714 register_md_personality(&raid4_personality);
5715 return 0;
5718 static void raid5_exit(void)
5720 unregister_md_personality(&raid6_personality);
5721 unregister_md_personality(&raid5_personality);
5722 unregister_md_personality(&raid4_personality);
5725 module_init(raid5_init);
5726 module_exit(raid5_exit);
5727 MODULE_LICENSE("GPL");
5728 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5729 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5730 MODULE_ALIAS("md-raid5");
5731 MODULE_ALIAS("md-raid4");
5732 MODULE_ALIAS("md-level-5");
5733 MODULE_ALIAS("md-level-4");
5734 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5735 MODULE_ALIAS("md-raid6");
5736 MODULE_ALIAS("md-level-6");
5738 /* This used to be two separate modules, they were: */
5739 MODULE_ALIAS("raid5");
5740 MODULE_ALIAS("raid6");