Merge branch 'for-3.2/core' of git://git.kernel.dk/linux-block
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid1.c
blobcae874646d9e965719b964b9e7b0539442dbe822
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include <linux/ratelimit.h>
39 #include "md.h"
40 #include "raid1.h"
41 #include "bitmap.h"
44 * Number of guaranteed r1bios in case of extreme VM load:
46 #define NR_RAID1_BIOS 256
48 /* When there are this many requests queue to be written by
49 * the raid1 thread, we become 'congested' to provide back-pressure
50 * for writeback.
52 static int max_queued_requests = 1024;
54 static void allow_barrier(struct r1conf *conf);
55 static void lower_barrier(struct r1conf *conf);
57 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59 struct pool_info *pi = data;
60 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
62 /* allocate a r1bio with room for raid_disks entries in the bios array */
63 return kzalloc(size, gfp_flags);
66 static void r1bio_pool_free(void *r1_bio, void *data)
68 kfree(r1_bio);
71 #define RESYNC_BLOCK_SIZE (64*1024)
72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75 #define RESYNC_WINDOW (2048*1024)
77 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
79 struct pool_info *pi = data;
80 struct page *page;
81 struct r1bio *r1_bio;
82 struct bio *bio;
83 int i, j;
85 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
86 if (!r1_bio)
87 return NULL;
90 * Allocate bios : 1 for reading, n-1 for writing
92 for (j = pi->raid_disks ; j-- ; ) {
93 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
94 if (!bio)
95 goto out_free_bio;
96 r1_bio->bios[j] = bio;
99 * Allocate RESYNC_PAGES data pages and attach them to
100 * the first bio.
101 * If this is a user-requested check/repair, allocate
102 * RESYNC_PAGES for each bio.
104 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
105 j = pi->raid_disks;
106 else
107 j = 1;
108 while(j--) {
109 bio = r1_bio->bios[j];
110 for (i = 0; i < RESYNC_PAGES; i++) {
111 page = alloc_page(gfp_flags);
112 if (unlikely(!page))
113 goto out_free_pages;
115 bio->bi_io_vec[i].bv_page = page;
116 bio->bi_vcnt = i+1;
119 /* If not user-requests, copy the page pointers to all bios */
120 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
121 for (i=0; i<RESYNC_PAGES ; i++)
122 for (j=1; j<pi->raid_disks; j++)
123 r1_bio->bios[j]->bi_io_vec[i].bv_page =
124 r1_bio->bios[0]->bi_io_vec[i].bv_page;
127 r1_bio->master_bio = NULL;
129 return r1_bio;
131 out_free_pages:
132 for (j=0 ; j < pi->raid_disks; j++)
133 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
134 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
135 j = -1;
136 out_free_bio:
137 while ( ++j < pi->raid_disks )
138 bio_put(r1_bio->bios[j]);
139 r1bio_pool_free(r1_bio, data);
140 return NULL;
143 static void r1buf_pool_free(void *__r1_bio, void *data)
145 struct pool_info *pi = data;
146 int i,j;
147 struct r1bio *r1bio = __r1_bio;
149 for (i = 0; i < RESYNC_PAGES; i++)
150 for (j = pi->raid_disks; j-- ;) {
151 if (j == 0 ||
152 r1bio->bios[j]->bi_io_vec[i].bv_page !=
153 r1bio->bios[0]->bi_io_vec[i].bv_page)
154 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
156 for (i=0 ; i < pi->raid_disks; i++)
157 bio_put(r1bio->bios[i]);
159 r1bio_pool_free(r1bio, data);
162 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
164 int i;
166 for (i = 0; i < conf->raid_disks; i++) {
167 struct bio **bio = r1_bio->bios + i;
168 if (!BIO_SPECIAL(*bio))
169 bio_put(*bio);
170 *bio = NULL;
174 static void free_r1bio(struct r1bio *r1_bio)
176 struct r1conf *conf = r1_bio->mddev->private;
178 put_all_bios(conf, r1_bio);
179 mempool_free(r1_bio, conf->r1bio_pool);
182 static void put_buf(struct r1bio *r1_bio)
184 struct r1conf *conf = r1_bio->mddev->private;
185 int i;
187 for (i=0; i<conf->raid_disks; i++) {
188 struct bio *bio = r1_bio->bios[i];
189 if (bio->bi_end_io)
190 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
193 mempool_free(r1_bio, conf->r1buf_pool);
195 lower_barrier(conf);
198 static void reschedule_retry(struct r1bio *r1_bio)
200 unsigned long flags;
201 struct mddev *mddev = r1_bio->mddev;
202 struct r1conf *conf = mddev->private;
204 spin_lock_irqsave(&conf->device_lock, flags);
205 list_add(&r1_bio->retry_list, &conf->retry_list);
206 conf->nr_queued ++;
207 spin_unlock_irqrestore(&conf->device_lock, flags);
209 wake_up(&conf->wait_barrier);
210 md_wakeup_thread(mddev->thread);
214 * raid_end_bio_io() is called when we have finished servicing a mirrored
215 * operation and are ready to return a success/failure code to the buffer
216 * cache layer.
218 static void call_bio_endio(struct r1bio *r1_bio)
220 struct bio *bio = r1_bio->master_bio;
221 int done;
222 struct r1conf *conf = r1_bio->mddev->private;
224 if (bio->bi_phys_segments) {
225 unsigned long flags;
226 spin_lock_irqsave(&conf->device_lock, flags);
227 bio->bi_phys_segments--;
228 done = (bio->bi_phys_segments == 0);
229 spin_unlock_irqrestore(&conf->device_lock, flags);
230 } else
231 done = 1;
233 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
234 clear_bit(BIO_UPTODATE, &bio->bi_flags);
235 if (done) {
236 bio_endio(bio, 0);
238 * Wake up any possible resync thread that waits for the device
239 * to go idle.
241 allow_barrier(conf);
245 static void raid_end_bio_io(struct r1bio *r1_bio)
247 struct bio *bio = r1_bio->master_bio;
249 /* if nobody has done the final endio yet, do it now */
250 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
251 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
252 (bio_data_dir(bio) == WRITE) ? "write" : "read",
253 (unsigned long long) bio->bi_sector,
254 (unsigned long long) bio->bi_sector +
255 (bio->bi_size >> 9) - 1);
257 call_bio_endio(r1_bio);
259 free_r1bio(r1_bio);
263 * Update disk head position estimator based on IRQ completion info.
265 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
267 struct r1conf *conf = r1_bio->mddev->private;
269 conf->mirrors[disk].head_position =
270 r1_bio->sector + (r1_bio->sectors);
274 * Find the disk number which triggered given bio
276 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
278 int mirror;
279 int raid_disks = r1_bio->mddev->raid_disks;
281 for (mirror = 0; mirror < raid_disks; mirror++)
282 if (r1_bio->bios[mirror] == bio)
283 break;
285 BUG_ON(mirror == raid_disks);
286 update_head_pos(mirror, r1_bio);
288 return mirror;
291 static void raid1_end_read_request(struct bio *bio, int error)
293 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
294 struct r1bio *r1_bio = bio->bi_private;
295 int mirror;
296 struct r1conf *conf = r1_bio->mddev->private;
298 mirror = r1_bio->read_disk;
300 * this branch is our 'one mirror IO has finished' event handler:
302 update_head_pos(mirror, r1_bio);
304 if (uptodate)
305 set_bit(R1BIO_Uptodate, &r1_bio->state);
306 else {
307 /* If all other devices have failed, we want to return
308 * the error upwards rather than fail the last device.
309 * Here we redefine "uptodate" to mean "Don't want to retry"
311 unsigned long flags;
312 spin_lock_irqsave(&conf->device_lock, flags);
313 if (r1_bio->mddev->degraded == conf->raid_disks ||
314 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
315 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
316 uptodate = 1;
317 spin_unlock_irqrestore(&conf->device_lock, flags);
320 if (uptodate)
321 raid_end_bio_io(r1_bio);
322 else {
324 * oops, read error:
326 char b[BDEVNAME_SIZE];
327 printk_ratelimited(
328 KERN_ERR "md/raid1:%s: %s: "
329 "rescheduling sector %llu\n",
330 mdname(conf->mddev),
331 bdevname(conf->mirrors[mirror].rdev->bdev,
333 (unsigned long long)r1_bio->sector);
334 set_bit(R1BIO_ReadError, &r1_bio->state);
335 reschedule_retry(r1_bio);
338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
341 static void close_write(struct r1bio *r1_bio)
343 /* it really is the end of this request */
344 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
345 /* free extra copy of the data pages */
346 int i = r1_bio->behind_page_count;
347 while (i--)
348 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
349 kfree(r1_bio->behind_bvecs);
350 r1_bio->behind_bvecs = NULL;
352 /* clear the bitmap if all writes complete successfully */
353 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
354 r1_bio->sectors,
355 !test_bit(R1BIO_Degraded, &r1_bio->state),
356 test_bit(R1BIO_BehindIO, &r1_bio->state));
357 md_write_end(r1_bio->mddev);
360 static void r1_bio_write_done(struct r1bio *r1_bio)
362 if (!atomic_dec_and_test(&r1_bio->remaining))
363 return;
365 if (test_bit(R1BIO_WriteError, &r1_bio->state))
366 reschedule_retry(r1_bio);
367 else {
368 close_write(r1_bio);
369 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
370 reschedule_retry(r1_bio);
371 else
372 raid_end_bio_io(r1_bio);
376 static void raid1_end_write_request(struct bio *bio, int error)
378 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
379 struct r1bio *r1_bio = bio->bi_private;
380 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
381 struct r1conf *conf = r1_bio->mddev->private;
382 struct bio *to_put = NULL;
384 mirror = find_bio_disk(r1_bio, bio);
387 * 'one mirror IO has finished' event handler:
389 if (!uptodate) {
390 set_bit(WriteErrorSeen,
391 &conf->mirrors[mirror].rdev->flags);
392 set_bit(R1BIO_WriteError, &r1_bio->state);
393 } else {
395 * Set R1BIO_Uptodate in our master bio, so that we
396 * will return a good error code for to the higher
397 * levels even if IO on some other mirrored buffer
398 * fails.
400 * The 'master' represents the composite IO operation
401 * to user-side. So if something waits for IO, then it
402 * will wait for the 'master' bio.
404 sector_t first_bad;
405 int bad_sectors;
407 r1_bio->bios[mirror] = NULL;
408 to_put = bio;
409 set_bit(R1BIO_Uptodate, &r1_bio->state);
411 /* Maybe we can clear some bad blocks. */
412 if (is_badblock(conf->mirrors[mirror].rdev,
413 r1_bio->sector, r1_bio->sectors,
414 &first_bad, &bad_sectors)) {
415 r1_bio->bios[mirror] = IO_MADE_GOOD;
416 set_bit(R1BIO_MadeGood, &r1_bio->state);
420 if (behind) {
421 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
422 atomic_dec(&r1_bio->behind_remaining);
425 * In behind mode, we ACK the master bio once the I/O
426 * has safely reached all non-writemostly
427 * disks. Setting the Returned bit ensures that this
428 * gets done only once -- we don't ever want to return
429 * -EIO here, instead we'll wait
431 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
432 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
433 /* Maybe we can return now */
434 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
435 struct bio *mbio = r1_bio->master_bio;
436 pr_debug("raid1: behind end write sectors"
437 " %llu-%llu\n",
438 (unsigned long long) mbio->bi_sector,
439 (unsigned long long) mbio->bi_sector +
440 (mbio->bi_size >> 9) - 1);
441 call_bio_endio(r1_bio);
445 if (r1_bio->bios[mirror] == NULL)
446 rdev_dec_pending(conf->mirrors[mirror].rdev,
447 conf->mddev);
450 * Let's see if all mirrored write operations have finished
451 * already.
453 r1_bio_write_done(r1_bio);
455 if (to_put)
456 bio_put(to_put);
461 * This routine returns the disk from which the requested read should
462 * be done. There is a per-array 'next expected sequential IO' sector
463 * number - if this matches on the next IO then we use the last disk.
464 * There is also a per-disk 'last know head position' sector that is
465 * maintained from IRQ contexts, both the normal and the resync IO
466 * completion handlers update this position correctly. If there is no
467 * perfect sequential match then we pick the disk whose head is closest.
469 * If there are 2 mirrors in the same 2 devices, performance degrades
470 * because position is mirror, not device based.
472 * The rdev for the device selected will have nr_pending incremented.
474 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
476 const sector_t this_sector = r1_bio->sector;
477 int sectors;
478 int best_good_sectors;
479 int start_disk;
480 int best_disk;
481 int i;
482 sector_t best_dist;
483 struct md_rdev *rdev;
484 int choose_first;
486 rcu_read_lock();
488 * Check if we can balance. We can balance on the whole
489 * device if no resync is going on, or below the resync window.
490 * We take the first readable disk when above the resync window.
492 retry:
493 sectors = r1_bio->sectors;
494 best_disk = -1;
495 best_dist = MaxSector;
496 best_good_sectors = 0;
498 if (conf->mddev->recovery_cp < MaxSector &&
499 (this_sector + sectors >= conf->next_resync)) {
500 choose_first = 1;
501 start_disk = 0;
502 } else {
503 choose_first = 0;
504 start_disk = conf->last_used;
507 for (i = 0 ; i < conf->raid_disks ; i++) {
508 sector_t dist;
509 sector_t first_bad;
510 int bad_sectors;
512 int disk = start_disk + i;
513 if (disk >= conf->raid_disks)
514 disk -= conf->raid_disks;
516 rdev = rcu_dereference(conf->mirrors[disk].rdev);
517 if (r1_bio->bios[disk] == IO_BLOCKED
518 || rdev == NULL
519 || test_bit(Faulty, &rdev->flags))
520 continue;
521 if (!test_bit(In_sync, &rdev->flags) &&
522 rdev->recovery_offset < this_sector + sectors)
523 continue;
524 if (test_bit(WriteMostly, &rdev->flags)) {
525 /* Don't balance among write-mostly, just
526 * use the first as a last resort */
527 if (best_disk < 0)
528 best_disk = disk;
529 continue;
531 /* This is a reasonable device to use. It might
532 * even be best.
534 if (is_badblock(rdev, this_sector, sectors,
535 &first_bad, &bad_sectors)) {
536 if (best_dist < MaxSector)
537 /* already have a better device */
538 continue;
539 if (first_bad <= this_sector) {
540 /* cannot read here. If this is the 'primary'
541 * device, then we must not read beyond
542 * bad_sectors from another device..
544 bad_sectors -= (this_sector - first_bad);
545 if (choose_first && sectors > bad_sectors)
546 sectors = bad_sectors;
547 if (best_good_sectors > sectors)
548 best_good_sectors = sectors;
550 } else {
551 sector_t good_sectors = first_bad - this_sector;
552 if (good_sectors > best_good_sectors) {
553 best_good_sectors = good_sectors;
554 best_disk = disk;
556 if (choose_first)
557 break;
559 continue;
560 } else
561 best_good_sectors = sectors;
563 dist = abs(this_sector - conf->mirrors[disk].head_position);
564 if (choose_first
565 /* Don't change to another disk for sequential reads */
566 || conf->next_seq_sect == this_sector
567 || dist == 0
568 /* If device is idle, use it */
569 || atomic_read(&rdev->nr_pending) == 0) {
570 best_disk = disk;
571 break;
573 if (dist < best_dist) {
574 best_dist = dist;
575 best_disk = disk;
579 if (best_disk >= 0) {
580 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
581 if (!rdev)
582 goto retry;
583 atomic_inc(&rdev->nr_pending);
584 if (test_bit(Faulty, &rdev->flags)) {
585 /* cannot risk returning a device that failed
586 * before we inc'ed nr_pending
588 rdev_dec_pending(rdev, conf->mddev);
589 goto retry;
591 sectors = best_good_sectors;
592 conf->next_seq_sect = this_sector + sectors;
593 conf->last_used = best_disk;
595 rcu_read_unlock();
596 *max_sectors = sectors;
598 return best_disk;
601 int md_raid1_congested(struct mddev *mddev, int bits)
603 struct r1conf *conf = mddev->private;
604 int i, ret = 0;
606 if ((bits & (1 << BDI_async_congested)) &&
607 conf->pending_count >= max_queued_requests)
608 return 1;
610 rcu_read_lock();
611 for (i = 0; i < mddev->raid_disks; i++) {
612 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
613 if (rdev && !test_bit(Faulty, &rdev->flags)) {
614 struct request_queue *q = bdev_get_queue(rdev->bdev);
616 BUG_ON(!q);
618 /* Note the '|| 1' - when read_balance prefers
619 * non-congested targets, it can be removed
621 if ((bits & (1<<BDI_async_congested)) || 1)
622 ret |= bdi_congested(&q->backing_dev_info, bits);
623 else
624 ret &= bdi_congested(&q->backing_dev_info, bits);
627 rcu_read_unlock();
628 return ret;
630 EXPORT_SYMBOL_GPL(md_raid1_congested);
632 static int raid1_congested(void *data, int bits)
634 struct mddev *mddev = data;
636 return mddev_congested(mddev, bits) ||
637 md_raid1_congested(mddev, bits);
640 static void flush_pending_writes(struct r1conf *conf)
642 /* Any writes that have been queued but are awaiting
643 * bitmap updates get flushed here.
645 spin_lock_irq(&conf->device_lock);
647 if (conf->pending_bio_list.head) {
648 struct bio *bio;
649 bio = bio_list_get(&conf->pending_bio_list);
650 conf->pending_count = 0;
651 spin_unlock_irq(&conf->device_lock);
652 /* flush any pending bitmap writes to
653 * disk before proceeding w/ I/O */
654 bitmap_unplug(conf->mddev->bitmap);
655 wake_up(&conf->wait_barrier);
657 while (bio) { /* submit pending writes */
658 struct bio *next = bio->bi_next;
659 bio->bi_next = NULL;
660 generic_make_request(bio);
661 bio = next;
663 } else
664 spin_unlock_irq(&conf->device_lock);
667 /* Barriers....
668 * Sometimes we need to suspend IO while we do something else,
669 * either some resync/recovery, or reconfigure the array.
670 * To do this we raise a 'barrier'.
671 * The 'barrier' is a counter that can be raised multiple times
672 * to count how many activities are happening which preclude
673 * normal IO.
674 * We can only raise the barrier if there is no pending IO.
675 * i.e. if nr_pending == 0.
676 * We choose only to raise the barrier if no-one is waiting for the
677 * barrier to go down. This means that as soon as an IO request
678 * is ready, no other operations which require a barrier will start
679 * until the IO request has had a chance.
681 * So: regular IO calls 'wait_barrier'. When that returns there
682 * is no backgroup IO happening, It must arrange to call
683 * allow_barrier when it has finished its IO.
684 * backgroup IO calls must call raise_barrier. Once that returns
685 * there is no normal IO happeing. It must arrange to call
686 * lower_barrier when the particular background IO completes.
688 #define RESYNC_DEPTH 32
690 static void raise_barrier(struct r1conf *conf)
692 spin_lock_irq(&conf->resync_lock);
694 /* Wait until no block IO is waiting */
695 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
696 conf->resync_lock, );
698 /* block any new IO from starting */
699 conf->barrier++;
701 /* Now wait for all pending IO to complete */
702 wait_event_lock_irq(conf->wait_barrier,
703 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
704 conf->resync_lock, );
706 spin_unlock_irq(&conf->resync_lock);
709 static void lower_barrier(struct r1conf *conf)
711 unsigned long flags;
712 BUG_ON(conf->barrier <= 0);
713 spin_lock_irqsave(&conf->resync_lock, flags);
714 conf->barrier--;
715 spin_unlock_irqrestore(&conf->resync_lock, flags);
716 wake_up(&conf->wait_barrier);
719 static void wait_barrier(struct r1conf *conf)
721 spin_lock_irq(&conf->resync_lock);
722 if (conf->barrier) {
723 conf->nr_waiting++;
724 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
725 conf->resync_lock,
727 conf->nr_waiting--;
729 conf->nr_pending++;
730 spin_unlock_irq(&conf->resync_lock);
733 static void allow_barrier(struct r1conf *conf)
735 unsigned long flags;
736 spin_lock_irqsave(&conf->resync_lock, flags);
737 conf->nr_pending--;
738 spin_unlock_irqrestore(&conf->resync_lock, flags);
739 wake_up(&conf->wait_barrier);
742 static void freeze_array(struct r1conf *conf)
744 /* stop syncio and normal IO and wait for everything to
745 * go quite.
746 * We increment barrier and nr_waiting, and then
747 * wait until nr_pending match nr_queued+1
748 * This is called in the context of one normal IO request
749 * that has failed. Thus any sync request that might be pending
750 * will be blocked by nr_pending, and we need to wait for
751 * pending IO requests to complete or be queued for re-try.
752 * Thus the number queued (nr_queued) plus this request (1)
753 * must match the number of pending IOs (nr_pending) before
754 * we continue.
756 spin_lock_irq(&conf->resync_lock);
757 conf->barrier++;
758 conf->nr_waiting++;
759 wait_event_lock_irq(conf->wait_barrier,
760 conf->nr_pending == conf->nr_queued+1,
761 conf->resync_lock,
762 flush_pending_writes(conf));
763 spin_unlock_irq(&conf->resync_lock);
765 static void unfreeze_array(struct r1conf *conf)
767 /* reverse the effect of the freeze */
768 spin_lock_irq(&conf->resync_lock);
769 conf->barrier--;
770 conf->nr_waiting--;
771 wake_up(&conf->wait_barrier);
772 spin_unlock_irq(&conf->resync_lock);
776 /* duplicate the data pages for behind I/O
778 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
780 int i;
781 struct bio_vec *bvec;
782 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
783 GFP_NOIO);
784 if (unlikely(!bvecs))
785 return;
787 bio_for_each_segment(bvec, bio, i) {
788 bvecs[i] = *bvec;
789 bvecs[i].bv_page = alloc_page(GFP_NOIO);
790 if (unlikely(!bvecs[i].bv_page))
791 goto do_sync_io;
792 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
793 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
794 kunmap(bvecs[i].bv_page);
795 kunmap(bvec->bv_page);
797 r1_bio->behind_bvecs = bvecs;
798 r1_bio->behind_page_count = bio->bi_vcnt;
799 set_bit(R1BIO_BehindIO, &r1_bio->state);
800 return;
802 do_sync_io:
803 for (i = 0; i < bio->bi_vcnt; i++)
804 if (bvecs[i].bv_page)
805 put_page(bvecs[i].bv_page);
806 kfree(bvecs);
807 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
810 static void make_request(struct mddev *mddev, struct bio * bio)
812 struct r1conf *conf = mddev->private;
813 struct mirror_info *mirror;
814 struct r1bio *r1_bio;
815 struct bio *read_bio;
816 int i, disks;
817 struct bitmap *bitmap;
818 unsigned long flags;
819 const int rw = bio_data_dir(bio);
820 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
821 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
822 struct md_rdev *blocked_rdev;
823 int plugged;
824 int first_clone;
825 int sectors_handled;
826 int max_sectors;
829 * Register the new request and wait if the reconstruction
830 * thread has put up a bar for new requests.
831 * Continue immediately if no resync is active currently.
834 md_write_start(mddev, bio); /* wait on superblock update early */
836 if (bio_data_dir(bio) == WRITE &&
837 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
838 bio->bi_sector < mddev->suspend_hi) {
839 /* As the suspend_* range is controlled by
840 * userspace, we want an interruptible
841 * wait.
843 DEFINE_WAIT(w);
844 for (;;) {
845 flush_signals(current);
846 prepare_to_wait(&conf->wait_barrier,
847 &w, TASK_INTERRUPTIBLE);
848 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
849 bio->bi_sector >= mddev->suspend_hi)
850 break;
851 schedule();
853 finish_wait(&conf->wait_barrier, &w);
856 wait_barrier(conf);
858 bitmap = mddev->bitmap;
861 * make_request() can abort the operation when READA is being
862 * used and no empty request is available.
865 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
867 r1_bio->master_bio = bio;
868 r1_bio->sectors = bio->bi_size >> 9;
869 r1_bio->state = 0;
870 r1_bio->mddev = mddev;
871 r1_bio->sector = bio->bi_sector;
873 /* We might need to issue multiple reads to different
874 * devices if there are bad blocks around, so we keep
875 * track of the number of reads in bio->bi_phys_segments.
876 * If this is 0, there is only one r1_bio and no locking
877 * will be needed when requests complete. If it is
878 * non-zero, then it is the number of not-completed requests.
880 bio->bi_phys_segments = 0;
881 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
883 if (rw == READ) {
885 * read balancing logic:
887 int rdisk;
889 read_again:
890 rdisk = read_balance(conf, r1_bio, &max_sectors);
892 if (rdisk < 0) {
893 /* couldn't find anywhere to read from */
894 raid_end_bio_io(r1_bio);
895 return;
897 mirror = conf->mirrors + rdisk;
899 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
900 bitmap) {
901 /* Reading from a write-mostly device must
902 * take care not to over-take any writes
903 * that are 'behind'
905 wait_event(bitmap->behind_wait,
906 atomic_read(&bitmap->behind_writes) == 0);
908 r1_bio->read_disk = rdisk;
910 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
911 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
912 max_sectors);
914 r1_bio->bios[rdisk] = read_bio;
916 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
917 read_bio->bi_bdev = mirror->rdev->bdev;
918 read_bio->bi_end_io = raid1_end_read_request;
919 read_bio->bi_rw = READ | do_sync;
920 read_bio->bi_private = r1_bio;
922 if (max_sectors < r1_bio->sectors) {
923 /* could not read all from this device, so we will
924 * need another r1_bio.
927 sectors_handled = (r1_bio->sector + max_sectors
928 - bio->bi_sector);
929 r1_bio->sectors = max_sectors;
930 spin_lock_irq(&conf->device_lock);
931 if (bio->bi_phys_segments == 0)
932 bio->bi_phys_segments = 2;
933 else
934 bio->bi_phys_segments++;
935 spin_unlock_irq(&conf->device_lock);
936 /* Cannot call generic_make_request directly
937 * as that will be queued in __make_request
938 * and subsequent mempool_alloc might block waiting
939 * for it. So hand bio over to raid1d.
941 reschedule_retry(r1_bio);
943 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
945 r1_bio->master_bio = bio;
946 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
947 r1_bio->state = 0;
948 r1_bio->mddev = mddev;
949 r1_bio->sector = bio->bi_sector + sectors_handled;
950 goto read_again;
951 } else
952 generic_make_request(read_bio);
953 return;
957 * WRITE:
959 if (conf->pending_count >= max_queued_requests) {
960 md_wakeup_thread(mddev->thread);
961 wait_event(conf->wait_barrier,
962 conf->pending_count < max_queued_requests);
964 /* first select target devices under rcu_lock and
965 * inc refcount on their rdev. Record them by setting
966 * bios[x] to bio
967 * If there are known/acknowledged bad blocks on any device on
968 * which we have seen a write error, we want to avoid writing those
969 * blocks.
970 * This potentially requires several writes to write around
971 * the bad blocks. Each set of writes gets it's own r1bio
972 * with a set of bios attached.
974 plugged = mddev_check_plugged(mddev);
976 disks = conf->raid_disks;
977 retry_write:
978 blocked_rdev = NULL;
979 rcu_read_lock();
980 max_sectors = r1_bio->sectors;
981 for (i = 0; i < disks; i++) {
982 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
983 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
984 atomic_inc(&rdev->nr_pending);
985 blocked_rdev = rdev;
986 break;
988 r1_bio->bios[i] = NULL;
989 if (!rdev || test_bit(Faulty, &rdev->flags)) {
990 set_bit(R1BIO_Degraded, &r1_bio->state);
991 continue;
994 atomic_inc(&rdev->nr_pending);
995 if (test_bit(WriteErrorSeen, &rdev->flags)) {
996 sector_t first_bad;
997 int bad_sectors;
998 int is_bad;
1000 is_bad = is_badblock(rdev, r1_bio->sector,
1001 max_sectors,
1002 &first_bad, &bad_sectors);
1003 if (is_bad < 0) {
1004 /* mustn't write here until the bad block is
1005 * acknowledged*/
1006 set_bit(BlockedBadBlocks, &rdev->flags);
1007 blocked_rdev = rdev;
1008 break;
1010 if (is_bad && first_bad <= r1_bio->sector) {
1011 /* Cannot write here at all */
1012 bad_sectors -= (r1_bio->sector - first_bad);
1013 if (bad_sectors < max_sectors)
1014 /* mustn't write more than bad_sectors
1015 * to other devices yet
1017 max_sectors = bad_sectors;
1018 rdev_dec_pending(rdev, mddev);
1019 /* We don't set R1BIO_Degraded as that
1020 * only applies if the disk is
1021 * missing, so it might be re-added,
1022 * and we want to know to recover this
1023 * chunk.
1024 * In this case the device is here,
1025 * and the fact that this chunk is not
1026 * in-sync is recorded in the bad
1027 * block log
1029 continue;
1031 if (is_bad) {
1032 int good_sectors = first_bad - r1_bio->sector;
1033 if (good_sectors < max_sectors)
1034 max_sectors = good_sectors;
1037 r1_bio->bios[i] = bio;
1039 rcu_read_unlock();
1041 if (unlikely(blocked_rdev)) {
1042 /* Wait for this device to become unblocked */
1043 int j;
1045 for (j = 0; j < i; j++)
1046 if (r1_bio->bios[j])
1047 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1048 r1_bio->state = 0;
1049 allow_barrier(conf);
1050 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1051 wait_barrier(conf);
1052 goto retry_write;
1055 if (max_sectors < r1_bio->sectors) {
1056 /* We are splitting this write into multiple parts, so
1057 * we need to prepare for allocating another r1_bio.
1059 r1_bio->sectors = max_sectors;
1060 spin_lock_irq(&conf->device_lock);
1061 if (bio->bi_phys_segments == 0)
1062 bio->bi_phys_segments = 2;
1063 else
1064 bio->bi_phys_segments++;
1065 spin_unlock_irq(&conf->device_lock);
1067 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1069 atomic_set(&r1_bio->remaining, 1);
1070 atomic_set(&r1_bio->behind_remaining, 0);
1072 first_clone = 1;
1073 for (i = 0; i < disks; i++) {
1074 struct bio *mbio;
1075 if (!r1_bio->bios[i])
1076 continue;
1078 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1079 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1081 if (first_clone) {
1082 /* do behind I/O ?
1083 * Not if there are too many, or cannot
1084 * allocate memory, or a reader on WriteMostly
1085 * is waiting for behind writes to flush */
1086 if (bitmap &&
1087 (atomic_read(&bitmap->behind_writes)
1088 < mddev->bitmap_info.max_write_behind) &&
1089 !waitqueue_active(&bitmap->behind_wait))
1090 alloc_behind_pages(mbio, r1_bio);
1092 bitmap_startwrite(bitmap, r1_bio->sector,
1093 r1_bio->sectors,
1094 test_bit(R1BIO_BehindIO,
1095 &r1_bio->state));
1096 first_clone = 0;
1098 if (r1_bio->behind_bvecs) {
1099 struct bio_vec *bvec;
1100 int j;
1102 /* Yes, I really want the '__' version so that
1103 * we clear any unused pointer in the io_vec, rather
1104 * than leave them unchanged. This is important
1105 * because when we come to free the pages, we won't
1106 * know the original bi_idx, so we just free
1107 * them all
1109 __bio_for_each_segment(bvec, mbio, j, 0)
1110 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1111 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1112 atomic_inc(&r1_bio->behind_remaining);
1115 r1_bio->bios[i] = mbio;
1117 mbio->bi_sector = (r1_bio->sector +
1118 conf->mirrors[i].rdev->data_offset);
1119 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1120 mbio->bi_end_io = raid1_end_write_request;
1121 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1122 mbio->bi_private = r1_bio;
1124 atomic_inc(&r1_bio->remaining);
1125 spin_lock_irqsave(&conf->device_lock, flags);
1126 bio_list_add(&conf->pending_bio_list, mbio);
1127 conf->pending_count++;
1128 spin_unlock_irqrestore(&conf->device_lock, flags);
1130 /* Mustn't call r1_bio_write_done before this next test,
1131 * as it could result in the bio being freed.
1133 if (sectors_handled < (bio->bi_size >> 9)) {
1134 r1_bio_write_done(r1_bio);
1135 /* We need another r1_bio. It has already been counted
1136 * in bio->bi_phys_segments
1138 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1139 r1_bio->master_bio = bio;
1140 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1141 r1_bio->state = 0;
1142 r1_bio->mddev = mddev;
1143 r1_bio->sector = bio->bi_sector + sectors_handled;
1144 goto retry_write;
1147 r1_bio_write_done(r1_bio);
1149 /* In case raid1d snuck in to freeze_array */
1150 wake_up(&conf->wait_barrier);
1152 if (do_sync || !bitmap || !plugged)
1153 md_wakeup_thread(mddev->thread);
1156 static void status(struct seq_file *seq, struct mddev *mddev)
1158 struct r1conf *conf = mddev->private;
1159 int i;
1161 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1162 conf->raid_disks - mddev->degraded);
1163 rcu_read_lock();
1164 for (i = 0; i < conf->raid_disks; i++) {
1165 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1166 seq_printf(seq, "%s",
1167 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1169 rcu_read_unlock();
1170 seq_printf(seq, "]");
1174 static void error(struct mddev *mddev, struct md_rdev *rdev)
1176 char b[BDEVNAME_SIZE];
1177 struct r1conf *conf = mddev->private;
1180 * If it is not operational, then we have already marked it as dead
1181 * else if it is the last working disks, ignore the error, let the
1182 * next level up know.
1183 * else mark the drive as failed
1185 if (test_bit(In_sync, &rdev->flags)
1186 && (conf->raid_disks - mddev->degraded) == 1) {
1188 * Don't fail the drive, act as though we were just a
1189 * normal single drive.
1190 * However don't try a recovery from this drive as
1191 * it is very likely to fail.
1193 conf->recovery_disabled = mddev->recovery_disabled;
1194 return;
1196 set_bit(Blocked, &rdev->flags);
1197 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1198 unsigned long flags;
1199 spin_lock_irqsave(&conf->device_lock, flags);
1200 mddev->degraded++;
1201 set_bit(Faulty, &rdev->flags);
1202 spin_unlock_irqrestore(&conf->device_lock, flags);
1204 * if recovery is running, make sure it aborts.
1206 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1207 } else
1208 set_bit(Faulty, &rdev->flags);
1209 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1210 printk(KERN_ALERT
1211 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1212 "md/raid1:%s: Operation continuing on %d devices.\n",
1213 mdname(mddev), bdevname(rdev->bdev, b),
1214 mdname(mddev), conf->raid_disks - mddev->degraded);
1217 static void print_conf(struct r1conf *conf)
1219 int i;
1221 printk(KERN_DEBUG "RAID1 conf printout:\n");
1222 if (!conf) {
1223 printk(KERN_DEBUG "(!conf)\n");
1224 return;
1226 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1227 conf->raid_disks);
1229 rcu_read_lock();
1230 for (i = 0; i < conf->raid_disks; i++) {
1231 char b[BDEVNAME_SIZE];
1232 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1233 if (rdev)
1234 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1235 i, !test_bit(In_sync, &rdev->flags),
1236 !test_bit(Faulty, &rdev->flags),
1237 bdevname(rdev->bdev,b));
1239 rcu_read_unlock();
1242 static void close_sync(struct r1conf *conf)
1244 wait_barrier(conf);
1245 allow_barrier(conf);
1247 mempool_destroy(conf->r1buf_pool);
1248 conf->r1buf_pool = NULL;
1251 static int raid1_spare_active(struct mddev *mddev)
1253 int i;
1254 struct r1conf *conf = mddev->private;
1255 int count = 0;
1256 unsigned long flags;
1259 * Find all failed disks within the RAID1 configuration
1260 * and mark them readable.
1261 * Called under mddev lock, so rcu protection not needed.
1263 for (i = 0; i < conf->raid_disks; i++) {
1264 struct md_rdev *rdev = conf->mirrors[i].rdev;
1265 if (rdev
1266 && !test_bit(Faulty, &rdev->flags)
1267 && !test_and_set_bit(In_sync, &rdev->flags)) {
1268 count++;
1269 sysfs_notify_dirent_safe(rdev->sysfs_state);
1272 spin_lock_irqsave(&conf->device_lock, flags);
1273 mddev->degraded -= count;
1274 spin_unlock_irqrestore(&conf->device_lock, flags);
1276 print_conf(conf);
1277 return count;
1281 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1283 struct r1conf *conf = mddev->private;
1284 int err = -EEXIST;
1285 int mirror = 0;
1286 struct mirror_info *p;
1287 int first = 0;
1288 int last = mddev->raid_disks - 1;
1290 if (mddev->recovery_disabled == conf->recovery_disabled)
1291 return -EBUSY;
1293 if (rdev->raid_disk >= 0)
1294 first = last = rdev->raid_disk;
1296 for (mirror = first; mirror <= last; mirror++)
1297 if ( !(p=conf->mirrors+mirror)->rdev) {
1299 disk_stack_limits(mddev->gendisk, rdev->bdev,
1300 rdev->data_offset << 9);
1301 /* as we don't honour merge_bvec_fn, we must
1302 * never risk violating it, so limit
1303 * ->max_segments to one lying with a single
1304 * page, as a one page request is never in
1305 * violation.
1307 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1308 blk_queue_max_segments(mddev->queue, 1);
1309 blk_queue_segment_boundary(mddev->queue,
1310 PAGE_CACHE_SIZE - 1);
1313 p->head_position = 0;
1314 rdev->raid_disk = mirror;
1315 err = 0;
1316 /* As all devices are equivalent, we don't need a full recovery
1317 * if this was recently any drive of the array
1319 if (rdev->saved_raid_disk < 0)
1320 conf->fullsync = 1;
1321 rcu_assign_pointer(p->rdev, rdev);
1322 break;
1324 md_integrity_add_rdev(rdev, mddev);
1325 print_conf(conf);
1326 return err;
1329 static int raid1_remove_disk(struct mddev *mddev, int number)
1331 struct r1conf *conf = mddev->private;
1332 int err = 0;
1333 struct md_rdev *rdev;
1334 struct mirror_info *p = conf->mirrors+ number;
1336 print_conf(conf);
1337 rdev = p->rdev;
1338 if (rdev) {
1339 if (test_bit(In_sync, &rdev->flags) ||
1340 atomic_read(&rdev->nr_pending)) {
1341 err = -EBUSY;
1342 goto abort;
1344 /* Only remove non-faulty devices if recovery
1345 * is not possible.
1347 if (!test_bit(Faulty, &rdev->flags) &&
1348 mddev->recovery_disabled != conf->recovery_disabled &&
1349 mddev->degraded < conf->raid_disks) {
1350 err = -EBUSY;
1351 goto abort;
1353 p->rdev = NULL;
1354 synchronize_rcu();
1355 if (atomic_read(&rdev->nr_pending)) {
1356 /* lost the race, try later */
1357 err = -EBUSY;
1358 p->rdev = rdev;
1359 goto abort;
1361 err = md_integrity_register(mddev);
1363 abort:
1365 print_conf(conf);
1366 return err;
1370 static void end_sync_read(struct bio *bio, int error)
1372 struct r1bio *r1_bio = bio->bi_private;
1374 update_head_pos(r1_bio->read_disk, r1_bio);
1377 * we have read a block, now it needs to be re-written,
1378 * or re-read if the read failed.
1379 * We don't do much here, just schedule handling by raid1d
1381 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1382 set_bit(R1BIO_Uptodate, &r1_bio->state);
1384 if (atomic_dec_and_test(&r1_bio->remaining))
1385 reschedule_retry(r1_bio);
1388 static void end_sync_write(struct bio *bio, int error)
1390 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1391 struct r1bio *r1_bio = bio->bi_private;
1392 struct mddev *mddev = r1_bio->mddev;
1393 struct r1conf *conf = mddev->private;
1394 int mirror=0;
1395 sector_t first_bad;
1396 int bad_sectors;
1398 mirror = find_bio_disk(r1_bio, bio);
1400 if (!uptodate) {
1401 sector_t sync_blocks = 0;
1402 sector_t s = r1_bio->sector;
1403 long sectors_to_go = r1_bio->sectors;
1404 /* make sure these bits doesn't get cleared. */
1405 do {
1406 bitmap_end_sync(mddev->bitmap, s,
1407 &sync_blocks, 1);
1408 s += sync_blocks;
1409 sectors_to_go -= sync_blocks;
1410 } while (sectors_to_go > 0);
1411 set_bit(WriteErrorSeen,
1412 &conf->mirrors[mirror].rdev->flags);
1413 set_bit(R1BIO_WriteError, &r1_bio->state);
1414 } else if (is_badblock(conf->mirrors[mirror].rdev,
1415 r1_bio->sector,
1416 r1_bio->sectors,
1417 &first_bad, &bad_sectors) &&
1418 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1419 r1_bio->sector,
1420 r1_bio->sectors,
1421 &first_bad, &bad_sectors)
1423 set_bit(R1BIO_MadeGood, &r1_bio->state);
1425 if (atomic_dec_and_test(&r1_bio->remaining)) {
1426 int s = r1_bio->sectors;
1427 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1428 test_bit(R1BIO_WriteError, &r1_bio->state))
1429 reschedule_retry(r1_bio);
1430 else {
1431 put_buf(r1_bio);
1432 md_done_sync(mddev, s, uptodate);
1437 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1438 int sectors, struct page *page, int rw)
1440 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1441 /* success */
1442 return 1;
1443 if (rw == WRITE)
1444 set_bit(WriteErrorSeen, &rdev->flags);
1445 /* need to record an error - either for the block or the device */
1446 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1447 md_error(rdev->mddev, rdev);
1448 return 0;
1451 static int fix_sync_read_error(struct r1bio *r1_bio)
1453 /* Try some synchronous reads of other devices to get
1454 * good data, much like with normal read errors. Only
1455 * read into the pages we already have so we don't
1456 * need to re-issue the read request.
1457 * We don't need to freeze the array, because being in an
1458 * active sync request, there is no normal IO, and
1459 * no overlapping syncs.
1460 * We don't need to check is_badblock() again as we
1461 * made sure that anything with a bad block in range
1462 * will have bi_end_io clear.
1464 struct mddev *mddev = r1_bio->mddev;
1465 struct r1conf *conf = mddev->private;
1466 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1467 sector_t sect = r1_bio->sector;
1468 int sectors = r1_bio->sectors;
1469 int idx = 0;
1471 while(sectors) {
1472 int s = sectors;
1473 int d = r1_bio->read_disk;
1474 int success = 0;
1475 struct md_rdev *rdev;
1476 int start;
1478 if (s > (PAGE_SIZE>>9))
1479 s = PAGE_SIZE >> 9;
1480 do {
1481 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1482 /* No rcu protection needed here devices
1483 * can only be removed when no resync is
1484 * active, and resync is currently active
1486 rdev = conf->mirrors[d].rdev;
1487 if (sync_page_io(rdev, sect, s<<9,
1488 bio->bi_io_vec[idx].bv_page,
1489 READ, false)) {
1490 success = 1;
1491 break;
1494 d++;
1495 if (d == conf->raid_disks)
1496 d = 0;
1497 } while (!success && d != r1_bio->read_disk);
1499 if (!success) {
1500 char b[BDEVNAME_SIZE];
1501 int abort = 0;
1502 /* Cannot read from anywhere, this block is lost.
1503 * Record a bad block on each device. If that doesn't
1504 * work just disable and interrupt the recovery.
1505 * Don't fail devices as that won't really help.
1507 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1508 " for block %llu\n",
1509 mdname(mddev),
1510 bdevname(bio->bi_bdev, b),
1511 (unsigned long long)r1_bio->sector);
1512 for (d = 0; d < conf->raid_disks; d++) {
1513 rdev = conf->mirrors[d].rdev;
1514 if (!rdev || test_bit(Faulty, &rdev->flags))
1515 continue;
1516 if (!rdev_set_badblocks(rdev, sect, s, 0))
1517 abort = 1;
1519 if (abort) {
1520 conf->recovery_disabled =
1521 mddev->recovery_disabled;
1522 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1523 md_done_sync(mddev, r1_bio->sectors, 0);
1524 put_buf(r1_bio);
1525 return 0;
1527 /* Try next page */
1528 sectors -= s;
1529 sect += s;
1530 idx++;
1531 continue;
1534 start = d;
1535 /* write it back and re-read */
1536 while (d != r1_bio->read_disk) {
1537 if (d == 0)
1538 d = conf->raid_disks;
1539 d--;
1540 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1541 continue;
1542 rdev = conf->mirrors[d].rdev;
1543 if (r1_sync_page_io(rdev, sect, s,
1544 bio->bi_io_vec[idx].bv_page,
1545 WRITE) == 0) {
1546 r1_bio->bios[d]->bi_end_io = NULL;
1547 rdev_dec_pending(rdev, mddev);
1550 d = start;
1551 while (d != r1_bio->read_disk) {
1552 if (d == 0)
1553 d = conf->raid_disks;
1554 d--;
1555 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1556 continue;
1557 rdev = conf->mirrors[d].rdev;
1558 if (r1_sync_page_io(rdev, sect, s,
1559 bio->bi_io_vec[idx].bv_page,
1560 READ) != 0)
1561 atomic_add(s, &rdev->corrected_errors);
1563 sectors -= s;
1564 sect += s;
1565 idx ++;
1567 set_bit(R1BIO_Uptodate, &r1_bio->state);
1568 set_bit(BIO_UPTODATE, &bio->bi_flags);
1569 return 1;
1572 static int process_checks(struct r1bio *r1_bio)
1574 /* We have read all readable devices. If we haven't
1575 * got the block, then there is no hope left.
1576 * If we have, then we want to do a comparison
1577 * and skip the write if everything is the same.
1578 * If any blocks failed to read, then we need to
1579 * attempt an over-write
1581 struct mddev *mddev = r1_bio->mddev;
1582 struct r1conf *conf = mddev->private;
1583 int primary;
1584 int i;
1586 for (primary = 0; primary < conf->raid_disks; primary++)
1587 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1588 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1589 r1_bio->bios[primary]->bi_end_io = NULL;
1590 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1591 break;
1593 r1_bio->read_disk = primary;
1594 for (i = 0; i < conf->raid_disks; i++) {
1595 int j;
1596 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1597 struct bio *pbio = r1_bio->bios[primary];
1598 struct bio *sbio = r1_bio->bios[i];
1599 int size;
1601 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1602 continue;
1604 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1605 for (j = vcnt; j-- ; ) {
1606 struct page *p, *s;
1607 p = pbio->bi_io_vec[j].bv_page;
1608 s = sbio->bi_io_vec[j].bv_page;
1609 if (memcmp(page_address(p),
1610 page_address(s),
1611 PAGE_SIZE))
1612 break;
1614 } else
1615 j = 0;
1616 if (j >= 0)
1617 mddev->resync_mismatches += r1_bio->sectors;
1618 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1619 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1620 /* No need to write to this device. */
1621 sbio->bi_end_io = NULL;
1622 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1623 continue;
1625 /* fixup the bio for reuse */
1626 sbio->bi_vcnt = vcnt;
1627 sbio->bi_size = r1_bio->sectors << 9;
1628 sbio->bi_idx = 0;
1629 sbio->bi_phys_segments = 0;
1630 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1631 sbio->bi_flags |= 1 << BIO_UPTODATE;
1632 sbio->bi_next = NULL;
1633 sbio->bi_sector = r1_bio->sector +
1634 conf->mirrors[i].rdev->data_offset;
1635 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1636 size = sbio->bi_size;
1637 for (j = 0; j < vcnt ; j++) {
1638 struct bio_vec *bi;
1639 bi = &sbio->bi_io_vec[j];
1640 bi->bv_offset = 0;
1641 if (size > PAGE_SIZE)
1642 bi->bv_len = PAGE_SIZE;
1643 else
1644 bi->bv_len = size;
1645 size -= PAGE_SIZE;
1646 memcpy(page_address(bi->bv_page),
1647 page_address(pbio->bi_io_vec[j].bv_page),
1648 PAGE_SIZE);
1651 return 0;
1654 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1656 struct r1conf *conf = mddev->private;
1657 int i;
1658 int disks = conf->raid_disks;
1659 struct bio *bio, *wbio;
1661 bio = r1_bio->bios[r1_bio->read_disk];
1663 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1664 /* ouch - failed to read all of that. */
1665 if (!fix_sync_read_error(r1_bio))
1666 return;
1668 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1669 if (process_checks(r1_bio) < 0)
1670 return;
1672 * schedule writes
1674 atomic_set(&r1_bio->remaining, 1);
1675 for (i = 0; i < disks ; i++) {
1676 wbio = r1_bio->bios[i];
1677 if (wbio->bi_end_io == NULL ||
1678 (wbio->bi_end_io == end_sync_read &&
1679 (i == r1_bio->read_disk ||
1680 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1681 continue;
1683 wbio->bi_rw = WRITE;
1684 wbio->bi_end_io = end_sync_write;
1685 atomic_inc(&r1_bio->remaining);
1686 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1688 generic_make_request(wbio);
1691 if (atomic_dec_and_test(&r1_bio->remaining)) {
1692 /* if we're here, all write(s) have completed, so clean up */
1693 md_done_sync(mddev, r1_bio->sectors, 1);
1694 put_buf(r1_bio);
1699 * This is a kernel thread which:
1701 * 1. Retries failed read operations on working mirrors.
1702 * 2. Updates the raid superblock when problems encounter.
1703 * 3. Performs writes following reads for array synchronising.
1706 static void fix_read_error(struct r1conf *conf, int read_disk,
1707 sector_t sect, int sectors)
1709 struct mddev *mddev = conf->mddev;
1710 while(sectors) {
1711 int s = sectors;
1712 int d = read_disk;
1713 int success = 0;
1714 int start;
1715 struct md_rdev *rdev;
1717 if (s > (PAGE_SIZE>>9))
1718 s = PAGE_SIZE >> 9;
1720 do {
1721 /* Note: no rcu protection needed here
1722 * as this is synchronous in the raid1d thread
1723 * which is the thread that might remove
1724 * a device. If raid1d ever becomes multi-threaded....
1726 sector_t first_bad;
1727 int bad_sectors;
1729 rdev = conf->mirrors[d].rdev;
1730 if (rdev &&
1731 test_bit(In_sync, &rdev->flags) &&
1732 is_badblock(rdev, sect, s,
1733 &first_bad, &bad_sectors) == 0 &&
1734 sync_page_io(rdev, sect, s<<9,
1735 conf->tmppage, READ, false))
1736 success = 1;
1737 else {
1738 d++;
1739 if (d == conf->raid_disks)
1740 d = 0;
1742 } while (!success && d != read_disk);
1744 if (!success) {
1745 /* Cannot read from anywhere - mark it bad */
1746 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1747 if (!rdev_set_badblocks(rdev, sect, s, 0))
1748 md_error(mddev, rdev);
1749 break;
1751 /* write it back and re-read */
1752 start = d;
1753 while (d != read_disk) {
1754 if (d==0)
1755 d = conf->raid_disks;
1756 d--;
1757 rdev = conf->mirrors[d].rdev;
1758 if (rdev &&
1759 test_bit(In_sync, &rdev->flags))
1760 r1_sync_page_io(rdev, sect, s,
1761 conf->tmppage, WRITE);
1763 d = start;
1764 while (d != read_disk) {
1765 char b[BDEVNAME_SIZE];
1766 if (d==0)
1767 d = conf->raid_disks;
1768 d--;
1769 rdev = conf->mirrors[d].rdev;
1770 if (rdev &&
1771 test_bit(In_sync, &rdev->flags)) {
1772 if (r1_sync_page_io(rdev, sect, s,
1773 conf->tmppage, READ)) {
1774 atomic_add(s, &rdev->corrected_errors);
1775 printk(KERN_INFO
1776 "md/raid1:%s: read error corrected "
1777 "(%d sectors at %llu on %s)\n",
1778 mdname(mddev), s,
1779 (unsigned long long)(sect +
1780 rdev->data_offset),
1781 bdevname(rdev->bdev, b));
1785 sectors -= s;
1786 sect += s;
1790 static void bi_complete(struct bio *bio, int error)
1792 complete((struct completion *)bio->bi_private);
1795 static int submit_bio_wait(int rw, struct bio *bio)
1797 struct completion event;
1798 rw |= REQ_SYNC;
1800 init_completion(&event);
1801 bio->bi_private = &event;
1802 bio->bi_end_io = bi_complete;
1803 submit_bio(rw, bio);
1804 wait_for_completion(&event);
1806 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1809 static int narrow_write_error(struct r1bio *r1_bio, int i)
1811 struct mddev *mddev = r1_bio->mddev;
1812 struct r1conf *conf = mddev->private;
1813 struct md_rdev *rdev = conf->mirrors[i].rdev;
1814 int vcnt, idx;
1815 struct bio_vec *vec;
1817 /* bio has the data to be written to device 'i' where
1818 * we just recently had a write error.
1819 * We repeatedly clone the bio and trim down to one block,
1820 * then try the write. Where the write fails we record
1821 * a bad block.
1822 * It is conceivable that the bio doesn't exactly align with
1823 * blocks. We must handle this somehow.
1825 * We currently own a reference on the rdev.
1828 int block_sectors;
1829 sector_t sector;
1830 int sectors;
1831 int sect_to_write = r1_bio->sectors;
1832 int ok = 1;
1834 if (rdev->badblocks.shift < 0)
1835 return 0;
1837 block_sectors = 1 << rdev->badblocks.shift;
1838 sector = r1_bio->sector;
1839 sectors = ((sector + block_sectors)
1840 & ~(sector_t)(block_sectors - 1))
1841 - sector;
1843 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1844 vcnt = r1_bio->behind_page_count;
1845 vec = r1_bio->behind_bvecs;
1846 idx = 0;
1847 while (vec[idx].bv_page == NULL)
1848 idx++;
1849 } else {
1850 vcnt = r1_bio->master_bio->bi_vcnt;
1851 vec = r1_bio->master_bio->bi_io_vec;
1852 idx = r1_bio->master_bio->bi_idx;
1854 while (sect_to_write) {
1855 struct bio *wbio;
1856 if (sectors > sect_to_write)
1857 sectors = sect_to_write;
1858 /* Write at 'sector' for 'sectors'*/
1860 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1861 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1862 wbio->bi_sector = r1_bio->sector;
1863 wbio->bi_rw = WRITE;
1864 wbio->bi_vcnt = vcnt;
1865 wbio->bi_size = r1_bio->sectors << 9;
1866 wbio->bi_idx = idx;
1868 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1869 wbio->bi_sector += rdev->data_offset;
1870 wbio->bi_bdev = rdev->bdev;
1871 if (submit_bio_wait(WRITE, wbio) == 0)
1872 /* failure! */
1873 ok = rdev_set_badblocks(rdev, sector,
1874 sectors, 0)
1875 && ok;
1877 bio_put(wbio);
1878 sect_to_write -= sectors;
1879 sector += sectors;
1880 sectors = block_sectors;
1882 return ok;
1885 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1887 int m;
1888 int s = r1_bio->sectors;
1889 for (m = 0; m < conf->raid_disks ; m++) {
1890 struct md_rdev *rdev = conf->mirrors[m].rdev;
1891 struct bio *bio = r1_bio->bios[m];
1892 if (bio->bi_end_io == NULL)
1893 continue;
1894 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1895 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1896 rdev_clear_badblocks(rdev, r1_bio->sector, s);
1898 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1899 test_bit(R1BIO_WriteError, &r1_bio->state)) {
1900 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1901 md_error(conf->mddev, rdev);
1904 put_buf(r1_bio);
1905 md_done_sync(conf->mddev, s, 1);
1908 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1910 int m;
1911 for (m = 0; m < conf->raid_disks ; m++)
1912 if (r1_bio->bios[m] == IO_MADE_GOOD) {
1913 struct md_rdev *rdev = conf->mirrors[m].rdev;
1914 rdev_clear_badblocks(rdev,
1915 r1_bio->sector,
1916 r1_bio->sectors);
1917 rdev_dec_pending(rdev, conf->mddev);
1918 } else if (r1_bio->bios[m] != NULL) {
1919 /* This drive got a write error. We need to
1920 * narrow down and record precise write
1921 * errors.
1923 if (!narrow_write_error(r1_bio, m)) {
1924 md_error(conf->mddev,
1925 conf->mirrors[m].rdev);
1926 /* an I/O failed, we can't clear the bitmap */
1927 set_bit(R1BIO_Degraded, &r1_bio->state);
1929 rdev_dec_pending(conf->mirrors[m].rdev,
1930 conf->mddev);
1932 if (test_bit(R1BIO_WriteError, &r1_bio->state))
1933 close_write(r1_bio);
1934 raid_end_bio_io(r1_bio);
1937 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
1939 int disk;
1940 int max_sectors;
1941 struct mddev *mddev = conf->mddev;
1942 struct bio *bio;
1943 char b[BDEVNAME_SIZE];
1944 struct md_rdev *rdev;
1946 clear_bit(R1BIO_ReadError, &r1_bio->state);
1947 /* we got a read error. Maybe the drive is bad. Maybe just
1948 * the block and we can fix it.
1949 * We freeze all other IO, and try reading the block from
1950 * other devices. When we find one, we re-write
1951 * and check it that fixes the read error.
1952 * This is all done synchronously while the array is
1953 * frozen
1955 if (mddev->ro == 0) {
1956 freeze_array(conf);
1957 fix_read_error(conf, r1_bio->read_disk,
1958 r1_bio->sector, r1_bio->sectors);
1959 unfreeze_array(conf);
1960 } else
1961 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1963 bio = r1_bio->bios[r1_bio->read_disk];
1964 bdevname(bio->bi_bdev, b);
1965 read_more:
1966 disk = read_balance(conf, r1_bio, &max_sectors);
1967 if (disk == -1) {
1968 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1969 " read error for block %llu\n",
1970 mdname(mddev), b, (unsigned long long)r1_bio->sector);
1971 raid_end_bio_io(r1_bio);
1972 } else {
1973 const unsigned long do_sync
1974 = r1_bio->master_bio->bi_rw & REQ_SYNC;
1975 if (bio) {
1976 r1_bio->bios[r1_bio->read_disk] =
1977 mddev->ro ? IO_BLOCKED : NULL;
1978 bio_put(bio);
1980 r1_bio->read_disk = disk;
1981 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1982 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1983 r1_bio->bios[r1_bio->read_disk] = bio;
1984 rdev = conf->mirrors[disk].rdev;
1985 printk_ratelimited(KERN_ERR
1986 "md/raid1:%s: redirecting sector %llu"
1987 " to other mirror: %s\n",
1988 mdname(mddev),
1989 (unsigned long long)r1_bio->sector,
1990 bdevname(rdev->bdev, b));
1991 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1992 bio->bi_bdev = rdev->bdev;
1993 bio->bi_end_io = raid1_end_read_request;
1994 bio->bi_rw = READ | do_sync;
1995 bio->bi_private = r1_bio;
1996 if (max_sectors < r1_bio->sectors) {
1997 /* Drat - have to split this up more */
1998 struct bio *mbio = r1_bio->master_bio;
1999 int sectors_handled = (r1_bio->sector + max_sectors
2000 - mbio->bi_sector);
2001 r1_bio->sectors = max_sectors;
2002 spin_lock_irq(&conf->device_lock);
2003 if (mbio->bi_phys_segments == 0)
2004 mbio->bi_phys_segments = 2;
2005 else
2006 mbio->bi_phys_segments++;
2007 spin_unlock_irq(&conf->device_lock);
2008 generic_make_request(bio);
2009 bio = NULL;
2011 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2013 r1_bio->master_bio = mbio;
2014 r1_bio->sectors = (mbio->bi_size >> 9)
2015 - sectors_handled;
2016 r1_bio->state = 0;
2017 set_bit(R1BIO_ReadError, &r1_bio->state);
2018 r1_bio->mddev = mddev;
2019 r1_bio->sector = mbio->bi_sector + sectors_handled;
2021 goto read_more;
2022 } else
2023 generic_make_request(bio);
2027 static void raid1d(struct mddev *mddev)
2029 struct r1bio *r1_bio;
2030 unsigned long flags;
2031 struct r1conf *conf = mddev->private;
2032 struct list_head *head = &conf->retry_list;
2033 struct blk_plug plug;
2035 md_check_recovery(mddev);
2037 blk_start_plug(&plug);
2038 for (;;) {
2040 if (atomic_read(&mddev->plug_cnt) == 0)
2041 flush_pending_writes(conf);
2043 spin_lock_irqsave(&conf->device_lock, flags);
2044 if (list_empty(head)) {
2045 spin_unlock_irqrestore(&conf->device_lock, flags);
2046 break;
2048 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2049 list_del(head->prev);
2050 conf->nr_queued--;
2051 spin_unlock_irqrestore(&conf->device_lock, flags);
2053 mddev = r1_bio->mddev;
2054 conf = mddev->private;
2055 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2056 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2057 test_bit(R1BIO_WriteError, &r1_bio->state))
2058 handle_sync_write_finished(conf, r1_bio);
2059 else
2060 sync_request_write(mddev, r1_bio);
2061 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2062 test_bit(R1BIO_WriteError, &r1_bio->state))
2063 handle_write_finished(conf, r1_bio);
2064 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2065 handle_read_error(conf, r1_bio);
2066 else
2067 /* just a partial read to be scheduled from separate
2068 * context
2070 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2072 cond_resched();
2073 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2074 md_check_recovery(mddev);
2076 blk_finish_plug(&plug);
2080 static int init_resync(struct r1conf *conf)
2082 int buffs;
2084 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2085 BUG_ON(conf->r1buf_pool);
2086 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2087 conf->poolinfo);
2088 if (!conf->r1buf_pool)
2089 return -ENOMEM;
2090 conf->next_resync = 0;
2091 return 0;
2095 * perform a "sync" on one "block"
2097 * We need to make sure that no normal I/O request - particularly write
2098 * requests - conflict with active sync requests.
2100 * This is achieved by tracking pending requests and a 'barrier' concept
2101 * that can be installed to exclude normal IO requests.
2104 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2106 struct r1conf *conf = mddev->private;
2107 struct r1bio *r1_bio;
2108 struct bio *bio;
2109 sector_t max_sector, nr_sectors;
2110 int disk = -1;
2111 int i;
2112 int wonly = -1;
2113 int write_targets = 0, read_targets = 0;
2114 sector_t sync_blocks;
2115 int still_degraded = 0;
2116 int good_sectors = RESYNC_SECTORS;
2117 int min_bad = 0; /* number of sectors that are bad in all devices */
2119 if (!conf->r1buf_pool)
2120 if (init_resync(conf))
2121 return 0;
2123 max_sector = mddev->dev_sectors;
2124 if (sector_nr >= max_sector) {
2125 /* If we aborted, we need to abort the
2126 * sync on the 'current' bitmap chunk (there will
2127 * only be one in raid1 resync.
2128 * We can find the current addess in mddev->curr_resync
2130 if (mddev->curr_resync < max_sector) /* aborted */
2131 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2132 &sync_blocks, 1);
2133 else /* completed sync */
2134 conf->fullsync = 0;
2136 bitmap_close_sync(mddev->bitmap);
2137 close_sync(conf);
2138 return 0;
2141 if (mddev->bitmap == NULL &&
2142 mddev->recovery_cp == MaxSector &&
2143 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2144 conf->fullsync == 0) {
2145 *skipped = 1;
2146 return max_sector - sector_nr;
2148 /* before building a request, check if we can skip these blocks..
2149 * This call the bitmap_start_sync doesn't actually record anything
2151 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2152 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2153 /* We can skip this block, and probably several more */
2154 *skipped = 1;
2155 return sync_blocks;
2158 * If there is non-resync activity waiting for a turn,
2159 * and resync is going fast enough,
2160 * then let it though before starting on this new sync request.
2162 if (!go_faster && conf->nr_waiting)
2163 msleep_interruptible(1000);
2165 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2166 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2167 raise_barrier(conf);
2169 conf->next_resync = sector_nr;
2171 rcu_read_lock();
2173 * If we get a correctably read error during resync or recovery,
2174 * we might want to read from a different device. So we
2175 * flag all drives that could conceivably be read from for READ,
2176 * and any others (which will be non-In_sync devices) for WRITE.
2177 * If a read fails, we try reading from something else for which READ
2178 * is OK.
2181 r1_bio->mddev = mddev;
2182 r1_bio->sector = sector_nr;
2183 r1_bio->state = 0;
2184 set_bit(R1BIO_IsSync, &r1_bio->state);
2186 for (i=0; i < conf->raid_disks; i++) {
2187 struct md_rdev *rdev;
2188 bio = r1_bio->bios[i];
2190 /* take from bio_init */
2191 bio->bi_next = NULL;
2192 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2193 bio->bi_flags |= 1 << BIO_UPTODATE;
2194 bio->bi_rw = READ;
2195 bio->bi_vcnt = 0;
2196 bio->bi_idx = 0;
2197 bio->bi_phys_segments = 0;
2198 bio->bi_size = 0;
2199 bio->bi_end_io = NULL;
2200 bio->bi_private = NULL;
2202 rdev = rcu_dereference(conf->mirrors[i].rdev);
2203 if (rdev == NULL ||
2204 test_bit(Faulty, &rdev->flags)) {
2205 still_degraded = 1;
2206 } else if (!test_bit(In_sync, &rdev->flags)) {
2207 bio->bi_rw = WRITE;
2208 bio->bi_end_io = end_sync_write;
2209 write_targets ++;
2210 } else {
2211 /* may need to read from here */
2212 sector_t first_bad = MaxSector;
2213 int bad_sectors;
2215 if (is_badblock(rdev, sector_nr, good_sectors,
2216 &first_bad, &bad_sectors)) {
2217 if (first_bad > sector_nr)
2218 good_sectors = first_bad - sector_nr;
2219 else {
2220 bad_sectors -= (sector_nr - first_bad);
2221 if (min_bad == 0 ||
2222 min_bad > bad_sectors)
2223 min_bad = bad_sectors;
2226 if (sector_nr < first_bad) {
2227 if (test_bit(WriteMostly, &rdev->flags)) {
2228 if (wonly < 0)
2229 wonly = i;
2230 } else {
2231 if (disk < 0)
2232 disk = i;
2234 bio->bi_rw = READ;
2235 bio->bi_end_io = end_sync_read;
2236 read_targets++;
2239 if (bio->bi_end_io) {
2240 atomic_inc(&rdev->nr_pending);
2241 bio->bi_sector = sector_nr + rdev->data_offset;
2242 bio->bi_bdev = rdev->bdev;
2243 bio->bi_private = r1_bio;
2246 rcu_read_unlock();
2247 if (disk < 0)
2248 disk = wonly;
2249 r1_bio->read_disk = disk;
2251 if (read_targets == 0 && min_bad > 0) {
2252 /* These sectors are bad on all InSync devices, so we
2253 * need to mark them bad on all write targets
2255 int ok = 1;
2256 for (i = 0 ; i < conf->raid_disks ; i++)
2257 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2258 struct md_rdev *rdev =
2259 rcu_dereference(conf->mirrors[i].rdev);
2260 ok = rdev_set_badblocks(rdev, sector_nr,
2261 min_bad, 0
2262 ) && ok;
2264 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2265 *skipped = 1;
2266 put_buf(r1_bio);
2268 if (!ok) {
2269 /* Cannot record the badblocks, so need to
2270 * abort the resync.
2271 * If there are multiple read targets, could just
2272 * fail the really bad ones ???
2274 conf->recovery_disabled = mddev->recovery_disabled;
2275 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2276 return 0;
2277 } else
2278 return min_bad;
2281 if (min_bad > 0 && min_bad < good_sectors) {
2282 /* only resync enough to reach the next bad->good
2283 * transition */
2284 good_sectors = min_bad;
2287 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2288 /* extra read targets are also write targets */
2289 write_targets += read_targets-1;
2291 if (write_targets == 0 || read_targets == 0) {
2292 /* There is nowhere to write, so all non-sync
2293 * drives must be failed - so we are finished
2295 sector_t rv = max_sector - sector_nr;
2296 *skipped = 1;
2297 put_buf(r1_bio);
2298 return rv;
2301 if (max_sector > mddev->resync_max)
2302 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2303 if (max_sector > sector_nr + good_sectors)
2304 max_sector = sector_nr + good_sectors;
2305 nr_sectors = 0;
2306 sync_blocks = 0;
2307 do {
2308 struct page *page;
2309 int len = PAGE_SIZE;
2310 if (sector_nr + (len>>9) > max_sector)
2311 len = (max_sector - sector_nr) << 9;
2312 if (len == 0)
2313 break;
2314 if (sync_blocks == 0) {
2315 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2316 &sync_blocks, still_degraded) &&
2317 !conf->fullsync &&
2318 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2319 break;
2320 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2321 if ((len >> 9) > sync_blocks)
2322 len = sync_blocks<<9;
2325 for (i=0 ; i < conf->raid_disks; i++) {
2326 bio = r1_bio->bios[i];
2327 if (bio->bi_end_io) {
2328 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2329 if (bio_add_page(bio, page, len, 0) == 0) {
2330 /* stop here */
2331 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2332 while (i > 0) {
2333 i--;
2334 bio = r1_bio->bios[i];
2335 if (bio->bi_end_io==NULL)
2336 continue;
2337 /* remove last page from this bio */
2338 bio->bi_vcnt--;
2339 bio->bi_size -= len;
2340 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2342 goto bio_full;
2346 nr_sectors += len>>9;
2347 sector_nr += len>>9;
2348 sync_blocks -= (len>>9);
2349 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2350 bio_full:
2351 r1_bio->sectors = nr_sectors;
2353 /* For a user-requested sync, we read all readable devices and do a
2354 * compare
2356 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2357 atomic_set(&r1_bio->remaining, read_targets);
2358 for (i=0; i<conf->raid_disks; i++) {
2359 bio = r1_bio->bios[i];
2360 if (bio->bi_end_io == end_sync_read) {
2361 md_sync_acct(bio->bi_bdev, nr_sectors);
2362 generic_make_request(bio);
2365 } else {
2366 atomic_set(&r1_bio->remaining, 1);
2367 bio = r1_bio->bios[r1_bio->read_disk];
2368 md_sync_acct(bio->bi_bdev, nr_sectors);
2369 generic_make_request(bio);
2372 return nr_sectors;
2375 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2377 if (sectors)
2378 return sectors;
2380 return mddev->dev_sectors;
2383 static struct r1conf *setup_conf(struct mddev *mddev)
2385 struct r1conf *conf;
2386 int i;
2387 struct mirror_info *disk;
2388 struct md_rdev *rdev;
2389 int err = -ENOMEM;
2391 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2392 if (!conf)
2393 goto abort;
2395 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2396 GFP_KERNEL);
2397 if (!conf->mirrors)
2398 goto abort;
2400 conf->tmppage = alloc_page(GFP_KERNEL);
2401 if (!conf->tmppage)
2402 goto abort;
2404 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2405 if (!conf->poolinfo)
2406 goto abort;
2407 conf->poolinfo->raid_disks = mddev->raid_disks;
2408 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2409 r1bio_pool_free,
2410 conf->poolinfo);
2411 if (!conf->r1bio_pool)
2412 goto abort;
2414 conf->poolinfo->mddev = mddev;
2416 spin_lock_init(&conf->device_lock);
2417 list_for_each_entry(rdev, &mddev->disks, same_set) {
2418 int disk_idx = rdev->raid_disk;
2419 if (disk_idx >= mddev->raid_disks
2420 || disk_idx < 0)
2421 continue;
2422 disk = conf->mirrors + disk_idx;
2424 disk->rdev = rdev;
2426 disk->head_position = 0;
2428 conf->raid_disks = mddev->raid_disks;
2429 conf->mddev = mddev;
2430 INIT_LIST_HEAD(&conf->retry_list);
2432 spin_lock_init(&conf->resync_lock);
2433 init_waitqueue_head(&conf->wait_barrier);
2435 bio_list_init(&conf->pending_bio_list);
2436 conf->pending_count = 0;
2437 conf->recovery_disabled = mddev->recovery_disabled - 1;
2439 conf->last_used = -1;
2440 for (i = 0; i < conf->raid_disks; i++) {
2442 disk = conf->mirrors + i;
2444 if (!disk->rdev ||
2445 !test_bit(In_sync, &disk->rdev->flags)) {
2446 disk->head_position = 0;
2447 if (disk->rdev)
2448 conf->fullsync = 1;
2449 } else if (conf->last_used < 0)
2451 * The first working device is used as a
2452 * starting point to read balancing.
2454 conf->last_used = i;
2457 err = -EIO;
2458 if (conf->last_used < 0) {
2459 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2460 mdname(mddev));
2461 goto abort;
2463 err = -ENOMEM;
2464 conf->thread = md_register_thread(raid1d, mddev, NULL);
2465 if (!conf->thread) {
2466 printk(KERN_ERR
2467 "md/raid1:%s: couldn't allocate thread\n",
2468 mdname(mddev));
2469 goto abort;
2472 return conf;
2474 abort:
2475 if (conf) {
2476 if (conf->r1bio_pool)
2477 mempool_destroy(conf->r1bio_pool);
2478 kfree(conf->mirrors);
2479 safe_put_page(conf->tmppage);
2480 kfree(conf->poolinfo);
2481 kfree(conf);
2483 return ERR_PTR(err);
2486 static int run(struct mddev *mddev)
2488 struct r1conf *conf;
2489 int i;
2490 struct md_rdev *rdev;
2492 if (mddev->level != 1) {
2493 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2494 mdname(mddev), mddev->level);
2495 return -EIO;
2497 if (mddev->reshape_position != MaxSector) {
2498 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2499 mdname(mddev));
2500 return -EIO;
2503 * copy the already verified devices into our private RAID1
2504 * bookkeeping area. [whatever we allocate in run(),
2505 * should be freed in stop()]
2507 if (mddev->private == NULL)
2508 conf = setup_conf(mddev);
2509 else
2510 conf = mddev->private;
2512 if (IS_ERR(conf))
2513 return PTR_ERR(conf);
2515 list_for_each_entry(rdev, &mddev->disks, same_set) {
2516 if (!mddev->gendisk)
2517 continue;
2518 disk_stack_limits(mddev->gendisk, rdev->bdev,
2519 rdev->data_offset << 9);
2520 /* as we don't honour merge_bvec_fn, we must never risk
2521 * violating it, so limit ->max_segments to 1 lying within
2522 * a single page, as a one page request is never in violation.
2524 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2525 blk_queue_max_segments(mddev->queue, 1);
2526 blk_queue_segment_boundary(mddev->queue,
2527 PAGE_CACHE_SIZE - 1);
2531 mddev->degraded = 0;
2532 for (i=0; i < conf->raid_disks; i++)
2533 if (conf->mirrors[i].rdev == NULL ||
2534 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2535 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2536 mddev->degraded++;
2538 if (conf->raid_disks - mddev->degraded == 1)
2539 mddev->recovery_cp = MaxSector;
2541 if (mddev->recovery_cp != MaxSector)
2542 printk(KERN_NOTICE "md/raid1:%s: not clean"
2543 " -- starting background reconstruction\n",
2544 mdname(mddev));
2545 printk(KERN_INFO
2546 "md/raid1:%s: active with %d out of %d mirrors\n",
2547 mdname(mddev), mddev->raid_disks - mddev->degraded,
2548 mddev->raid_disks);
2551 * Ok, everything is just fine now
2553 mddev->thread = conf->thread;
2554 conf->thread = NULL;
2555 mddev->private = conf;
2557 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2559 if (mddev->queue) {
2560 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2561 mddev->queue->backing_dev_info.congested_data = mddev;
2563 return md_integrity_register(mddev);
2566 static int stop(struct mddev *mddev)
2568 struct r1conf *conf = mddev->private;
2569 struct bitmap *bitmap = mddev->bitmap;
2571 /* wait for behind writes to complete */
2572 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2573 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2574 mdname(mddev));
2575 /* need to kick something here to make sure I/O goes? */
2576 wait_event(bitmap->behind_wait,
2577 atomic_read(&bitmap->behind_writes) == 0);
2580 raise_barrier(conf);
2581 lower_barrier(conf);
2583 md_unregister_thread(&mddev->thread);
2584 if (conf->r1bio_pool)
2585 mempool_destroy(conf->r1bio_pool);
2586 kfree(conf->mirrors);
2587 kfree(conf->poolinfo);
2588 kfree(conf);
2589 mddev->private = NULL;
2590 return 0;
2593 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2595 /* no resync is happening, and there is enough space
2596 * on all devices, so we can resize.
2597 * We need to make sure resync covers any new space.
2598 * If the array is shrinking we should possibly wait until
2599 * any io in the removed space completes, but it hardly seems
2600 * worth it.
2602 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2603 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2604 return -EINVAL;
2605 set_capacity(mddev->gendisk, mddev->array_sectors);
2606 revalidate_disk(mddev->gendisk);
2607 if (sectors > mddev->dev_sectors &&
2608 mddev->recovery_cp > mddev->dev_sectors) {
2609 mddev->recovery_cp = mddev->dev_sectors;
2610 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2612 mddev->dev_sectors = sectors;
2613 mddev->resync_max_sectors = sectors;
2614 return 0;
2617 static int raid1_reshape(struct mddev *mddev)
2619 /* We need to:
2620 * 1/ resize the r1bio_pool
2621 * 2/ resize conf->mirrors
2623 * We allocate a new r1bio_pool if we can.
2624 * Then raise a device barrier and wait until all IO stops.
2625 * Then resize conf->mirrors and swap in the new r1bio pool.
2627 * At the same time, we "pack" the devices so that all the missing
2628 * devices have the higher raid_disk numbers.
2630 mempool_t *newpool, *oldpool;
2631 struct pool_info *newpoolinfo;
2632 struct mirror_info *newmirrors;
2633 struct r1conf *conf = mddev->private;
2634 int cnt, raid_disks;
2635 unsigned long flags;
2636 int d, d2, err;
2638 /* Cannot change chunk_size, layout, or level */
2639 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2640 mddev->layout != mddev->new_layout ||
2641 mddev->level != mddev->new_level) {
2642 mddev->new_chunk_sectors = mddev->chunk_sectors;
2643 mddev->new_layout = mddev->layout;
2644 mddev->new_level = mddev->level;
2645 return -EINVAL;
2648 err = md_allow_write(mddev);
2649 if (err)
2650 return err;
2652 raid_disks = mddev->raid_disks + mddev->delta_disks;
2654 if (raid_disks < conf->raid_disks) {
2655 cnt=0;
2656 for (d= 0; d < conf->raid_disks; d++)
2657 if (conf->mirrors[d].rdev)
2658 cnt++;
2659 if (cnt > raid_disks)
2660 return -EBUSY;
2663 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2664 if (!newpoolinfo)
2665 return -ENOMEM;
2666 newpoolinfo->mddev = mddev;
2667 newpoolinfo->raid_disks = raid_disks;
2669 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2670 r1bio_pool_free, newpoolinfo);
2671 if (!newpool) {
2672 kfree(newpoolinfo);
2673 return -ENOMEM;
2675 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2676 if (!newmirrors) {
2677 kfree(newpoolinfo);
2678 mempool_destroy(newpool);
2679 return -ENOMEM;
2682 raise_barrier(conf);
2684 /* ok, everything is stopped */
2685 oldpool = conf->r1bio_pool;
2686 conf->r1bio_pool = newpool;
2688 for (d = d2 = 0; d < conf->raid_disks; d++) {
2689 struct md_rdev *rdev = conf->mirrors[d].rdev;
2690 if (rdev && rdev->raid_disk != d2) {
2691 sysfs_unlink_rdev(mddev, rdev);
2692 rdev->raid_disk = d2;
2693 sysfs_unlink_rdev(mddev, rdev);
2694 if (sysfs_link_rdev(mddev, rdev))
2695 printk(KERN_WARNING
2696 "md/raid1:%s: cannot register rd%d\n",
2697 mdname(mddev), rdev->raid_disk);
2699 if (rdev)
2700 newmirrors[d2++].rdev = rdev;
2702 kfree(conf->mirrors);
2703 conf->mirrors = newmirrors;
2704 kfree(conf->poolinfo);
2705 conf->poolinfo = newpoolinfo;
2707 spin_lock_irqsave(&conf->device_lock, flags);
2708 mddev->degraded += (raid_disks - conf->raid_disks);
2709 spin_unlock_irqrestore(&conf->device_lock, flags);
2710 conf->raid_disks = mddev->raid_disks = raid_disks;
2711 mddev->delta_disks = 0;
2713 conf->last_used = 0; /* just make sure it is in-range */
2714 lower_barrier(conf);
2716 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2717 md_wakeup_thread(mddev->thread);
2719 mempool_destroy(oldpool);
2720 return 0;
2723 static void raid1_quiesce(struct mddev *mddev, int state)
2725 struct r1conf *conf = mddev->private;
2727 switch(state) {
2728 case 2: /* wake for suspend */
2729 wake_up(&conf->wait_barrier);
2730 break;
2731 case 1:
2732 raise_barrier(conf);
2733 break;
2734 case 0:
2735 lower_barrier(conf);
2736 break;
2740 static void *raid1_takeover(struct mddev *mddev)
2742 /* raid1 can take over:
2743 * raid5 with 2 devices, any layout or chunk size
2745 if (mddev->level == 5 && mddev->raid_disks == 2) {
2746 struct r1conf *conf;
2747 mddev->new_level = 1;
2748 mddev->new_layout = 0;
2749 mddev->new_chunk_sectors = 0;
2750 conf = setup_conf(mddev);
2751 if (!IS_ERR(conf))
2752 conf->barrier = 1;
2753 return conf;
2755 return ERR_PTR(-EINVAL);
2758 static struct md_personality raid1_personality =
2760 .name = "raid1",
2761 .level = 1,
2762 .owner = THIS_MODULE,
2763 .make_request = make_request,
2764 .run = run,
2765 .stop = stop,
2766 .status = status,
2767 .error_handler = error,
2768 .hot_add_disk = raid1_add_disk,
2769 .hot_remove_disk= raid1_remove_disk,
2770 .spare_active = raid1_spare_active,
2771 .sync_request = sync_request,
2772 .resize = raid1_resize,
2773 .size = raid1_size,
2774 .check_reshape = raid1_reshape,
2775 .quiesce = raid1_quiesce,
2776 .takeover = raid1_takeover,
2779 static int __init raid_init(void)
2781 return register_md_personality(&raid1_personality);
2784 static void raid_exit(void)
2786 unregister_md_personality(&raid1_personality);
2789 module_init(raid_init);
2790 module_exit(raid_exit);
2791 MODULE_LICENSE("GPL");
2792 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2793 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2794 MODULE_ALIAS("md-raid1");
2795 MODULE_ALIAS("md-level-1");
2797 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);