Merge branch 'for-3.2/core' of git://git.kernel.dk/linux-block
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / md.c
blob2acb32827fde46361e156ee629a6c51cb5edc371
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
69 static void md_print_devices(void);
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
104 static inline int speed_max(struct mddev *mddev)
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
110 static struct ctl_table_header *raid_table_header;
112 static ctl_table raid_table[] = {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
130 static ctl_table raid_dir_table[] = {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
140 static ctl_table raid_root_table[] = {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
150 static const struct block_device_operations md_fops;
152 static int start_readonly;
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
158 static void mddev_bio_destructor(struct bio *bio)
160 struct mddev *mddev, **mddevp;
162 mddevp = (void*)bio;
163 mddev = mddevp[-1];
165 bio_free(bio, mddev->bio_set);
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 struct mddev *mddev)
171 struct bio *b;
172 struct mddev **mddevp;
174 if (!mddev || !mddev->bio_set)
175 return bio_alloc(gfp_mask, nr_iovecs);
177 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 mddev->bio_set);
179 if (!b)
180 return NULL;
181 mddevp = (void*)b;
182 mddevp[-1] = mddev;
183 b->bi_destructor = mddev_bio_destructor;
184 return b;
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 struct mddev *mddev)
191 struct bio *b;
192 struct mddev **mddevp;
194 if (!mddev || !mddev->bio_set)
195 return bio_clone(bio, gfp_mask);
197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 mddev->bio_set);
199 if (!b)
200 return NULL;
201 mddevp = (void*)b;
202 mddevp[-1] = mddev;
203 b->bi_destructor = mddev_bio_destructor;
204 __bio_clone(b, bio);
205 if (bio_integrity(bio)) {
206 int ret;
208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210 if (ret < 0) {
211 bio_put(b);
212 return NULL;
216 return b;
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220 void md_trim_bio(struct bio *bio, int offset, int size)
222 /* 'bio' is a cloned bio which we need to trim to match
223 * the given offset and size.
224 * This requires adjusting bi_sector, bi_size, and bi_io_vec
226 int i;
227 struct bio_vec *bvec;
228 int sofar = 0;
230 size <<= 9;
231 if (offset == 0 && size == bio->bi_size)
232 return;
234 bio->bi_sector += offset;
235 bio->bi_size = size;
236 offset <<= 9;
237 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239 while (bio->bi_idx < bio->bi_vcnt &&
240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 /* remove this whole bio_vec */
242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 bio->bi_idx++;
245 if (bio->bi_idx < bio->bi_vcnt) {
246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249 /* avoid any complications with bi_idx being non-zero*/
250 if (bio->bi_idx) {
251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 bio->bi_vcnt -= bio->bi_idx;
254 bio->bi_idx = 0;
256 /* Make sure vcnt and last bv are not too big */
257 bio_for_each_segment(bvec, bio, i) {
258 if (sofar + bvec->bv_len > size)
259 bvec->bv_len = size - sofar;
260 if (bvec->bv_len == 0) {
261 bio->bi_vcnt = i;
262 break;
264 sofar += bvec->bv_len;
267 EXPORT_SYMBOL_GPL(md_trim_bio);
270 * We have a system wide 'event count' that is incremented
271 * on any 'interesting' event, and readers of /proc/mdstat
272 * can use 'poll' or 'select' to find out when the event
273 * count increases.
275 * Events are:
276 * start array, stop array, error, add device, remove device,
277 * start build, activate spare
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
283 atomic_inc(&md_event_count);
284 wake_up(&md_event_waiters);
286 EXPORT_SYMBOL_GPL(md_new_event);
288 /* Alternate version that can be called from interrupts
289 * when calling sysfs_notify isn't needed.
291 static void md_new_event_inintr(struct mddev *mddev)
293 atomic_inc(&md_event_count);
294 wake_up(&md_event_waiters);
298 * Enables to iterate over all existing md arrays
299 * all_mddevs_lock protects this list.
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
306 * iterates through all used mddevs in the system.
307 * We take care to grab the all_mddevs_lock whenever navigating
308 * the list, and to always hold a refcount when unlocked.
309 * Any code which breaks out of this loop while own
310 * a reference to the current mddev and must mddev_put it.
312 #define for_each_mddev(_mddev,_tmp) \
314 for (({ spin_lock(&all_mddevs_lock); \
315 _tmp = all_mddevs.next; \
316 _mddev = NULL;}); \
317 ({ if (_tmp != &all_mddevs) \
318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 spin_unlock(&all_mddevs_lock); \
320 if (_mddev) mddev_put(_mddev); \
321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
322 _tmp != &all_mddevs;}); \
323 ({ spin_lock(&all_mddevs_lock); \
324 _tmp = _tmp->next;}) \
328 /* Rather than calling directly into the personality make_request function,
329 * IO requests come here first so that we can check if the device is
330 * being suspended pending a reconfiguration.
331 * We hold a refcount over the call to ->make_request. By the time that
332 * call has finished, the bio has been linked into some internal structure
333 * and so is visible to ->quiesce(), so we don't need the refcount any more.
335 static void md_make_request(struct request_queue *q, struct bio *bio)
337 const int rw = bio_data_dir(bio);
338 struct mddev *mddev = q->queuedata;
339 int cpu;
340 unsigned int sectors;
342 if (mddev == NULL || mddev->pers == NULL
343 || !mddev->ready) {
344 bio_io_error(bio);
345 return;
347 smp_rmb(); /* Ensure implications of 'active' are visible */
348 rcu_read_lock();
349 if (mddev->suspended) {
350 DEFINE_WAIT(__wait);
351 for (;;) {
352 prepare_to_wait(&mddev->sb_wait, &__wait,
353 TASK_UNINTERRUPTIBLE);
354 if (!mddev->suspended)
355 break;
356 rcu_read_unlock();
357 schedule();
358 rcu_read_lock();
360 finish_wait(&mddev->sb_wait, &__wait);
362 atomic_inc(&mddev->active_io);
363 rcu_read_unlock();
366 * save the sectors now since our bio can
367 * go away inside make_request
369 sectors = bio_sectors(bio);
370 mddev->pers->make_request(mddev, bio);
372 cpu = part_stat_lock();
373 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375 part_stat_unlock();
377 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378 wake_up(&mddev->sb_wait);
381 /* mddev_suspend makes sure no new requests are submitted
382 * to the device, and that any requests that have been submitted
383 * are completely handled.
384 * Once ->stop is called and completes, the module will be completely
385 * unused.
387 void mddev_suspend(struct mddev *mddev)
389 BUG_ON(mddev->suspended);
390 mddev->suspended = 1;
391 synchronize_rcu();
392 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393 mddev->pers->quiesce(mddev, 1);
395 EXPORT_SYMBOL_GPL(mddev_suspend);
397 void mddev_resume(struct mddev *mddev)
399 mddev->suspended = 0;
400 wake_up(&mddev->sb_wait);
401 mddev->pers->quiesce(mddev, 0);
403 md_wakeup_thread(mddev->thread);
404 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
406 EXPORT_SYMBOL_GPL(mddev_resume);
408 int mddev_congested(struct mddev *mddev, int bits)
410 return mddev->suspended;
412 EXPORT_SYMBOL(mddev_congested);
415 * Generic flush handling for md
418 static void md_end_flush(struct bio *bio, int err)
420 struct md_rdev *rdev = bio->bi_private;
421 struct mddev *mddev = rdev->mddev;
423 rdev_dec_pending(rdev, mddev);
425 if (atomic_dec_and_test(&mddev->flush_pending)) {
426 /* The pre-request flush has finished */
427 queue_work(md_wq, &mddev->flush_work);
429 bio_put(bio);
432 static void md_submit_flush_data(struct work_struct *ws);
434 static void submit_flushes(struct work_struct *ws)
436 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
437 struct md_rdev *rdev;
439 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
440 atomic_set(&mddev->flush_pending, 1);
441 rcu_read_lock();
442 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
443 if (rdev->raid_disk >= 0 &&
444 !test_bit(Faulty, &rdev->flags)) {
445 /* Take two references, one is dropped
446 * when request finishes, one after
447 * we reclaim rcu_read_lock
449 struct bio *bi;
450 atomic_inc(&rdev->nr_pending);
451 atomic_inc(&rdev->nr_pending);
452 rcu_read_unlock();
453 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
454 bi->bi_end_io = md_end_flush;
455 bi->bi_private = rdev;
456 bi->bi_bdev = rdev->bdev;
457 atomic_inc(&mddev->flush_pending);
458 submit_bio(WRITE_FLUSH, bi);
459 rcu_read_lock();
460 rdev_dec_pending(rdev, mddev);
462 rcu_read_unlock();
463 if (atomic_dec_and_test(&mddev->flush_pending))
464 queue_work(md_wq, &mddev->flush_work);
467 static void md_submit_flush_data(struct work_struct *ws)
469 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
470 struct bio *bio = mddev->flush_bio;
472 if (bio->bi_size == 0)
473 /* an empty barrier - all done */
474 bio_endio(bio, 0);
475 else {
476 bio->bi_rw &= ~REQ_FLUSH;
477 mddev->pers->make_request(mddev, bio);
480 mddev->flush_bio = NULL;
481 wake_up(&mddev->sb_wait);
484 void md_flush_request(struct mddev *mddev, struct bio *bio)
486 spin_lock_irq(&mddev->write_lock);
487 wait_event_lock_irq(mddev->sb_wait,
488 !mddev->flush_bio,
489 mddev->write_lock, /*nothing*/);
490 mddev->flush_bio = bio;
491 spin_unlock_irq(&mddev->write_lock);
493 INIT_WORK(&mddev->flush_work, submit_flushes);
494 queue_work(md_wq, &mddev->flush_work);
496 EXPORT_SYMBOL(md_flush_request);
498 /* Support for plugging.
499 * This mirrors the plugging support in request_queue, but does not
500 * require having a whole queue or request structures.
501 * We allocate an md_plug_cb for each md device and each thread it gets
502 * plugged on. This links tot the private plug_handle structure in the
503 * personality data where we keep a count of the number of outstanding
504 * plugs so other code can see if a plug is active.
506 struct md_plug_cb {
507 struct blk_plug_cb cb;
508 struct mddev *mddev;
511 static void plugger_unplug(struct blk_plug_cb *cb)
513 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
514 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
515 md_wakeup_thread(mdcb->mddev->thread);
516 kfree(mdcb);
519 /* Check that an unplug wakeup will come shortly.
520 * If not, wakeup the md thread immediately
522 int mddev_check_plugged(struct mddev *mddev)
524 struct blk_plug *plug = current->plug;
525 struct md_plug_cb *mdcb;
527 if (!plug)
528 return 0;
530 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
531 if (mdcb->cb.callback == plugger_unplug &&
532 mdcb->mddev == mddev) {
533 /* Already on the list, move to top */
534 if (mdcb != list_first_entry(&plug->cb_list,
535 struct md_plug_cb,
536 cb.list))
537 list_move(&mdcb->cb.list, &plug->cb_list);
538 return 1;
541 /* Not currently on the callback list */
542 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
543 if (!mdcb)
544 return 0;
546 mdcb->mddev = mddev;
547 mdcb->cb.callback = plugger_unplug;
548 atomic_inc(&mddev->plug_cnt);
549 list_add(&mdcb->cb.list, &plug->cb_list);
550 return 1;
552 EXPORT_SYMBOL_GPL(mddev_check_plugged);
554 static inline struct mddev *mddev_get(struct mddev *mddev)
556 atomic_inc(&mddev->active);
557 return mddev;
560 static void mddev_delayed_delete(struct work_struct *ws);
562 static void mddev_put(struct mddev *mddev)
564 struct bio_set *bs = NULL;
566 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
567 return;
568 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
569 mddev->ctime == 0 && !mddev->hold_active) {
570 /* Array is not configured at all, and not held active,
571 * so destroy it */
572 list_del(&mddev->all_mddevs);
573 bs = mddev->bio_set;
574 mddev->bio_set = NULL;
575 if (mddev->gendisk) {
576 /* We did a probe so need to clean up. Call
577 * queue_work inside the spinlock so that
578 * flush_workqueue() after mddev_find will
579 * succeed in waiting for the work to be done.
581 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
582 queue_work(md_misc_wq, &mddev->del_work);
583 } else
584 kfree(mddev);
586 spin_unlock(&all_mddevs_lock);
587 if (bs)
588 bioset_free(bs);
591 void mddev_init(struct mddev *mddev)
593 mutex_init(&mddev->open_mutex);
594 mutex_init(&mddev->reconfig_mutex);
595 mutex_init(&mddev->bitmap_info.mutex);
596 INIT_LIST_HEAD(&mddev->disks);
597 INIT_LIST_HEAD(&mddev->all_mddevs);
598 init_timer(&mddev->safemode_timer);
599 atomic_set(&mddev->active, 1);
600 atomic_set(&mddev->openers, 0);
601 atomic_set(&mddev->active_io, 0);
602 atomic_set(&mddev->plug_cnt, 0);
603 spin_lock_init(&mddev->write_lock);
604 atomic_set(&mddev->flush_pending, 0);
605 init_waitqueue_head(&mddev->sb_wait);
606 init_waitqueue_head(&mddev->recovery_wait);
607 mddev->reshape_position = MaxSector;
608 mddev->resync_min = 0;
609 mddev->resync_max = MaxSector;
610 mddev->level = LEVEL_NONE;
612 EXPORT_SYMBOL_GPL(mddev_init);
614 static struct mddev * mddev_find(dev_t unit)
616 struct mddev *mddev, *new = NULL;
618 if (unit && MAJOR(unit) != MD_MAJOR)
619 unit &= ~((1<<MdpMinorShift)-1);
621 retry:
622 spin_lock(&all_mddevs_lock);
624 if (unit) {
625 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
626 if (mddev->unit == unit) {
627 mddev_get(mddev);
628 spin_unlock(&all_mddevs_lock);
629 kfree(new);
630 return mddev;
633 if (new) {
634 list_add(&new->all_mddevs, &all_mddevs);
635 spin_unlock(&all_mddevs_lock);
636 new->hold_active = UNTIL_IOCTL;
637 return new;
639 } else if (new) {
640 /* find an unused unit number */
641 static int next_minor = 512;
642 int start = next_minor;
643 int is_free = 0;
644 int dev = 0;
645 while (!is_free) {
646 dev = MKDEV(MD_MAJOR, next_minor);
647 next_minor++;
648 if (next_minor > MINORMASK)
649 next_minor = 0;
650 if (next_minor == start) {
651 /* Oh dear, all in use. */
652 spin_unlock(&all_mddevs_lock);
653 kfree(new);
654 return NULL;
657 is_free = 1;
658 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
659 if (mddev->unit == dev) {
660 is_free = 0;
661 break;
664 new->unit = dev;
665 new->md_minor = MINOR(dev);
666 new->hold_active = UNTIL_STOP;
667 list_add(&new->all_mddevs, &all_mddevs);
668 spin_unlock(&all_mddevs_lock);
669 return new;
671 spin_unlock(&all_mddevs_lock);
673 new = kzalloc(sizeof(*new), GFP_KERNEL);
674 if (!new)
675 return NULL;
677 new->unit = unit;
678 if (MAJOR(unit) == MD_MAJOR)
679 new->md_minor = MINOR(unit);
680 else
681 new->md_minor = MINOR(unit) >> MdpMinorShift;
683 mddev_init(new);
685 goto retry;
688 static inline int mddev_lock(struct mddev * mddev)
690 return mutex_lock_interruptible(&mddev->reconfig_mutex);
693 static inline int mddev_is_locked(struct mddev *mddev)
695 return mutex_is_locked(&mddev->reconfig_mutex);
698 static inline int mddev_trylock(struct mddev * mddev)
700 return mutex_trylock(&mddev->reconfig_mutex);
703 static struct attribute_group md_redundancy_group;
705 static void mddev_unlock(struct mddev * mddev)
707 if (mddev->to_remove) {
708 /* These cannot be removed under reconfig_mutex as
709 * an access to the files will try to take reconfig_mutex
710 * while holding the file unremovable, which leads to
711 * a deadlock.
712 * So hold set sysfs_active while the remove in happeing,
713 * and anything else which might set ->to_remove or my
714 * otherwise change the sysfs namespace will fail with
715 * -EBUSY if sysfs_active is still set.
716 * We set sysfs_active under reconfig_mutex and elsewhere
717 * test it under the same mutex to ensure its correct value
718 * is seen.
720 struct attribute_group *to_remove = mddev->to_remove;
721 mddev->to_remove = NULL;
722 mddev->sysfs_active = 1;
723 mutex_unlock(&mddev->reconfig_mutex);
725 if (mddev->kobj.sd) {
726 if (to_remove != &md_redundancy_group)
727 sysfs_remove_group(&mddev->kobj, to_remove);
728 if (mddev->pers == NULL ||
729 mddev->pers->sync_request == NULL) {
730 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
731 if (mddev->sysfs_action)
732 sysfs_put(mddev->sysfs_action);
733 mddev->sysfs_action = NULL;
736 mddev->sysfs_active = 0;
737 } else
738 mutex_unlock(&mddev->reconfig_mutex);
740 /* As we've dropped the mutex we need a spinlock to
741 * make sure the thread doesn't disappear
743 spin_lock(&pers_lock);
744 md_wakeup_thread(mddev->thread);
745 spin_unlock(&pers_lock);
748 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
750 struct md_rdev *rdev;
752 list_for_each_entry(rdev, &mddev->disks, same_set)
753 if (rdev->desc_nr == nr)
754 return rdev;
756 return NULL;
759 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
761 struct md_rdev *rdev;
763 list_for_each_entry(rdev, &mddev->disks, same_set)
764 if (rdev->bdev->bd_dev == dev)
765 return rdev;
767 return NULL;
770 static struct md_personality *find_pers(int level, char *clevel)
772 struct md_personality *pers;
773 list_for_each_entry(pers, &pers_list, list) {
774 if (level != LEVEL_NONE && pers->level == level)
775 return pers;
776 if (strcmp(pers->name, clevel)==0)
777 return pers;
779 return NULL;
782 /* return the offset of the super block in 512byte sectors */
783 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
785 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
786 return MD_NEW_SIZE_SECTORS(num_sectors);
789 static int alloc_disk_sb(struct md_rdev * rdev)
791 if (rdev->sb_page)
792 MD_BUG();
794 rdev->sb_page = alloc_page(GFP_KERNEL);
795 if (!rdev->sb_page) {
796 printk(KERN_ALERT "md: out of memory.\n");
797 return -ENOMEM;
800 return 0;
803 static void free_disk_sb(struct md_rdev * rdev)
805 if (rdev->sb_page) {
806 put_page(rdev->sb_page);
807 rdev->sb_loaded = 0;
808 rdev->sb_page = NULL;
809 rdev->sb_start = 0;
810 rdev->sectors = 0;
812 if (rdev->bb_page) {
813 put_page(rdev->bb_page);
814 rdev->bb_page = NULL;
819 static void super_written(struct bio *bio, int error)
821 struct md_rdev *rdev = bio->bi_private;
822 struct mddev *mddev = rdev->mddev;
824 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
825 printk("md: super_written gets error=%d, uptodate=%d\n",
826 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
827 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
828 md_error(mddev, rdev);
831 if (atomic_dec_and_test(&mddev->pending_writes))
832 wake_up(&mddev->sb_wait);
833 bio_put(bio);
836 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
837 sector_t sector, int size, struct page *page)
839 /* write first size bytes of page to sector of rdev
840 * Increment mddev->pending_writes before returning
841 * and decrement it on completion, waking up sb_wait
842 * if zero is reached.
843 * If an error occurred, call md_error
845 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
847 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
848 bio->bi_sector = sector;
849 bio_add_page(bio, page, size, 0);
850 bio->bi_private = rdev;
851 bio->bi_end_io = super_written;
853 atomic_inc(&mddev->pending_writes);
854 submit_bio(WRITE_FLUSH_FUA, bio);
857 void md_super_wait(struct mddev *mddev)
859 /* wait for all superblock writes that were scheduled to complete */
860 DEFINE_WAIT(wq);
861 for(;;) {
862 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
863 if (atomic_read(&mddev->pending_writes)==0)
864 break;
865 schedule();
867 finish_wait(&mddev->sb_wait, &wq);
870 static void bi_complete(struct bio *bio, int error)
872 complete((struct completion*)bio->bi_private);
875 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
876 struct page *page, int rw, bool metadata_op)
878 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
879 struct completion event;
880 int ret;
882 rw |= REQ_SYNC;
884 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
885 rdev->meta_bdev : rdev->bdev;
886 if (metadata_op)
887 bio->bi_sector = sector + rdev->sb_start;
888 else
889 bio->bi_sector = sector + rdev->data_offset;
890 bio_add_page(bio, page, size, 0);
891 init_completion(&event);
892 bio->bi_private = &event;
893 bio->bi_end_io = bi_complete;
894 submit_bio(rw, bio);
895 wait_for_completion(&event);
897 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
898 bio_put(bio);
899 return ret;
901 EXPORT_SYMBOL_GPL(sync_page_io);
903 static int read_disk_sb(struct md_rdev * rdev, int size)
905 char b[BDEVNAME_SIZE];
906 if (!rdev->sb_page) {
907 MD_BUG();
908 return -EINVAL;
910 if (rdev->sb_loaded)
911 return 0;
914 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
915 goto fail;
916 rdev->sb_loaded = 1;
917 return 0;
919 fail:
920 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
921 bdevname(rdev->bdev,b));
922 return -EINVAL;
925 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
927 return sb1->set_uuid0 == sb2->set_uuid0 &&
928 sb1->set_uuid1 == sb2->set_uuid1 &&
929 sb1->set_uuid2 == sb2->set_uuid2 &&
930 sb1->set_uuid3 == sb2->set_uuid3;
933 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
935 int ret;
936 mdp_super_t *tmp1, *tmp2;
938 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
939 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
941 if (!tmp1 || !tmp2) {
942 ret = 0;
943 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
944 goto abort;
947 *tmp1 = *sb1;
948 *tmp2 = *sb2;
951 * nr_disks is not constant
953 tmp1->nr_disks = 0;
954 tmp2->nr_disks = 0;
956 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
957 abort:
958 kfree(tmp1);
959 kfree(tmp2);
960 return ret;
964 static u32 md_csum_fold(u32 csum)
966 csum = (csum & 0xffff) + (csum >> 16);
967 return (csum & 0xffff) + (csum >> 16);
970 static unsigned int calc_sb_csum(mdp_super_t * sb)
972 u64 newcsum = 0;
973 u32 *sb32 = (u32*)sb;
974 int i;
975 unsigned int disk_csum, csum;
977 disk_csum = sb->sb_csum;
978 sb->sb_csum = 0;
980 for (i = 0; i < MD_SB_BYTES/4 ; i++)
981 newcsum += sb32[i];
982 csum = (newcsum & 0xffffffff) + (newcsum>>32);
985 #ifdef CONFIG_ALPHA
986 /* This used to use csum_partial, which was wrong for several
987 * reasons including that different results are returned on
988 * different architectures. It isn't critical that we get exactly
989 * the same return value as before (we always csum_fold before
990 * testing, and that removes any differences). However as we
991 * know that csum_partial always returned a 16bit value on
992 * alphas, do a fold to maximise conformity to previous behaviour.
994 sb->sb_csum = md_csum_fold(disk_csum);
995 #else
996 sb->sb_csum = disk_csum;
997 #endif
998 return csum;
1003 * Handle superblock details.
1004 * We want to be able to handle multiple superblock formats
1005 * so we have a common interface to them all, and an array of
1006 * different handlers.
1007 * We rely on user-space to write the initial superblock, and support
1008 * reading and updating of superblocks.
1009 * Interface methods are:
1010 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1011 * loads and validates a superblock on dev.
1012 * if refdev != NULL, compare superblocks on both devices
1013 * Return:
1014 * 0 - dev has a superblock that is compatible with refdev
1015 * 1 - dev has a superblock that is compatible and newer than refdev
1016 * so dev should be used as the refdev in future
1017 * -EINVAL superblock incompatible or invalid
1018 * -othererror e.g. -EIO
1020 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1021 * Verify that dev is acceptable into mddev.
1022 * The first time, mddev->raid_disks will be 0, and data from
1023 * dev should be merged in. Subsequent calls check that dev
1024 * is new enough. Return 0 or -EINVAL
1026 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1027 * Update the superblock for rdev with data in mddev
1028 * This does not write to disc.
1032 struct super_type {
1033 char *name;
1034 struct module *owner;
1035 int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1036 int minor_version);
1037 int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1038 void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1039 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1040 sector_t num_sectors);
1044 * Check that the given mddev has no bitmap.
1046 * This function is called from the run method of all personalities that do not
1047 * support bitmaps. It prints an error message and returns non-zero if mddev
1048 * has a bitmap. Otherwise, it returns 0.
1051 int md_check_no_bitmap(struct mddev *mddev)
1053 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1054 return 0;
1055 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1056 mdname(mddev), mddev->pers->name);
1057 return 1;
1059 EXPORT_SYMBOL(md_check_no_bitmap);
1062 * load_super for 0.90.0
1064 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1066 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1067 mdp_super_t *sb;
1068 int ret;
1071 * Calculate the position of the superblock (512byte sectors),
1072 * it's at the end of the disk.
1074 * It also happens to be a multiple of 4Kb.
1076 rdev->sb_start = calc_dev_sboffset(rdev);
1078 ret = read_disk_sb(rdev, MD_SB_BYTES);
1079 if (ret) return ret;
1081 ret = -EINVAL;
1083 bdevname(rdev->bdev, b);
1084 sb = page_address(rdev->sb_page);
1086 if (sb->md_magic != MD_SB_MAGIC) {
1087 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1089 goto abort;
1092 if (sb->major_version != 0 ||
1093 sb->minor_version < 90 ||
1094 sb->minor_version > 91) {
1095 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1096 sb->major_version, sb->minor_version,
1098 goto abort;
1101 if (sb->raid_disks <= 0)
1102 goto abort;
1104 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1105 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1107 goto abort;
1110 rdev->preferred_minor = sb->md_minor;
1111 rdev->data_offset = 0;
1112 rdev->sb_size = MD_SB_BYTES;
1113 rdev->badblocks.shift = -1;
1115 if (sb->level == LEVEL_MULTIPATH)
1116 rdev->desc_nr = -1;
1117 else
1118 rdev->desc_nr = sb->this_disk.number;
1120 if (!refdev) {
1121 ret = 1;
1122 } else {
1123 __u64 ev1, ev2;
1124 mdp_super_t *refsb = page_address(refdev->sb_page);
1125 if (!uuid_equal(refsb, sb)) {
1126 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1127 b, bdevname(refdev->bdev,b2));
1128 goto abort;
1130 if (!sb_equal(refsb, sb)) {
1131 printk(KERN_WARNING "md: %s has same UUID"
1132 " but different superblock to %s\n",
1133 b, bdevname(refdev->bdev, b2));
1134 goto abort;
1136 ev1 = md_event(sb);
1137 ev2 = md_event(refsb);
1138 if (ev1 > ev2)
1139 ret = 1;
1140 else
1141 ret = 0;
1143 rdev->sectors = rdev->sb_start;
1144 /* Limit to 4TB as metadata cannot record more than that */
1145 if (rdev->sectors >= (2ULL << 32))
1146 rdev->sectors = (2ULL << 32) - 2;
1148 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1149 /* "this cannot possibly happen" ... */
1150 ret = -EINVAL;
1152 abort:
1153 return ret;
1157 * validate_super for 0.90.0
1159 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1161 mdp_disk_t *desc;
1162 mdp_super_t *sb = page_address(rdev->sb_page);
1163 __u64 ev1 = md_event(sb);
1165 rdev->raid_disk = -1;
1166 clear_bit(Faulty, &rdev->flags);
1167 clear_bit(In_sync, &rdev->flags);
1168 clear_bit(WriteMostly, &rdev->flags);
1170 if (mddev->raid_disks == 0) {
1171 mddev->major_version = 0;
1172 mddev->minor_version = sb->minor_version;
1173 mddev->patch_version = sb->patch_version;
1174 mddev->external = 0;
1175 mddev->chunk_sectors = sb->chunk_size >> 9;
1176 mddev->ctime = sb->ctime;
1177 mddev->utime = sb->utime;
1178 mddev->level = sb->level;
1179 mddev->clevel[0] = 0;
1180 mddev->layout = sb->layout;
1181 mddev->raid_disks = sb->raid_disks;
1182 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1183 mddev->events = ev1;
1184 mddev->bitmap_info.offset = 0;
1185 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1187 if (mddev->minor_version >= 91) {
1188 mddev->reshape_position = sb->reshape_position;
1189 mddev->delta_disks = sb->delta_disks;
1190 mddev->new_level = sb->new_level;
1191 mddev->new_layout = sb->new_layout;
1192 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1193 } else {
1194 mddev->reshape_position = MaxSector;
1195 mddev->delta_disks = 0;
1196 mddev->new_level = mddev->level;
1197 mddev->new_layout = mddev->layout;
1198 mddev->new_chunk_sectors = mddev->chunk_sectors;
1201 if (sb->state & (1<<MD_SB_CLEAN))
1202 mddev->recovery_cp = MaxSector;
1203 else {
1204 if (sb->events_hi == sb->cp_events_hi &&
1205 sb->events_lo == sb->cp_events_lo) {
1206 mddev->recovery_cp = sb->recovery_cp;
1207 } else
1208 mddev->recovery_cp = 0;
1211 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1212 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1213 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1214 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1216 mddev->max_disks = MD_SB_DISKS;
1218 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1219 mddev->bitmap_info.file == NULL)
1220 mddev->bitmap_info.offset =
1221 mddev->bitmap_info.default_offset;
1223 } else if (mddev->pers == NULL) {
1224 /* Insist on good event counter while assembling, except
1225 * for spares (which don't need an event count) */
1226 ++ev1;
1227 if (sb->disks[rdev->desc_nr].state & (
1228 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1229 if (ev1 < mddev->events)
1230 return -EINVAL;
1231 } else if (mddev->bitmap) {
1232 /* if adding to array with a bitmap, then we can accept an
1233 * older device ... but not too old.
1235 if (ev1 < mddev->bitmap->events_cleared)
1236 return 0;
1237 } else {
1238 if (ev1 < mddev->events)
1239 /* just a hot-add of a new device, leave raid_disk at -1 */
1240 return 0;
1243 if (mddev->level != LEVEL_MULTIPATH) {
1244 desc = sb->disks + rdev->desc_nr;
1246 if (desc->state & (1<<MD_DISK_FAULTY))
1247 set_bit(Faulty, &rdev->flags);
1248 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1249 desc->raid_disk < mddev->raid_disks */) {
1250 set_bit(In_sync, &rdev->flags);
1251 rdev->raid_disk = desc->raid_disk;
1252 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1253 /* active but not in sync implies recovery up to
1254 * reshape position. We don't know exactly where
1255 * that is, so set to zero for now */
1256 if (mddev->minor_version >= 91) {
1257 rdev->recovery_offset = 0;
1258 rdev->raid_disk = desc->raid_disk;
1261 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1262 set_bit(WriteMostly, &rdev->flags);
1263 } else /* MULTIPATH are always insync */
1264 set_bit(In_sync, &rdev->flags);
1265 return 0;
1269 * sync_super for 0.90.0
1271 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1273 mdp_super_t *sb;
1274 struct md_rdev *rdev2;
1275 int next_spare = mddev->raid_disks;
1278 /* make rdev->sb match mddev data..
1280 * 1/ zero out disks
1281 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1282 * 3/ any empty disks < next_spare become removed
1284 * disks[0] gets initialised to REMOVED because
1285 * we cannot be sure from other fields if it has
1286 * been initialised or not.
1288 int i;
1289 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1291 rdev->sb_size = MD_SB_BYTES;
1293 sb = page_address(rdev->sb_page);
1295 memset(sb, 0, sizeof(*sb));
1297 sb->md_magic = MD_SB_MAGIC;
1298 sb->major_version = mddev->major_version;
1299 sb->patch_version = mddev->patch_version;
1300 sb->gvalid_words = 0; /* ignored */
1301 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1302 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1303 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1304 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1306 sb->ctime = mddev->ctime;
1307 sb->level = mddev->level;
1308 sb->size = mddev->dev_sectors / 2;
1309 sb->raid_disks = mddev->raid_disks;
1310 sb->md_minor = mddev->md_minor;
1311 sb->not_persistent = 0;
1312 sb->utime = mddev->utime;
1313 sb->state = 0;
1314 sb->events_hi = (mddev->events>>32);
1315 sb->events_lo = (u32)mddev->events;
1317 if (mddev->reshape_position == MaxSector)
1318 sb->minor_version = 90;
1319 else {
1320 sb->minor_version = 91;
1321 sb->reshape_position = mddev->reshape_position;
1322 sb->new_level = mddev->new_level;
1323 sb->delta_disks = mddev->delta_disks;
1324 sb->new_layout = mddev->new_layout;
1325 sb->new_chunk = mddev->new_chunk_sectors << 9;
1327 mddev->minor_version = sb->minor_version;
1328 if (mddev->in_sync)
1330 sb->recovery_cp = mddev->recovery_cp;
1331 sb->cp_events_hi = (mddev->events>>32);
1332 sb->cp_events_lo = (u32)mddev->events;
1333 if (mddev->recovery_cp == MaxSector)
1334 sb->state = (1<< MD_SB_CLEAN);
1335 } else
1336 sb->recovery_cp = 0;
1338 sb->layout = mddev->layout;
1339 sb->chunk_size = mddev->chunk_sectors << 9;
1341 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1342 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1344 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1345 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1346 mdp_disk_t *d;
1347 int desc_nr;
1348 int is_active = test_bit(In_sync, &rdev2->flags);
1350 if (rdev2->raid_disk >= 0 &&
1351 sb->minor_version >= 91)
1352 /* we have nowhere to store the recovery_offset,
1353 * but if it is not below the reshape_position,
1354 * we can piggy-back on that.
1356 is_active = 1;
1357 if (rdev2->raid_disk < 0 ||
1358 test_bit(Faulty, &rdev2->flags))
1359 is_active = 0;
1360 if (is_active)
1361 desc_nr = rdev2->raid_disk;
1362 else
1363 desc_nr = next_spare++;
1364 rdev2->desc_nr = desc_nr;
1365 d = &sb->disks[rdev2->desc_nr];
1366 nr_disks++;
1367 d->number = rdev2->desc_nr;
1368 d->major = MAJOR(rdev2->bdev->bd_dev);
1369 d->minor = MINOR(rdev2->bdev->bd_dev);
1370 if (is_active)
1371 d->raid_disk = rdev2->raid_disk;
1372 else
1373 d->raid_disk = rdev2->desc_nr; /* compatibility */
1374 if (test_bit(Faulty, &rdev2->flags))
1375 d->state = (1<<MD_DISK_FAULTY);
1376 else if (is_active) {
1377 d->state = (1<<MD_DISK_ACTIVE);
1378 if (test_bit(In_sync, &rdev2->flags))
1379 d->state |= (1<<MD_DISK_SYNC);
1380 active++;
1381 working++;
1382 } else {
1383 d->state = 0;
1384 spare++;
1385 working++;
1387 if (test_bit(WriteMostly, &rdev2->flags))
1388 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1390 /* now set the "removed" and "faulty" bits on any missing devices */
1391 for (i=0 ; i < mddev->raid_disks ; i++) {
1392 mdp_disk_t *d = &sb->disks[i];
1393 if (d->state == 0 && d->number == 0) {
1394 d->number = i;
1395 d->raid_disk = i;
1396 d->state = (1<<MD_DISK_REMOVED);
1397 d->state |= (1<<MD_DISK_FAULTY);
1398 failed++;
1401 sb->nr_disks = nr_disks;
1402 sb->active_disks = active;
1403 sb->working_disks = working;
1404 sb->failed_disks = failed;
1405 sb->spare_disks = spare;
1407 sb->this_disk = sb->disks[rdev->desc_nr];
1408 sb->sb_csum = calc_sb_csum(sb);
1412 * rdev_size_change for 0.90.0
1414 static unsigned long long
1415 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1417 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1418 return 0; /* component must fit device */
1419 if (rdev->mddev->bitmap_info.offset)
1420 return 0; /* can't move bitmap */
1421 rdev->sb_start = calc_dev_sboffset(rdev);
1422 if (!num_sectors || num_sectors > rdev->sb_start)
1423 num_sectors = rdev->sb_start;
1424 /* Limit to 4TB as metadata cannot record more than that.
1425 * 4TB == 2^32 KB, or 2*2^32 sectors.
1427 if (num_sectors >= (2ULL << 32))
1428 num_sectors = (2ULL << 32) - 2;
1429 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1430 rdev->sb_page);
1431 md_super_wait(rdev->mddev);
1432 return num_sectors;
1437 * version 1 superblock
1440 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1442 __le32 disk_csum;
1443 u32 csum;
1444 unsigned long long newcsum;
1445 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1446 __le32 *isuper = (__le32*)sb;
1447 int i;
1449 disk_csum = sb->sb_csum;
1450 sb->sb_csum = 0;
1451 newcsum = 0;
1452 for (i=0; size>=4; size -= 4 )
1453 newcsum += le32_to_cpu(*isuper++);
1455 if (size == 2)
1456 newcsum += le16_to_cpu(*(__le16*) isuper);
1458 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1459 sb->sb_csum = disk_csum;
1460 return cpu_to_le32(csum);
1463 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1464 int acknowledged);
1465 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1467 struct mdp_superblock_1 *sb;
1468 int ret;
1469 sector_t sb_start;
1470 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1471 int bmask;
1474 * Calculate the position of the superblock in 512byte sectors.
1475 * It is always aligned to a 4K boundary and
1476 * depeding on minor_version, it can be:
1477 * 0: At least 8K, but less than 12K, from end of device
1478 * 1: At start of device
1479 * 2: 4K from start of device.
1481 switch(minor_version) {
1482 case 0:
1483 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1484 sb_start -= 8*2;
1485 sb_start &= ~(sector_t)(4*2-1);
1486 break;
1487 case 1:
1488 sb_start = 0;
1489 break;
1490 case 2:
1491 sb_start = 8;
1492 break;
1493 default:
1494 return -EINVAL;
1496 rdev->sb_start = sb_start;
1498 /* superblock is rarely larger than 1K, but it can be larger,
1499 * and it is safe to read 4k, so we do that
1501 ret = read_disk_sb(rdev, 4096);
1502 if (ret) return ret;
1505 sb = page_address(rdev->sb_page);
1507 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1508 sb->major_version != cpu_to_le32(1) ||
1509 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1510 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1511 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1512 return -EINVAL;
1514 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1515 printk("md: invalid superblock checksum on %s\n",
1516 bdevname(rdev->bdev,b));
1517 return -EINVAL;
1519 if (le64_to_cpu(sb->data_size) < 10) {
1520 printk("md: data_size too small on %s\n",
1521 bdevname(rdev->bdev,b));
1522 return -EINVAL;
1525 rdev->preferred_minor = 0xffff;
1526 rdev->data_offset = le64_to_cpu(sb->data_offset);
1527 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1529 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1530 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1531 if (rdev->sb_size & bmask)
1532 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1534 if (minor_version
1535 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1536 return -EINVAL;
1538 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1539 rdev->desc_nr = -1;
1540 else
1541 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1543 if (!rdev->bb_page) {
1544 rdev->bb_page = alloc_page(GFP_KERNEL);
1545 if (!rdev->bb_page)
1546 return -ENOMEM;
1548 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1549 rdev->badblocks.count == 0) {
1550 /* need to load the bad block list.
1551 * Currently we limit it to one page.
1553 s32 offset;
1554 sector_t bb_sector;
1555 u64 *bbp;
1556 int i;
1557 int sectors = le16_to_cpu(sb->bblog_size);
1558 if (sectors > (PAGE_SIZE / 512))
1559 return -EINVAL;
1560 offset = le32_to_cpu(sb->bblog_offset);
1561 if (offset == 0)
1562 return -EINVAL;
1563 bb_sector = (long long)offset;
1564 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1565 rdev->bb_page, READ, true))
1566 return -EIO;
1567 bbp = (u64 *)page_address(rdev->bb_page);
1568 rdev->badblocks.shift = sb->bblog_shift;
1569 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1570 u64 bb = le64_to_cpu(*bbp);
1571 int count = bb & (0x3ff);
1572 u64 sector = bb >> 10;
1573 sector <<= sb->bblog_shift;
1574 count <<= sb->bblog_shift;
1575 if (bb + 1 == 0)
1576 break;
1577 if (md_set_badblocks(&rdev->badblocks,
1578 sector, count, 1) == 0)
1579 return -EINVAL;
1581 } else if (sb->bblog_offset == 0)
1582 rdev->badblocks.shift = -1;
1584 if (!refdev) {
1585 ret = 1;
1586 } else {
1587 __u64 ev1, ev2;
1588 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1590 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1591 sb->level != refsb->level ||
1592 sb->layout != refsb->layout ||
1593 sb->chunksize != refsb->chunksize) {
1594 printk(KERN_WARNING "md: %s has strangely different"
1595 " superblock to %s\n",
1596 bdevname(rdev->bdev,b),
1597 bdevname(refdev->bdev,b2));
1598 return -EINVAL;
1600 ev1 = le64_to_cpu(sb->events);
1601 ev2 = le64_to_cpu(refsb->events);
1603 if (ev1 > ev2)
1604 ret = 1;
1605 else
1606 ret = 0;
1608 if (minor_version)
1609 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1610 le64_to_cpu(sb->data_offset);
1611 else
1612 rdev->sectors = rdev->sb_start;
1613 if (rdev->sectors < le64_to_cpu(sb->data_size))
1614 return -EINVAL;
1615 rdev->sectors = le64_to_cpu(sb->data_size);
1616 if (le64_to_cpu(sb->size) > rdev->sectors)
1617 return -EINVAL;
1618 return ret;
1621 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1623 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1624 __u64 ev1 = le64_to_cpu(sb->events);
1626 rdev->raid_disk = -1;
1627 clear_bit(Faulty, &rdev->flags);
1628 clear_bit(In_sync, &rdev->flags);
1629 clear_bit(WriteMostly, &rdev->flags);
1631 if (mddev->raid_disks == 0) {
1632 mddev->major_version = 1;
1633 mddev->patch_version = 0;
1634 mddev->external = 0;
1635 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1636 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1637 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1638 mddev->level = le32_to_cpu(sb->level);
1639 mddev->clevel[0] = 0;
1640 mddev->layout = le32_to_cpu(sb->layout);
1641 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1642 mddev->dev_sectors = le64_to_cpu(sb->size);
1643 mddev->events = ev1;
1644 mddev->bitmap_info.offset = 0;
1645 mddev->bitmap_info.default_offset = 1024 >> 9;
1647 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1648 memcpy(mddev->uuid, sb->set_uuid, 16);
1650 mddev->max_disks = (4096-256)/2;
1652 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1653 mddev->bitmap_info.file == NULL )
1654 mddev->bitmap_info.offset =
1655 (__s32)le32_to_cpu(sb->bitmap_offset);
1657 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1658 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1659 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1660 mddev->new_level = le32_to_cpu(sb->new_level);
1661 mddev->new_layout = le32_to_cpu(sb->new_layout);
1662 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1663 } else {
1664 mddev->reshape_position = MaxSector;
1665 mddev->delta_disks = 0;
1666 mddev->new_level = mddev->level;
1667 mddev->new_layout = mddev->layout;
1668 mddev->new_chunk_sectors = mddev->chunk_sectors;
1671 } else if (mddev->pers == NULL) {
1672 /* Insist of good event counter while assembling, except for
1673 * spares (which don't need an event count) */
1674 ++ev1;
1675 if (rdev->desc_nr >= 0 &&
1676 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1677 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1678 if (ev1 < mddev->events)
1679 return -EINVAL;
1680 } else if (mddev->bitmap) {
1681 /* If adding to array with a bitmap, then we can accept an
1682 * older device, but not too old.
1684 if (ev1 < mddev->bitmap->events_cleared)
1685 return 0;
1686 } else {
1687 if (ev1 < mddev->events)
1688 /* just a hot-add of a new device, leave raid_disk at -1 */
1689 return 0;
1691 if (mddev->level != LEVEL_MULTIPATH) {
1692 int role;
1693 if (rdev->desc_nr < 0 ||
1694 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1695 role = 0xffff;
1696 rdev->desc_nr = -1;
1697 } else
1698 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1699 switch(role) {
1700 case 0xffff: /* spare */
1701 break;
1702 case 0xfffe: /* faulty */
1703 set_bit(Faulty, &rdev->flags);
1704 break;
1705 default:
1706 if ((le32_to_cpu(sb->feature_map) &
1707 MD_FEATURE_RECOVERY_OFFSET))
1708 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1709 else
1710 set_bit(In_sync, &rdev->flags);
1711 rdev->raid_disk = role;
1712 break;
1714 if (sb->devflags & WriteMostly1)
1715 set_bit(WriteMostly, &rdev->flags);
1716 } else /* MULTIPATH are always insync */
1717 set_bit(In_sync, &rdev->flags);
1719 return 0;
1722 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1724 struct mdp_superblock_1 *sb;
1725 struct md_rdev *rdev2;
1726 int max_dev, i;
1727 /* make rdev->sb match mddev and rdev data. */
1729 sb = page_address(rdev->sb_page);
1731 sb->feature_map = 0;
1732 sb->pad0 = 0;
1733 sb->recovery_offset = cpu_to_le64(0);
1734 memset(sb->pad1, 0, sizeof(sb->pad1));
1735 memset(sb->pad3, 0, sizeof(sb->pad3));
1737 sb->utime = cpu_to_le64((__u64)mddev->utime);
1738 sb->events = cpu_to_le64(mddev->events);
1739 if (mddev->in_sync)
1740 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1741 else
1742 sb->resync_offset = cpu_to_le64(0);
1744 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1746 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1747 sb->size = cpu_to_le64(mddev->dev_sectors);
1748 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1749 sb->level = cpu_to_le32(mddev->level);
1750 sb->layout = cpu_to_le32(mddev->layout);
1752 if (test_bit(WriteMostly, &rdev->flags))
1753 sb->devflags |= WriteMostly1;
1754 else
1755 sb->devflags &= ~WriteMostly1;
1757 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1758 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1759 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1762 if (rdev->raid_disk >= 0 &&
1763 !test_bit(In_sync, &rdev->flags)) {
1764 sb->feature_map |=
1765 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1766 sb->recovery_offset =
1767 cpu_to_le64(rdev->recovery_offset);
1770 if (mddev->reshape_position != MaxSector) {
1771 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1772 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1773 sb->new_layout = cpu_to_le32(mddev->new_layout);
1774 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1775 sb->new_level = cpu_to_le32(mddev->new_level);
1776 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1779 if (rdev->badblocks.count == 0)
1780 /* Nothing to do for bad blocks*/ ;
1781 else if (sb->bblog_offset == 0)
1782 /* Cannot record bad blocks on this device */
1783 md_error(mddev, rdev);
1784 else {
1785 struct badblocks *bb = &rdev->badblocks;
1786 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1787 u64 *p = bb->page;
1788 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1789 if (bb->changed) {
1790 unsigned seq;
1792 retry:
1793 seq = read_seqbegin(&bb->lock);
1795 memset(bbp, 0xff, PAGE_SIZE);
1797 for (i = 0 ; i < bb->count ; i++) {
1798 u64 internal_bb = *p++;
1799 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1800 | BB_LEN(internal_bb));
1801 *bbp++ = cpu_to_le64(store_bb);
1803 if (read_seqretry(&bb->lock, seq))
1804 goto retry;
1806 bb->sector = (rdev->sb_start +
1807 (int)le32_to_cpu(sb->bblog_offset));
1808 bb->size = le16_to_cpu(sb->bblog_size);
1809 bb->changed = 0;
1813 max_dev = 0;
1814 list_for_each_entry(rdev2, &mddev->disks, same_set)
1815 if (rdev2->desc_nr+1 > max_dev)
1816 max_dev = rdev2->desc_nr+1;
1818 if (max_dev > le32_to_cpu(sb->max_dev)) {
1819 int bmask;
1820 sb->max_dev = cpu_to_le32(max_dev);
1821 rdev->sb_size = max_dev * 2 + 256;
1822 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1823 if (rdev->sb_size & bmask)
1824 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1825 } else
1826 max_dev = le32_to_cpu(sb->max_dev);
1828 for (i=0; i<max_dev;i++)
1829 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1831 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1832 i = rdev2->desc_nr;
1833 if (test_bit(Faulty, &rdev2->flags))
1834 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1835 else if (test_bit(In_sync, &rdev2->flags))
1836 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1837 else if (rdev2->raid_disk >= 0)
1838 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1839 else
1840 sb->dev_roles[i] = cpu_to_le16(0xffff);
1843 sb->sb_csum = calc_sb_1_csum(sb);
1846 static unsigned long long
1847 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1849 struct mdp_superblock_1 *sb;
1850 sector_t max_sectors;
1851 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1852 return 0; /* component must fit device */
1853 if (rdev->sb_start < rdev->data_offset) {
1854 /* minor versions 1 and 2; superblock before data */
1855 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1856 max_sectors -= rdev->data_offset;
1857 if (!num_sectors || num_sectors > max_sectors)
1858 num_sectors = max_sectors;
1859 } else if (rdev->mddev->bitmap_info.offset) {
1860 /* minor version 0 with bitmap we can't move */
1861 return 0;
1862 } else {
1863 /* minor version 0; superblock after data */
1864 sector_t sb_start;
1865 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1866 sb_start &= ~(sector_t)(4*2 - 1);
1867 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1868 if (!num_sectors || num_sectors > max_sectors)
1869 num_sectors = max_sectors;
1870 rdev->sb_start = sb_start;
1872 sb = page_address(rdev->sb_page);
1873 sb->data_size = cpu_to_le64(num_sectors);
1874 sb->super_offset = rdev->sb_start;
1875 sb->sb_csum = calc_sb_1_csum(sb);
1876 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1877 rdev->sb_page);
1878 md_super_wait(rdev->mddev);
1879 return num_sectors;
1882 static struct super_type super_types[] = {
1883 [0] = {
1884 .name = "0.90.0",
1885 .owner = THIS_MODULE,
1886 .load_super = super_90_load,
1887 .validate_super = super_90_validate,
1888 .sync_super = super_90_sync,
1889 .rdev_size_change = super_90_rdev_size_change,
1891 [1] = {
1892 .name = "md-1",
1893 .owner = THIS_MODULE,
1894 .load_super = super_1_load,
1895 .validate_super = super_1_validate,
1896 .sync_super = super_1_sync,
1897 .rdev_size_change = super_1_rdev_size_change,
1901 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1903 if (mddev->sync_super) {
1904 mddev->sync_super(mddev, rdev);
1905 return;
1908 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1910 super_types[mddev->major_version].sync_super(mddev, rdev);
1913 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1915 struct md_rdev *rdev, *rdev2;
1917 rcu_read_lock();
1918 rdev_for_each_rcu(rdev, mddev1)
1919 rdev_for_each_rcu(rdev2, mddev2)
1920 if (rdev->bdev->bd_contains ==
1921 rdev2->bdev->bd_contains) {
1922 rcu_read_unlock();
1923 return 1;
1925 rcu_read_unlock();
1926 return 0;
1929 static LIST_HEAD(pending_raid_disks);
1932 * Try to register data integrity profile for an mddev
1934 * This is called when an array is started and after a disk has been kicked
1935 * from the array. It only succeeds if all working and active component devices
1936 * are integrity capable with matching profiles.
1938 int md_integrity_register(struct mddev *mddev)
1940 struct md_rdev *rdev, *reference = NULL;
1942 if (list_empty(&mddev->disks))
1943 return 0; /* nothing to do */
1944 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1945 return 0; /* shouldn't register, or already is */
1946 list_for_each_entry(rdev, &mddev->disks, same_set) {
1947 /* skip spares and non-functional disks */
1948 if (test_bit(Faulty, &rdev->flags))
1949 continue;
1950 if (rdev->raid_disk < 0)
1951 continue;
1952 if (!reference) {
1953 /* Use the first rdev as the reference */
1954 reference = rdev;
1955 continue;
1957 /* does this rdev's profile match the reference profile? */
1958 if (blk_integrity_compare(reference->bdev->bd_disk,
1959 rdev->bdev->bd_disk) < 0)
1960 return -EINVAL;
1962 if (!reference || !bdev_get_integrity(reference->bdev))
1963 return 0;
1965 * All component devices are integrity capable and have matching
1966 * profiles, register the common profile for the md device.
1968 if (blk_integrity_register(mddev->gendisk,
1969 bdev_get_integrity(reference->bdev)) != 0) {
1970 printk(KERN_ERR "md: failed to register integrity for %s\n",
1971 mdname(mddev));
1972 return -EINVAL;
1974 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1975 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1976 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1977 mdname(mddev));
1978 return -EINVAL;
1980 return 0;
1982 EXPORT_SYMBOL(md_integrity_register);
1984 /* Disable data integrity if non-capable/non-matching disk is being added */
1985 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1987 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1988 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1990 if (!bi_mddev) /* nothing to do */
1991 return;
1992 if (rdev->raid_disk < 0) /* skip spares */
1993 return;
1994 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1995 rdev->bdev->bd_disk) >= 0)
1996 return;
1997 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1998 blk_integrity_unregister(mddev->gendisk);
2000 EXPORT_SYMBOL(md_integrity_add_rdev);
2002 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2004 char b[BDEVNAME_SIZE];
2005 struct kobject *ko;
2006 char *s;
2007 int err;
2009 if (rdev->mddev) {
2010 MD_BUG();
2011 return -EINVAL;
2014 /* prevent duplicates */
2015 if (find_rdev(mddev, rdev->bdev->bd_dev))
2016 return -EEXIST;
2018 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2019 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2020 rdev->sectors < mddev->dev_sectors)) {
2021 if (mddev->pers) {
2022 /* Cannot change size, so fail
2023 * If mddev->level <= 0, then we don't care
2024 * about aligning sizes (e.g. linear)
2026 if (mddev->level > 0)
2027 return -ENOSPC;
2028 } else
2029 mddev->dev_sectors = rdev->sectors;
2032 /* Verify rdev->desc_nr is unique.
2033 * If it is -1, assign a free number, else
2034 * check number is not in use
2036 if (rdev->desc_nr < 0) {
2037 int choice = 0;
2038 if (mddev->pers) choice = mddev->raid_disks;
2039 while (find_rdev_nr(mddev, choice))
2040 choice++;
2041 rdev->desc_nr = choice;
2042 } else {
2043 if (find_rdev_nr(mddev, rdev->desc_nr))
2044 return -EBUSY;
2046 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2047 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2048 mdname(mddev), mddev->max_disks);
2049 return -EBUSY;
2051 bdevname(rdev->bdev,b);
2052 while ( (s=strchr(b, '/')) != NULL)
2053 *s = '!';
2055 rdev->mddev = mddev;
2056 printk(KERN_INFO "md: bind<%s>\n", b);
2058 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2059 goto fail;
2061 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2062 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2063 /* failure here is OK */;
2064 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2066 list_add_rcu(&rdev->same_set, &mddev->disks);
2067 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2069 /* May as well allow recovery to be retried once */
2070 mddev->recovery_disabled++;
2072 return 0;
2074 fail:
2075 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2076 b, mdname(mddev));
2077 return err;
2080 static void md_delayed_delete(struct work_struct *ws)
2082 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2083 kobject_del(&rdev->kobj);
2084 kobject_put(&rdev->kobj);
2087 static void unbind_rdev_from_array(struct md_rdev * rdev)
2089 char b[BDEVNAME_SIZE];
2090 if (!rdev->mddev) {
2091 MD_BUG();
2092 return;
2094 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2095 list_del_rcu(&rdev->same_set);
2096 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2097 rdev->mddev = NULL;
2098 sysfs_remove_link(&rdev->kobj, "block");
2099 sysfs_put(rdev->sysfs_state);
2100 rdev->sysfs_state = NULL;
2101 kfree(rdev->badblocks.page);
2102 rdev->badblocks.count = 0;
2103 rdev->badblocks.page = NULL;
2104 /* We need to delay this, otherwise we can deadlock when
2105 * writing to 'remove' to "dev/state". We also need
2106 * to delay it due to rcu usage.
2108 synchronize_rcu();
2109 INIT_WORK(&rdev->del_work, md_delayed_delete);
2110 kobject_get(&rdev->kobj);
2111 queue_work(md_misc_wq, &rdev->del_work);
2115 * prevent the device from being mounted, repartitioned or
2116 * otherwise reused by a RAID array (or any other kernel
2117 * subsystem), by bd_claiming the device.
2119 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2121 int err = 0;
2122 struct block_device *bdev;
2123 char b[BDEVNAME_SIZE];
2125 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2126 shared ? (struct md_rdev *)lock_rdev : rdev);
2127 if (IS_ERR(bdev)) {
2128 printk(KERN_ERR "md: could not open %s.\n",
2129 __bdevname(dev, b));
2130 return PTR_ERR(bdev);
2132 rdev->bdev = bdev;
2133 return err;
2136 static void unlock_rdev(struct md_rdev *rdev)
2138 struct block_device *bdev = rdev->bdev;
2139 rdev->bdev = NULL;
2140 if (!bdev)
2141 MD_BUG();
2142 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2145 void md_autodetect_dev(dev_t dev);
2147 static void export_rdev(struct md_rdev * rdev)
2149 char b[BDEVNAME_SIZE];
2150 printk(KERN_INFO "md: export_rdev(%s)\n",
2151 bdevname(rdev->bdev,b));
2152 if (rdev->mddev)
2153 MD_BUG();
2154 free_disk_sb(rdev);
2155 #ifndef MODULE
2156 if (test_bit(AutoDetected, &rdev->flags))
2157 md_autodetect_dev(rdev->bdev->bd_dev);
2158 #endif
2159 unlock_rdev(rdev);
2160 kobject_put(&rdev->kobj);
2163 static void kick_rdev_from_array(struct md_rdev * rdev)
2165 unbind_rdev_from_array(rdev);
2166 export_rdev(rdev);
2169 static void export_array(struct mddev *mddev)
2171 struct md_rdev *rdev, *tmp;
2173 rdev_for_each(rdev, tmp, mddev) {
2174 if (!rdev->mddev) {
2175 MD_BUG();
2176 continue;
2178 kick_rdev_from_array(rdev);
2180 if (!list_empty(&mddev->disks))
2181 MD_BUG();
2182 mddev->raid_disks = 0;
2183 mddev->major_version = 0;
2186 static void print_desc(mdp_disk_t *desc)
2188 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2189 desc->major,desc->minor,desc->raid_disk,desc->state);
2192 static void print_sb_90(mdp_super_t *sb)
2194 int i;
2196 printk(KERN_INFO
2197 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2198 sb->major_version, sb->minor_version, sb->patch_version,
2199 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2200 sb->ctime);
2201 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2202 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2203 sb->md_minor, sb->layout, sb->chunk_size);
2204 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2205 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2206 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2207 sb->failed_disks, sb->spare_disks,
2208 sb->sb_csum, (unsigned long)sb->events_lo);
2210 printk(KERN_INFO);
2211 for (i = 0; i < MD_SB_DISKS; i++) {
2212 mdp_disk_t *desc;
2214 desc = sb->disks + i;
2215 if (desc->number || desc->major || desc->minor ||
2216 desc->raid_disk || (desc->state && (desc->state != 4))) {
2217 printk(" D %2d: ", i);
2218 print_desc(desc);
2221 printk(KERN_INFO "md: THIS: ");
2222 print_desc(&sb->this_disk);
2225 static void print_sb_1(struct mdp_superblock_1 *sb)
2227 __u8 *uuid;
2229 uuid = sb->set_uuid;
2230 printk(KERN_INFO
2231 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2232 "md: Name: \"%s\" CT:%llu\n",
2233 le32_to_cpu(sb->major_version),
2234 le32_to_cpu(sb->feature_map),
2235 uuid,
2236 sb->set_name,
2237 (unsigned long long)le64_to_cpu(sb->ctime)
2238 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2240 uuid = sb->device_uuid;
2241 printk(KERN_INFO
2242 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2243 " RO:%llu\n"
2244 "md: Dev:%08x UUID: %pU\n"
2245 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2246 "md: (MaxDev:%u) \n",
2247 le32_to_cpu(sb->level),
2248 (unsigned long long)le64_to_cpu(sb->size),
2249 le32_to_cpu(sb->raid_disks),
2250 le32_to_cpu(sb->layout),
2251 le32_to_cpu(sb->chunksize),
2252 (unsigned long long)le64_to_cpu(sb->data_offset),
2253 (unsigned long long)le64_to_cpu(sb->data_size),
2254 (unsigned long long)le64_to_cpu(sb->super_offset),
2255 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2256 le32_to_cpu(sb->dev_number),
2257 uuid,
2258 sb->devflags,
2259 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2260 (unsigned long long)le64_to_cpu(sb->events),
2261 (unsigned long long)le64_to_cpu(sb->resync_offset),
2262 le32_to_cpu(sb->sb_csum),
2263 le32_to_cpu(sb->max_dev)
2267 static void print_rdev(struct md_rdev *rdev, int major_version)
2269 char b[BDEVNAME_SIZE];
2270 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2271 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2272 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2273 rdev->desc_nr);
2274 if (rdev->sb_loaded) {
2275 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2276 switch (major_version) {
2277 case 0:
2278 print_sb_90(page_address(rdev->sb_page));
2279 break;
2280 case 1:
2281 print_sb_1(page_address(rdev->sb_page));
2282 break;
2284 } else
2285 printk(KERN_INFO "md: no rdev superblock!\n");
2288 static void md_print_devices(void)
2290 struct list_head *tmp;
2291 struct md_rdev *rdev;
2292 struct mddev *mddev;
2293 char b[BDEVNAME_SIZE];
2295 printk("\n");
2296 printk("md: **********************************\n");
2297 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2298 printk("md: **********************************\n");
2299 for_each_mddev(mddev, tmp) {
2301 if (mddev->bitmap)
2302 bitmap_print_sb(mddev->bitmap);
2303 else
2304 printk("%s: ", mdname(mddev));
2305 list_for_each_entry(rdev, &mddev->disks, same_set)
2306 printk("<%s>", bdevname(rdev->bdev,b));
2307 printk("\n");
2309 list_for_each_entry(rdev, &mddev->disks, same_set)
2310 print_rdev(rdev, mddev->major_version);
2312 printk("md: **********************************\n");
2313 printk("\n");
2317 static void sync_sbs(struct mddev * mddev, int nospares)
2319 /* Update each superblock (in-memory image), but
2320 * if we are allowed to, skip spares which already
2321 * have the right event counter, or have one earlier
2322 * (which would mean they aren't being marked as dirty
2323 * with the rest of the array)
2325 struct md_rdev *rdev;
2326 list_for_each_entry(rdev, &mddev->disks, same_set) {
2327 if (rdev->sb_events == mddev->events ||
2328 (nospares &&
2329 rdev->raid_disk < 0 &&
2330 rdev->sb_events+1 == mddev->events)) {
2331 /* Don't update this superblock */
2332 rdev->sb_loaded = 2;
2333 } else {
2334 sync_super(mddev, rdev);
2335 rdev->sb_loaded = 1;
2340 static void md_update_sb(struct mddev * mddev, int force_change)
2342 struct md_rdev *rdev;
2343 int sync_req;
2344 int nospares = 0;
2345 int any_badblocks_changed = 0;
2347 repeat:
2348 /* First make sure individual recovery_offsets are correct */
2349 list_for_each_entry(rdev, &mddev->disks, same_set) {
2350 if (rdev->raid_disk >= 0 &&
2351 mddev->delta_disks >= 0 &&
2352 !test_bit(In_sync, &rdev->flags) &&
2353 mddev->curr_resync_completed > rdev->recovery_offset)
2354 rdev->recovery_offset = mddev->curr_resync_completed;
2357 if (!mddev->persistent) {
2358 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2359 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2360 if (!mddev->external) {
2361 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2362 list_for_each_entry(rdev, &mddev->disks, same_set) {
2363 if (rdev->badblocks.changed) {
2364 md_ack_all_badblocks(&rdev->badblocks);
2365 md_error(mddev, rdev);
2367 clear_bit(Blocked, &rdev->flags);
2368 clear_bit(BlockedBadBlocks, &rdev->flags);
2369 wake_up(&rdev->blocked_wait);
2372 wake_up(&mddev->sb_wait);
2373 return;
2376 spin_lock_irq(&mddev->write_lock);
2378 mddev->utime = get_seconds();
2380 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2381 force_change = 1;
2382 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2383 /* just a clean<-> dirty transition, possibly leave spares alone,
2384 * though if events isn't the right even/odd, we will have to do
2385 * spares after all
2387 nospares = 1;
2388 if (force_change)
2389 nospares = 0;
2390 if (mddev->degraded)
2391 /* If the array is degraded, then skipping spares is both
2392 * dangerous and fairly pointless.
2393 * Dangerous because a device that was removed from the array
2394 * might have a event_count that still looks up-to-date,
2395 * so it can be re-added without a resync.
2396 * Pointless because if there are any spares to skip,
2397 * then a recovery will happen and soon that array won't
2398 * be degraded any more and the spare can go back to sleep then.
2400 nospares = 0;
2402 sync_req = mddev->in_sync;
2404 /* If this is just a dirty<->clean transition, and the array is clean
2405 * and 'events' is odd, we can roll back to the previous clean state */
2406 if (nospares
2407 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2408 && mddev->can_decrease_events
2409 && mddev->events != 1) {
2410 mddev->events--;
2411 mddev->can_decrease_events = 0;
2412 } else {
2413 /* otherwise we have to go forward and ... */
2414 mddev->events ++;
2415 mddev->can_decrease_events = nospares;
2418 if (!mddev->events) {
2420 * oops, this 64-bit counter should never wrap.
2421 * Either we are in around ~1 trillion A.C., assuming
2422 * 1 reboot per second, or we have a bug:
2424 MD_BUG();
2425 mddev->events --;
2428 list_for_each_entry(rdev, &mddev->disks, same_set) {
2429 if (rdev->badblocks.changed)
2430 any_badblocks_changed++;
2431 if (test_bit(Faulty, &rdev->flags))
2432 set_bit(FaultRecorded, &rdev->flags);
2435 sync_sbs(mddev, nospares);
2436 spin_unlock_irq(&mddev->write_lock);
2438 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2439 mdname(mddev), mddev->in_sync);
2441 bitmap_update_sb(mddev->bitmap);
2442 list_for_each_entry(rdev, &mddev->disks, same_set) {
2443 char b[BDEVNAME_SIZE];
2445 if (rdev->sb_loaded != 1)
2446 continue; /* no noise on spare devices */
2448 if (!test_bit(Faulty, &rdev->flags) &&
2449 rdev->saved_raid_disk == -1) {
2450 md_super_write(mddev,rdev,
2451 rdev->sb_start, rdev->sb_size,
2452 rdev->sb_page);
2453 pr_debug("md: (write) %s's sb offset: %llu\n",
2454 bdevname(rdev->bdev, b),
2455 (unsigned long long)rdev->sb_start);
2456 rdev->sb_events = mddev->events;
2457 if (rdev->badblocks.size) {
2458 md_super_write(mddev, rdev,
2459 rdev->badblocks.sector,
2460 rdev->badblocks.size << 9,
2461 rdev->bb_page);
2462 rdev->badblocks.size = 0;
2465 } else if (test_bit(Faulty, &rdev->flags))
2466 pr_debug("md: %s (skipping faulty)\n",
2467 bdevname(rdev->bdev, b));
2468 else
2469 pr_debug("(skipping incremental s/r ");
2471 if (mddev->level == LEVEL_MULTIPATH)
2472 /* only need to write one superblock... */
2473 break;
2475 md_super_wait(mddev);
2476 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2478 spin_lock_irq(&mddev->write_lock);
2479 if (mddev->in_sync != sync_req ||
2480 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2481 /* have to write it out again */
2482 spin_unlock_irq(&mddev->write_lock);
2483 goto repeat;
2485 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2486 spin_unlock_irq(&mddev->write_lock);
2487 wake_up(&mddev->sb_wait);
2488 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2489 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2491 list_for_each_entry(rdev, &mddev->disks, same_set) {
2492 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2493 clear_bit(Blocked, &rdev->flags);
2495 if (any_badblocks_changed)
2496 md_ack_all_badblocks(&rdev->badblocks);
2497 clear_bit(BlockedBadBlocks, &rdev->flags);
2498 wake_up(&rdev->blocked_wait);
2502 /* words written to sysfs files may, or may not, be \n terminated.
2503 * We want to accept with case. For this we use cmd_match.
2505 static int cmd_match(const char *cmd, const char *str)
2507 /* See if cmd, written into a sysfs file, matches
2508 * str. They must either be the same, or cmd can
2509 * have a trailing newline
2511 while (*cmd && *str && *cmd == *str) {
2512 cmd++;
2513 str++;
2515 if (*cmd == '\n')
2516 cmd++;
2517 if (*str || *cmd)
2518 return 0;
2519 return 1;
2522 struct rdev_sysfs_entry {
2523 struct attribute attr;
2524 ssize_t (*show)(struct md_rdev *, char *);
2525 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2528 static ssize_t
2529 state_show(struct md_rdev *rdev, char *page)
2531 char *sep = "";
2532 size_t len = 0;
2534 if (test_bit(Faulty, &rdev->flags) ||
2535 rdev->badblocks.unacked_exist) {
2536 len+= sprintf(page+len, "%sfaulty",sep);
2537 sep = ",";
2539 if (test_bit(In_sync, &rdev->flags)) {
2540 len += sprintf(page+len, "%sin_sync",sep);
2541 sep = ",";
2543 if (test_bit(WriteMostly, &rdev->flags)) {
2544 len += sprintf(page+len, "%swrite_mostly",sep);
2545 sep = ",";
2547 if (test_bit(Blocked, &rdev->flags) ||
2548 rdev->badblocks.unacked_exist) {
2549 len += sprintf(page+len, "%sblocked", sep);
2550 sep = ",";
2552 if (!test_bit(Faulty, &rdev->flags) &&
2553 !test_bit(In_sync, &rdev->flags)) {
2554 len += sprintf(page+len, "%sspare", sep);
2555 sep = ",";
2557 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2558 len += sprintf(page+len, "%swrite_error", sep);
2559 sep = ",";
2561 return len+sprintf(page+len, "\n");
2564 static ssize_t
2565 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2567 /* can write
2568 * faulty - simulates an error
2569 * remove - disconnects the device
2570 * writemostly - sets write_mostly
2571 * -writemostly - clears write_mostly
2572 * blocked - sets the Blocked flags
2573 * -blocked - clears the Blocked and possibly simulates an error
2574 * insync - sets Insync providing device isn't active
2575 * write_error - sets WriteErrorSeen
2576 * -write_error - clears WriteErrorSeen
2578 int err = -EINVAL;
2579 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2580 md_error(rdev->mddev, rdev);
2581 if (test_bit(Faulty, &rdev->flags))
2582 err = 0;
2583 else
2584 err = -EBUSY;
2585 } else if (cmd_match(buf, "remove")) {
2586 if (rdev->raid_disk >= 0)
2587 err = -EBUSY;
2588 else {
2589 struct mddev *mddev = rdev->mddev;
2590 kick_rdev_from_array(rdev);
2591 if (mddev->pers)
2592 md_update_sb(mddev, 1);
2593 md_new_event(mddev);
2594 err = 0;
2596 } else if (cmd_match(buf, "writemostly")) {
2597 set_bit(WriteMostly, &rdev->flags);
2598 err = 0;
2599 } else if (cmd_match(buf, "-writemostly")) {
2600 clear_bit(WriteMostly, &rdev->flags);
2601 err = 0;
2602 } else if (cmd_match(buf, "blocked")) {
2603 set_bit(Blocked, &rdev->flags);
2604 err = 0;
2605 } else if (cmd_match(buf, "-blocked")) {
2606 if (!test_bit(Faulty, &rdev->flags) &&
2607 rdev->badblocks.unacked_exist) {
2608 /* metadata handler doesn't understand badblocks,
2609 * so we need to fail the device
2611 md_error(rdev->mddev, rdev);
2613 clear_bit(Blocked, &rdev->flags);
2614 clear_bit(BlockedBadBlocks, &rdev->flags);
2615 wake_up(&rdev->blocked_wait);
2616 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2617 md_wakeup_thread(rdev->mddev->thread);
2619 err = 0;
2620 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2621 set_bit(In_sync, &rdev->flags);
2622 err = 0;
2623 } else if (cmd_match(buf, "write_error")) {
2624 set_bit(WriteErrorSeen, &rdev->flags);
2625 err = 0;
2626 } else if (cmd_match(buf, "-write_error")) {
2627 clear_bit(WriteErrorSeen, &rdev->flags);
2628 err = 0;
2630 if (!err)
2631 sysfs_notify_dirent_safe(rdev->sysfs_state);
2632 return err ? err : len;
2634 static struct rdev_sysfs_entry rdev_state =
2635 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2637 static ssize_t
2638 errors_show(struct md_rdev *rdev, char *page)
2640 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2643 static ssize_t
2644 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2646 char *e;
2647 unsigned long n = simple_strtoul(buf, &e, 10);
2648 if (*buf && (*e == 0 || *e == '\n')) {
2649 atomic_set(&rdev->corrected_errors, n);
2650 return len;
2652 return -EINVAL;
2654 static struct rdev_sysfs_entry rdev_errors =
2655 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2657 static ssize_t
2658 slot_show(struct md_rdev *rdev, char *page)
2660 if (rdev->raid_disk < 0)
2661 return sprintf(page, "none\n");
2662 else
2663 return sprintf(page, "%d\n", rdev->raid_disk);
2666 static ssize_t
2667 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2669 char *e;
2670 int err;
2671 int slot = simple_strtoul(buf, &e, 10);
2672 if (strncmp(buf, "none", 4)==0)
2673 slot = -1;
2674 else if (e==buf || (*e && *e!= '\n'))
2675 return -EINVAL;
2676 if (rdev->mddev->pers && slot == -1) {
2677 /* Setting 'slot' on an active array requires also
2678 * updating the 'rd%d' link, and communicating
2679 * with the personality with ->hot_*_disk.
2680 * For now we only support removing
2681 * failed/spare devices. This normally happens automatically,
2682 * but not when the metadata is externally managed.
2684 if (rdev->raid_disk == -1)
2685 return -EEXIST;
2686 /* personality does all needed checks */
2687 if (rdev->mddev->pers->hot_remove_disk == NULL)
2688 return -EINVAL;
2689 err = rdev->mddev->pers->
2690 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2691 if (err)
2692 return err;
2693 sysfs_unlink_rdev(rdev->mddev, rdev);
2694 rdev->raid_disk = -1;
2695 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2696 md_wakeup_thread(rdev->mddev->thread);
2697 } else if (rdev->mddev->pers) {
2698 struct md_rdev *rdev2;
2699 /* Activating a spare .. or possibly reactivating
2700 * if we ever get bitmaps working here.
2703 if (rdev->raid_disk != -1)
2704 return -EBUSY;
2706 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2707 return -EBUSY;
2709 if (rdev->mddev->pers->hot_add_disk == NULL)
2710 return -EINVAL;
2712 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2713 if (rdev2->raid_disk == slot)
2714 return -EEXIST;
2716 if (slot >= rdev->mddev->raid_disks &&
2717 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2718 return -ENOSPC;
2720 rdev->raid_disk = slot;
2721 if (test_bit(In_sync, &rdev->flags))
2722 rdev->saved_raid_disk = slot;
2723 else
2724 rdev->saved_raid_disk = -1;
2725 clear_bit(In_sync, &rdev->flags);
2726 err = rdev->mddev->pers->
2727 hot_add_disk(rdev->mddev, rdev);
2728 if (err) {
2729 rdev->raid_disk = -1;
2730 return err;
2731 } else
2732 sysfs_notify_dirent_safe(rdev->sysfs_state);
2733 if (sysfs_link_rdev(rdev->mddev, rdev))
2734 /* failure here is OK */;
2735 /* don't wakeup anyone, leave that to userspace. */
2736 } else {
2737 if (slot >= rdev->mddev->raid_disks &&
2738 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2739 return -ENOSPC;
2740 rdev->raid_disk = slot;
2741 /* assume it is working */
2742 clear_bit(Faulty, &rdev->flags);
2743 clear_bit(WriteMostly, &rdev->flags);
2744 set_bit(In_sync, &rdev->flags);
2745 sysfs_notify_dirent_safe(rdev->sysfs_state);
2747 return len;
2751 static struct rdev_sysfs_entry rdev_slot =
2752 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2754 static ssize_t
2755 offset_show(struct md_rdev *rdev, char *page)
2757 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2760 static ssize_t
2761 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2763 char *e;
2764 unsigned long long offset = simple_strtoull(buf, &e, 10);
2765 if (e==buf || (*e && *e != '\n'))
2766 return -EINVAL;
2767 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2768 return -EBUSY;
2769 if (rdev->sectors && rdev->mddev->external)
2770 /* Must set offset before size, so overlap checks
2771 * can be sane */
2772 return -EBUSY;
2773 rdev->data_offset = offset;
2774 return len;
2777 static struct rdev_sysfs_entry rdev_offset =
2778 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2780 static ssize_t
2781 rdev_size_show(struct md_rdev *rdev, char *page)
2783 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2786 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2788 /* check if two start/length pairs overlap */
2789 if (s1+l1 <= s2)
2790 return 0;
2791 if (s2+l2 <= s1)
2792 return 0;
2793 return 1;
2796 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2798 unsigned long long blocks;
2799 sector_t new;
2801 if (strict_strtoull(buf, 10, &blocks) < 0)
2802 return -EINVAL;
2804 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2805 return -EINVAL; /* sector conversion overflow */
2807 new = blocks * 2;
2808 if (new != blocks * 2)
2809 return -EINVAL; /* unsigned long long to sector_t overflow */
2811 *sectors = new;
2812 return 0;
2815 static ssize_t
2816 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2818 struct mddev *my_mddev = rdev->mddev;
2819 sector_t oldsectors = rdev->sectors;
2820 sector_t sectors;
2822 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2823 return -EINVAL;
2824 if (my_mddev->pers && rdev->raid_disk >= 0) {
2825 if (my_mddev->persistent) {
2826 sectors = super_types[my_mddev->major_version].
2827 rdev_size_change(rdev, sectors);
2828 if (!sectors)
2829 return -EBUSY;
2830 } else if (!sectors)
2831 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2832 rdev->data_offset;
2834 if (sectors < my_mddev->dev_sectors)
2835 return -EINVAL; /* component must fit device */
2837 rdev->sectors = sectors;
2838 if (sectors > oldsectors && my_mddev->external) {
2839 /* need to check that all other rdevs with the same ->bdev
2840 * do not overlap. We need to unlock the mddev to avoid
2841 * a deadlock. We have already changed rdev->sectors, and if
2842 * we have to change it back, we will have the lock again.
2844 struct mddev *mddev;
2845 int overlap = 0;
2846 struct list_head *tmp;
2848 mddev_unlock(my_mddev);
2849 for_each_mddev(mddev, tmp) {
2850 struct md_rdev *rdev2;
2852 mddev_lock(mddev);
2853 list_for_each_entry(rdev2, &mddev->disks, same_set)
2854 if (rdev->bdev == rdev2->bdev &&
2855 rdev != rdev2 &&
2856 overlaps(rdev->data_offset, rdev->sectors,
2857 rdev2->data_offset,
2858 rdev2->sectors)) {
2859 overlap = 1;
2860 break;
2862 mddev_unlock(mddev);
2863 if (overlap) {
2864 mddev_put(mddev);
2865 break;
2868 mddev_lock(my_mddev);
2869 if (overlap) {
2870 /* Someone else could have slipped in a size
2871 * change here, but doing so is just silly.
2872 * We put oldsectors back because we *know* it is
2873 * safe, and trust userspace not to race with
2874 * itself
2876 rdev->sectors = oldsectors;
2877 return -EBUSY;
2880 return len;
2883 static struct rdev_sysfs_entry rdev_size =
2884 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2887 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2889 unsigned long long recovery_start = rdev->recovery_offset;
2891 if (test_bit(In_sync, &rdev->flags) ||
2892 recovery_start == MaxSector)
2893 return sprintf(page, "none\n");
2895 return sprintf(page, "%llu\n", recovery_start);
2898 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2900 unsigned long long recovery_start;
2902 if (cmd_match(buf, "none"))
2903 recovery_start = MaxSector;
2904 else if (strict_strtoull(buf, 10, &recovery_start))
2905 return -EINVAL;
2907 if (rdev->mddev->pers &&
2908 rdev->raid_disk >= 0)
2909 return -EBUSY;
2911 rdev->recovery_offset = recovery_start;
2912 if (recovery_start == MaxSector)
2913 set_bit(In_sync, &rdev->flags);
2914 else
2915 clear_bit(In_sync, &rdev->flags);
2916 return len;
2919 static struct rdev_sysfs_entry rdev_recovery_start =
2920 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2923 static ssize_t
2924 badblocks_show(struct badblocks *bb, char *page, int unack);
2925 static ssize_t
2926 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2928 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2930 return badblocks_show(&rdev->badblocks, page, 0);
2932 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2934 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2935 /* Maybe that ack was all we needed */
2936 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2937 wake_up(&rdev->blocked_wait);
2938 return rv;
2940 static struct rdev_sysfs_entry rdev_bad_blocks =
2941 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2944 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2946 return badblocks_show(&rdev->badblocks, page, 1);
2948 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2950 return badblocks_store(&rdev->badblocks, page, len, 1);
2952 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2953 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2955 static struct attribute *rdev_default_attrs[] = {
2956 &rdev_state.attr,
2957 &rdev_errors.attr,
2958 &rdev_slot.attr,
2959 &rdev_offset.attr,
2960 &rdev_size.attr,
2961 &rdev_recovery_start.attr,
2962 &rdev_bad_blocks.attr,
2963 &rdev_unack_bad_blocks.attr,
2964 NULL,
2966 static ssize_t
2967 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2969 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2970 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2971 struct mddev *mddev = rdev->mddev;
2972 ssize_t rv;
2974 if (!entry->show)
2975 return -EIO;
2977 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2978 if (!rv) {
2979 if (rdev->mddev == NULL)
2980 rv = -EBUSY;
2981 else
2982 rv = entry->show(rdev, page);
2983 mddev_unlock(mddev);
2985 return rv;
2988 static ssize_t
2989 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2990 const char *page, size_t length)
2992 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2993 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2994 ssize_t rv;
2995 struct mddev *mddev = rdev->mddev;
2997 if (!entry->store)
2998 return -EIO;
2999 if (!capable(CAP_SYS_ADMIN))
3000 return -EACCES;
3001 rv = mddev ? mddev_lock(mddev): -EBUSY;
3002 if (!rv) {
3003 if (rdev->mddev == NULL)
3004 rv = -EBUSY;
3005 else
3006 rv = entry->store(rdev, page, length);
3007 mddev_unlock(mddev);
3009 return rv;
3012 static void rdev_free(struct kobject *ko)
3014 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3015 kfree(rdev);
3017 static const struct sysfs_ops rdev_sysfs_ops = {
3018 .show = rdev_attr_show,
3019 .store = rdev_attr_store,
3021 static struct kobj_type rdev_ktype = {
3022 .release = rdev_free,
3023 .sysfs_ops = &rdev_sysfs_ops,
3024 .default_attrs = rdev_default_attrs,
3027 int md_rdev_init(struct md_rdev *rdev)
3029 rdev->desc_nr = -1;
3030 rdev->saved_raid_disk = -1;
3031 rdev->raid_disk = -1;
3032 rdev->flags = 0;
3033 rdev->data_offset = 0;
3034 rdev->sb_events = 0;
3035 rdev->last_read_error.tv_sec = 0;
3036 rdev->last_read_error.tv_nsec = 0;
3037 rdev->sb_loaded = 0;
3038 rdev->bb_page = NULL;
3039 atomic_set(&rdev->nr_pending, 0);
3040 atomic_set(&rdev->read_errors, 0);
3041 atomic_set(&rdev->corrected_errors, 0);
3043 INIT_LIST_HEAD(&rdev->same_set);
3044 init_waitqueue_head(&rdev->blocked_wait);
3046 /* Add space to store bad block list.
3047 * This reserves the space even on arrays where it cannot
3048 * be used - I wonder if that matters
3050 rdev->badblocks.count = 0;
3051 rdev->badblocks.shift = 0;
3052 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3053 seqlock_init(&rdev->badblocks.lock);
3054 if (rdev->badblocks.page == NULL)
3055 return -ENOMEM;
3057 return 0;
3059 EXPORT_SYMBOL_GPL(md_rdev_init);
3061 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3063 * mark the device faulty if:
3065 * - the device is nonexistent (zero size)
3066 * - the device has no valid superblock
3068 * a faulty rdev _never_ has rdev->sb set.
3070 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3072 char b[BDEVNAME_SIZE];
3073 int err;
3074 struct md_rdev *rdev;
3075 sector_t size;
3077 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3078 if (!rdev) {
3079 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3080 return ERR_PTR(-ENOMEM);
3083 err = md_rdev_init(rdev);
3084 if (err)
3085 goto abort_free;
3086 err = alloc_disk_sb(rdev);
3087 if (err)
3088 goto abort_free;
3090 err = lock_rdev(rdev, newdev, super_format == -2);
3091 if (err)
3092 goto abort_free;
3094 kobject_init(&rdev->kobj, &rdev_ktype);
3096 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3097 if (!size) {
3098 printk(KERN_WARNING
3099 "md: %s has zero or unknown size, marking faulty!\n",
3100 bdevname(rdev->bdev,b));
3101 err = -EINVAL;
3102 goto abort_free;
3105 if (super_format >= 0) {
3106 err = super_types[super_format].
3107 load_super(rdev, NULL, super_minor);
3108 if (err == -EINVAL) {
3109 printk(KERN_WARNING
3110 "md: %s does not have a valid v%d.%d "
3111 "superblock, not importing!\n",
3112 bdevname(rdev->bdev,b),
3113 super_format, super_minor);
3114 goto abort_free;
3116 if (err < 0) {
3117 printk(KERN_WARNING
3118 "md: could not read %s's sb, not importing!\n",
3119 bdevname(rdev->bdev,b));
3120 goto abort_free;
3123 if (super_format == -1)
3124 /* hot-add for 0.90, or non-persistent: so no badblocks */
3125 rdev->badblocks.shift = -1;
3127 return rdev;
3129 abort_free:
3130 if (rdev->bdev)
3131 unlock_rdev(rdev);
3132 free_disk_sb(rdev);
3133 kfree(rdev->badblocks.page);
3134 kfree(rdev);
3135 return ERR_PTR(err);
3139 * Check a full RAID array for plausibility
3143 static void analyze_sbs(struct mddev * mddev)
3145 int i;
3146 struct md_rdev *rdev, *freshest, *tmp;
3147 char b[BDEVNAME_SIZE];
3149 freshest = NULL;
3150 rdev_for_each(rdev, tmp, mddev)
3151 switch (super_types[mddev->major_version].
3152 load_super(rdev, freshest, mddev->minor_version)) {
3153 case 1:
3154 freshest = rdev;
3155 break;
3156 case 0:
3157 break;
3158 default:
3159 printk( KERN_ERR \
3160 "md: fatal superblock inconsistency in %s"
3161 " -- removing from array\n",
3162 bdevname(rdev->bdev,b));
3163 kick_rdev_from_array(rdev);
3167 super_types[mddev->major_version].
3168 validate_super(mddev, freshest);
3170 i = 0;
3171 rdev_for_each(rdev, tmp, mddev) {
3172 if (mddev->max_disks &&
3173 (rdev->desc_nr >= mddev->max_disks ||
3174 i > mddev->max_disks)) {
3175 printk(KERN_WARNING
3176 "md: %s: %s: only %d devices permitted\n",
3177 mdname(mddev), bdevname(rdev->bdev, b),
3178 mddev->max_disks);
3179 kick_rdev_from_array(rdev);
3180 continue;
3182 if (rdev != freshest)
3183 if (super_types[mddev->major_version].
3184 validate_super(mddev, rdev)) {
3185 printk(KERN_WARNING "md: kicking non-fresh %s"
3186 " from array!\n",
3187 bdevname(rdev->bdev,b));
3188 kick_rdev_from_array(rdev);
3189 continue;
3191 if (mddev->level == LEVEL_MULTIPATH) {
3192 rdev->desc_nr = i++;
3193 rdev->raid_disk = rdev->desc_nr;
3194 set_bit(In_sync, &rdev->flags);
3195 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3196 rdev->raid_disk = -1;
3197 clear_bit(In_sync, &rdev->flags);
3202 /* Read a fixed-point number.
3203 * Numbers in sysfs attributes should be in "standard" units where
3204 * possible, so time should be in seconds.
3205 * However we internally use a a much smaller unit such as
3206 * milliseconds or jiffies.
3207 * This function takes a decimal number with a possible fractional
3208 * component, and produces an integer which is the result of
3209 * multiplying that number by 10^'scale'.
3210 * all without any floating-point arithmetic.
3212 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3214 unsigned long result = 0;
3215 long decimals = -1;
3216 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3217 if (*cp == '.')
3218 decimals = 0;
3219 else if (decimals < scale) {
3220 unsigned int value;
3221 value = *cp - '0';
3222 result = result * 10 + value;
3223 if (decimals >= 0)
3224 decimals++;
3226 cp++;
3228 if (*cp == '\n')
3229 cp++;
3230 if (*cp)
3231 return -EINVAL;
3232 if (decimals < 0)
3233 decimals = 0;
3234 while (decimals < scale) {
3235 result *= 10;
3236 decimals ++;
3238 *res = result;
3239 return 0;
3243 static void md_safemode_timeout(unsigned long data);
3245 static ssize_t
3246 safe_delay_show(struct mddev *mddev, char *page)
3248 int msec = (mddev->safemode_delay*1000)/HZ;
3249 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3251 static ssize_t
3252 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3254 unsigned long msec;
3256 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3257 return -EINVAL;
3258 if (msec == 0)
3259 mddev->safemode_delay = 0;
3260 else {
3261 unsigned long old_delay = mddev->safemode_delay;
3262 mddev->safemode_delay = (msec*HZ)/1000;
3263 if (mddev->safemode_delay == 0)
3264 mddev->safemode_delay = 1;
3265 if (mddev->safemode_delay < old_delay)
3266 md_safemode_timeout((unsigned long)mddev);
3268 return len;
3270 static struct md_sysfs_entry md_safe_delay =
3271 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3273 static ssize_t
3274 level_show(struct mddev *mddev, char *page)
3276 struct md_personality *p = mddev->pers;
3277 if (p)
3278 return sprintf(page, "%s\n", p->name);
3279 else if (mddev->clevel[0])
3280 return sprintf(page, "%s\n", mddev->clevel);
3281 else if (mddev->level != LEVEL_NONE)
3282 return sprintf(page, "%d\n", mddev->level);
3283 else
3284 return 0;
3287 static ssize_t
3288 level_store(struct mddev *mddev, const char *buf, size_t len)
3290 char clevel[16];
3291 ssize_t rv = len;
3292 struct md_personality *pers;
3293 long level;
3294 void *priv;
3295 struct md_rdev *rdev;
3297 if (mddev->pers == NULL) {
3298 if (len == 0)
3299 return 0;
3300 if (len >= sizeof(mddev->clevel))
3301 return -ENOSPC;
3302 strncpy(mddev->clevel, buf, len);
3303 if (mddev->clevel[len-1] == '\n')
3304 len--;
3305 mddev->clevel[len] = 0;
3306 mddev->level = LEVEL_NONE;
3307 return rv;
3310 /* request to change the personality. Need to ensure:
3311 * - array is not engaged in resync/recovery/reshape
3312 * - old personality can be suspended
3313 * - new personality will access other array.
3316 if (mddev->sync_thread ||
3317 mddev->reshape_position != MaxSector ||
3318 mddev->sysfs_active)
3319 return -EBUSY;
3321 if (!mddev->pers->quiesce) {
3322 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3323 mdname(mddev), mddev->pers->name);
3324 return -EINVAL;
3327 /* Now find the new personality */
3328 if (len == 0 || len >= sizeof(clevel))
3329 return -EINVAL;
3330 strncpy(clevel, buf, len);
3331 if (clevel[len-1] == '\n')
3332 len--;
3333 clevel[len] = 0;
3334 if (strict_strtol(clevel, 10, &level))
3335 level = LEVEL_NONE;
3337 if (request_module("md-%s", clevel) != 0)
3338 request_module("md-level-%s", clevel);
3339 spin_lock(&pers_lock);
3340 pers = find_pers(level, clevel);
3341 if (!pers || !try_module_get(pers->owner)) {
3342 spin_unlock(&pers_lock);
3343 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3344 return -EINVAL;
3346 spin_unlock(&pers_lock);
3348 if (pers == mddev->pers) {
3349 /* Nothing to do! */
3350 module_put(pers->owner);
3351 return rv;
3353 if (!pers->takeover) {
3354 module_put(pers->owner);
3355 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3356 mdname(mddev), clevel);
3357 return -EINVAL;
3360 list_for_each_entry(rdev, &mddev->disks, same_set)
3361 rdev->new_raid_disk = rdev->raid_disk;
3363 /* ->takeover must set new_* and/or delta_disks
3364 * if it succeeds, and may set them when it fails.
3366 priv = pers->takeover(mddev);
3367 if (IS_ERR(priv)) {
3368 mddev->new_level = mddev->level;
3369 mddev->new_layout = mddev->layout;
3370 mddev->new_chunk_sectors = mddev->chunk_sectors;
3371 mddev->raid_disks -= mddev->delta_disks;
3372 mddev->delta_disks = 0;
3373 module_put(pers->owner);
3374 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3375 mdname(mddev), clevel);
3376 return PTR_ERR(priv);
3379 /* Looks like we have a winner */
3380 mddev_suspend(mddev);
3381 mddev->pers->stop(mddev);
3383 if (mddev->pers->sync_request == NULL &&
3384 pers->sync_request != NULL) {
3385 /* need to add the md_redundancy_group */
3386 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3387 printk(KERN_WARNING
3388 "md: cannot register extra attributes for %s\n",
3389 mdname(mddev));
3390 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3392 if (mddev->pers->sync_request != NULL &&
3393 pers->sync_request == NULL) {
3394 /* need to remove the md_redundancy_group */
3395 if (mddev->to_remove == NULL)
3396 mddev->to_remove = &md_redundancy_group;
3399 if (mddev->pers->sync_request == NULL &&
3400 mddev->external) {
3401 /* We are converting from a no-redundancy array
3402 * to a redundancy array and metadata is managed
3403 * externally so we need to be sure that writes
3404 * won't block due to a need to transition
3405 * clean->dirty
3406 * until external management is started.
3408 mddev->in_sync = 0;
3409 mddev->safemode_delay = 0;
3410 mddev->safemode = 0;
3413 list_for_each_entry(rdev, &mddev->disks, same_set) {
3414 if (rdev->raid_disk < 0)
3415 continue;
3416 if (rdev->new_raid_disk >= mddev->raid_disks)
3417 rdev->new_raid_disk = -1;
3418 if (rdev->new_raid_disk == rdev->raid_disk)
3419 continue;
3420 sysfs_unlink_rdev(mddev, rdev);
3422 list_for_each_entry(rdev, &mddev->disks, same_set) {
3423 if (rdev->raid_disk < 0)
3424 continue;
3425 if (rdev->new_raid_disk == rdev->raid_disk)
3426 continue;
3427 rdev->raid_disk = rdev->new_raid_disk;
3428 if (rdev->raid_disk < 0)
3429 clear_bit(In_sync, &rdev->flags);
3430 else {
3431 if (sysfs_link_rdev(mddev, rdev))
3432 printk(KERN_WARNING "md: cannot register rd%d"
3433 " for %s after level change\n",
3434 rdev->raid_disk, mdname(mddev));
3438 module_put(mddev->pers->owner);
3439 mddev->pers = pers;
3440 mddev->private = priv;
3441 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3442 mddev->level = mddev->new_level;
3443 mddev->layout = mddev->new_layout;
3444 mddev->chunk_sectors = mddev->new_chunk_sectors;
3445 mddev->delta_disks = 0;
3446 mddev->degraded = 0;
3447 if (mddev->pers->sync_request == NULL) {
3448 /* this is now an array without redundancy, so
3449 * it must always be in_sync
3451 mddev->in_sync = 1;
3452 del_timer_sync(&mddev->safemode_timer);
3454 pers->run(mddev);
3455 mddev_resume(mddev);
3456 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3457 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3458 md_wakeup_thread(mddev->thread);
3459 sysfs_notify(&mddev->kobj, NULL, "level");
3460 md_new_event(mddev);
3461 return rv;
3464 static struct md_sysfs_entry md_level =
3465 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3468 static ssize_t
3469 layout_show(struct mddev *mddev, char *page)
3471 /* just a number, not meaningful for all levels */
3472 if (mddev->reshape_position != MaxSector &&
3473 mddev->layout != mddev->new_layout)
3474 return sprintf(page, "%d (%d)\n",
3475 mddev->new_layout, mddev->layout);
3476 return sprintf(page, "%d\n", mddev->layout);
3479 static ssize_t
3480 layout_store(struct mddev *mddev, const char *buf, size_t len)
3482 char *e;
3483 unsigned long n = simple_strtoul(buf, &e, 10);
3485 if (!*buf || (*e && *e != '\n'))
3486 return -EINVAL;
3488 if (mddev->pers) {
3489 int err;
3490 if (mddev->pers->check_reshape == NULL)
3491 return -EBUSY;
3492 mddev->new_layout = n;
3493 err = mddev->pers->check_reshape(mddev);
3494 if (err) {
3495 mddev->new_layout = mddev->layout;
3496 return err;
3498 } else {
3499 mddev->new_layout = n;
3500 if (mddev->reshape_position == MaxSector)
3501 mddev->layout = n;
3503 return len;
3505 static struct md_sysfs_entry md_layout =
3506 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3509 static ssize_t
3510 raid_disks_show(struct mddev *mddev, char *page)
3512 if (mddev->raid_disks == 0)
3513 return 0;
3514 if (mddev->reshape_position != MaxSector &&
3515 mddev->delta_disks != 0)
3516 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3517 mddev->raid_disks - mddev->delta_disks);
3518 return sprintf(page, "%d\n", mddev->raid_disks);
3521 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3523 static ssize_t
3524 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3526 char *e;
3527 int rv = 0;
3528 unsigned long n = simple_strtoul(buf, &e, 10);
3530 if (!*buf || (*e && *e != '\n'))
3531 return -EINVAL;
3533 if (mddev->pers)
3534 rv = update_raid_disks(mddev, n);
3535 else if (mddev->reshape_position != MaxSector) {
3536 int olddisks = mddev->raid_disks - mddev->delta_disks;
3537 mddev->delta_disks = n - olddisks;
3538 mddev->raid_disks = n;
3539 } else
3540 mddev->raid_disks = n;
3541 return rv ? rv : len;
3543 static struct md_sysfs_entry md_raid_disks =
3544 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3546 static ssize_t
3547 chunk_size_show(struct mddev *mddev, char *page)
3549 if (mddev->reshape_position != MaxSector &&
3550 mddev->chunk_sectors != mddev->new_chunk_sectors)
3551 return sprintf(page, "%d (%d)\n",
3552 mddev->new_chunk_sectors << 9,
3553 mddev->chunk_sectors << 9);
3554 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3557 static ssize_t
3558 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3560 char *e;
3561 unsigned long n = simple_strtoul(buf, &e, 10);
3563 if (!*buf || (*e && *e != '\n'))
3564 return -EINVAL;
3566 if (mddev->pers) {
3567 int err;
3568 if (mddev->pers->check_reshape == NULL)
3569 return -EBUSY;
3570 mddev->new_chunk_sectors = n >> 9;
3571 err = mddev->pers->check_reshape(mddev);
3572 if (err) {
3573 mddev->new_chunk_sectors = mddev->chunk_sectors;
3574 return err;
3576 } else {
3577 mddev->new_chunk_sectors = n >> 9;
3578 if (mddev->reshape_position == MaxSector)
3579 mddev->chunk_sectors = n >> 9;
3581 return len;
3583 static struct md_sysfs_entry md_chunk_size =
3584 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3586 static ssize_t
3587 resync_start_show(struct mddev *mddev, char *page)
3589 if (mddev->recovery_cp == MaxSector)
3590 return sprintf(page, "none\n");
3591 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3594 static ssize_t
3595 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3597 char *e;
3598 unsigned long long n = simple_strtoull(buf, &e, 10);
3600 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3601 return -EBUSY;
3602 if (cmd_match(buf, "none"))
3603 n = MaxSector;
3604 else if (!*buf || (*e && *e != '\n'))
3605 return -EINVAL;
3607 mddev->recovery_cp = n;
3608 return len;
3610 static struct md_sysfs_entry md_resync_start =
3611 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3614 * The array state can be:
3616 * clear
3617 * No devices, no size, no level
3618 * Equivalent to STOP_ARRAY ioctl
3619 * inactive
3620 * May have some settings, but array is not active
3621 * all IO results in error
3622 * When written, doesn't tear down array, but just stops it
3623 * suspended (not supported yet)
3624 * All IO requests will block. The array can be reconfigured.
3625 * Writing this, if accepted, will block until array is quiescent
3626 * readonly
3627 * no resync can happen. no superblocks get written.
3628 * write requests fail
3629 * read-auto
3630 * like readonly, but behaves like 'clean' on a write request.
3632 * clean - no pending writes, but otherwise active.
3633 * When written to inactive array, starts without resync
3634 * If a write request arrives then
3635 * if metadata is known, mark 'dirty' and switch to 'active'.
3636 * if not known, block and switch to write-pending
3637 * If written to an active array that has pending writes, then fails.
3638 * active
3639 * fully active: IO and resync can be happening.
3640 * When written to inactive array, starts with resync
3642 * write-pending
3643 * clean, but writes are blocked waiting for 'active' to be written.
3645 * active-idle
3646 * like active, but no writes have been seen for a while (100msec).
3649 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3650 write_pending, active_idle, bad_word};
3651 static char *array_states[] = {
3652 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3653 "write-pending", "active-idle", NULL };
3655 static int match_word(const char *word, char **list)
3657 int n;
3658 for (n=0; list[n]; n++)
3659 if (cmd_match(word, list[n]))
3660 break;
3661 return n;
3664 static ssize_t
3665 array_state_show(struct mddev *mddev, char *page)
3667 enum array_state st = inactive;
3669 if (mddev->pers)
3670 switch(mddev->ro) {
3671 case 1:
3672 st = readonly;
3673 break;
3674 case 2:
3675 st = read_auto;
3676 break;
3677 case 0:
3678 if (mddev->in_sync)
3679 st = clean;
3680 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3681 st = write_pending;
3682 else if (mddev->safemode)
3683 st = active_idle;
3684 else
3685 st = active;
3687 else {
3688 if (list_empty(&mddev->disks) &&
3689 mddev->raid_disks == 0 &&
3690 mddev->dev_sectors == 0)
3691 st = clear;
3692 else
3693 st = inactive;
3695 return sprintf(page, "%s\n", array_states[st]);
3698 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3699 static int md_set_readonly(struct mddev * mddev, int is_open);
3700 static int do_md_run(struct mddev * mddev);
3701 static int restart_array(struct mddev *mddev);
3703 static ssize_t
3704 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3706 int err = -EINVAL;
3707 enum array_state st = match_word(buf, array_states);
3708 switch(st) {
3709 case bad_word:
3710 break;
3711 case clear:
3712 /* stopping an active array */
3713 if (atomic_read(&mddev->openers) > 0)
3714 return -EBUSY;
3715 err = do_md_stop(mddev, 0, 0);
3716 break;
3717 case inactive:
3718 /* stopping an active array */
3719 if (mddev->pers) {
3720 if (atomic_read(&mddev->openers) > 0)
3721 return -EBUSY;
3722 err = do_md_stop(mddev, 2, 0);
3723 } else
3724 err = 0; /* already inactive */
3725 break;
3726 case suspended:
3727 break; /* not supported yet */
3728 case readonly:
3729 if (mddev->pers)
3730 err = md_set_readonly(mddev, 0);
3731 else {
3732 mddev->ro = 1;
3733 set_disk_ro(mddev->gendisk, 1);
3734 err = do_md_run(mddev);
3736 break;
3737 case read_auto:
3738 if (mddev->pers) {
3739 if (mddev->ro == 0)
3740 err = md_set_readonly(mddev, 0);
3741 else if (mddev->ro == 1)
3742 err = restart_array(mddev);
3743 if (err == 0) {
3744 mddev->ro = 2;
3745 set_disk_ro(mddev->gendisk, 0);
3747 } else {
3748 mddev->ro = 2;
3749 err = do_md_run(mddev);
3751 break;
3752 case clean:
3753 if (mddev->pers) {
3754 restart_array(mddev);
3755 spin_lock_irq(&mddev->write_lock);
3756 if (atomic_read(&mddev->writes_pending) == 0) {
3757 if (mddev->in_sync == 0) {
3758 mddev->in_sync = 1;
3759 if (mddev->safemode == 1)
3760 mddev->safemode = 0;
3761 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3763 err = 0;
3764 } else
3765 err = -EBUSY;
3766 spin_unlock_irq(&mddev->write_lock);
3767 } else
3768 err = -EINVAL;
3769 break;
3770 case active:
3771 if (mddev->pers) {
3772 restart_array(mddev);
3773 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3774 wake_up(&mddev->sb_wait);
3775 err = 0;
3776 } else {
3777 mddev->ro = 0;
3778 set_disk_ro(mddev->gendisk, 0);
3779 err = do_md_run(mddev);
3781 break;
3782 case write_pending:
3783 case active_idle:
3784 /* these cannot be set */
3785 break;
3787 if (err)
3788 return err;
3789 else {
3790 sysfs_notify_dirent_safe(mddev->sysfs_state);
3791 return len;
3794 static struct md_sysfs_entry md_array_state =
3795 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3797 static ssize_t
3798 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3799 return sprintf(page, "%d\n",
3800 atomic_read(&mddev->max_corr_read_errors));
3803 static ssize_t
3804 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3806 char *e;
3807 unsigned long n = simple_strtoul(buf, &e, 10);
3809 if (*buf && (*e == 0 || *e == '\n')) {
3810 atomic_set(&mddev->max_corr_read_errors, n);
3811 return len;
3813 return -EINVAL;
3816 static struct md_sysfs_entry max_corr_read_errors =
3817 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3818 max_corrected_read_errors_store);
3820 static ssize_t
3821 null_show(struct mddev *mddev, char *page)
3823 return -EINVAL;
3826 static ssize_t
3827 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3829 /* buf must be %d:%d\n? giving major and minor numbers */
3830 /* The new device is added to the array.
3831 * If the array has a persistent superblock, we read the
3832 * superblock to initialise info and check validity.
3833 * Otherwise, only checking done is that in bind_rdev_to_array,
3834 * which mainly checks size.
3836 char *e;
3837 int major = simple_strtoul(buf, &e, 10);
3838 int minor;
3839 dev_t dev;
3840 struct md_rdev *rdev;
3841 int err;
3843 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3844 return -EINVAL;
3845 minor = simple_strtoul(e+1, &e, 10);
3846 if (*e && *e != '\n')
3847 return -EINVAL;
3848 dev = MKDEV(major, minor);
3849 if (major != MAJOR(dev) ||
3850 minor != MINOR(dev))
3851 return -EOVERFLOW;
3854 if (mddev->persistent) {
3855 rdev = md_import_device(dev, mddev->major_version,
3856 mddev->minor_version);
3857 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3858 struct md_rdev *rdev0
3859 = list_entry(mddev->disks.next,
3860 struct md_rdev, same_set);
3861 err = super_types[mddev->major_version]
3862 .load_super(rdev, rdev0, mddev->minor_version);
3863 if (err < 0)
3864 goto out;
3866 } else if (mddev->external)
3867 rdev = md_import_device(dev, -2, -1);
3868 else
3869 rdev = md_import_device(dev, -1, -1);
3871 if (IS_ERR(rdev))
3872 return PTR_ERR(rdev);
3873 err = bind_rdev_to_array(rdev, mddev);
3874 out:
3875 if (err)
3876 export_rdev(rdev);
3877 return err ? err : len;
3880 static struct md_sysfs_entry md_new_device =
3881 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3883 static ssize_t
3884 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3886 char *end;
3887 unsigned long chunk, end_chunk;
3889 if (!mddev->bitmap)
3890 goto out;
3891 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3892 while (*buf) {
3893 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3894 if (buf == end) break;
3895 if (*end == '-') { /* range */
3896 buf = end + 1;
3897 end_chunk = simple_strtoul(buf, &end, 0);
3898 if (buf == end) break;
3900 if (*end && !isspace(*end)) break;
3901 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3902 buf = skip_spaces(end);
3904 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3905 out:
3906 return len;
3909 static struct md_sysfs_entry md_bitmap =
3910 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3912 static ssize_t
3913 size_show(struct mddev *mddev, char *page)
3915 return sprintf(page, "%llu\n",
3916 (unsigned long long)mddev->dev_sectors / 2);
3919 static int update_size(struct mddev *mddev, sector_t num_sectors);
3921 static ssize_t
3922 size_store(struct mddev *mddev, const char *buf, size_t len)
3924 /* If array is inactive, we can reduce the component size, but
3925 * not increase it (except from 0).
3926 * If array is active, we can try an on-line resize
3928 sector_t sectors;
3929 int err = strict_blocks_to_sectors(buf, &sectors);
3931 if (err < 0)
3932 return err;
3933 if (mddev->pers) {
3934 err = update_size(mddev, sectors);
3935 md_update_sb(mddev, 1);
3936 } else {
3937 if (mddev->dev_sectors == 0 ||
3938 mddev->dev_sectors > sectors)
3939 mddev->dev_sectors = sectors;
3940 else
3941 err = -ENOSPC;
3943 return err ? err : len;
3946 static struct md_sysfs_entry md_size =
3947 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3950 /* Metdata version.
3951 * This is one of
3952 * 'none' for arrays with no metadata (good luck...)
3953 * 'external' for arrays with externally managed metadata,
3954 * or N.M for internally known formats
3956 static ssize_t
3957 metadata_show(struct mddev *mddev, char *page)
3959 if (mddev->persistent)
3960 return sprintf(page, "%d.%d\n",
3961 mddev->major_version, mddev->minor_version);
3962 else if (mddev->external)
3963 return sprintf(page, "external:%s\n", mddev->metadata_type);
3964 else
3965 return sprintf(page, "none\n");
3968 static ssize_t
3969 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3971 int major, minor;
3972 char *e;
3973 /* Changing the details of 'external' metadata is
3974 * always permitted. Otherwise there must be
3975 * no devices attached to the array.
3977 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3979 else if (!list_empty(&mddev->disks))
3980 return -EBUSY;
3982 if (cmd_match(buf, "none")) {
3983 mddev->persistent = 0;
3984 mddev->external = 0;
3985 mddev->major_version = 0;
3986 mddev->minor_version = 90;
3987 return len;
3989 if (strncmp(buf, "external:", 9) == 0) {
3990 size_t namelen = len-9;
3991 if (namelen >= sizeof(mddev->metadata_type))
3992 namelen = sizeof(mddev->metadata_type)-1;
3993 strncpy(mddev->metadata_type, buf+9, namelen);
3994 mddev->metadata_type[namelen] = 0;
3995 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3996 mddev->metadata_type[--namelen] = 0;
3997 mddev->persistent = 0;
3998 mddev->external = 1;
3999 mddev->major_version = 0;
4000 mddev->minor_version = 90;
4001 return len;
4003 major = simple_strtoul(buf, &e, 10);
4004 if (e==buf || *e != '.')
4005 return -EINVAL;
4006 buf = e+1;
4007 minor = simple_strtoul(buf, &e, 10);
4008 if (e==buf || (*e && *e != '\n') )
4009 return -EINVAL;
4010 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4011 return -ENOENT;
4012 mddev->major_version = major;
4013 mddev->minor_version = minor;
4014 mddev->persistent = 1;
4015 mddev->external = 0;
4016 return len;
4019 static struct md_sysfs_entry md_metadata =
4020 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4022 static ssize_t
4023 action_show(struct mddev *mddev, char *page)
4025 char *type = "idle";
4026 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4027 type = "frozen";
4028 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4029 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4030 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4031 type = "reshape";
4032 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4033 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4034 type = "resync";
4035 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4036 type = "check";
4037 else
4038 type = "repair";
4039 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4040 type = "recover";
4042 return sprintf(page, "%s\n", type);
4045 static void reap_sync_thread(struct mddev *mddev);
4047 static ssize_t
4048 action_store(struct mddev *mddev, const char *page, size_t len)
4050 if (!mddev->pers || !mddev->pers->sync_request)
4051 return -EINVAL;
4053 if (cmd_match(page, "frozen"))
4054 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4055 else
4056 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4058 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4059 if (mddev->sync_thread) {
4060 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4061 reap_sync_thread(mddev);
4063 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4064 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4065 return -EBUSY;
4066 else if (cmd_match(page, "resync"))
4067 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4068 else if (cmd_match(page, "recover")) {
4069 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4070 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4071 } else if (cmd_match(page, "reshape")) {
4072 int err;
4073 if (mddev->pers->start_reshape == NULL)
4074 return -EINVAL;
4075 err = mddev->pers->start_reshape(mddev);
4076 if (err)
4077 return err;
4078 sysfs_notify(&mddev->kobj, NULL, "degraded");
4079 } else {
4080 if (cmd_match(page, "check"))
4081 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4082 else if (!cmd_match(page, "repair"))
4083 return -EINVAL;
4084 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4085 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4087 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4088 md_wakeup_thread(mddev->thread);
4089 sysfs_notify_dirent_safe(mddev->sysfs_action);
4090 return len;
4093 static ssize_t
4094 mismatch_cnt_show(struct mddev *mddev, char *page)
4096 return sprintf(page, "%llu\n",
4097 (unsigned long long) mddev->resync_mismatches);
4100 static struct md_sysfs_entry md_scan_mode =
4101 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4104 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4106 static ssize_t
4107 sync_min_show(struct mddev *mddev, char *page)
4109 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4110 mddev->sync_speed_min ? "local": "system");
4113 static ssize_t
4114 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4116 int min;
4117 char *e;
4118 if (strncmp(buf, "system", 6)==0) {
4119 mddev->sync_speed_min = 0;
4120 return len;
4122 min = simple_strtoul(buf, &e, 10);
4123 if (buf == e || (*e && *e != '\n') || min <= 0)
4124 return -EINVAL;
4125 mddev->sync_speed_min = min;
4126 return len;
4129 static struct md_sysfs_entry md_sync_min =
4130 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4132 static ssize_t
4133 sync_max_show(struct mddev *mddev, char *page)
4135 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4136 mddev->sync_speed_max ? "local": "system");
4139 static ssize_t
4140 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4142 int max;
4143 char *e;
4144 if (strncmp(buf, "system", 6)==0) {
4145 mddev->sync_speed_max = 0;
4146 return len;
4148 max = simple_strtoul(buf, &e, 10);
4149 if (buf == e || (*e && *e != '\n') || max <= 0)
4150 return -EINVAL;
4151 mddev->sync_speed_max = max;
4152 return len;
4155 static struct md_sysfs_entry md_sync_max =
4156 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4158 static ssize_t
4159 degraded_show(struct mddev *mddev, char *page)
4161 return sprintf(page, "%d\n", mddev->degraded);
4163 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4165 static ssize_t
4166 sync_force_parallel_show(struct mddev *mddev, char *page)
4168 return sprintf(page, "%d\n", mddev->parallel_resync);
4171 static ssize_t
4172 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4174 long n;
4176 if (strict_strtol(buf, 10, &n))
4177 return -EINVAL;
4179 if (n != 0 && n != 1)
4180 return -EINVAL;
4182 mddev->parallel_resync = n;
4184 if (mddev->sync_thread)
4185 wake_up(&resync_wait);
4187 return len;
4190 /* force parallel resync, even with shared block devices */
4191 static struct md_sysfs_entry md_sync_force_parallel =
4192 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4193 sync_force_parallel_show, sync_force_parallel_store);
4195 static ssize_t
4196 sync_speed_show(struct mddev *mddev, char *page)
4198 unsigned long resync, dt, db;
4199 if (mddev->curr_resync == 0)
4200 return sprintf(page, "none\n");
4201 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4202 dt = (jiffies - mddev->resync_mark) / HZ;
4203 if (!dt) dt++;
4204 db = resync - mddev->resync_mark_cnt;
4205 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4208 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4210 static ssize_t
4211 sync_completed_show(struct mddev *mddev, char *page)
4213 unsigned long long max_sectors, resync;
4215 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4216 return sprintf(page, "none\n");
4218 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4219 max_sectors = mddev->resync_max_sectors;
4220 else
4221 max_sectors = mddev->dev_sectors;
4223 resync = mddev->curr_resync_completed;
4224 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4227 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4229 static ssize_t
4230 min_sync_show(struct mddev *mddev, char *page)
4232 return sprintf(page, "%llu\n",
4233 (unsigned long long)mddev->resync_min);
4235 static ssize_t
4236 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4238 unsigned long long min;
4239 if (strict_strtoull(buf, 10, &min))
4240 return -EINVAL;
4241 if (min > mddev->resync_max)
4242 return -EINVAL;
4243 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4244 return -EBUSY;
4246 /* Must be a multiple of chunk_size */
4247 if (mddev->chunk_sectors) {
4248 sector_t temp = min;
4249 if (sector_div(temp, mddev->chunk_sectors))
4250 return -EINVAL;
4252 mddev->resync_min = min;
4254 return len;
4257 static struct md_sysfs_entry md_min_sync =
4258 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4260 static ssize_t
4261 max_sync_show(struct mddev *mddev, char *page)
4263 if (mddev->resync_max == MaxSector)
4264 return sprintf(page, "max\n");
4265 else
4266 return sprintf(page, "%llu\n",
4267 (unsigned long long)mddev->resync_max);
4269 static ssize_t
4270 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4272 if (strncmp(buf, "max", 3) == 0)
4273 mddev->resync_max = MaxSector;
4274 else {
4275 unsigned long long max;
4276 if (strict_strtoull(buf, 10, &max))
4277 return -EINVAL;
4278 if (max < mddev->resync_min)
4279 return -EINVAL;
4280 if (max < mddev->resync_max &&
4281 mddev->ro == 0 &&
4282 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4283 return -EBUSY;
4285 /* Must be a multiple of chunk_size */
4286 if (mddev->chunk_sectors) {
4287 sector_t temp = max;
4288 if (sector_div(temp, mddev->chunk_sectors))
4289 return -EINVAL;
4291 mddev->resync_max = max;
4293 wake_up(&mddev->recovery_wait);
4294 return len;
4297 static struct md_sysfs_entry md_max_sync =
4298 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4300 static ssize_t
4301 suspend_lo_show(struct mddev *mddev, char *page)
4303 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4306 static ssize_t
4307 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4309 char *e;
4310 unsigned long long new = simple_strtoull(buf, &e, 10);
4311 unsigned long long old = mddev->suspend_lo;
4313 if (mddev->pers == NULL ||
4314 mddev->pers->quiesce == NULL)
4315 return -EINVAL;
4316 if (buf == e || (*e && *e != '\n'))
4317 return -EINVAL;
4319 mddev->suspend_lo = new;
4320 if (new >= old)
4321 /* Shrinking suspended region */
4322 mddev->pers->quiesce(mddev, 2);
4323 else {
4324 /* Expanding suspended region - need to wait */
4325 mddev->pers->quiesce(mddev, 1);
4326 mddev->pers->quiesce(mddev, 0);
4328 return len;
4330 static struct md_sysfs_entry md_suspend_lo =
4331 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4334 static ssize_t
4335 suspend_hi_show(struct mddev *mddev, char *page)
4337 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4340 static ssize_t
4341 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4343 char *e;
4344 unsigned long long new = simple_strtoull(buf, &e, 10);
4345 unsigned long long old = mddev->suspend_hi;
4347 if (mddev->pers == NULL ||
4348 mddev->pers->quiesce == NULL)
4349 return -EINVAL;
4350 if (buf == e || (*e && *e != '\n'))
4351 return -EINVAL;
4353 mddev->suspend_hi = new;
4354 if (new <= old)
4355 /* Shrinking suspended region */
4356 mddev->pers->quiesce(mddev, 2);
4357 else {
4358 /* Expanding suspended region - need to wait */
4359 mddev->pers->quiesce(mddev, 1);
4360 mddev->pers->quiesce(mddev, 0);
4362 return len;
4364 static struct md_sysfs_entry md_suspend_hi =
4365 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4367 static ssize_t
4368 reshape_position_show(struct mddev *mddev, char *page)
4370 if (mddev->reshape_position != MaxSector)
4371 return sprintf(page, "%llu\n",
4372 (unsigned long long)mddev->reshape_position);
4373 strcpy(page, "none\n");
4374 return 5;
4377 static ssize_t
4378 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4380 char *e;
4381 unsigned long long new = simple_strtoull(buf, &e, 10);
4382 if (mddev->pers)
4383 return -EBUSY;
4384 if (buf == e || (*e && *e != '\n'))
4385 return -EINVAL;
4386 mddev->reshape_position = new;
4387 mddev->delta_disks = 0;
4388 mddev->new_level = mddev->level;
4389 mddev->new_layout = mddev->layout;
4390 mddev->new_chunk_sectors = mddev->chunk_sectors;
4391 return len;
4394 static struct md_sysfs_entry md_reshape_position =
4395 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4396 reshape_position_store);
4398 static ssize_t
4399 array_size_show(struct mddev *mddev, char *page)
4401 if (mddev->external_size)
4402 return sprintf(page, "%llu\n",
4403 (unsigned long long)mddev->array_sectors/2);
4404 else
4405 return sprintf(page, "default\n");
4408 static ssize_t
4409 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4411 sector_t sectors;
4413 if (strncmp(buf, "default", 7) == 0) {
4414 if (mddev->pers)
4415 sectors = mddev->pers->size(mddev, 0, 0);
4416 else
4417 sectors = mddev->array_sectors;
4419 mddev->external_size = 0;
4420 } else {
4421 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4422 return -EINVAL;
4423 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4424 return -E2BIG;
4426 mddev->external_size = 1;
4429 mddev->array_sectors = sectors;
4430 if (mddev->pers) {
4431 set_capacity(mddev->gendisk, mddev->array_sectors);
4432 revalidate_disk(mddev->gendisk);
4434 return len;
4437 static struct md_sysfs_entry md_array_size =
4438 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4439 array_size_store);
4441 static struct attribute *md_default_attrs[] = {
4442 &md_level.attr,
4443 &md_layout.attr,
4444 &md_raid_disks.attr,
4445 &md_chunk_size.attr,
4446 &md_size.attr,
4447 &md_resync_start.attr,
4448 &md_metadata.attr,
4449 &md_new_device.attr,
4450 &md_safe_delay.attr,
4451 &md_array_state.attr,
4452 &md_reshape_position.attr,
4453 &md_array_size.attr,
4454 &max_corr_read_errors.attr,
4455 NULL,
4458 static struct attribute *md_redundancy_attrs[] = {
4459 &md_scan_mode.attr,
4460 &md_mismatches.attr,
4461 &md_sync_min.attr,
4462 &md_sync_max.attr,
4463 &md_sync_speed.attr,
4464 &md_sync_force_parallel.attr,
4465 &md_sync_completed.attr,
4466 &md_min_sync.attr,
4467 &md_max_sync.attr,
4468 &md_suspend_lo.attr,
4469 &md_suspend_hi.attr,
4470 &md_bitmap.attr,
4471 &md_degraded.attr,
4472 NULL,
4474 static struct attribute_group md_redundancy_group = {
4475 .name = NULL,
4476 .attrs = md_redundancy_attrs,
4480 static ssize_t
4481 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4483 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4484 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4485 ssize_t rv;
4487 if (!entry->show)
4488 return -EIO;
4489 rv = mddev_lock(mddev);
4490 if (!rv) {
4491 rv = entry->show(mddev, page);
4492 mddev_unlock(mddev);
4494 return rv;
4497 static ssize_t
4498 md_attr_store(struct kobject *kobj, struct attribute *attr,
4499 const char *page, size_t length)
4501 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4502 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4503 ssize_t rv;
4505 if (!entry->store)
4506 return -EIO;
4507 if (!capable(CAP_SYS_ADMIN))
4508 return -EACCES;
4509 rv = mddev_lock(mddev);
4510 if (mddev->hold_active == UNTIL_IOCTL)
4511 mddev->hold_active = 0;
4512 if (!rv) {
4513 rv = entry->store(mddev, page, length);
4514 mddev_unlock(mddev);
4516 return rv;
4519 static void md_free(struct kobject *ko)
4521 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4523 if (mddev->sysfs_state)
4524 sysfs_put(mddev->sysfs_state);
4526 if (mddev->gendisk) {
4527 del_gendisk(mddev->gendisk);
4528 put_disk(mddev->gendisk);
4530 if (mddev->queue)
4531 blk_cleanup_queue(mddev->queue);
4533 kfree(mddev);
4536 static const struct sysfs_ops md_sysfs_ops = {
4537 .show = md_attr_show,
4538 .store = md_attr_store,
4540 static struct kobj_type md_ktype = {
4541 .release = md_free,
4542 .sysfs_ops = &md_sysfs_ops,
4543 .default_attrs = md_default_attrs,
4546 int mdp_major = 0;
4548 static void mddev_delayed_delete(struct work_struct *ws)
4550 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4552 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4553 kobject_del(&mddev->kobj);
4554 kobject_put(&mddev->kobj);
4557 static int md_alloc(dev_t dev, char *name)
4559 static DEFINE_MUTEX(disks_mutex);
4560 struct mddev *mddev = mddev_find(dev);
4561 struct gendisk *disk;
4562 int partitioned;
4563 int shift;
4564 int unit;
4565 int error;
4567 if (!mddev)
4568 return -ENODEV;
4570 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4571 shift = partitioned ? MdpMinorShift : 0;
4572 unit = MINOR(mddev->unit) >> shift;
4574 /* wait for any previous instance of this device to be
4575 * completely removed (mddev_delayed_delete).
4577 flush_workqueue(md_misc_wq);
4579 mutex_lock(&disks_mutex);
4580 error = -EEXIST;
4581 if (mddev->gendisk)
4582 goto abort;
4584 if (name) {
4585 /* Need to ensure that 'name' is not a duplicate.
4587 struct mddev *mddev2;
4588 spin_lock(&all_mddevs_lock);
4590 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4591 if (mddev2->gendisk &&
4592 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4593 spin_unlock(&all_mddevs_lock);
4594 goto abort;
4596 spin_unlock(&all_mddevs_lock);
4599 error = -ENOMEM;
4600 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4601 if (!mddev->queue)
4602 goto abort;
4603 mddev->queue->queuedata = mddev;
4605 blk_queue_make_request(mddev->queue, md_make_request);
4607 disk = alloc_disk(1 << shift);
4608 if (!disk) {
4609 blk_cleanup_queue(mddev->queue);
4610 mddev->queue = NULL;
4611 goto abort;
4613 disk->major = MAJOR(mddev->unit);
4614 disk->first_minor = unit << shift;
4615 if (name)
4616 strcpy(disk->disk_name, name);
4617 else if (partitioned)
4618 sprintf(disk->disk_name, "md_d%d", unit);
4619 else
4620 sprintf(disk->disk_name, "md%d", unit);
4621 disk->fops = &md_fops;
4622 disk->private_data = mddev;
4623 disk->queue = mddev->queue;
4624 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4625 /* Allow extended partitions. This makes the
4626 * 'mdp' device redundant, but we can't really
4627 * remove it now.
4629 disk->flags |= GENHD_FL_EXT_DEVT;
4630 mddev->gendisk = disk;
4631 /* As soon as we call add_disk(), another thread could get
4632 * through to md_open, so make sure it doesn't get too far
4634 mutex_lock(&mddev->open_mutex);
4635 add_disk(disk);
4637 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4638 &disk_to_dev(disk)->kobj, "%s", "md");
4639 if (error) {
4640 /* This isn't possible, but as kobject_init_and_add is marked
4641 * __must_check, we must do something with the result
4643 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4644 disk->disk_name);
4645 error = 0;
4647 if (mddev->kobj.sd &&
4648 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4649 printk(KERN_DEBUG "pointless warning\n");
4650 mutex_unlock(&mddev->open_mutex);
4651 abort:
4652 mutex_unlock(&disks_mutex);
4653 if (!error && mddev->kobj.sd) {
4654 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4655 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4657 mddev_put(mddev);
4658 return error;
4661 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4663 md_alloc(dev, NULL);
4664 return NULL;
4667 static int add_named_array(const char *val, struct kernel_param *kp)
4669 /* val must be "md_*" where * is not all digits.
4670 * We allocate an array with a large free minor number, and
4671 * set the name to val. val must not already be an active name.
4673 int len = strlen(val);
4674 char buf[DISK_NAME_LEN];
4676 while (len && val[len-1] == '\n')
4677 len--;
4678 if (len >= DISK_NAME_LEN)
4679 return -E2BIG;
4680 strlcpy(buf, val, len+1);
4681 if (strncmp(buf, "md_", 3) != 0)
4682 return -EINVAL;
4683 return md_alloc(0, buf);
4686 static void md_safemode_timeout(unsigned long data)
4688 struct mddev *mddev = (struct mddev *) data;
4690 if (!atomic_read(&mddev->writes_pending)) {
4691 mddev->safemode = 1;
4692 if (mddev->external)
4693 sysfs_notify_dirent_safe(mddev->sysfs_state);
4695 md_wakeup_thread(mddev->thread);
4698 static int start_dirty_degraded;
4700 int md_run(struct mddev *mddev)
4702 int err;
4703 struct md_rdev *rdev;
4704 struct md_personality *pers;
4706 if (list_empty(&mddev->disks))
4707 /* cannot run an array with no devices.. */
4708 return -EINVAL;
4710 if (mddev->pers)
4711 return -EBUSY;
4712 /* Cannot run until previous stop completes properly */
4713 if (mddev->sysfs_active)
4714 return -EBUSY;
4717 * Analyze all RAID superblock(s)
4719 if (!mddev->raid_disks) {
4720 if (!mddev->persistent)
4721 return -EINVAL;
4722 analyze_sbs(mddev);
4725 if (mddev->level != LEVEL_NONE)
4726 request_module("md-level-%d", mddev->level);
4727 else if (mddev->clevel[0])
4728 request_module("md-%s", mddev->clevel);
4731 * Drop all container device buffers, from now on
4732 * the only valid external interface is through the md
4733 * device.
4735 list_for_each_entry(rdev, &mddev->disks, same_set) {
4736 if (test_bit(Faulty, &rdev->flags))
4737 continue;
4738 sync_blockdev(rdev->bdev);
4739 invalidate_bdev(rdev->bdev);
4741 /* perform some consistency tests on the device.
4742 * We don't want the data to overlap the metadata,
4743 * Internal Bitmap issues have been handled elsewhere.
4745 if (rdev->meta_bdev) {
4746 /* Nothing to check */;
4747 } else if (rdev->data_offset < rdev->sb_start) {
4748 if (mddev->dev_sectors &&
4749 rdev->data_offset + mddev->dev_sectors
4750 > rdev->sb_start) {
4751 printk("md: %s: data overlaps metadata\n",
4752 mdname(mddev));
4753 return -EINVAL;
4755 } else {
4756 if (rdev->sb_start + rdev->sb_size/512
4757 > rdev->data_offset) {
4758 printk("md: %s: metadata overlaps data\n",
4759 mdname(mddev));
4760 return -EINVAL;
4763 sysfs_notify_dirent_safe(rdev->sysfs_state);
4766 if (mddev->bio_set == NULL)
4767 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4768 sizeof(struct mddev *));
4770 spin_lock(&pers_lock);
4771 pers = find_pers(mddev->level, mddev->clevel);
4772 if (!pers || !try_module_get(pers->owner)) {
4773 spin_unlock(&pers_lock);
4774 if (mddev->level != LEVEL_NONE)
4775 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4776 mddev->level);
4777 else
4778 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4779 mddev->clevel);
4780 return -EINVAL;
4782 mddev->pers = pers;
4783 spin_unlock(&pers_lock);
4784 if (mddev->level != pers->level) {
4785 mddev->level = pers->level;
4786 mddev->new_level = pers->level;
4788 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4790 if (mddev->reshape_position != MaxSector &&
4791 pers->start_reshape == NULL) {
4792 /* This personality cannot handle reshaping... */
4793 mddev->pers = NULL;
4794 module_put(pers->owner);
4795 return -EINVAL;
4798 if (pers->sync_request) {
4799 /* Warn if this is a potentially silly
4800 * configuration.
4802 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4803 struct md_rdev *rdev2;
4804 int warned = 0;
4806 list_for_each_entry(rdev, &mddev->disks, same_set)
4807 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4808 if (rdev < rdev2 &&
4809 rdev->bdev->bd_contains ==
4810 rdev2->bdev->bd_contains) {
4811 printk(KERN_WARNING
4812 "%s: WARNING: %s appears to be"
4813 " on the same physical disk as"
4814 " %s.\n",
4815 mdname(mddev),
4816 bdevname(rdev->bdev,b),
4817 bdevname(rdev2->bdev,b2));
4818 warned = 1;
4822 if (warned)
4823 printk(KERN_WARNING
4824 "True protection against single-disk"
4825 " failure might be compromised.\n");
4828 mddev->recovery = 0;
4829 /* may be over-ridden by personality */
4830 mddev->resync_max_sectors = mddev->dev_sectors;
4832 mddev->ok_start_degraded = start_dirty_degraded;
4834 if (start_readonly && mddev->ro == 0)
4835 mddev->ro = 2; /* read-only, but switch on first write */
4837 err = mddev->pers->run(mddev);
4838 if (err)
4839 printk(KERN_ERR "md: pers->run() failed ...\n");
4840 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4841 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4842 " but 'external_size' not in effect?\n", __func__);
4843 printk(KERN_ERR
4844 "md: invalid array_size %llu > default size %llu\n",
4845 (unsigned long long)mddev->array_sectors / 2,
4846 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4847 err = -EINVAL;
4848 mddev->pers->stop(mddev);
4850 if (err == 0 && mddev->pers->sync_request) {
4851 err = bitmap_create(mddev);
4852 if (err) {
4853 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4854 mdname(mddev), err);
4855 mddev->pers->stop(mddev);
4858 if (err) {
4859 module_put(mddev->pers->owner);
4860 mddev->pers = NULL;
4861 bitmap_destroy(mddev);
4862 return err;
4864 if (mddev->pers->sync_request) {
4865 if (mddev->kobj.sd &&
4866 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4867 printk(KERN_WARNING
4868 "md: cannot register extra attributes for %s\n",
4869 mdname(mddev));
4870 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4871 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4872 mddev->ro = 0;
4874 atomic_set(&mddev->writes_pending,0);
4875 atomic_set(&mddev->max_corr_read_errors,
4876 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4877 mddev->safemode = 0;
4878 mddev->safemode_timer.function = md_safemode_timeout;
4879 mddev->safemode_timer.data = (unsigned long) mddev;
4880 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4881 mddev->in_sync = 1;
4882 smp_wmb();
4883 mddev->ready = 1;
4884 list_for_each_entry(rdev, &mddev->disks, same_set)
4885 if (rdev->raid_disk >= 0)
4886 if (sysfs_link_rdev(mddev, rdev))
4887 /* failure here is OK */;
4889 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4891 if (mddev->flags)
4892 md_update_sb(mddev, 0);
4894 md_new_event(mddev);
4895 sysfs_notify_dirent_safe(mddev->sysfs_state);
4896 sysfs_notify_dirent_safe(mddev->sysfs_action);
4897 sysfs_notify(&mddev->kobj, NULL, "degraded");
4898 return 0;
4900 EXPORT_SYMBOL_GPL(md_run);
4902 static int do_md_run(struct mddev *mddev)
4904 int err;
4906 err = md_run(mddev);
4907 if (err)
4908 goto out;
4909 err = bitmap_load(mddev);
4910 if (err) {
4911 bitmap_destroy(mddev);
4912 goto out;
4915 md_wakeup_thread(mddev->thread);
4916 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4918 set_capacity(mddev->gendisk, mddev->array_sectors);
4919 revalidate_disk(mddev->gendisk);
4920 mddev->changed = 1;
4921 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4922 out:
4923 return err;
4926 static int restart_array(struct mddev *mddev)
4928 struct gendisk *disk = mddev->gendisk;
4930 /* Complain if it has no devices */
4931 if (list_empty(&mddev->disks))
4932 return -ENXIO;
4933 if (!mddev->pers)
4934 return -EINVAL;
4935 if (!mddev->ro)
4936 return -EBUSY;
4937 mddev->safemode = 0;
4938 mddev->ro = 0;
4939 set_disk_ro(disk, 0);
4940 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4941 mdname(mddev));
4942 /* Kick recovery or resync if necessary */
4943 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4944 md_wakeup_thread(mddev->thread);
4945 md_wakeup_thread(mddev->sync_thread);
4946 sysfs_notify_dirent_safe(mddev->sysfs_state);
4947 return 0;
4950 /* similar to deny_write_access, but accounts for our holding a reference
4951 * to the file ourselves */
4952 static int deny_bitmap_write_access(struct file * file)
4954 struct inode *inode = file->f_mapping->host;
4956 spin_lock(&inode->i_lock);
4957 if (atomic_read(&inode->i_writecount) > 1) {
4958 spin_unlock(&inode->i_lock);
4959 return -ETXTBSY;
4961 atomic_set(&inode->i_writecount, -1);
4962 spin_unlock(&inode->i_lock);
4964 return 0;
4967 void restore_bitmap_write_access(struct file *file)
4969 struct inode *inode = file->f_mapping->host;
4971 spin_lock(&inode->i_lock);
4972 atomic_set(&inode->i_writecount, 1);
4973 spin_unlock(&inode->i_lock);
4976 static void md_clean(struct mddev *mddev)
4978 mddev->array_sectors = 0;
4979 mddev->external_size = 0;
4980 mddev->dev_sectors = 0;
4981 mddev->raid_disks = 0;
4982 mddev->recovery_cp = 0;
4983 mddev->resync_min = 0;
4984 mddev->resync_max = MaxSector;
4985 mddev->reshape_position = MaxSector;
4986 mddev->external = 0;
4987 mddev->persistent = 0;
4988 mddev->level = LEVEL_NONE;
4989 mddev->clevel[0] = 0;
4990 mddev->flags = 0;
4991 mddev->ro = 0;
4992 mddev->metadata_type[0] = 0;
4993 mddev->chunk_sectors = 0;
4994 mddev->ctime = mddev->utime = 0;
4995 mddev->layout = 0;
4996 mddev->max_disks = 0;
4997 mddev->events = 0;
4998 mddev->can_decrease_events = 0;
4999 mddev->delta_disks = 0;
5000 mddev->new_level = LEVEL_NONE;
5001 mddev->new_layout = 0;
5002 mddev->new_chunk_sectors = 0;
5003 mddev->curr_resync = 0;
5004 mddev->resync_mismatches = 0;
5005 mddev->suspend_lo = mddev->suspend_hi = 0;
5006 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5007 mddev->recovery = 0;
5008 mddev->in_sync = 0;
5009 mddev->changed = 0;
5010 mddev->degraded = 0;
5011 mddev->safemode = 0;
5012 mddev->bitmap_info.offset = 0;
5013 mddev->bitmap_info.default_offset = 0;
5014 mddev->bitmap_info.chunksize = 0;
5015 mddev->bitmap_info.daemon_sleep = 0;
5016 mddev->bitmap_info.max_write_behind = 0;
5019 static void __md_stop_writes(struct mddev *mddev)
5021 if (mddev->sync_thread) {
5022 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5023 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5024 reap_sync_thread(mddev);
5027 del_timer_sync(&mddev->safemode_timer);
5029 bitmap_flush(mddev);
5030 md_super_wait(mddev);
5032 if (!mddev->in_sync || mddev->flags) {
5033 /* mark array as shutdown cleanly */
5034 mddev->in_sync = 1;
5035 md_update_sb(mddev, 1);
5039 void md_stop_writes(struct mddev *mddev)
5041 mddev_lock(mddev);
5042 __md_stop_writes(mddev);
5043 mddev_unlock(mddev);
5045 EXPORT_SYMBOL_GPL(md_stop_writes);
5047 void md_stop(struct mddev *mddev)
5049 mddev->ready = 0;
5050 mddev->pers->stop(mddev);
5051 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5052 mddev->to_remove = &md_redundancy_group;
5053 module_put(mddev->pers->owner);
5054 mddev->pers = NULL;
5055 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5057 EXPORT_SYMBOL_GPL(md_stop);
5059 static int md_set_readonly(struct mddev *mddev, int is_open)
5061 int err = 0;
5062 mutex_lock(&mddev->open_mutex);
5063 if (atomic_read(&mddev->openers) > is_open) {
5064 printk("md: %s still in use.\n",mdname(mddev));
5065 err = -EBUSY;
5066 goto out;
5068 if (mddev->pers) {
5069 __md_stop_writes(mddev);
5071 err = -ENXIO;
5072 if (mddev->ro==1)
5073 goto out;
5074 mddev->ro = 1;
5075 set_disk_ro(mddev->gendisk, 1);
5076 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5077 sysfs_notify_dirent_safe(mddev->sysfs_state);
5078 err = 0;
5080 out:
5081 mutex_unlock(&mddev->open_mutex);
5082 return err;
5085 /* mode:
5086 * 0 - completely stop and dis-assemble array
5087 * 2 - stop but do not disassemble array
5089 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5091 struct gendisk *disk = mddev->gendisk;
5092 struct md_rdev *rdev;
5094 mutex_lock(&mddev->open_mutex);
5095 if (atomic_read(&mddev->openers) > is_open ||
5096 mddev->sysfs_active) {
5097 printk("md: %s still in use.\n",mdname(mddev));
5098 mutex_unlock(&mddev->open_mutex);
5099 return -EBUSY;
5102 if (mddev->pers) {
5103 if (mddev->ro)
5104 set_disk_ro(disk, 0);
5106 __md_stop_writes(mddev);
5107 md_stop(mddev);
5108 mddev->queue->merge_bvec_fn = NULL;
5109 mddev->queue->backing_dev_info.congested_fn = NULL;
5111 /* tell userspace to handle 'inactive' */
5112 sysfs_notify_dirent_safe(mddev->sysfs_state);
5114 list_for_each_entry(rdev, &mddev->disks, same_set)
5115 if (rdev->raid_disk >= 0)
5116 sysfs_unlink_rdev(mddev, rdev);
5118 set_capacity(disk, 0);
5119 mutex_unlock(&mddev->open_mutex);
5120 mddev->changed = 1;
5121 revalidate_disk(disk);
5123 if (mddev->ro)
5124 mddev->ro = 0;
5125 } else
5126 mutex_unlock(&mddev->open_mutex);
5128 * Free resources if final stop
5130 if (mode == 0) {
5131 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5133 bitmap_destroy(mddev);
5134 if (mddev->bitmap_info.file) {
5135 restore_bitmap_write_access(mddev->bitmap_info.file);
5136 fput(mddev->bitmap_info.file);
5137 mddev->bitmap_info.file = NULL;
5139 mddev->bitmap_info.offset = 0;
5141 export_array(mddev);
5143 md_clean(mddev);
5144 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5145 if (mddev->hold_active == UNTIL_STOP)
5146 mddev->hold_active = 0;
5148 blk_integrity_unregister(disk);
5149 md_new_event(mddev);
5150 sysfs_notify_dirent_safe(mddev->sysfs_state);
5151 return 0;
5154 #ifndef MODULE
5155 static void autorun_array(struct mddev *mddev)
5157 struct md_rdev *rdev;
5158 int err;
5160 if (list_empty(&mddev->disks))
5161 return;
5163 printk(KERN_INFO "md: running: ");
5165 list_for_each_entry(rdev, &mddev->disks, same_set) {
5166 char b[BDEVNAME_SIZE];
5167 printk("<%s>", bdevname(rdev->bdev,b));
5169 printk("\n");
5171 err = do_md_run(mddev);
5172 if (err) {
5173 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5174 do_md_stop(mddev, 0, 0);
5179 * lets try to run arrays based on all disks that have arrived
5180 * until now. (those are in pending_raid_disks)
5182 * the method: pick the first pending disk, collect all disks with
5183 * the same UUID, remove all from the pending list and put them into
5184 * the 'same_array' list. Then order this list based on superblock
5185 * update time (freshest comes first), kick out 'old' disks and
5186 * compare superblocks. If everything's fine then run it.
5188 * If "unit" is allocated, then bump its reference count
5190 static void autorun_devices(int part)
5192 struct md_rdev *rdev0, *rdev, *tmp;
5193 struct mddev *mddev;
5194 char b[BDEVNAME_SIZE];
5196 printk(KERN_INFO "md: autorun ...\n");
5197 while (!list_empty(&pending_raid_disks)) {
5198 int unit;
5199 dev_t dev;
5200 LIST_HEAD(candidates);
5201 rdev0 = list_entry(pending_raid_disks.next,
5202 struct md_rdev, same_set);
5204 printk(KERN_INFO "md: considering %s ...\n",
5205 bdevname(rdev0->bdev,b));
5206 INIT_LIST_HEAD(&candidates);
5207 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5208 if (super_90_load(rdev, rdev0, 0) >= 0) {
5209 printk(KERN_INFO "md: adding %s ...\n",
5210 bdevname(rdev->bdev,b));
5211 list_move(&rdev->same_set, &candidates);
5214 * now we have a set of devices, with all of them having
5215 * mostly sane superblocks. It's time to allocate the
5216 * mddev.
5218 if (part) {
5219 dev = MKDEV(mdp_major,
5220 rdev0->preferred_minor << MdpMinorShift);
5221 unit = MINOR(dev) >> MdpMinorShift;
5222 } else {
5223 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5224 unit = MINOR(dev);
5226 if (rdev0->preferred_minor != unit) {
5227 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5228 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5229 break;
5232 md_probe(dev, NULL, NULL);
5233 mddev = mddev_find(dev);
5234 if (!mddev || !mddev->gendisk) {
5235 if (mddev)
5236 mddev_put(mddev);
5237 printk(KERN_ERR
5238 "md: cannot allocate memory for md drive.\n");
5239 break;
5241 if (mddev_lock(mddev))
5242 printk(KERN_WARNING "md: %s locked, cannot run\n",
5243 mdname(mddev));
5244 else if (mddev->raid_disks || mddev->major_version
5245 || !list_empty(&mddev->disks)) {
5246 printk(KERN_WARNING
5247 "md: %s already running, cannot run %s\n",
5248 mdname(mddev), bdevname(rdev0->bdev,b));
5249 mddev_unlock(mddev);
5250 } else {
5251 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5252 mddev->persistent = 1;
5253 rdev_for_each_list(rdev, tmp, &candidates) {
5254 list_del_init(&rdev->same_set);
5255 if (bind_rdev_to_array(rdev, mddev))
5256 export_rdev(rdev);
5258 autorun_array(mddev);
5259 mddev_unlock(mddev);
5261 /* on success, candidates will be empty, on error
5262 * it won't...
5264 rdev_for_each_list(rdev, tmp, &candidates) {
5265 list_del_init(&rdev->same_set);
5266 export_rdev(rdev);
5268 mddev_put(mddev);
5270 printk(KERN_INFO "md: ... autorun DONE.\n");
5272 #endif /* !MODULE */
5274 static int get_version(void __user * arg)
5276 mdu_version_t ver;
5278 ver.major = MD_MAJOR_VERSION;
5279 ver.minor = MD_MINOR_VERSION;
5280 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5282 if (copy_to_user(arg, &ver, sizeof(ver)))
5283 return -EFAULT;
5285 return 0;
5288 static int get_array_info(struct mddev * mddev, void __user * arg)
5290 mdu_array_info_t info;
5291 int nr,working,insync,failed,spare;
5292 struct md_rdev *rdev;
5294 nr=working=insync=failed=spare=0;
5295 list_for_each_entry(rdev, &mddev->disks, same_set) {
5296 nr++;
5297 if (test_bit(Faulty, &rdev->flags))
5298 failed++;
5299 else {
5300 working++;
5301 if (test_bit(In_sync, &rdev->flags))
5302 insync++;
5303 else
5304 spare++;
5308 info.major_version = mddev->major_version;
5309 info.minor_version = mddev->minor_version;
5310 info.patch_version = MD_PATCHLEVEL_VERSION;
5311 info.ctime = mddev->ctime;
5312 info.level = mddev->level;
5313 info.size = mddev->dev_sectors / 2;
5314 if (info.size != mddev->dev_sectors / 2) /* overflow */
5315 info.size = -1;
5316 info.nr_disks = nr;
5317 info.raid_disks = mddev->raid_disks;
5318 info.md_minor = mddev->md_minor;
5319 info.not_persistent= !mddev->persistent;
5321 info.utime = mddev->utime;
5322 info.state = 0;
5323 if (mddev->in_sync)
5324 info.state = (1<<MD_SB_CLEAN);
5325 if (mddev->bitmap && mddev->bitmap_info.offset)
5326 info.state = (1<<MD_SB_BITMAP_PRESENT);
5327 info.active_disks = insync;
5328 info.working_disks = working;
5329 info.failed_disks = failed;
5330 info.spare_disks = spare;
5332 info.layout = mddev->layout;
5333 info.chunk_size = mddev->chunk_sectors << 9;
5335 if (copy_to_user(arg, &info, sizeof(info)))
5336 return -EFAULT;
5338 return 0;
5341 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5343 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5344 char *ptr, *buf = NULL;
5345 int err = -ENOMEM;
5347 if (md_allow_write(mddev))
5348 file = kmalloc(sizeof(*file), GFP_NOIO);
5349 else
5350 file = kmalloc(sizeof(*file), GFP_KERNEL);
5352 if (!file)
5353 goto out;
5355 /* bitmap disabled, zero the first byte and copy out */
5356 if (!mddev->bitmap || !mddev->bitmap->file) {
5357 file->pathname[0] = '\0';
5358 goto copy_out;
5361 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5362 if (!buf)
5363 goto out;
5365 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5366 if (IS_ERR(ptr))
5367 goto out;
5369 strcpy(file->pathname, ptr);
5371 copy_out:
5372 err = 0;
5373 if (copy_to_user(arg, file, sizeof(*file)))
5374 err = -EFAULT;
5375 out:
5376 kfree(buf);
5377 kfree(file);
5378 return err;
5381 static int get_disk_info(struct mddev * mddev, void __user * arg)
5383 mdu_disk_info_t info;
5384 struct md_rdev *rdev;
5386 if (copy_from_user(&info, arg, sizeof(info)))
5387 return -EFAULT;
5389 rdev = find_rdev_nr(mddev, info.number);
5390 if (rdev) {
5391 info.major = MAJOR(rdev->bdev->bd_dev);
5392 info.minor = MINOR(rdev->bdev->bd_dev);
5393 info.raid_disk = rdev->raid_disk;
5394 info.state = 0;
5395 if (test_bit(Faulty, &rdev->flags))
5396 info.state |= (1<<MD_DISK_FAULTY);
5397 else if (test_bit(In_sync, &rdev->flags)) {
5398 info.state |= (1<<MD_DISK_ACTIVE);
5399 info.state |= (1<<MD_DISK_SYNC);
5401 if (test_bit(WriteMostly, &rdev->flags))
5402 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5403 } else {
5404 info.major = info.minor = 0;
5405 info.raid_disk = -1;
5406 info.state = (1<<MD_DISK_REMOVED);
5409 if (copy_to_user(arg, &info, sizeof(info)))
5410 return -EFAULT;
5412 return 0;
5415 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5417 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5418 struct md_rdev *rdev;
5419 dev_t dev = MKDEV(info->major,info->minor);
5421 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5422 return -EOVERFLOW;
5424 if (!mddev->raid_disks) {
5425 int err;
5426 /* expecting a device which has a superblock */
5427 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5428 if (IS_ERR(rdev)) {
5429 printk(KERN_WARNING
5430 "md: md_import_device returned %ld\n",
5431 PTR_ERR(rdev));
5432 return PTR_ERR(rdev);
5434 if (!list_empty(&mddev->disks)) {
5435 struct md_rdev *rdev0
5436 = list_entry(mddev->disks.next,
5437 struct md_rdev, same_set);
5438 err = super_types[mddev->major_version]
5439 .load_super(rdev, rdev0, mddev->minor_version);
5440 if (err < 0) {
5441 printk(KERN_WARNING
5442 "md: %s has different UUID to %s\n",
5443 bdevname(rdev->bdev,b),
5444 bdevname(rdev0->bdev,b2));
5445 export_rdev(rdev);
5446 return -EINVAL;
5449 err = bind_rdev_to_array(rdev, mddev);
5450 if (err)
5451 export_rdev(rdev);
5452 return err;
5456 * add_new_disk can be used once the array is assembled
5457 * to add "hot spares". They must already have a superblock
5458 * written
5460 if (mddev->pers) {
5461 int err;
5462 if (!mddev->pers->hot_add_disk) {
5463 printk(KERN_WARNING
5464 "%s: personality does not support diskops!\n",
5465 mdname(mddev));
5466 return -EINVAL;
5468 if (mddev->persistent)
5469 rdev = md_import_device(dev, mddev->major_version,
5470 mddev->minor_version);
5471 else
5472 rdev = md_import_device(dev, -1, -1);
5473 if (IS_ERR(rdev)) {
5474 printk(KERN_WARNING
5475 "md: md_import_device returned %ld\n",
5476 PTR_ERR(rdev));
5477 return PTR_ERR(rdev);
5479 /* set saved_raid_disk if appropriate */
5480 if (!mddev->persistent) {
5481 if (info->state & (1<<MD_DISK_SYNC) &&
5482 info->raid_disk < mddev->raid_disks) {
5483 rdev->raid_disk = info->raid_disk;
5484 set_bit(In_sync, &rdev->flags);
5485 } else
5486 rdev->raid_disk = -1;
5487 } else
5488 super_types[mddev->major_version].
5489 validate_super(mddev, rdev);
5490 if ((info->state & (1<<MD_DISK_SYNC)) &&
5491 (!test_bit(In_sync, &rdev->flags) ||
5492 rdev->raid_disk != info->raid_disk)) {
5493 /* This was a hot-add request, but events doesn't
5494 * match, so reject it.
5496 export_rdev(rdev);
5497 return -EINVAL;
5500 if (test_bit(In_sync, &rdev->flags))
5501 rdev->saved_raid_disk = rdev->raid_disk;
5502 else
5503 rdev->saved_raid_disk = -1;
5505 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5506 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5507 set_bit(WriteMostly, &rdev->flags);
5508 else
5509 clear_bit(WriteMostly, &rdev->flags);
5511 rdev->raid_disk = -1;
5512 err = bind_rdev_to_array(rdev, mddev);
5513 if (!err && !mddev->pers->hot_remove_disk) {
5514 /* If there is hot_add_disk but no hot_remove_disk
5515 * then added disks for geometry changes,
5516 * and should be added immediately.
5518 super_types[mddev->major_version].
5519 validate_super(mddev, rdev);
5520 err = mddev->pers->hot_add_disk(mddev, rdev);
5521 if (err)
5522 unbind_rdev_from_array(rdev);
5524 if (err)
5525 export_rdev(rdev);
5526 else
5527 sysfs_notify_dirent_safe(rdev->sysfs_state);
5529 md_update_sb(mddev, 1);
5530 if (mddev->degraded)
5531 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5532 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5533 if (!err)
5534 md_new_event(mddev);
5535 md_wakeup_thread(mddev->thread);
5536 return err;
5539 /* otherwise, add_new_disk is only allowed
5540 * for major_version==0 superblocks
5542 if (mddev->major_version != 0) {
5543 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5544 mdname(mddev));
5545 return -EINVAL;
5548 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5549 int err;
5550 rdev = md_import_device(dev, -1, 0);
5551 if (IS_ERR(rdev)) {
5552 printk(KERN_WARNING
5553 "md: error, md_import_device() returned %ld\n",
5554 PTR_ERR(rdev));
5555 return PTR_ERR(rdev);
5557 rdev->desc_nr = info->number;
5558 if (info->raid_disk < mddev->raid_disks)
5559 rdev->raid_disk = info->raid_disk;
5560 else
5561 rdev->raid_disk = -1;
5563 if (rdev->raid_disk < mddev->raid_disks)
5564 if (info->state & (1<<MD_DISK_SYNC))
5565 set_bit(In_sync, &rdev->flags);
5567 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5568 set_bit(WriteMostly, &rdev->flags);
5570 if (!mddev->persistent) {
5571 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5572 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5573 } else
5574 rdev->sb_start = calc_dev_sboffset(rdev);
5575 rdev->sectors = rdev->sb_start;
5577 err = bind_rdev_to_array(rdev, mddev);
5578 if (err) {
5579 export_rdev(rdev);
5580 return err;
5584 return 0;
5587 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5589 char b[BDEVNAME_SIZE];
5590 struct md_rdev *rdev;
5592 rdev = find_rdev(mddev, dev);
5593 if (!rdev)
5594 return -ENXIO;
5596 if (rdev->raid_disk >= 0)
5597 goto busy;
5599 kick_rdev_from_array(rdev);
5600 md_update_sb(mddev, 1);
5601 md_new_event(mddev);
5603 return 0;
5604 busy:
5605 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5606 bdevname(rdev->bdev,b), mdname(mddev));
5607 return -EBUSY;
5610 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5612 char b[BDEVNAME_SIZE];
5613 int err;
5614 struct md_rdev *rdev;
5616 if (!mddev->pers)
5617 return -ENODEV;
5619 if (mddev->major_version != 0) {
5620 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5621 " version-0 superblocks.\n",
5622 mdname(mddev));
5623 return -EINVAL;
5625 if (!mddev->pers->hot_add_disk) {
5626 printk(KERN_WARNING
5627 "%s: personality does not support diskops!\n",
5628 mdname(mddev));
5629 return -EINVAL;
5632 rdev = md_import_device(dev, -1, 0);
5633 if (IS_ERR(rdev)) {
5634 printk(KERN_WARNING
5635 "md: error, md_import_device() returned %ld\n",
5636 PTR_ERR(rdev));
5637 return -EINVAL;
5640 if (mddev->persistent)
5641 rdev->sb_start = calc_dev_sboffset(rdev);
5642 else
5643 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5645 rdev->sectors = rdev->sb_start;
5647 if (test_bit(Faulty, &rdev->flags)) {
5648 printk(KERN_WARNING
5649 "md: can not hot-add faulty %s disk to %s!\n",
5650 bdevname(rdev->bdev,b), mdname(mddev));
5651 err = -EINVAL;
5652 goto abort_export;
5654 clear_bit(In_sync, &rdev->flags);
5655 rdev->desc_nr = -1;
5656 rdev->saved_raid_disk = -1;
5657 err = bind_rdev_to_array(rdev, mddev);
5658 if (err)
5659 goto abort_export;
5662 * The rest should better be atomic, we can have disk failures
5663 * noticed in interrupt contexts ...
5666 rdev->raid_disk = -1;
5668 md_update_sb(mddev, 1);
5671 * Kick recovery, maybe this spare has to be added to the
5672 * array immediately.
5674 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5675 md_wakeup_thread(mddev->thread);
5676 md_new_event(mddev);
5677 return 0;
5679 abort_export:
5680 export_rdev(rdev);
5681 return err;
5684 static int set_bitmap_file(struct mddev *mddev, int fd)
5686 int err;
5688 if (mddev->pers) {
5689 if (!mddev->pers->quiesce)
5690 return -EBUSY;
5691 if (mddev->recovery || mddev->sync_thread)
5692 return -EBUSY;
5693 /* we should be able to change the bitmap.. */
5697 if (fd >= 0) {
5698 if (mddev->bitmap)
5699 return -EEXIST; /* cannot add when bitmap is present */
5700 mddev->bitmap_info.file = fget(fd);
5702 if (mddev->bitmap_info.file == NULL) {
5703 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5704 mdname(mddev));
5705 return -EBADF;
5708 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5709 if (err) {
5710 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5711 mdname(mddev));
5712 fput(mddev->bitmap_info.file);
5713 mddev->bitmap_info.file = NULL;
5714 return err;
5716 mddev->bitmap_info.offset = 0; /* file overrides offset */
5717 } else if (mddev->bitmap == NULL)
5718 return -ENOENT; /* cannot remove what isn't there */
5719 err = 0;
5720 if (mddev->pers) {
5721 mddev->pers->quiesce(mddev, 1);
5722 if (fd >= 0) {
5723 err = bitmap_create(mddev);
5724 if (!err)
5725 err = bitmap_load(mddev);
5727 if (fd < 0 || err) {
5728 bitmap_destroy(mddev);
5729 fd = -1; /* make sure to put the file */
5731 mddev->pers->quiesce(mddev, 0);
5733 if (fd < 0) {
5734 if (mddev->bitmap_info.file) {
5735 restore_bitmap_write_access(mddev->bitmap_info.file);
5736 fput(mddev->bitmap_info.file);
5738 mddev->bitmap_info.file = NULL;
5741 return err;
5745 * set_array_info is used two different ways
5746 * The original usage is when creating a new array.
5747 * In this usage, raid_disks is > 0 and it together with
5748 * level, size, not_persistent,layout,chunksize determine the
5749 * shape of the array.
5750 * This will always create an array with a type-0.90.0 superblock.
5751 * The newer usage is when assembling an array.
5752 * In this case raid_disks will be 0, and the major_version field is
5753 * use to determine which style super-blocks are to be found on the devices.
5754 * The minor and patch _version numbers are also kept incase the
5755 * super_block handler wishes to interpret them.
5757 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5760 if (info->raid_disks == 0) {
5761 /* just setting version number for superblock loading */
5762 if (info->major_version < 0 ||
5763 info->major_version >= ARRAY_SIZE(super_types) ||
5764 super_types[info->major_version].name == NULL) {
5765 /* maybe try to auto-load a module? */
5766 printk(KERN_INFO
5767 "md: superblock version %d not known\n",
5768 info->major_version);
5769 return -EINVAL;
5771 mddev->major_version = info->major_version;
5772 mddev->minor_version = info->minor_version;
5773 mddev->patch_version = info->patch_version;
5774 mddev->persistent = !info->not_persistent;
5775 /* ensure mddev_put doesn't delete this now that there
5776 * is some minimal configuration.
5778 mddev->ctime = get_seconds();
5779 return 0;
5781 mddev->major_version = MD_MAJOR_VERSION;
5782 mddev->minor_version = MD_MINOR_VERSION;
5783 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5784 mddev->ctime = get_seconds();
5786 mddev->level = info->level;
5787 mddev->clevel[0] = 0;
5788 mddev->dev_sectors = 2 * (sector_t)info->size;
5789 mddev->raid_disks = info->raid_disks;
5790 /* don't set md_minor, it is determined by which /dev/md* was
5791 * openned
5793 if (info->state & (1<<MD_SB_CLEAN))
5794 mddev->recovery_cp = MaxSector;
5795 else
5796 mddev->recovery_cp = 0;
5797 mddev->persistent = ! info->not_persistent;
5798 mddev->external = 0;
5800 mddev->layout = info->layout;
5801 mddev->chunk_sectors = info->chunk_size >> 9;
5803 mddev->max_disks = MD_SB_DISKS;
5805 if (mddev->persistent)
5806 mddev->flags = 0;
5807 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5809 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5810 mddev->bitmap_info.offset = 0;
5812 mddev->reshape_position = MaxSector;
5815 * Generate a 128 bit UUID
5817 get_random_bytes(mddev->uuid, 16);
5819 mddev->new_level = mddev->level;
5820 mddev->new_chunk_sectors = mddev->chunk_sectors;
5821 mddev->new_layout = mddev->layout;
5822 mddev->delta_disks = 0;
5824 return 0;
5827 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5829 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5831 if (mddev->external_size)
5832 return;
5834 mddev->array_sectors = array_sectors;
5836 EXPORT_SYMBOL(md_set_array_sectors);
5838 static int update_size(struct mddev *mddev, sector_t num_sectors)
5840 struct md_rdev *rdev;
5841 int rv;
5842 int fit = (num_sectors == 0);
5844 if (mddev->pers->resize == NULL)
5845 return -EINVAL;
5846 /* The "num_sectors" is the number of sectors of each device that
5847 * is used. This can only make sense for arrays with redundancy.
5848 * linear and raid0 always use whatever space is available. We can only
5849 * consider changing this number if no resync or reconstruction is
5850 * happening, and if the new size is acceptable. It must fit before the
5851 * sb_start or, if that is <data_offset, it must fit before the size
5852 * of each device. If num_sectors is zero, we find the largest size
5853 * that fits.
5855 if (mddev->sync_thread)
5856 return -EBUSY;
5857 if (mddev->bitmap)
5858 /* Sorry, cannot grow a bitmap yet, just remove it,
5859 * grow, and re-add.
5861 return -EBUSY;
5862 list_for_each_entry(rdev, &mddev->disks, same_set) {
5863 sector_t avail = rdev->sectors;
5865 if (fit && (num_sectors == 0 || num_sectors > avail))
5866 num_sectors = avail;
5867 if (avail < num_sectors)
5868 return -ENOSPC;
5870 rv = mddev->pers->resize(mddev, num_sectors);
5871 if (!rv)
5872 revalidate_disk(mddev->gendisk);
5873 return rv;
5876 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5878 int rv;
5879 /* change the number of raid disks */
5880 if (mddev->pers->check_reshape == NULL)
5881 return -EINVAL;
5882 if (raid_disks <= 0 ||
5883 (mddev->max_disks && raid_disks >= mddev->max_disks))
5884 return -EINVAL;
5885 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5886 return -EBUSY;
5887 mddev->delta_disks = raid_disks - mddev->raid_disks;
5889 rv = mddev->pers->check_reshape(mddev);
5890 if (rv < 0)
5891 mddev->delta_disks = 0;
5892 return rv;
5897 * update_array_info is used to change the configuration of an
5898 * on-line array.
5899 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5900 * fields in the info are checked against the array.
5901 * Any differences that cannot be handled will cause an error.
5902 * Normally, only one change can be managed at a time.
5904 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5906 int rv = 0;
5907 int cnt = 0;
5908 int state = 0;
5910 /* calculate expected state,ignoring low bits */
5911 if (mddev->bitmap && mddev->bitmap_info.offset)
5912 state |= (1 << MD_SB_BITMAP_PRESENT);
5914 if (mddev->major_version != info->major_version ||
5915 mddev->minor_version != info->minor_version ||
5916 /* mddev->patch_version != info->patch_version || */
5917 mddev->ctime != info->ctime ||
5918 mddev->level != info->level ||
5919 /* mddev->layout != info->layout || */
5920 !mddev->persistent != info->not_persistent||
5921 mddev->chunk_sectors != info->chunk_size >> 9 ||
5922 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5923 ((state^info->state) & 0xfffffe00)
5925 return -EINVAL;
5926 /* Check there is only one change */
5927 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5928 cnt++;
5929 if (mddev->raid_disks != info->raid_disks)
5930 cnt++;
5931 if (mddev->layout != info->layout)
5932 cnt++;
5933 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5934 cnt++;
5935 if (cnt == 0)
5936 return 0;
5937 if (cnt > 1)
5938 return -EINVAL;
5940 if (mddev->layout != info->layout) {
5941 /* Change layout
5942 * we don't need to do anything at the md level, the
5943 * personality will take care of it all.
5945 if (mddev->pers->check_reshape == NULL)
5946 return -EINVAL;
5947 else {
5948 mddev->new_layout = info->layout;
5949 rv = mddev->pers->check_reshape(mddev);
5950 if (rv)
5951 mddev->new_layout = mddev->layout;
5952 return rv;
5955 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5956 rv = update_size(mddev, (sector_t)info->size * 2);
5958 if (mddev->raid_disks != info->raid_disks)
5959 rv = update_raid_disks(mddev, info->raid_disks);
5961 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5962 if (mddev->pers->quiesce == NULL)
5963 return -EINVAL;
5964 if (mddev->recovery || mddev->sync_thread)
5965 return -EBUSY;
5966 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5967 /* add the bitmap */
5968 if (mddev->bitmap)
5969 return -EEXIST;
5970 if (mddev->bitmap_info.default_offset == 0)
5971 return -EINVAL;
5972 mddev->bitmap_info.offset =
5973 mddev->bitmap_info.default_offset;
5974 mddev->pers->quiesce(mddev, 1);
5975 rv = bitmap_create(mddev);
5976 if (!rv)
5977 rv = bitmap_load(mddev);
5978 if (rv)
5979 bitmap_destroy(mddev);
5980 mddev->pers->quiesce(mddev, 0);
5981 } else {
5982 /* remove the bitmap */
5983 if (!mddev->bitmap)
5984 return -ENOENT;
5985 if (mddev->bitmap->file)
5986 return -EINVAL;
5987 mddev->pers->quiesce(mddev, 1);
5988 bitmap_destroy(mddev);
5989 mddev->pers->quiesce(mddev, 0);
5990 mddev->bitmap_info.offset = 0;
5993 md_update_sb(mddev, 1);
5994 return rv;
5997 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
5999 struct md_rdev *rdev;
6001 if (mddev->pers == NULL)
6002 return -ENODEV;
6004 rdev = find_rdev(mddev, dev);
6005 if (!rdev)
6006 return -ENODEV;
6008 md_error(mddev, rdev);
6009 if (!test_bit(Faulty, &rdev->flags))
6010 return -EBUSY;
6011 return 0;
6015 * We have a problem here : there is no easy way to give a CHS
6016 * virtual geometry. We currently pretend that we have a 2 heads
6017 * 4 sectors (with a BIG number of cylinders...). This drives
6018 * dosfs just mad... ;-)
6020 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6022 struct mddev *mddev = bdev->bd_disk->private_data;
6024 geo->heads = 2;
6025 geo->sectors = 4;
6026 geo->cylinders = mddev->array_sectors / 8;
6027 return 0;
6030 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6031 unsigned int cmd, unsigned long arg)
6033 int err = 0;
6034 void __user *argp = (void __user *)arg;
6035 struct mddev *mddev = NULL;
6036 int ro;
6038 if (!capable(CAP_SYS_ADMIN))
6039 return -EACCES;
6042 * Commands dealing with the RAID driver but not any
6043 * particular array:
6045 switch (cmd)
6047 case RAID_VERSION:
6048 err = get_version(argp);
6049 goto done;
6051 case PRINT_RAID_DEBUG:
6052 err = 0;
6053 md_print_devices();
6054 goto done;
6056 #ifndef MODULE
6057 case RAID_AUTORUN:
6058 err = 0;
6059 autostart_arrays(arg);
6060 goto done;
6061 #endif
6062 default:;
6066 * Commands creating/starting a new array:
6069 mddev = bdev->bd_disk->private_data;
6071 if (!mddev) {
6072 BUG();
6073 goto abort;
6076 err = mddev_lock(mddev);
6077 if (err) {
6078 printk(KERN_INFO
6079 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6080 err, cmd);
6081 goto abort;
6084 switch (cmd)
6086 case SET_ARRAY_INFO:
6088 mdu_array_info_t info;
6089 if (!arg)
6090 memset(&info, 0, sizeof(info));
6091 else if (copy_from_user(&info, argp, sizeof(info))) {
6092 err = -EFAULT;
6093 goto abort_unlock;
6095 if (mddev->pers) {
6096 err = update_array_info(mddev, &info);
6097 if (err) {
6098 printk(KERN_WARNING "md: couldn't update"
6099 " array info. %d\n", err);
6100 goto abort_unlock;
6102 goto done_unlock;
6104 if (!list_empty(&mddev->disks)) {
6105 printk(KERN_WARNING
6106 "md: array %s already has disks!\n",
6107 mdname(mddev));
6108 err = -EBUSY;
6109 goto abort_unlock;
6111 if (mddev->raid_disks) {
6112 printk(KERN_WARNING
6113 "md: array %s already initialised!\n",
6114 mdname(mddev));
6115 err = -EBUSY;
6116 goto abort_unlock;
6118 err = set_array_info(mddev, &info);
6119 if (err) {
6120 printk(KERN_WARNING "md: couldn't set"
6121 " array info. %d\n", err);
6122 goto abort_unlock;
6125 goto done_unlock;
6127 default:;
6131 * Commands querying/configuring an existing array:
6133 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6134 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6135 if ((!mddev->raid_disks && !mddev->external)
6136 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6137 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6138 && cmd != GET_BITMAP_FILE) {
6139 err = -ENODEV;
6140 goto abort_unlock;
6144 * Commands even a read-only array can execute:
6146 switch (cmd)
6148 case GET_ARRAY_INFO:
6149 err = get_array_info(mddev, argp);
6150 goto done_unlock;
6152 case GET_BITMAP_FILE:
6153 err = get_bitmap_file(mddev, argp);
6154 goto done_unlock;
6156 case GET_DISK_INFO:
6157 err = get_disk_info(mddev, argp);
6158 goto done_unlock;
6160 case RESTART_ARRAY_RW:
6161 err = restart_array(mddev);
6162 goto done_unlock;
6164 case STOP_ARRAY:
6165 err = do_md_stop(mddev, 0, 1);
6166 goto done_unlock;
6168 case STOP_ARRAY_RO:
6169 err = md_set_readonly(mddev, 1);
6170 goto done_unlock;
6172 case BLKROSET:
6173 if (get_user(ro, (int __user *)(arg))) {
6174 err = -EFAULT;
6175 goto done_unlock;
6177 err = -EINVAL;
6179 /* if the bdev is going readonly the value of mddev->ro
6180 * does not matter, no writes are coming
6182 if (ro)
6183 goto done_unlock;
6185 /* are we are already prepared for writes? */
6186 if (mddev->ro != 1)
6187 goto done_unlock;
6189 /* transitioning to readauto need only happen for
6190 * arrays that call md_write_start
6192 if (mddev->pers) {
6193 err = restart_array(mddev);
6194 if (err == 0) {
6195 mddev->ro = 2;
6196 set_disk_ro(mddev->gendisk, 0);
6199 goto done_unlock;
6203 * The remaining ioctls are changing the state of the
6204 * superblock, so we do not allow them on read-only arrays.
6205 * However non-MD ioctls (e.g. get-size) will still come through
6206 * here and hit the 'default' below, so only disallow
6207 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6209 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6210 if (mddev->ro == 2) {
6211 mddev->ro = 0;
6212 sysfs_notify_dirent_safe(mddev->sysfs_state);
6213 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6214 md_wakeup_thread(mddev->thread);
6215 } else {
6216 err = -EROFS;
6217 goto abort_unlock;
6221 switch (cmd)
6223 case ADD_NEW_DISK:
6225 mdu_disk_info_t info;
6226 if (copy_from_user(&info, argp, sizeof(info)))
6227 err = -EFAULT;
6228 else
6229 err = add_new_disk(mddev, &info);
6230 goto done_unlock;
6233 case HOT_REMOVE_DISK:
6234 err = hot_remove_disk(mddev, new_decode_dev(arg));
6235 goto done_unlock;
6237 case HOT_ADD_DISK:
6238 err = hot_add_disk(mddev, new_decode_dev(arg));
6239 goto done_unlock;
6241 case SET_DISK_FAULTY:
6242 err = set_disk_faulty(mddev, new_decode_dev(arg));
6243 goto done_unlock;
6245 case RUN_ARRAY:
6246 err = do_md_run(mddev);
6247 goto done_unlock;
6249 case SET_BITMAP_FILE:
6250 err = set_bitmap_file(mddev, (int)arg);
6251 goto done_unlock;
6253 default:
6254 err = -EINVAL;
6255 goto abort_unlock;
6258 done_unlock:
6259 abort_unlock:
6260 if (mddev->hold_active == UNTIL_IOCTL &&
6261 err != -EINVAL)
6262 mddev->hold_active = 0;
6263 mddev_unlock(mddev);
6265 return err;
6266 done:
6267 if (err)
6268 MD_BUG();
6269 abort:
6270 return err;
6272 #ifdef CONFIG_COMPAT
6273 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6274 unsigned int cmd, unsigned long arg)
6276 switch (cmd) {
6277 case HOT_REMOVE_DISK:
6278 case HOT_ADD_DISK:
6279 case SET_DISK_FAULTY:
6280 case SET_BITMAP_FILE:
6281 /* These take in integer arg, do not convert */
6282 break;
6283 default:
6284 arg = (unsigned long)compat_ptr(arg);
6285 break;
6288 return md_ioctl(bdev, mode, cmd, arg);
6290 #endif /* CONFIG_COMPAT */
6292 static int md_open(struct block_device *bdev, fmode_t mode)
6295 * Succeed if we can lock the mddev, which confirms that
6296 * it isn't being stopped right now.
6298 struct mddev *mddev = mddev_find(bdev->bd_dev);
6299 int err;
6301 if (mddev->gendisk != bdev->bd_disk) {
6302 /* we are racing with mddev_put which is discarding this
6303 * bd_disk.
6305 mddev_put(mddev);
6306 /* Wait until bdev->bd_disk is definitely gone */
6307 flush_workqueue(md_misc_wq);
6308 /* Then retry the open from the top */
6309 return -ERESTARTSYS;
6311 BUG_ON(mddev != bdev->bd_disk->private_data);
6313 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6314 goto out;
6316 err = 0;
6317 atomic_inc(&mddev->openers);
6318 mutex_unlock(&mddev->open_mutex);
6320 check_disk_change(bdev);
6321 out:
6322 return err;
6325 static int md_release(struct gendisk *disk, fmode_t mode)
6327 struct mddev *mddev = disk->private_data;
6329 BUG_ON(!mddev);
6330 atomic_dec(&mddev->openers);
6331 mddev_put(mddev);
6333 return 0;
6336 static int md_media_changed(struct gendisk *disk)
6338 struct mddev *mddev = disk->private_data;
6340 return mddev->changed;
6343 static int md_revalidate(struct gendisk *disk)
6345 struct mddev *mddev = disk->private_data;
6347 mddev->changed = 0;
6348 return 0;
6350 static const struct block_device_operations md_fops =
6352 .owner = THIS_MODULE,
6353 .open = md_open,
6354 .release = md_release,
6355 .ioctl = md_ioctl,
6356 #ifdef CONFIG_COMPAT
6357 .compat_ioctl = md_compat_ioctl,
6358 #endif
6359 .getgeo = md_getgeo,
6360 .media_changed = md_media_changed,
6361 .revalidate_disk= md_revalidate,
6364 static int md_thread(void * arg)
6366 struct md_thread *thread = arg;
6369 * md_thread is a 'system-thread', it's priority should be very
6370 * high. We avoid resource deadlocks individually in each
6371 * raid personality. (RAID5 does preallocation) We also use RR and
6372 * the very same RT priority as kswapd, thus we will never get
6373 * into a priority inversion deadlock.
6375 * we definitely have to have equal or higher priority than
6376 * bdflush, otherwise bdflush will deadlock if there are too
6377 * many dirty RAID5 blocks.
6380 allow_signal(SIGKILL);
6381 while (!kthread_should_stop()) {
6383 /* We need to wait INTERRUPTIBLE so that
6384 * we don't add to the load-average.
6385 * That means we need to be sure no signals are
6386 * pending
6388 if (signal_pending(current))
6389 flush_signals(current);
6391 wait_event_interruptible_timeout
6392 (thread->wqueue,
6393 test_bit(THREAD_WAKEUP, &thread->flags)
6394 || kthread_should_stop(),
6395 thread->timeout);
6397 clear_bit(THREAD_WAKEUP, &thread->flags);
6398 if (!kthread_should_stop())
6399 thread->run(thread->mddev);
6402 return 0;
6405 void md_wakeup_thread(struct md_thread *thread)
6407 if (thread) {
6408 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6409 set_bit(THREAD_WAKEUP, &thread->flags);
6410 wake_up(&thread->wqueue);
6414 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6415 const char *name)
6417 struct md_thread *thread;
6419 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6420 if (!thread)
6421 return NULL;
6423 init_waitqueue_head(&thread->wqueue);
6425 thread->run = run;
6426 thread->mddev = mddev;
6427 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6428 thread->tsk = kthread_run(md_thread, thread,
6429 "%s_%s",
6430 mdname(thread->mddev),
6431 name ?: mddev->pers->name);
6432 if (IS_ERR(thread->tsk)) {
6433 kfree(thread);
6434 return NULL;
6436 return thread;
6439 void md_unregister_thread(struct md_thread **threadp)
6441 struct md_thread *thread = *threadp;
6442 if (!thread)
6443 return;
6444 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6445 /* Locking ensures that mddev_unlock does not wake_up a
6446 * non-existent thread
6448 spin_lock(&pers_lock);
6449 *threadp = NULL;
6450 spin_unlock(&pers_lock);
6452 kthread_stop(thread->tsk);
6453 kfree(thread);
6456 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6458 if (!mddev) {
6459 MD_BUG();
6460 return;
6463 if (!rdev || test_bit(Faulty, &rdev->flags))
6464 return;
6466 if (!mddev->pers || !mddev->pers->error_handler)
6467 return;
6468 mddev->pers->error_handler(mddev,rdev);
6469 if (mddev->degraded)
6470 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6471 sysfs_notify_dirent_safe(rdev->sysfs_state);
6472 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6473 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6474 md_wakeup_thread(mddev->thread);
6475 if (mddev->event_work.func)
6476 queue_work(md_misc_wq, &mddev->event_work);
6477 md_new_event_inintr(mddev);
6480 /* seq_file implementation /proc/mdstat */
6482 static void status_unused(struct seq_file *seq)
6484 int i = 0;
6485 struct md_rdev *rdev;
6487 seq_printf(seq, "unused devices: ");
6489 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6490 char b[BDEVNAME_SIZE];
6491 i++;
6492 seq_printf(seq, "%s ",
6493 bdevname(rdev->bdev,b));
6495 if (!i)
6496 seq_printf(seq, "<none>");
6498 seq_printf(seq, "\n");
6502 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6504 sector_t max_sectors, resync, res;
6505 unsigned long dt, db;
6506 sector_t rt;
6507 int scale;
6508 unsigned int per_milli;
6510 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6512 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6513 max_sectors = mddev->resync_max_sectors;
6514 else
6515 max_sectors = mddev->dev_sectors;
6518 * Should not happen.
6520 if (!max_sectors) {
6521 MD_BUG();
6522 return;
6524 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6525 * in a sector_t, and (max_sectors>>scale) will fit in a
6526 * u32, as those are the requirements for sector_div.
6527 * Thus 'scale' must be at least 10
6529 scale = 10;
6530 if (sizeof(sector_t) > sizeof(unsigned long)) {
6531 while ( max_sectors/2 > (1ULL<<(scale+32)))
6532 scale++;
6534 res = (resync>>scale)*1000;
6535 sector_div(res, (u32)((max_sectors>>scale)+1));
6537 per_milli = res;
6539 int i, x = per_milli/50, y = 20-x;
6540 seq_printf(seq, "[");
6541 for (i = 0; i < x; i++)
6542 seq_printf(seq, "=");
6543 seq_printf(seq, ">");
6544 for (i = 0; i < y; i++)
6545 seq_printf(seq, ".");
6546 seq_printf(seq, "] ");
6548 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6549 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6550 "reshape" :
6551 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6552 "check" :
6553 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6554 "resync" : "recovery"))),
6555 per_milli/10, per_milli % 10,
6556 (unsigned long long) resync/2,
6557 (unsigned long long) max_sectors/2);
6560 * dt: time from mark until now
6561 * db: blocks written from mark until now
6562 * rt: remaining time
6564 * rt is a sector_t, so could be 32bit or 64bit.
6565 * So we divide before multiply in case it is 32bit and close
6566 * to the limit.
6567 * We scale the divisor (db) by 32 to avoid losing precision
6568 * near the end of resync when the number of remaining sectors
6569 * is close to 'db'.
6570 * We then divide rt by 32 after multiplying by db to compensate.
6571 * The '+1' avoids division by zero if db is very small.
6573 dt = ((jiffies - mddev->resync_mark) / HZ);
6574 if (!dt) dt++;
6575 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6576 - mddev->resync_mark_cnt;
6578 rt = max_sectors - resync; /* number of remaining sectors */
6579 sector_div(rt, db/32+1);
6580 rt *= dt;
6581 rt >>= 5;
6583 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6584 ((unsigned long)rt % 60)/6);
6586 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6589 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6591 struct list_head *tmp;
6592 loff_t l = *pos;
6593 struct mddev *mddev;
6595 if (l >= 0x10000)
6596 return NULL;
6597 if (!l--)
6598 /* header */
6599 return (void*)1;
6601 spin_lock(&all_mddevs_lock);
6602 list_for_each(tmp,&all_mddevs)
6603 if (!l--) {
6604 mddev = list_entry(tmp, struct mddev, all_mddevs);
6605 mddev_get(mddev);
6606 spin_unlock(&all_mddevs_lock);
6607 return mddev;
6609 spin_unlock(&all_mddevs_lock);
6610 if (!l--)
6611 return (void*)2;/* tail */
6612 return NULL;
6615 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6617 struct list_head *tmp;
6618 struct mddev *next_mddev, *mddev = v;
6620 ++*pos;
6621 if (v == (void*)2)
6622 return NULL;
6624 spin_lock(&all_mddevs_lock);
6625 if (v == (void*)1)
6626 tmp = all_mddevs.next;
6627 else
6628 tmp = mddev->all_mddevs.next;
6629 if (tmp != &all_mddevs)
6630 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6631 else {
6632 next_mddev = (void*)2;
6633 *pos = 0x10000;
6635 spin_unlock(&all_mddevs_lock);
6637 if (v != (void*)1)
6638 mddev_put(mddev);
6639 return next_mddev;
6643 static void md_seq_stop(struct seq_file *seq, void *v)
6645 struct mddev *mddev = v;
6647 if (mddev && v != (void*)1 && v != (void*)2)
6648 mddev_put(mddev);
6651 static int md_seq_show(struct seq_file *seq, void *v)
6653 struct mddev *mddev = v;
6654 sector_t sectors;
6655 struct md_rdev *rdev;
6656 struct bitmap *bitmap;
6658 if (v == (void*)1) {
6659 struct md_personality *pers;
6660 seq_printf(seq, "Personalities : ");
6661 spin_lock(&pers_lock);
6662 list_for_each_entry(pers, &pers_list, list)
6663 seq_printf(seq, "[%s] ", pers->name);
6665 spin_unlock(&pers_lock);
6666 seq_printf(seq, "\n");
6667 seq->poll_event = atomic_read(&md_event_count);
6668 return 0;
6670 if (v == (void*)2) {
6671 status_unused(seq);
6672 return 0;
6675 if (mddev_lock(mddev) < 0)
6676 return -EINTR;
6678 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6679 seq_printf(seq, "%s : %sactive", mdname(mddev),
6680 mddev->pers ? "" : "in");
6681 if (mddev->pers) {
6682 if (mddev->ro==1)
6683 seq_printf(seq, " (read-only)");
6684 if (mddev->ro==2)
6685 seq_printf(seq, " (auto-read-only)");
6686 seq_printf(seq, " %s", mddev->pers->name);
6689 sectors = 0;
6690 list_for_each_entry(rdev, &mddev->disks, same_set) {
6691 char b[BDEVNAME_SIZE];
6692 seq_printf(seq, " %s[%d]",
6693 bdevname(rdev->bdev,b), rdev->desc_nr);
6694 if (test_bit(WriteMostly, &rdev->flags))
6695 seq_printf(seq, "(W)");
6696 if (test_bit(Faulty, &rdev->flags)) {
6697 seq_printf(seq, "(F)");
6698 continue;
6699 } else if (rdev->raid_disk < 0)
6700 seq_printf(seq, "(S)"); /* spare */
6701 sectors += rdev->sectors;
6704 if (!list_empty(&mddev->disks)) {
6705 if (mddev->pers)
6706 seq_printf(seq, "\n %llu blocks",
6707 (unsigned long long)
6708 mddev->array_sectors / 2);
6709 else
6710 seq_printf(seq, "\n %llu blocks",
6711 (unsigned long long)sectors / 2);
6713 if (mddev->persistent) {
6714 if (mddev->major_version != 0 ||
6715 mddev->minor_version != 90) {
6716 seq_printf(seq," super %d.%d",
6717 mddev->major_version,
6718 mddev->minor_version);
6720 } else if (mddev->external)
6721 seq_printf(seq, " super external:%s",
6722 mddev->metadata_type);
6723 else
6724 seq_printf(seq, " super non-persistent");
6726 if (mddev->pers) {
6727 mddev->pers->status(seq, mddev);
6728 seq_printf(seq, "\n ");
6729 if (mddev->pers->sync_request) {
6730 if (mddev->curr_resync > 2) {
6731 status_resync(seq, mddev);
6732 seq_printf(seq, "\n ");
6733 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6734 seq_printf(seq, "\tresync=DELAYED\n ");
6735 else if (mddev->recovery_cp < MaxSector)
6736 seq_printf(seq, "\tresync=PENDING\n ");
6738 } else
6739 seq_printf(seq, "\n ");
6741 if ((bitmap = mddev->bitmap)) {
6742 unsigned long chunk_kb;
6743 unsigned long flags;
6744 spin_lock_irqsave(&bitmap->lock, flags);
6745 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6746 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6747 "%lu%s chunk",
6748 bitmap->pages - bitmap->missing_pages,
6749 bitmap->pages,
6750 (bitmap->pages - bitmap->missing_pages)
6751 << (PAGE_SHIFT - 10),
6752 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6753 chunk_kb ? "KB" : "B");
6754 if (bitmap->file) {
6755 seq_printf(seq, ", file: ");
6756 seq_path(seq, &bitmap->file->f_path, " \t\n");
6759 seq_printf(seq, "\n");
6760 spin_unlock_irqrestore(&bitmap->lock, flags);
6763 seq_printf(seq, "\n");
6765 mddev_unlock(mddev);
6767 return 0;
6770 static const struct seq_operations md_seq_ops = {
6771 .start = md_seq_start,
6772 .next = md_seq_next,
6773 .stop = md_seq_stop,
6774 .show = md_seq_show,
6777 static int md_seq_open(struct inode *inode, struct file *file)
6779 struct seq_file *seq;
6780 int error;
6782 error = seq_open(file, &md_seq_ops);
6783 if (error)
6784 return error;
6786 seq = file->private_data;
6787 seq->poll_event = atomic_read(&md_event_count);
6788 return error;
6791 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6793 struct seq_file *seq = filp->private_data;
6794 int mask;
6796 poll_wait(filp, &md_event_waiters, wait);
6798 /* always allow read */
6799 mask = POLLIN | POLLRDNORM;
6801 if (seq->poll_event != atomic_read(&md_event_count))
6802 mask |= POLLERR | POLLPRI;
6803 return mask;
6806 static const struct file_operations md_seq_fops = {
6807 .owner = THIS_MODULE,
6808 .open = md_seq_open,
6809 .read = seq_read,
6810 .llseek = seq_lseek,
6811 .release = seq_release_private,
6812 .poll = mdstat_poll,
6815 int register_md_personality(struct md_personality *p)
6817 spin_lock(&pers_lock);
6818 list_add_tail(&p->list, &pers_list);
6819 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6820 spin_unlock(&pers_lock);
6821 return 0;
6824 int unregister_md_personality(struct md_personality *p)
6826 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6827 spin_lock(&pers_lock);
6828 list_del_init(&p->list);
6829 spin_unlock(&pers_lock);
6830 return 0;
6833 static int is_mddev_idle(struct mddev *mddev, int init)
6835 struct md_rdev * rdev;
6836 int idle;
6837 int curr_events;
6839 idle = 1;
6840 rcu_read_lock();
6841 rdev_for_each_rcu(rdev, mddev) {
6842 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6843 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6844 (int)part_stat_read(&disk->part0, sectors[1]) -
6845 atomic_read(&disk->sync_io);
6846 /* sync IO will cause sync_io to increase before the disk_stats
6847 * as sync_io is counted when a request starts, and
6848 * disk_stats is counted when it completes.
6849 * So resync activity will cause curr_events to be smaller than
6850 * when there was no such activity.
6851 * non-sync IO will cause disk_stat to increase without
6852 * increasing sync_io so curr_events will (eventually)
6853 * be larger than it was before. Once it becomes
6854 * substantially larger, the test below will cause
6855 * the array to appear non-idle, and resync will slow
6856 * down.
6857 * If there is a lot of outstanding resync activity when
6858 * we set last_event to curr_events, then all that activity
6859 * completing might cause the array to appear non-idle
6860 * and resync will be slowed down even though there might
6861 * not have been non-resync activity. This will only
6862 * happen once though. 'last_events' will soon reflect
6863 * the state where there is little or no outstanding
6864 * resync requests, and further resync activity will
6865 * always make curr_events less than last_events.
6868 if (init || curr_events - rdev->last_events > 64) {
6869 rdev->last_events = curr_events;
6870 idle = 0;
6873 rcu_read_unlock();
6874 return idle;
6877 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6879 /* another "blocks" (512byte) blocks have been synced */
6880 atomic_sub(blocks, &mddev->recovery_active);
6881 wake_up(&mddev->recovery_wait);
6882 if (!ok) {
6883 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6884 md_wakeup_thread(mddev->thread);
6885 // stop recovery, signal do_sync ....
6890 /* md_write_start(mddev, bi)
6891 * If we need to update some array metadata (e.g. 'active' flag
6892 * in superblock) before writing, schedule a superblock update
6893 * and wait for it to complete.
6895 void md_write_start(struct mddev *mddev, struct bio *bi)
6897 int did_change = 0;
6898 if (bio_data_dir(bi) != WRITE)
6899 return;
6901 BUG_ON(mddev->ro == 1);
6902 if (mddev->ro == 2) {
6903 /* need to switch to read/write */
6904 mddev->ro = 0;
6905 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6906 md_wakeup_thread(mddev->thread);
6907 md_wakeup_thread(mddev->sync_thread);
6908 did_change = 1;
6910 atomic_inc(&mddev->writes_pending);
6911 if (mddev->safemode == 1)
6912 mddev->safemode = 0;
6913 if (mddev->in_sync) {
6914 spin_lock_irq(&mddev->write_lock);
6915 if (mddev->in_sync) {
6916 mddev->in_sync = 0;
6917 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6918 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6919 md_wakeup_thread(mddev->thread);
6920 did_change = 1;
6922 spin_unlock_irq(&mddev->write_lock);
6924 if (did_change)
6925 sysfs_notify_dirent_safe(mddev->sysfs_state);
6926 wait_event(mddev->sb_wait,
6927 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6930 void md_write_end(struct mddev *mddev)
6932 if (atomic_dec_and_test(&mddev->writes_pending)) {
6933 if (mddev->safemode == 2)
6934 md_wakeup_thread(mddev->thread);
6935 else if (mddev->safemode_delay)
6936 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6940 /* md_allow_write(mddev)
6941 * Calling this ensures that the array is marked 'active' so that writes
6942 * may proceed without blocking. It is important to call this before
6943 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6944 * Must be called with mddev_lock held.
6946 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6947 * is dropped, so return -EAGAIN after notifying userspace.
6949 int md_allow_write(struct mddev *mddev)
6951 if (!mddev->pers)
6952 return 0;
6953 if (mddev->ro)
6954 return 0;
6955 if (!mddev->pers->sync_request)
6956 return 0;
6958 spin_lock_irq(&mddev->write_lock);
6959 if (mddev->in_sync) {
6960 mddev->in_sync = 0;
6961 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6962 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6963 if (mddev->safemode_delay &&
6964 mddev->safemode == 0)
6965 mddev->safemode = 1;
6966 spin_unlock_irq(&mddev->write_lock);
6967 md_update_sb(mddev, 0);
6968 sysfs_notify_dirent_safe(mddev->sysfs_state);
6969 } else
6970 spin_unlock_irq(&mddev->write_lock);
6972 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6973 return -EAGAIN;
6974 else
6975 return 0;
6977 EXPORT_SYMBOL_GPL(md_allow_write);
6979 #define SYNC_MARKS 10
6980 #define SYNC_MARK_STEP (3*HZ)
6981 void md_do_sync(struct mddev *mddev)
6983 struct mddev *mddev2;
6984 unsigned int currspeed = 0,
6985 window;
6986 sector_t max_sectors,j, io_sectors;
6987 unsigned long mark[SYNC_MARKS];
6988 sector_t mark_cnt[SYNC_MARKS];
6989 int last_mark,m;
6990 struct list_head *tmp;
6991 sector_t last_check;
6992 int skipped = 0;
6993 struct md_rdev *rdev;
6994 char *desc;
6996 /* just incase thread restarts... */
6997 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6998 return;
6999 if (mddev->ro) /* never try to sync a read-only array */
7000 return;
7002 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7003 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7004 desc = "data-check";
7005 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7006 desc = "requested-resync";
7007 else
7008 desc = "resync";
7009 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7010 desc = "reshape";
7011 else
7012 desc = "recovery";
7014 /* we overload curr_resync somewhat here.
7015 * 0 == not engaged in resync at all
7016 * 2 == checking that there is no conflict with another sync
7017 * 1 == like 2, but have yielded to allow conflicting resync to
7018 * commense
7019 * other == active in resync - this many blocks
7021 * Before starting a resync we must have set curr_resync to
7022 * 2, and then checked that every "conflicting" array has curr_resync
7023 * less than ours. When we find one that is the same or higher
7024 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7025 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7026 * This will mean we have to start checking from the beginning again.
7030 do {
7031 mddev->curr_resync = 2;
7033 try_again:
7034 if (kthread_should_stop())
7035 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7037 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7038 goto skip;
7039 for_each_mddev(mddev2, tmp) {
7040 if (mddev2 == mddev)
7041 continue;
7042 if (!mddev->parallel_resync
7043 && mddev2->curr_resync
7044 && match_mddev_units(mddev, mddev2)) {
7045 DEFINE_WAIT(wq);
7046 if (mddev < mddev2 && mddev->curr_resync == 2) {
7047 /* arbitrarily yield */
7048 mddev->curr_resync = 1;
7049 wake_up(&resync_wait);
7051 if (mddev > mddev2 && mddev->curr_resync == 1)
7052 /* no need to wait here, we can wait the next
7053 * time 'round when curr_resync == 2
7055 continue;
7056 /* We need to wait 'interruptible' so as not to
7057 * contribute to the load average, and not to
7058 * be caught by 'softlockup'
7060 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7061 if (!kthread_should_stop() &&
7062 mddev2->curr_resync >= mddev->curr_resync) {
7063 printk(KERN_INFO "md: delaying %s of %s"
7064 " until %s has finished (they"
7065 " share one or more physical units)\n",
7066 desc, mdname(mddev), mdname(mddev2));
7067 mddev_put(mddev2);
7068 if (signal_pending(current))
7069 flush_signals(current);
7070 schedule();
7071 finish_wait(&resync_wait, &wq);
7072 goto try_again;
7074 finish_wait(&resync_wait, &wq);
7077 } while (mddev->curr_resync < 2);
7079 j = 0;
7080 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7081 /* resync follows the size requested by the personality,
7082 * which defaults to physical size, but can be virtual size
7084 max_sectors = mddev->resync_max_sectors;
7085 mddev->resync_mismatches = 0;
7086 /* we don't use the checkpoint if there's a bitmap */
7087 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7088 j = mddev->resync_min;
7089 else if (!mddev->bitmap)
7090 j = mddev->recovery_cp;
7092 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7093 max_sectors = mddev->dev_sectors;
7094 else {
7095 /* recovery follows the physical size of devices */
7096 max_sectors = mddev->dev_sectors;
7097 j = MaxSector;
7098 rcu_read_lock();
7099 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7100 if (rdev->raid_disk >= 0 &&
7101 !test_bit(Faulty, &rdev->flags) &&
7102 !test_bit(In_sync, &rdev->flags) &&
7103 rdev->recovery_offset < j)
7104 j = rdev->recovery_offset;
7105 rcu_read_unlock();
7108 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7109 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7110 " %d KB/sec/disk.\n", speed_min(mddev));
7111 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7112 "(but not more than %d KB/sec) for %s.\n",
7113 speed_max(mddev), desc);
7115 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7117 io_sectors = 0;
7118 for (m = 0; m < SYNC_MARKS; m++) {
7119 mark[m] = jiffies;
7120 mark_cnt[m] = io_sectors;
7122 last_mark = 0;
7123 mddev->resync_mark = mark[last_mark];
7124 mddev->resync_mark_cnt = mark_cnt[last_mark];
7127 * Tune reconstruction:
7129 window = 32*(PAGE_SIZE/512);
7130 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7131 window/2, (unsigned long long)max_sectors/2);
7133 atomic_set(&mddev->recovery_active, 0);
7134 last_check = 0;
7136 if (j>2) {
7137 printk(KERN_INFO
7138 "md: resuming %s of %s from checkpoint.\n",
7139 desc, mdname(mddev));
7140 mddev->curr_resync = j;
7142 mddev->curr_resync_completed = j;
7144 while (j < max_sectors) {
7145 sector_t sectors;
7147 skipped = 0;
7149 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7150 ((mddev->curr_resync > mddev->curr_resync_completed &&
7151 (mddev->curr_resync - mddev->curr_resync_completed)
7152 > (max_sectors >> 4)) ||
7153 (j - mddev->curr_resync_completed)*2
7154 >= mddev->resync_max - mddev->curr_resync_completed
7155 )) {
7156 /* time to update curr_resync_completed */
7157 wait_event(mddev->recovery_wait,
7158 atomic_read(&mddev->recovery_active) == 0);
7159 mddev->curr_resync_completed = j;
7160 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7161 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7164 while (j >= mddev->resync_max && !kthread_should_stop()) {
7165 /* As this condition is controlled by user-space,
7166 * we can block indefinitely, so use '_interruptible'
7167 * to avoid triggering warnings.
7169 flush_signals(current); /* just in case */
7170 wait_event_interruptible(mddev->recovery_wait,
7171 mddev->resync_max > j
7172 || kthread_should_stop());
7175 if (kthread_should_stop())
7176 goto interrupted;
7178 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7179 currspeed < speed_min(mddev));
7180 if (sectors == 0) {
7181 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7182 goto out;
7185 if (!skipped) { /* actual IO requested */
7186 io_sectors += sectors;
7187 atomic_add(sectors, &mddev->recovery_active);
7190 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7191 break;
7193 j += sectors;
7194 if (j>1) mddev->curr_resync = j;
7195 mddev->curr_mark_cnt = io_sectors;
7196 if (last_check == 0)
7197 /* this is the earliest that rebuild will be
7198 * visible in /proc/mdstat
7200 md_new_event(mddev);
7202 if (last_check + window > io_sectors || j == max_sectors)
7203 continue;
7205 last_check = io_sectors;
7206 repeat:
7207 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7208 /* step marks */
7209 int next = (last_mark+1) % SYNC_MARKS;
7211 mddev->resync_mark = mark[next];
7212 mddev->resync_mark_cnt = mark_cnt[next];
7213 mark[next] = jiffies;
7214 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7215 last_mark = next;
7219 if (kthread_should_stop())
7220 goto interrupted;
7224 * this loop exits only if either when we are slower than
7225 * the 'hard' speed limit, or the system was IO-idle for
7226 * a jiffy.
7227 * the system might be non-idle CPU-wise, but we only care
7228 * about not overloading the IO subsystem. (things like an
7229 * e2fsck being done on the RAID array should execute fast)
7231 cond_resched();
7233 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7234 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7236 if (currspeed > speed_min(mddev)) {
7237 if ((currspeed > speed_max(mddev)) ||
7238 !is_mddev_idle(mddev, 0)) {
7239 msleep(500);
7240 goto repeat;
7244 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7246 * this also signals 'finished resyncing' to md_stop
7248 out:
7249 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7251 /* tell personality that we are finished */
7252 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7254 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7255 mddev->curr_resync > 2) {
7256 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7257 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7258 if (mddev->curr_resync >= mddev->recovery_cp) {
7259 printk(KERN_INFO
7260 "md: checkpointing %s of %s.\n",
7261 desc, mdname(mddev));
7262 mddev->recovery_cp = mddev->curr_resync;
7264 } else
7265 mddev->recovery_cp = MaxSector;
7266 } else {
7267 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7268 mddev->curr_resync = MaxSector;
7269 rcu_read_lock();
7270 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7271 if (rdev->raid_disk >= 0 &&
7272 mddev->delta_disks >= 0 &&
7273 !test_bit(Faulty, &rdev->flags) &&
7274 !test_bit(In_sync, &rdev->flags) &&
7275 rdev->recovery_offset < mddev->curr_resync)
7276 rdev->recovery_offset = mddev->curr_resync;
7277 rcu_read_unlock();
7280 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7282 skip:
7283 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7284 /* We completed so min/max setting can be forgotten if used. */
7285 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7286 mddev->resync_min = 0;
7287 mddev->resync_max = MaxSector;
7288 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7289 mddev->resync_min = mddev->curr_resync_completed;
7290 mddev->curr_resync = 0;
7291 wake_up(&resync_wait);
7292 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7293 md_wakeup_thread(mddev->thread);
7294 return;
7296 interrupted:
7298 * got a signal, exit.
7300 printk(KERN_INFO
7301 "md: md_do_sync() got signal ... exiting\n");
7302 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7303 goto out;
7306 EXPORT_SYMBOL_GPL(md_do_sync);
7308 static int remove_and_add_spares(struct mddev *mddev)
7310 struct md_rdev *rdev;
7311 int spares = 0;
7313 mddev->curr_resync_completed = 0;
7315 list_for_each_entry(rdev, &mddev->disks, same_set)
7316 if (rdev->raid_disk >= 0 &&
7317 !test_bit(Blocked, &rdev->flags) &&
7318 (test_bit(Faulty, &rdev->flags) ||
7319 ! test_bit(In_sync, &rdev->flags)) &&
7320 atomic_read(&rdev->nr_pending)==0) {
7321 if (mddev->pers->hot_remove_disk(
7322 mddev, rdev->raid_disk)==0) {
7323 sysfs_unlink_rdev(mddev, rdev);
7324 rdev->raid_disk = -1;
7328 if (mddev->degraded) {
7329 list_for_each_entry(rdev, &mddev->disks, same_set) {
7330 if (rdev->raid_disk >= 0 &&
7331 !test_bit(In_sync, &rdev->flags) &&
7332 !test_bit(Faulty, &rdev->flags))
7333 spares++;
7334 if (rdev->raid_disk < 0
7335 && !test_bit(Faulty, &rdev->flags)) {
7336 rdev->recovery_offset = 0;
7337 if (mddev->pers->
7338 hot_add_disk(mddev, rdev) == 0) {
7339 if (sysfs_link_rdev(mddev, rdev))
7340 /* failure here is OK */;
7341 spares++;
7342 md_new_event(mddev);
7343 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7344 } else
7345 break;
7349 return spares;
7352 static void reap_sync_thread(struct mddev *mddev)
7354 struct md_rdev *rdev;
7356 /* resync has finished, collect result */
7357 md_unregister_thread(&mddev->sync_thread);
7358 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7359 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7360 /* success...*/
7361 /* activate any spares */
7362 if (mddev->pers->spare_active(mddev))
7363 sysfs_notify(&mddev->kobj, NULL,
7364 "degraded");
7366 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7367 mddev->pers->finish_reshape)
7368 mddev->pers->finish_reshape(mddev);
7370 /* If array is no-longer degraded, then any saved_raid_disk
7371 * information must be scrapped. Also if any device is now
7372 * In_sync we must scrape the saved_raid_disk for that device
7373 * do the superblock for an incrementally recovered device
7374 * written out.
7376 list_for_each_entry(rdev, &mddev->disks, same_set)
7377 if (!mddev->degraded ||
7378 test_bit(In_sync, &rdev->flags))
7379 rdev->saved_raid_disk = -1;
7381 md_update_sb(mddev, 1);
7382 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7383 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7384 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7385 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7386 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7387 /* flag recovery needed just to double check */
7388 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7389 sysfs_notify_dirent_safe(mddev->sysfs_action);
7390 md_new_event(mddev);
7391 if (mddev->event_work.func)
7392 queue_work(md_misc_wq, &mddev->event_work);
7396 * This routine is regularly called by all per-raid-array threads to
7397 * deal with generic issues like resync and super-block update.
7398 * Raid personalities that don't have a thread (linear/raid0) do not
7399 * need this as they never do any recovery or update the superblock.
7401 * It does not do any resync itself, but rather "forks" off other threads
7402 * to do that as needed.
7403 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7404 * "->recovery" and create a thread at ->sync_thread.
7405 * When the thread finishes it sets MD_RECOVERY_DONE
7406 * and wakeups up this thread which will reap the thread and finish up.
7407 * This thread also removes any faulty devices (with nr_pending == 0).
7409 * The overall approach is:
7410 * 1/ if the superblock needs updating, update it.
7411 * 2/ If a recovery thread is running, don't do anything else.
7412 * 3/ If recovery has finished, clean up, possibly marking spares active.
7413 * 4/ If there are any faulty devices, remove them.
7414 * 5/ If array is degraded, try to add spares devices
7415 * 6/ If array has spares or is not in-sync, start a resync thread.
7417 void md_check_recovery(struct mddev *mddev)
7419 if (mddev->suspended)
7420 return;
7422 if (mddev->bitmap)
7423 bitmap_daemon_work(mddev);
7425 if (signal_pending(current)) {
7426 if (mddev->pers->sync_request && !mddev->external) {
7427 printk(KERN_INFO "md: %s in immediate safe mode\n",
7428 mdname(mddev));
7429 mddev->safemode = 2;
7431 flush_signals(current);
7434 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7435 return;
7436 if ( ! (
7437 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7438 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7439 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7440 (mddev->external == 0 && mddev->safemode == 1) ||
7441 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7442 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7444 return;
7446 if (mddev_trylock(mddev)) {
7447 int spares = 0;
7449 if (mddev->ro) {
7450 /* Only thing we do on a ro array is remove
7451 * failed devices.
7453 struct md_rdev *rdev;
7454 list_for_each_entry(rdev, &mddev->disks, same_set)
7455 if (rdev->raid_disk >= 0 &&
7456 !test_bit(Blocked, &rdev->flags) &&
7457 test_bit(Faulty, &rdev->flags) &&
7458 atomic_read(&rdev->nr_pending)==0) {
7459 if (mddev->pers->hot_remove_disk(
7460 mddev, rdev->raid_disk)==0) {
7461 sysfs_unlink_rdev(mddev, rdev);
7462 rdev->raid_disk = -1;
7465 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7466 goto unlock;
7469 if (!mddev->external) {
7470 int did_change = 0;
7471 spin_lock_irq(&mddev->write_lock);
7472 if (mddev->safemode &&
7473 !atomic_read(&mddev->writes_pending) &&
7474 !mddev->in_sync &&
7475 mddev->recovery_cp == MaxSector) {
7476 mddev->in_sync = 1;
7477 did_change = 1;
7478 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7480 if (mddev->safemode == 1)
7481 mddev->safemode = 0;
7482 spin_unlock_irq(&mddev->write_lock);
7483 if (did_change)
7484 sysfs_notify_dirent_safe(mddev->sysfs_state);
7487 if (mddev->flags)
7488 md_update_sb(mddev, 0);
7490 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7491 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7492 /* resync/recovery still happening */
7493 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7494 goto unlock;
7496 if (mddev->sync_thread) {
7497 reap_sync_thread(mddev);
7498 goto unlock;
7500 /* Set RUNNING before clearing NEEDED to avoid
7501 * any transients in the value of "sync_action".
7503 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7504 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7505 /* Clear some bits that don't mean anything, but
7506 * might be left set
7508 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7509 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7511 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7512 goto unlock;
7513 /* no recovery is running.
7514 * remove any failed drives, then
7515 * add spares if possible.
7516 * Spare are also removed and re-added, to allow
7517 * the personality to fail the re-add.
7520 if (mddev->reshape_position != MaxSector) {
7521 if (mddev->pers->check_reshape == NULL ||
7522 mddev->pers->check_reshape(mddev) != 0)
7523 /* Cannot proceed */
7524 goto unlock;
7525 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7526 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7527 } else if ((spares = remove_and_add_spares(mddev))) {
7528 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7529 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7530 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7531 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7532 } else if (mddev->recovery_cp < MaxSector) {
7533 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7534 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7535 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7536 /* nothing to be done ... */
7537 goto unlock;
7539 if (mddev->pers->sync_request) {
7540 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7541 /* We are adding a device or devices to an array
7542 * which has the bitmap stored on all devices.
7543 * So make sure all bitmap pages get written
7545 bitmap_write_all(mddev->bitmap);
7547 mddev->sync_thread = md_register_thread(md_do_sync,
7548 mddev,
7549 "resync");
7550 if (!mddev->sync_thread) {
7551 printk(KERN_ERR "%s: could not start resync"
7552 " thread...\n",
7553 mdname(mddev));
7554 /* leave the spares where they are, it shouldn't hurt */
7555 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7556 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7557 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7558 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7559 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7560 } else
7561 md_wakeup_thread(mddev->sync_thread);
7562 sysfs_notify_dirent_safe(mddev->sysfs_action);
7563 md_new_event(mddev);
7565 unlock:
7566 if (!mddev->sync_thread) {
7567 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7568 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7569 &mddev->recovery))
7570 if (mddev->sysfs_action)
7571 sysfs_notify_dirent_safe(mddev->sysfs_action);
7573 mddev_unlock(mddev);
7577 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7579 sysfs_notify_dirent_safe(rdev->sysfs_state);
7580 wait_event_timeout(rdev->blocked_wait,
7581 !test_bit(Blocked, &rdev->flags) &&
7582 !test_bit(BlockedBadBlocks, &rdev->flags),
7583 msecs_to_jiffies(5000));
7584 rdev_dec_pending(rdev, mddev);
7586 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7589 /* Bad block management.
7590 * We can record which blocks on each device are 'bad' and so just
7591 * fail those blocks, or that stripe, rather than the whole device.
7592 * Entries in the bad-block table are 64bits wide. This comprises:
7593 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7594 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7595 * A 'shift' can be set so that larger blocks are tracked and
7596 * consequently larger devices can be covered.
7597 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7599 * Locking of the bad-block table uses a seqlock so md_is_badblock
7600 * might need to retry if it is very unlucky.
7601 * We will sometimes want to check for bad blocks in a bi_end_io function,
7602 * so we use the write_seqlock_irq variant.
7604 * When looking for a bad block we specify a range and want to
7605 * know if any block in the range is bad. So we binary-search
7606 * to the last range that starts at-or-before the given endpoint,
7607 * (or "before the sector after the target range")
7608 * then see if it ends after the given start.
7609 * We return
7610 * 0 if there are no known bad blocks in the range
7611 * 1 if there are known bad block which are all acknowledged
7612 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7613 * plus the start/length of the first bad section we overlap.
7615 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7616 sector_t *first_bad, int *bad_sectors)
7618 int hi;
7619 int lo = 0;
7620 u64 *p = bb->page;
7621 int rv = 0;
7622 sector_t target = s + sectors;
7623 unsigned seq;
7625 if (bb->shift > 0) {
7626 /* round the start down, and the end up */
7627 s >>= bb->shift;
7628 target += (1<<bb->shift) - 1;
7629 target >>= bb->shift;
7630 sectors = target - s;
7632 /* 'target' is now the first block after the bad range */
7634 retry:
7635 seq = read_seqbegin(&bb->lock);
7637 hi = bb->count;
7639 /* Binary search between lo and hi for 'target'
7640 * i.e. for the last range that starts before 'target'
7642 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7643 * are known not to be the last range before target.
7644 * VARIANT: hi-lo is the number of possible
7645 * ranges, and decreases until it reaches 1
7647 while (hi - lo > 1) {
7648 int mid = (lo + hi) / 2;
7649 sector_t a = BB_OFFSET(p[mid]);
7650 if (a < target)
7651 /* This could still be the one, earlier ranges
7652 * could not. */
7653 lo = mid;
7654 else
7655 /* This and later ranges are definitely out. */
7656 hi = mid;
7658 /* 'lo' might be the last that started before target, but 'hi' isn't */
7659 if (hi > lo) {
7660 /* need to check all range that end after 's' to see if
7661 * any are unacknowledged.
7663 while (lo >= 0 &&
7664 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7665 if (BB_OFFSET(p[lo]) < target) {
7666 /* starts before the end, and finishes after
7667 * the start, so they must overlap
7669 if (rv != -1 && BB_ACK(p[lo]))
7670 rv = 1;
7671 else
7672 rv = -1;
7673 *first_bad = BB_OFFSET(p[lo]);
7674 *bad_sectors = BB_LEN(p[lo]);
7676 lo--;
7680 if (read_seqretry(&bb->lock, seq))
7681 goto retry;
7683 return rv;
7685 EXPORT_SYMBOL_GPL(md_is_badblock);
7688 * Add a range of bad blocks to the table.
7689 * This might extend the table, or might contract it
7690 * if two adjacent ranges can be merged.
7691 * We binary-search to find the 'insertion' point, then
7692 * decide how best to handle it.
7694 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7695 int acknowledged)
7697 u64 *p;
7698 int lo, hi;
7699 int rv = 1;
7701 if (bb->shift < 0)
7702 /* badblocks are disabled */
7703 return 0;
7705 if (bb->shift) {
7706 /* round the start down, and the end up */
7707 sector_t next = s + sectors;
7708 s >>= bb->shift;
7709 next += (1<<bb->shift) - 1;
7710 next >>= bb->shift;
7711 sectors = next - s;
7714 write_seqlock_irq(&bb->lock);
7716 p = bb->page;
7717 lo = 0;
7718 hi = bb->count;
7719 /* Find the last range that starts at-or-before 's' */
7720 while (hi - lo > 1) {
7721 int mid = (lo + hi) / 2;
7722 sector_t a = BB_OFFSET(p[mid]);
7723 if (a <= s)
7724 lo = mid;
7725 else
7726 hi = mid;
7728 if (hi > lo && BB_OFFSET(p[lo]) > s)
7729 hi = lo;
7731 if (hi > lo) {
7732 /* we found a range that might merge with the start
7733 * of our new range
7735 sector_t a = BB_OFFSET(p[lo]);
7736 sector_t e = a + BB_LEN(p[lo]);
7737 int ack = BB_ACK(p[lo]);
7738 if (e >= s) {
7739 /* Yes, we can merge with a previous range */
7740 if (s == a && s + sectors >= e)
7741 /* new range covers old */
7742 ack = acknowledged;
7743 else
7744 ack = ack && acknowledged;
7746 if (e < s + sectors)
7747 e = s + sectors;
7748 if (e - a <= BB_MAX_LEN) {
7749 p[lo] = BB_MAKE(a, e-a, ack);
7750 s = e;
7751 } else {
7752 /* does not all fit in one range,
7753 * make p[lo] maximal
7755 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7756 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7757 s = a + BB_MAX_LEN;
7759 sectors = e - s;
7762 if (sectors && hi < bb->count) {
7763 /* 'hi' points to the first range that starts after 's'.
7764 * Maybe we can merge with the start of that range */
7765 sector_t a = BB_OFFSET(p[hi]);
7766 sector_t e = a + BB_LEN(p[hi]);
7767 int ack = BB_ACK(p[hi]);
7768 if (a <= s + sectors) {
7769 /* merging is possible */
7770 if (e <= s + sectors) {
7771 /* full overlap */
7772 e = s + sectors;
7773 ack = acknowledged;
7774 } else
7775 ack = ack && acknowledged;
7777 a = s;
7778 if (e - a <= BB_MAX_LEN) {
7779 p[hi] = BB_MAKE(a, e-a, ack);
7780 s = e;
7781 } else {
7782 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7783 s = a + BB_MAX_LEN;
7785 sectors = e - s;
7786 lo = hi;
7787 hi++;
7790 if (sectors == 0 && hi < bb->count) {
7791 /* we might be able to combine lo and hi */
7792 /* Note: 's' is at the end of 'lo' */
7793 sector_t a = BB_OFFSET(p[hi]);
7794 int lolen = BB_LEN(p[lo]);
7795 int hilen = BB_LEN(p[hi]);
7796 int newlen = lolen + hilen - (s - a);
7797 if (s >= a && newlen < BB_MAX_LEN) {
7798 /* yes, we can combine them */
7799 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7800 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7801 memmove(p + hi, p + hi + 1,
7802 (bb->count - hi - 1) * 8);
7803 bb->count--;
7806 while (sectors) {
7807 /* didn't merge (it all).
7808 * Need to add a range just before 'hi' */
7809 if (bb->count >= MD_MAX_BADBLOCKS) {
7810 /* No room for more */
7811 rv = 0;
7812 break;
7813 } else {
7814 int this_sectors = sectors;
7815 memmove(p + hi + 1, p + hi,
7816 (bb->count - hi) * 8);
7817 bb->count++;
7819 if (this_sectors > BB_MAX_LEN)
7820 this_sectors = BB_MAX_LEN;
7821 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7822 sectors -= this_sectors;
7823 s += this_sectors;
7827 bb->changed = 1;
7828 if (!acknowledged)
7829 bb->unacked_exist = 1;
7830 write_sequnlock_irq(&bb->lock);
7832 return rv;
7835 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7836 int acknowledged)
7838 int rv = md_set_badblocks(&rdev->badblocks,
7839 s + rdev->data_offset, sectors, acknowledged);
7840 if (rv) {
7841 /* Make sure they get written out promptly */
7842 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7843 md_wakeup_thread(rdev->mddev->thread);
7845 return rv;
7847 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7850 * Remove a range of bad blocks from the table.
7851 * This may involve extending the table if we spilt a region,
7852 * but it must not fail. So if the table becomes full, we just
7853 * drop the remove request.
7855 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7857 u64 *p;
7858 int lo, hi;
7859 sector_t target = s + sectors;
7860 int rv = 0;
7862 if (bb->shift > 0) {
7863 /* When clearing we round the start up and the end down.
7864 * This should not matter as the shift should align with
7865 * the block size and no rounding should ever be needed.
7866 * However it is better the think a block is bad when it
7867 * isn't than to think a block is not bad when it is.
7869 s += (1<<bb->shift) - 1;
7870 s >>= bb->shift;
7871 target >>= bb->shift;
7872 sectors = target - s;
7875 write_seqlock_irq(&bb->lock);
7877 p = bb->page;
7878 lo = 0;
7879 hi = bb->count;
7880 /* Find the last range that starts before 'target' */
7881 while (hi - lo > 1) {
7882 int mid = (lo + hi) / 2;
7883 sector_t a = BB_OFFSET(p[mid]);
7884 if (a < target)
7885 lo = mid;
7886 else
7887 hi = mid;
7889 if (hi > lo) {
7890 /* p[lo] is the last range that could overlap the
7891 * current range. Earlier ranges could also overlap,
7892 * but only this one can overlap the end of the range.
7894 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7895 /* Partial overlap, leave the tail of this range */
7896 int ack = BB_ACK(p[lo]);
7897 sector_t a = BB_OFFSET(p[lo]);
7898 sector_t end = a + BB_LEN(p[lo]);
7900 if (a < s) {
7901 /* we need to split this range */
7902 if (bb->count >= MD_MAX_BADBLOCKS) {
7903 rv = 0;
7904 goto out;
7906 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7907 bb->count++;
7908 p[lo] = BB_MAKE(a, s-a, ack);
7909 lo++;
7911 p[lo] = BB_MAKE(target, end - target, ack);
7912 /* there is no longer an overlap */
7913 hi = lo;
7914 lo--;
7916 while (lo >= 0 &&
7917 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7918 /* This range does overlap */
7919 if (BB_OFFSET(p[lo]) < s) {
7920 /* Keep the early parts of this range. */
7921 int ack = BB_ACK(p[lo]);
7922 sector_t start = BB_OFFSET(p[lo]);
7923 p[lo] = BB_MAKE(start, s - start, ack);
7924 /* now low doesn't overlap, so.. */
7925 break;
7927 lo--;
7929 /* 'lo' is strictly before, 'hi' is strictly after,
7930 * anything between needs to be discarded
7932 if (hi - lo > 1) {
7933 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7934 bb->count -= (hi - lo - 1);
7938 bb->changed = 1;
7939 out:
7940 write_sequnlock_irq(&bb->lock);
7941 return rv;
7944 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7946 return md_clear_badblocks(&rdev->badblocks,
7947 s + rdev->data_offset,
7948 sectors);
7950 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7953 * Acknowledge all bad blocks in a list.
7954 * This only succeeds if ->changed is clear. It is used by
7955 * in-kernel metadata updates
7957 void md_ack_all_badblocks(struct badblocks *bb)
7959 if (bb->page == NULL || bb->changed)
7960 /* no point even trying */
7961 return;
7962 write_seqlock_irq(&bb->lock);
7964 if (bb->changed == 0) {
7965 u64 *p = bb->page;
7966 int i;
7967 for (i = 0; i < bb->count ; i++) {
7968 if (!BB_ACK(p[i])) {
7969 sector_t start = BB_OFFSET(p[i]);
7970 int len = BB_LEN(p[i]);
7971 p[i] = BB_MAKE(start, len, 1);
7974 bb->unacked_exist = 0;
7976 write_sequnlock_irq(&bb->lock);
7978 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7980 /* sysfs access to bad-blocks list.
7981 * We present two files.
7982 * 'bad-blocks' lists sector numbers and lengths of ranges that
7983 * are recorded as bad. The list is truncated to fit within
7984 * the one-page limit of sysfs.
7985 * Writing "sector length" to this file adds an acknowledged
7986 * bad block list.
7987 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7988 * been acknowledged. Writing to this file adds bad blocks
7989 * without acknowledging them. This is largely for testing.
7992 static ssize_t
7993 badblocks_show(struct badblocks *bb, char *page, int unack)
7995 size_t len;
7996 int i;
7997 u64 *p = bb->page;
7998 unsigned seq;
8000 if (bb->shift < 0)
8001 return 0;
8003 retry:
8004 seq = read_seqbegin(&bb->lock);
8006 len = 0;
8007 i = 0;
8009 while (len < PAGE_SIZE && i < bb->count) {
8010 sector_t s = BB_OFFSET(p[i]);
8011 unsigned int length = BB_LEN(p[i]);
8012 int ack = BB_ACK(p[i]);
8013 i++;
8015 if (unack && ack)
8016 continue;
8018 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8019 (unsigned long long)s << bb->shift,
8020 length << bb->shift);
8022 if (unack && len == 0)
8023 bb->unacked_exist = 0;
8025 if (read_seqretry(&bb->lock, seq))
8026 goto retry;
8028 return len;
8031 #define DO_DEBUG 1
8033 static ssize_t
8034 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8036 unsigned long long sector;
8037 int length;
8038 char newline;
8039 #ifdef DO_DEBUG
8040 /* Allow clearing via sysfs *only* for testing/debugging.
8041 * Normally only a successful write may clear a badblock
8043 int clear = 0;
8044 if (page[0] == '-') {
8045 clear = 1;
8046 page++;
8048 #endif /* DO_DEBUG */
8050 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8051 case 3:
8052 if (newline != '\n')
8053 return -EINVAL;
8054 case 2:
8055 if (length <= 0)
8056 return -EINVAL;
8057 break;
8058 default:
8059 return -EINVAL;
8062 #ifdef DO_DEBUG
8063 if (clear) {
8064 md_clear_badblocks(bb, sector, length);
8065 return len;
8067 #endif /* DO_DEBUG */
8068 if (md_set_badblocks(bb, sector, length, !unack))
8069 return len;
8070 else
8071 return -ENOSPC;
8074 static int md_notify_reboot(struct notifier_block *this,
8075 unsigned long code, void *x)
8077 struct list_head *tmp;
8078 struct mddev *mddev;
8079 int need_delay = 0;
8081 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8083 printk(KERN_INFO "md: stopping all md devices.\n");
8085 for_each_mddev(mddev, tmp) {
8086 if (mddev_trylock(mddev)) {
8087 /* Force a switch to readonly even array
8088 * appears to still be in use. Hence
8089 * the '100'.
8091 md_set_readonly(mddev, 100);
8092 mddev_unlock(mddev);
8094 need_delay = 1;
8097 * certain more exotic SCSI devices are known to be
8098 * volatile wrt too early system reboots. While the
8099 * right place to handle this issue is the given
8100 * driver, we do want to have a safe RAID driver ...
8102 if (need_delay)
8103 mdelay(1000*1);
8105 return NOTIFY_DONE;
8108 static struct notifier_block md_notifier = {
8109 .notifier_call = md_notify_reboot,
8110 .next = NULL,
8111 .priority = INT_MAX, /* before any real devices */
8114 static void md_geninit(void)
8116 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8118 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8121 static int __init md_init(void)
8123 int ret = -ENOMEM;
8125 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8126 if (!md_wq)
8127 goto err_wq;
8129 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8130 if (!md_misc_wq)
8131 goto err_misc_wq;
8133 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8134 goto err_md;
8136 if ((ret = register_blkdev(0, "mdp")) < 0)
8137 goto err_mdp;
8138 mdp_major = ret;
8140 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8141 md_probe, NULL, NULL);
8142 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8143 md_probe, NULL, NULL);
8145 register_reboot_notifier(&md_notifier);
8146 raid_table_header = register_sysctl_table(raid_root_table);
8148 md_geninit();
8149 return 0;
8151 err_mdp:
8152 unregister_blkdev(MD_MAJOR, "md");
8153 err_md:
8154 destroy_workqueue(md_misc_wq);
8155 err_misc_wq:
8156 destroy_workqueue(md_wq);
8157 err_wq:
8158 return ret;
8161 #ifndef MODULE
8164 * Searches all registered partitions for autorun RAID arrays
8165 * at boot time.
8168 static LIST_HEAD(all_detected_devices);
8169 struct detected_devices_node {
8170 struct list_head list;
8171 dev_t dev;
8174 void md_autodetect_dev(dev_t dev)
8176 struct detected_devices_node *node_detected_dev;
8178 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8179 if (node_detected_dev) {
8180 node_detected_dev->dev = dev;
8181 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8182 } else {
8183 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8184 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8189 static void autostart_arrays(int part)
8191 struct md_rdev *rdev;
8192 struct detected_devices_node *node_detected_dev;
8193 dev_t dev;
8194 int i_scanned, i_passed;
8196 i_scanned = 0;
8197 i_passed = 0;
8199 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8201 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8202 i_scanned++;
8203 node_detected_dev = list_entry(all_detected_devices.next,
8204 struct detected_devices_node, list);
8205 list_del(&node_detected_dev->list);
8206 dev = node_detected_dev->dev;
8207 kfree(node_detected_dev);
8208 rdev = md_import_device(dev,0, 90);
8209 if (IS_ERR(rdev))
8210 continue;
8212 if (test_bit(Faulty, &rdev->flags)) {
8213 MD_BUG();
8214 continue;
8216 set_bit(AutoDetected, &rdev->flags);
8217 list_add(&rdev->same_set, &pending_raid_disks);
8218 i_passed++;
8221 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8222 i_scanned, i_passed);
8224 autorun_devices(part);
8227 #endif /* !MODULE */
8229 static __exit void md_exit(void)
8231 struct mddev *mddev;
8232 struct list_head *tmp;
8234 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8235 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8237 unregister_blkdev(MD_MAJOR,"md");
8238 unregister_blkdev(mdp_major, "mdp");
8239 unregister_reboot_notifier(&md_notifier);
8240 unregister_sysctl_table(raid_table_header);
8241 remove_proc_entry("mdstat", NULL);
8242 for_each_mddev(mddev, tmp) {
8243 export_array(mddev);
8244 mddev->hold_active = 0;
8246 destroy_workqueue(md_misc_wq);
8247 destroy_workqueue(md_wq);
8250 subsys_initcall(md_init);
8251 module_exit(md_exit)
8253 static int get_ro(char *buffer, struct kernel_param *kp)
8255 return sprintf(buffer, "%d", start_readonly);
8257 static int set_ro(const char *val, struct kernel_param *kp)
8259 char *e;
8260 int num = simple_strtoul(val, &e, 10);
8261 if (*val && (*e == '\0' || *e == '\n')) {
8262 start_readonly = num;
8263 return 0;
8265 return -EINVAL;
8268 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8269 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8271 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8273 EXPORT_SYMBOL(register_md_personality);
8274 EXPORT_SYMBOL(unregister_md_personality);
8275 EXPORT_SYMBOL(md_error);
8276 EXPORT_SYMBOL(md_done_sync);
8277 EXPORT_SYMBOL(md_write_start);
8278 EXPORT_SYMBOL(md_write_end);
8279 EXPORT_SYMBOL(md_register_thread);
8280 EXPORT_SYMBOL(md_unregister_thread);
8281 EXPORT_SYMBOL(md_wakeup_thread);
8282 EXPORT_SYMBOL(md_check_recovery);
8283 MODULE_LICENSE("GPL");
8284 MODULE_DESCRIPTION("MD RAID framework");
8285 MODULE_ALIAS("md");
8286 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);