4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/acct.h>
53 #include <linux/tsacct_kern.h>
54 #include <linux/cn_proc.h>
55 #include <linux/freezer.h>
56 #include <linux/delayacct.h>
57 #include <linux/taskstats_kern.h>
58 #include <linux/random.h>
59 #include <linux/tty.h>
60 #include <linux/proc_fs.h>
61 #include <linux/blkdev.h>
62 #include <trace/sched.h>
64 #include <asm/pgtable.h>
65 #include <asm/pgalloc.h>
66 #include <asm/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/cacheflush.h>
69 #include <asm/tlbflush.h>
72 * Protected counters by write_lock_irq(&tasklist_lock)
74 unsigned long total_forks
; /* Handle normal Linux uptimes. */
75 int nr_threads
; /* The idle threads do not count.. */
77 int max_threads
; /* tunable limit on nr_threads */
79 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
81 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
83 int nr_processes(void)
88 for_each_online_cpu(cpu
)
89 total
+= per_cpu(process_counts
, cpu
);
94 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
95 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
96 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
97 static struct kmem_cache
*task_struct_cachep
;
100 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
101 static inline struct thread_info
*alloc_thread_info(struct task_struct
*tsk
)
103 #ifdef CONFIG_DEBUG_STACK_USAGE
104 gfp_t mask
= GFP_KERNEL
| __GFP_ZERO
;
106 gfp_t mask
= GFP_KERNEL
;
108 return (struct thread_info
*)__get_free_pages(mask
, THREAD_SIZE_ORDER
);
111 static inline void free_thread_info(struct thread_info
*ti
)
113 free_pages((unsigned long)ti
, THREAD_SIZE_ORDER
);
117 /* SLAB cache for signal_struct structures (tsk->signal) */
118 static struct kmem_cache
*signal_cachep
;
120 /* SLAB cache for sighand_struct structures (tsk->sighand) */
121 struct kmem_cache
*sighand_cachep
;
123 /* SLAB cache for files_struct structures (tsk->files) */
124 struct kmem_cache
*files_cachep
;
126 /* SLAB cache for fs_struct structures (tsk->fs) */
127 struct kmem_cache
*fs_cachep
;
129 /* SLAB cache for vm_area_struct structures */
130 struct kmem_cache
*vm_area_cachep
;
132 /* SLAB cache for mm_struct structures (tsk->mm) */
133 static struct kmem_cache
*mm_cachep
;
135 void free_task(struct task_struct
*tsk
)
137 prop_local_destroy_single(&tsk
->dirties
);
138 free_thread_info(tsk
->stack
);
139 rt_mutex_debug_task_free(tsk
);
140 free_task_struct(tsk
);
142 EXPORT_SYMBOL(free_task
);
144 void __put_task_struct(struct task_struct
*tsk
)
146 WARN_ON(!tsk
->exit_state
);
147 WARN_ON(atomic_read(&tsk
->usage
));
148 WARN_ON(tsk
== current
);
150 security_task_free(tsk
);
152 put_group_info(tsk
->group_info
);
153 delayacct_tsk_free(tsk
);
155 if (!profile_handoff_task(tsk
))
160 * macro override instead of weak attribute alias, to workaround
161 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
163 #ifndef arch_task_cache_init
164 #define arch_task_cache_init()
167 void __init
fork_init(unsigned long mempages
)
169 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
170 #ifndef ARCH_MIN_TASKALIGN
171 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
173 /* create a slab on which task_structs can be allocated */
175 kmem_cache_create("task_struct", sizeof(struct task_struct
),
176 ARCH_MIN_TASKALIGN
, SLAB_PANIC
, NULL
);
179 /* do the arch specific task caches init */
180 arch_task_cache_init();
183 * The default maximum number of threads is set to a safe
184 * value: the thread structures can take up at most half
187 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
190 * we need to allow at least 20 threads to boot a system
195 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
196 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
197 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
198 init_task
.signal
->rlim
[RLIMIT_NPROC
];
201 int __attribute__((weak
)) arch_dup_task_struct(struct task_struct
*dst
,
202 struct task_struct
*src
)
208 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
210 struct task_struct
*tsk
;
211 struct thread_info
*ti
;
214 prepare_to_copy(orig
);
216 tsk
= alloc_task_struct();
220 ti
= alloc_thread_info(tsk
);
222 free_task_struct(tsk
);
226 err
= arch_dup_task_struct(tsk
, orig
);
232 err
= prop_local_init_single(&tsk
->dirties
);
236 setup_thread_stack(tsk
, orig
);
238 #ifdef CONFIG_CC_STACKPROTECTOR
239 tsk
->stack_canary
= get_random_int();
242 /* One for us, one for whoever does the "release_task()" (usually parent) */
243 atomic_set(&tsk
->usage
,2);
244 atomic_set(&tsk
->fs_excl
, 0);
245 #ifdef CONFIG_BLK_DEV_IO_TRACE
248 tsk
->splice_pipe
= NULL
;
252 free_thread_info(ti
);
253 free_task_struct(tsk
);
258 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
260 struct vm_area_struct
*mpnt
, *tmp
, **pprev
;
261 struct rb_node
**rb_link
, *rb_parent
;
263 unsigned long charge
;
264 struct mempolicy
*pol
;
266 down_write(&oldmm
->mmap_sem
);
267 flush_cache_dup_mm(oldmm
);
269 * Not linked in yet - no deadlock potential:
271 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
275 mm
->mmap_cache
= NULL
;
276 mm
->free_area_cache
= oldmm
->mmap_base
;
277 mm
->cached_hole_size
= ~0UL;
279 cpus_clear(mm
->cpu_vm_mask
);
281 rb_link
= &mm
->mm_rb
.rb_node
;
285 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
288 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
289 long pages
= vma_pages(mpnt
);
290 mm
->total_vm
-= pages
;
291 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
296 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
297 unsigned int len
= (mpnt
->vm_end
- mpnt
->vm_start
) >> PAGE_SHIFT
;
298 if (security_vm_enough_memory(len
))
302 tmp
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
306 pol
= mpol_dup(vma_policy(mpnt
));
307 retval
= PTR_ERR(pol
);
309 goto fail_nomem_policy
;
310 vma_set_policy(tmp
, pol
);
311 tmp
->vm_flags
&= ~VM_LOCKED
;
317 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
318 struct address_space
*mapping
= file
->f_mapping
;
321 if (tmp
->vm_flags
& VM_DENYWRITE
)
322 atomic_dec(&inode
->i_writecount
);
323 spin_lock(&mapping
->i_mmap_lock
);
324 if (tmp
->vm_flags
& VM_SHARED
)
325 mapping
->i_mmap_writable
++;
326 tmp
->vm_truncate_count
= mpnt
->vm_truncate_count
;
327 flush_dcache_mmap_lock(mapping
);
328 /* insert tmp into the share list, just after mpnt */
329 vma_prio_tree_add(tmp
, mpnt
);
330 flush_dcache_mmap_unlock(mapping
);
331 spin_unlock(&mapping
->i_mmap_lock
);
335 * Clear hugetlb-related page reserves for children. This only
336 * affects MAP_PRIVATE mappings. Faults generated by the child
337 * are not guaranteed to succeed, even if read-only
339 if (is_vm_hugetlb_page(tmp
))
340 reset_vma_resv_huge_pages(tmp
);
343 * Link in the new vma and copy the page table entries.
346 pprev
= &tmp
->vm_next
;
348 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
349 rb_link
= &tmp
->vm_rb
.rb_right
;
350 rb_parent
= &tmp
->vm_rb
;
353 retval
= copy_page_range(mm
, oldmm
, mpnt
);
355 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
356 tmp
->vm_ops
->open(tmp
);
361 /* a new mm has just been created */
362 arch_dup_mmap(oldmm
, mm
);
365 up_write(&mm
->mmap_sem
);
367 up_write(&oldmm
->mmap_sem
);
370 kmem_cache_free(vm_area_cachep
, tmp
);
373 vm_unacct_memory(charge
);
377 static inline int mm_alloc_pgd(struct mm_struct
* mm
)
379 mm
->pgd
= pgd_alloc(mm
);
380 if (unlikely(!mm
->pgd
))
385 static inline void mm_free_pgd(struct mm_struct
* mm
)
387 pgd_free(mm
, mm
->pgd
);
390 #define dup_mmap(mm, oldmm) (0)
391 #define mm_alloc_pgd(mm) (0)
392 #define mm_free_pgd(mm)
393 #endif /* CONFIG_MMU */
395 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
397 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
398 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
400 #include <linux/init_task.h>
402 static struct mm_struct
* mm_init(struct mm_struct
* mm
, struct task_struct
*p
)
404 atomic_set(&mm
->mm_users
, 1);
405 atomic_set(&mm
->mm_count
, 1);
406 init_rwsem(&mm
->mmap_sem
);
407 INIT_LIST_HEAD(&mm
->mmlist
);
408 mm
->flags
= (current
->mm
) ? current
->mm
->flags
409 : MMF_DUMP_FILTER_DEFAULT
;
410 mm
->core_state
= NULL
;
412 set_mm_counter(mm
, file_rss
, 0);
413 set_mm_counter(mm
, anon_rss
, 0);
414 spin_lock_init(&mm
->page_table_lock
);
415 rwlock_init(&mm
->ioctx_list_lock
);
416 mm
->ioctx_list
= NULL
;
417 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
418 mm
->cached_hole_size
= ~0UL;
419 mm_init_owner(mm
, p
);
421 if (likely(!mm_alloc_pgd(mm
))) {
423 mmu_notifier_mm_init(mm
);
432 * Allocate and initialize an mm_struct.
434 struct mm_struct
* mm_alloc(void)
436 struct mm_struct
* mm
;
440 memset(mm
, 0, sizeof(*mm
));
441 mm
= mm_init(mm
, current
);
447 * Called when the last reference to the mm
448 * is dropped: either by a lazy thread or by
449 * mmput. Free the page directory and the mm.
451 void __mmdrop(struct mm_struct
*mm
)
453 BUG_ON(mm
== &init_mm
);
456 mmu_notifier_mm_destroy(mm
);
459 EXPORT_SYMBOL_GPL(__mmdrop
);
462 * Decrement the use count and release all resources for an mm.
464 void mmput(struct mm_struct
*mm
)
468 if (atomic_dec_and_test(&mm
->mm_users
)) {
471 set_mm_exe_file(mm
, NULL
);
472 if (!list_empty(&mm
->mmlist
)) {
473 spin_lock(&mmlist_lock
);
474 list_del(&mm
->mmlist
);
475 spin_unlock(&mmlist_lock
);
481 EXPORT_SYMBOL_GPL(mmput
);
484 * get_task_mm - acquire a reference to the task's mm
486 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
487 * this kernel workthread has transiently adopted a user mm with use_mm,
488 * to do its AIO) is not set and if so returns a reference to it, after
489 * bumping up the use count. User must release the mm via mmput()
490 * after use. Typically used by /proc and ptrace.
492 struct mm_struct
*get_task_mm(struct task_struct
*task
)
494 struct mm_struct
*mm
;
499 if (task
->flags
& PF_KTHREAD
)
502 atomic_inc(&mm
->mm_users
);
507 EXPORT_SYMBOL_GPL(get_task_mm
);
509 /* Please note the differences between mmput and mm_release.
510 * mmput is called whenever we stop holding onto a mm_struct,
511 * error success whatever.
513 * mm_release is called after a mm_struct has been removed
514 * from the current process.
516 * This difference is important for error handling, when we
517 * only half set up a mm_struct for a new process and need to restore
518 * the old one. Because we mmput the new mm_struct before
519 * restoring the old one. . .
520 * Eric Biederman 10 January 1998
522 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
524 struct completion
*vfork_done
= tsk
->vfork_done
;
526 /* Get rid of any futexes when releasing the mm */
528 if (unlikely(tsk
->robust_list
))
529 exit_robust_list(tsk
);
531 if (unlikely(tsk
->compat_robust_list
))
532 compat_exit_robust_list(tsk
);
536 /* Get rid of any cached register state */
537 deactivate_mm(tsk
, mm
);
539 /* notify parent sleeping on vfork() */
541 tsk
->vfork_done
= NULL
;
542 complete(vfork_done
);
546 * If we're exiting normally, clear a user-space tid field if
547 * requested. We leave this alone when dying by signal, to leave
548 * the value intact in a core dump, and to save the unnecessary
549 * trouble otherwise. Userland only wants this done for a sys_exit.
551 if (tsk
->clear_child_tid
552 && !(tsk
->flags
& PF_SIGNALED
)
553 && atomic_read(&mm
->mm_users
) > 1) {
554 u32 __user
* tidptr
= tsk
->clear_child_tid
;
555 tsk
->clear_child_tid
= NULL
;
558 * We don't check the error code - if userspace has
559 * not set up a proper pointer then tough luck.
562 sys_futex(tidptr
, FUTEX_WAKE
, 1, NULL
, NULL
, 0);
567 * Allocate a new mm structure and copy contents from the
568 * mm structure of the passed in task structure.
570 struct mm_struct
*dup_mm(struct task_struct
*tsk
)
572 struct mm_struct
*mm
, *oldmm
= current
->mm
;
582 memcpy(mm
, oldmm
, sizeof(*mm
));
584 /* Initializing for Swap token stuff */
585 mm
->token_priority
= 0;
586 mm
->last_interval
= 0;
588 if (!mm_init(mm
, tsk
))
591 if (init_new_context(tsk
, mm
))
594 dup_mm_exe_file(oldmm
, mm
);
596 err
= dup_mmap(mm
, oldmm
);
600 mm
->hiwater_rss
= get_mm_rss(mm
);
601 mm
->hiwater_vm
= mm
->total_vm
;
613 * If init_new_context() failed, we cannot use mmput() to free the mm
614 * because it calls destroy_context()
621 static int copy_mm(unsigned long clone_flags
, struct task_struct
* tsk
)
623 struct mm_struct
* mm
, *oldmm
;
626 tsk
->min_flt
= tsk
->maj_flt
= 0;
627 tsk
->nvcsw
= tsk
->nivcsw
= 0;
630 tsk
->active_mm
= NULL
;
633 * Are we cloning a kernel thread?
635 * We need to steal a active VM for that..
641 if (clone_flags
& CLONE_VM
) {
642 atomic_inc(&oldmm
->mm_users
);
653 /* Initializing for Swap token stuff */
654 mm
->token_priority
= 0;
655 mm
->last_interval
= 0;
665 static struct fs_struct
*__copy_fs_struct(struct fs_struct
*old
)
667 struct fs_struct
*fs
= kmem_cache_alloc(fs_cachep
, GFP_KERNEL
);
668 /* We don't need to lock fs - think why ;-) */
670 atomic_set(&fs
->count
, 1);
671 rwlock_init(&fs
->lock
);
672 fs
->umask
= old
->umask
;
673 read_lock(&old
->lock
);
674 fs
->root
= old
->root
;
675 path_get(&old
->root
);
678 read_unlock(&old
->lock
);
683 struct fs_struct
*copy_fs_struct(struct fs_struct
*old
)
685 return __copy_fs_struct(old
);
688 EXPORT_SYMBOL_GPL(copy_fs_struct
);
690 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
692 if (clone_flags
& CLONE_FS
) {
693 atomic_inc(¤t
->fs
->count
);
696 tsk
->fs
= __copy_fs_struct(current
->fs
);
702 static int copy_files(unsigned long clone_flags
, struct task_struct
* tsk
)
704 struct files_struct
*oldf
, *newf
;
708 * A background process may not have any files ...
710 oldf
= current
->files
;
714 if (clone_flags
& CLONE_FILES
) {
715 atomic_inc(&oldf
->count
);
719 newf
= dup_fd(oldf
, &error
);
729 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
732 struct io_context
*ioc
= current
->io_context
;
737 * Share io context with parent, if CLONE_IO is set
739 if (clone_flags
& CLONE_IO
) {
740 tsk
->io_context
= ioc_task_link(ioc
);
741 if (unlikely(!tsk
->io_context
))
743 } else if (ioprio_valid(ioc
->ioprio
)) {
744 tsk
->io_context
= alloc_io_context(GFP_KERNEL
, -1);
745 if (unlikely(!tsk
->io_context
))
748 tsk
->io_context
->ioprio
= ioc
->ioprio
;
754 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
756 struct sighand_struct
*sig
;
758 if (clone_flags
& (CLONE_SIGHAND
| CLONE_THREAD
)) {
759 atomic_inc(¤t
->sighand
->count
);
762 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
763 rcu_assign_pointer(tsk
->sighand
, sig
);
766 atomic_set(&sig
->count
, 1);
767 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
771 void __cleanup_sighand(struct sighand_struct
*sighand
)
773 if (atomic_dec_and_test(&sighand
->count
))
774 kmem_cache_free(sighand_cachep
, sighand
);
779 * Initialize POSIX timer handling for a thread group.
781 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
783 /* Thread group counters. */
784 thread_group_cputime_init(sig
);
786 /* Expiration times and increments. */
787 sig
->it_virt_expires
= cputime_zero
;
788 sig
->it_virt_incr
= cputime_zero
;
789 sig
->it_prof_expires
= cputime_zero
;
790 sig
->it_prof_incr
= cputime_zero
;
792 /* Cached expiration times. */
793 sig
->cputime_expires
.prof_exp
= cputime_zero
;
794 sig
->cputime_expires
.virt_exp
= cputime_zero
;
795 sig
->cputime_expires
.sched_exp
= 0;
797 /* The timer lists. */
798 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
799 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
800 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
803 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
805 struct signal_struct
*sig
;
808 if (clone_flags
& CLONE_THREAD
) {
809 ret
= thread_group_cputime_clone_thread(current
);
811 atomic_inc(¤t
->signal
->count
);
812 atomic_inc(¤t
->signal
->live
);
816 sig
= kmem_cache_alloc(signal_cachep
, GFP_KERNEL
);
821 ret
= copy_thread_group_keys(tsk
);
823 kmem_cache_free(signal_cachep
, sig
);
827 atomic_set(&sig
->count
, 1);
828 atomic_set(&sig
->live
, 1);
829 init_waitqueue_head(&sig
->wait_chldexit
);
831 sig
->group_exit_code
= 0;
832 sig
->group_exit_task
= NULL
;
833 sig
->group_stop_count
= 0;
834 sig
->curr_target
= tsk
;
835 init_sigpending(&sig
->shared_pending
);
836 INIT_LIST_HEAD(&sig
->posix_timers
);
838 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
839 sig
->it_real_incr
.tv64
= 0;
840 sig
->real_timer
.function
= it_real_fn
;
842 sig
->leader
= 0; /* session leadership doesn't inherit */
843 sig
->tty_old_pgrp
= NULL
;
846 sig
->cutime
= sig
->cstime
= cputime_zero
;
847 sig
->gtime
= cputime_zero
;
848 sig
->cgtime
= cputime_zero
;
849 sig
->nvcsw
= sig
->nivcsw
= sig
->cnvcsw
= sig
->cnivcsw
= 0;
850 sig
->min_flt
= sig
->maj_flt
= sig
->cmin_flt
= sig
->cmaj_flt
= 0;
851 sig
->inblock
= sig
->oublock
= sig
->cinblock
= sig
->coublock
= 0;
852 task_io_accounting_init(&sig
->ioac
);
853 taskstats_tgid_init(sig
);
855 task_lock(current
->group_leader
);
856 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
857 task_unlock(current
->group_leader
);
859 posix_cpu_timers_init_group(sig
);
861 acct_init_pacct(&sig
->pacct
);
868 void __cleanup_signal(struct signal_struct
*sig
)
870 thread_group_cputime_free(sig
);
871 exit_thread_group_keys(sig
);
872 tty_kref_put(sig
->tty
);
873 kmem_cache_free(signal_cachep
, sig
);
876 static void cleanup_signal(struct task_struct
*tsk
)
878 struct signal_struct
*sig
= tsk
->signal
;
880 atomic_dec(&sig
->live
);
882 if (atomic_dec_and_test(&sig
->count
))
883 __cleanup_signal(sig
);
886 static void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
888 unsigned long new_flags
= p
->flags
;
890 new_flags
&= ~PF_SUPERPRIV
;
891 new_flags
|= PF_FORKNOEXEC
;
892 new_flags
|= PF_STARTING
;
893 p
->flags
= new_flags
;
894 clear_freeze_flag(p
);
897 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
899 current
->clear_child_tid
= tidptr
;
901 return task_pid_vnr(current
);
904 static void rt_mutex_init_task(struct task_struct
*p
)
906 spin_lock_init(&p
->pi_lock
);
907 #ifdef CONFIG_RT_MUTEXES
908 plist_head_init(&p
->pi_waiters
, &p
->pi_lock
);
909 p
->pi_blocked_on
= NULL
;
913 #ifdef CONFIG_MM_OWNER
914 void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
918 #endif /* CONFIG_MM_OWNER */
921 * Initialize POSIX timer handling for a single task.
923 static void posix_cpu_timers_init(struct task_struct
*tsk
)
925 tsk
->cputime_expires
.prof_exp
= cputime_zero
;
926 tsk
->cputime_expires
.virt_exp
= cputime_zero
;
927 tsk
->cputime_expires
.sched_exp
= 0;
928 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
929 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
930 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
934 * This creates a new process as a copy of the old one,
935 * but does not actually start it yet.
937 * It copies the registers, and all the appropriate
938 * parts of the process environment (as per the clone
939 * flags). The actual kick-off is left to the caller.
941 static struct task_struct
*copy_process(unsigned long clone_flags
,
942 unsigned long stack_start
,
943 struct pt_regs
*regs
,
944 unsigned long stack_size
,
945 int __user
*child_tidptr
,
950 struct task_struct
*p
;
951 int cgroup_callbacks_done
= 0;
953 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
954 return ERR_PTR(-EINVAL
);
957 * Thread groups must share signals as well, and detached threads
958 * can only be started up within the thread group.
960 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
961 return ERR_PTR(-EINVAL
);
964 * Shared signal handlers imply shared VM. By way of the above,
965 * thread groups also imply shared VM. Blocking this case allows
966 * for various simplifications in other code.
968 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
969 return ERR_PTR(-EINVAL
);
971 retval
= security_task_create(clone_flags
);
976 p
= dup_task_struct(current
);
980 rt_mutex_init_task(p
);
982 #ifdef CONFIG_PROVE_LOCKING
983 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
984 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
987 if (atomic_read(&p
->user
->processes
) >=
988 p
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
) {
989 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_RESOURCE
) &&
990 p
->user
!= current
->nsproxy
->user_ns
->root_user
)
994 atomic_inc(&p
->user
->__count
);
995 atomic_inc(&p
->user
->processes
);
996 get_group_info(p
->group_info
);
999 * If multiple threads are within copy_process(), then this check
1000 * triggers too late. This doesn't hurt, the check is only there
1001 * to stop root fork bombs.
1003 if (nr_threads
>= max_threads
)
1004 goto bad_fork_cleanup_count
;
1006 if (!try_module_get(task_thread_info(p
)->exec_domain
->module
))
1007 goto bad_fork_cleanup_count
;
1009 if (p
->binfmt
&& !try_module_get(p
->binfmt
->module
))
1010 goto bad_fork_cleanup_put_domain
;
1013 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1014 copy_flags(clone_flags
, p
);
1015 INIT_LIST_HEAD(&p
->children
);
1016 INIT_LIST_HEAD(&p
->sibling
);
1017 #ifdef CONFIG_PREEMPT_RCU
1018 p
->rcu_read_lock_nesting
= 0;
1019 p
->rcu_flipctr_idx
= 0;
1020 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1021 p
->vfork_done
= NULL
;
1022 spin_lock_init(&p
->alloc_lock
);
1024 clear_tsk_thread_flag(p
, TIF_SIGPENDING
);
1025 init_sigpending(&p
->pending
);
1027 p
->utime
= cputime_zero
;
1028 p
->stime
= cputime_zero
;
1029 p
->gtime
= cputime_zero
;
1030 p
->utimescaled
= cputime_zero
;
1031 p
->stimescaled
= cputime_zero
;
1032 p
->prev_utime
= cputime_zero
;
1033 p
->prev_stime
= cputime_zero
;
1035 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1037 #ifdef CONFIG_DETECT_SOFTLOCKUP
1038 p
->last_switch_count
= 0;
1039 p
->last_switch_timestamp
= 0;
1042 task_io_accounting_init(&p
->ioac
);
1043 acct_clear_integrals(p
);
1045 posix_cpu_timers_init(p
);
1047 p
->lock_depth
= -1; /* -1 = no lock */
1048 do_posix_clock_monotonic_gettime(&p
->start_time
);
1049 p
->real_start_time
= p
->start_time
;
1050 monotonic_to_bootbased(&p
->real_start_time
);
1051 #ifdef CONFIG_SECURITY
1054 p
->cap_bset
= current
->cap_bset
;
1055 p
->io_context
= NULL
;
1056 p
->audit_context
= NULL
;
1059 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1060 if (IS_ERR(p
->mempolicy
)) {
1061 retval
= PTR_ERR(p
->mempolicy
);
1062 p
->mempolicy
= NULL
;
1063 goto bad_fork_cleanup_cgroup
;
1065 mpol_fix_fork_child_flag(p
);
1067 #ifdef CONFIG_TRACE_IRQFLAGS
1069 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1070 p
->hardirqs_enabled
= 1;
1072 p
->hardirqs_enabled
= 0;
1074 p
->hardirq_enable_ip
= 0;
1075 p
->hardirq_enable_event
= 0;
1076 p
->hardirq_disable_ip
= _THIS_IP_
;
1077 p
->hardirq_disable_event
= 0;
1078 p
->softirqs_enabled
= 1;
1079 p
->softirq_enable_ip
= _THIS_IP_
;
1080 p
->softirq_enable_event
= 0;
1081 p
->softirq_disable_ip
= 0;
1082 p
->softirq_disable_event
= 0;
1083 p
->hardirq_context
= 0;
1084 p
->softirq_context
= 0;
1086 #ifdef CONFIG_LOCKDEP
1087 p
->lockdep_depth
= 0; /* no locks held yet */
1088 p
->curr_chain_key
= 0;
1089 p
->lockdep_recursion
= 0;
1092 #ifdef CONFIG_DEBUG_MUTEXES
1093 p
->blocked_on
= NULL
; /* not blocked yet */
1096 /* Perform scheduler related setup. Assign this task to a CPU. */
1097 sched_fork(p
, clone_flags
);
1099 if ((retval
= security_task_alloc(p
)))
1100 goto bad_fork_cleanup_policy
;
1101 if ((retval
= audit_alloc(p
)))
1102 goto bad_fork_cleanup_security
;
1103 /* copy all the process information */
1104 if ((retval
= copy_semundo(clone_flags
, p
)))
1105 goto bad_fork_cleanup_audit
;
1106 if ((retval
= copy_files(clone_flags
, p
)))
1107 goto bad_fork_cleanup_semundo
;
1108 if ((retval
= copy_fs(clone_flags
, p
)))
1109 goto bad_fork_cleanup_files
;
1110 if ((retval
= copy_sighand(clone_flags
, p
)))
1111 goto bad_fork_cleanup_fs
;
1112 if ((retval
= copy_signal(clone_flags
, p
)))
1113 goto bad_fork_cleanup_sighand
;
1114 if ((retval
= copy_mm(clone_flags
, p
)))
1115 goto bad_fork_cleanup_signal
;
1116 if ((retval
= copy_keys(clone_flags
, p
)))
1117 goto bad_fork_cleanup_mm
;
1118 if ((retval
= copy_namespaces(clone_flags
, p
)))
1119 goto bad_fork_cleanup_keys
;
1120 if ((retval
= copy_io(clone_flags
, p
)))
1121 goto bad_fork_cleanup_namespaces
;
1122 retval
= copy_thread(0, clone_flags
, stack_start
, stack_size
, p
, regs
);
1124 goto bad_fork_cleanup_io
;
1126 if (pid
!= &init_struct_pid
) {
1128 pid
= alloc_pid(task_active_pid_ns(p
));
1130 goto bad_fork_cleanup_io
;
1132 if (clone_flags
& CLONE_NEWPID
) {
1133 retval
= pid_ns_prepare_proc(task_active_pid_ns(p
));
1135 goto bad_fork_free_pid
;
1139 p
->pid
= pid_nr(pid
);
1141 if (clone_flags
& CLONE_THREAD
)
1142 p
->tgid
= current
->tgid
;
1144 if (current
->nsproxy
!= p
->nsproxy
) {
1145 retval
= ns_cgroup_clone(p
, pid
);
1147 goto bad_fork_free_pid
;
1150 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1152 * Clear TID on mm_release()?
1154 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1156 p
->robust_list
= NULL
;
1157 #ifdef CONFIG_COMPAT
1158 p
->compat_robust_list
= NULL
;
1160 INIT_LIST_HEAD(&p
->pi_state_list
);
1161 p
->pi_state_cache
= NULL
;
1164 * sigaltstack should be cleared when sharing the same VM
1166 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1167 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1170 * Syscall tracing should be turned off in the child regardless
1173 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1174 #ifdef TIF_SYSCALL_EMU
1175 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1177 clear_all_latency_tracing(p
);
1179 /* ok, now we should be set up.. */
1180 p
->exit_signal
= (clone_flags
& CLONE_THREAD
) ? -1 : (clone_flags
& CSIGNAL
);
1181 p
->pdeath_signal
= 0;
1185 * Ok, make it visible to the rest of the system.
1186 * We dont wake it up yet.
1188 p
->group_leader
= p
;
1189 INIT_LIST_HEAD(&p
->thread_group
);
1191 /* Now that the task is set up, run cgroup callbacks if
1192 * necessary. We need to run them before the task is visible
1193 * on the tasklist. */
1194 cgroup_fork_callbacks(p
);
1195 cgroup_callbacks_done
= 1;
1197 /* Need tasklist lock for parent etc handling! */
1198 write_lock_irq(&tasklist_lock
);
1201 * The task hasn't been attached yet, so its cpus_allowed mask will
1202 * not be changed, nor will its assigned CPU.
1204 * The cpus_allowed mask of the parent may have changed after it was
1205 * copied first time - so re-copy it here, then check the child's CPU
1206 * to ensure it is on a valid CPU (and if not, just force it back to
1207 * parent's CPU). This avoids alot of nasty races.
1209 p
->cpus_allowed
= current
->cpus_allowed
;
1210 p
->rt
.nr_cpus_allowed
= current
->rt
.nr_cpus_allowed
;
1211 if (unlikely(!cpu_isset(task_cpu(p
), p
->cpus_allowed
) ||
1212 !cpu_online(task_cpu(p
))))
1213 set_task_cpu(p
, smp_processor_id());
1215 /* CLONE_PARENT re-uses the old parent */
1216 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
1217 p
->real_parent
= current
->real_parent
;
1218 p
->parent_exec_id
= current
->parent_exec_id
;
1220 p
->real_parent
= current
;
1221 p
->parent_exec_id
= current
->self_exec_id
;
1224 spin_lock(¤t
->sighand
->siglock
);
1227 * Process group and session signals need to be delivered to just the
1228 * parent before the fork or both the parent and the child after the
1229 * fork. Restart if a signal comes in before we add the new process to
1230 * it's process group.
1231 * A fatal signal pending means that current will exit, so the new
1232 * thread can't slip out of an OOM kill (or normal SIGKILL).
1234 recalc_sigpending();
1235 if (signal_pending(current
)) {
1236 spin_unlock(¤t
->sighand
->siglock
);
1237 write_unlock_irq(&tasklist_lock
);
1238 retval
= -ERESTARTNOINTR
;
1239 goto bad_fork_free_pid
;
1242 if (clone_flags
& CLONE_THREAD
) {
1243 p
->group_leader
= current
->group_leader
;
1244 list_add_tail_rcu(&p
->thread_group
, &p
->group_leader
->thread_group
);
1247 if (likely(p
->pid
)) {
1248 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
1249 tracehook_finish_clone(p
, clone_flags
, trace
);
1251 if (thread_group_leader(p
)) {
1252 if (clone_flags
& CLONE_NEWPID
)
1253 p
->nsproxy
->pid_ns
->child_reaper
= p
;
1255 p
->signal
->leader_pid
= pid
;
1256 tty_kref_put(p
->signal
->tty
);
1257 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
1258 set_task_pgrp(p
, task_pgrp_nr(current
));
1259 set_task_session(p
, task_session_nr(current
));
1260 attach_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
1261 attach_pid(p
, PIDTYPE_SID
, task_session(current
));
1262 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1263 __get_cpu_var(process_counts
)++;
1265 attach_pid(p
, PIDTYPE_PID
, pid
);
1270 spin_unlock(¤t
->sighand
->siglock
);
1271 write_unlock_irq(&tasklist_lock
);
1272 proc_fork_connector(p
);
1273 cgroup_post_fork(p
);
1277 if (pid
!= &init_struct_pid
)
1279 bad_fork_cleanup_io
:
1280 put_io_context(p
->io_context
);
1281 bad_fork_cleanup_namespaces
:
1282 exit_task_namespaces(p
);
1283 bad_fork_cleanup_keys
:
1285 bad_fork_cleanup_mm
:
1288 bad_fork_cleanup_signal
:
1290 bad_fork_cleanup_sighand
:
1291 __cleanup_sighand(p
->sighand
);
1292 bad_fork_cleanup_fs
:
1293 exit_fs(p
); /* blocking */
1294 bad_fork_cleanup_files
:
1295 exit_files(p
); /* blocking */
1296 bad_fork_cleanup_semundo
:
1298 bad_fork_cleanup_audit
:
1300 bad_fork_cleanup_security
:
1301 security_task_free(p
);
1302 bad_fork_cleanup_policy
:
1304 mpol_put(p
->mempolicy
);
1305 bad_fork_cleanup_cgroup
:
1307 cgroup_exit(p
, cgroup_callbacks_done
);
1308 delayacct_tsk_free(p
);
1310 module_put(p
->binfmt
->module
);
1311 bad_fork_cleanup_put_domain
:
1312 module_put(task_thread_info(p
)->exec_domain
->module
);
1313 bad_fork_cleanup_count
:
1314 put_group_info(p
->group_info
);
1315 atomic_dec(&p
->user
->processes
);
1320 return ERR_PTR(retval
);
1323 noinline
struct pt_regs
* __cpuinit
__attribute__((weak
)) idle_regs(struct pt_regs
*regs
)
1325 memset(regs
, 0, sizeof(struct pt_regs
));
1329 struct task_struct
* __cpuinit
fork_idle(int cpu
)
1331 struct task_struct
*task
;
1332 struct pt_regs regs
;
1334 task
= copy_process(CLONE_VM
, 0, idle_regs(®s
), 0, NULL
,
1335 &init_struct_pid
, 0);
1337 init_idle(task
, cpu
);
1343 * Ok, this is the main fork-routine.
1345 * It copies the process, and if successful kick-starts
1346 * it and waits for it to finish using the VM if required.
1348 long do_fork(unsigned long clone_flags
,
1349 unsigned long stack_start
,
1350 struct pt_regs
*regs
,
1351 unsigned long stack_size
,
1352 int __user
*parent_tidptr
,
1353 int __user
*child_tidptr
)
1355 struct task_struct
*p
;
1360 * We hope to recycle these flags after 2.6.26
1362 if (unlikely(clone_flags
& CLONE_STOPPED
)) {
1363 static int __read_mostly count
= 100;
1365 if (count
> 0 && printk_ratelimit()) {
1366 char comm
[TASK_COMM_LEN
];
1369 printk(KERN_INFO
"fork(): process `%s' used deprecated "
1370 "clone flags 0x%lx\n",
1371 get_task_comm(comm
, current
),
1372 clone_flags
& CLONE_STOPPED
);
1377 * When called from kernel_thread, don't do user tracing stuff.
1379 if (likely(user_mode(regs
)))
1380 trace
= tracehook_prepare_clone(clone_flags
);
1382 p
= copy_process(clone_flags
, stack_start
, regs
, stack_size
,
1383 child_tidptr
, NULL
, trace
);
1385 * Do this prior waking up the new thread - the thread pointer
1386 * might get invalid after that point, if the thread exits quickly.
1389 struct completion vfork
;
1391 trace_sched_process_fork(current
, p
);
1393 nr
= task_pid_vnr(p
);
1395 if (clone_flags
& CLONE_PARENT_SETTID
)
1396 put_user(nr
, parent_tidptr
);
1398 if (clone_flags
& CLONE_VFORK
) {
1399 p
->vfork_done
= &vfork
;
1400 init_completion(&vfork
);
1403 audit_finish_fork(p
);
1404 tracehook_report_clone(trace
, regs
, clone_flags
, nr
, p
);
1407 * We set PF_STARTING at creation in case tracing wants to
1408 * use this to distinguish a fully live task from one that
1409 * hasn't gotten to tracehook_report_clone() yet. Now we
1410 * clear it and set the child going.
1412 p
->flags
&= ~PF_STARTING
;
1414 if (unlikely(clone_flags
& CLONE_STOPPED
)) {
1416 * We'll start up with an immediate SIGSTOP.
1418 sigaddset(&p
->pending
.signal
, SIGSTOP
);
1419 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1420 __set_task_state(p
, TASK_STOPPED
);
1422 wake_up_new_task(p
, clone_flags
);
1425 tracehook_report_clone_complete(trace
, regs
,
1426 clone_flags
, nr
, p
);
1428 if (clone_flags
& CLONE_VFORK
) {
1429 freezer_do_not_count();
1430 wait_for_completion(&vfork
);
1432 tracehook_report_vfork_done(p
, nr
);
1440 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1441 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1444 static void sighand_ctor(void *data
)
1446 struct sighand_struct
*sighand
= data
;
1448 spin_lock_init(&sighand
->siglock
);
1449 init_waitqueue_head(&sighand
->signalfd_wqh
);
1452 void __init
proc_caches_init(void)
1454 sighand_cachep
= kmem_cache_create("sighand_cache",
1455 sizeof(struct sighand_struct
), 0,
1456 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
,
1458 signal_cachep
= kmem_cache_create("signal_cache",
1459 sizeof(struct signal_struct
), 0,
1460 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1461 files_cachep
= kmem_cache_create("files_cache",
1462 sizeof(struct files_struct
), 0,
1463 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1464 fs_cachep
= kmem_cache_create("fs_cache",
1465 sizeof(struct fs_struct
), 0,
1466 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1467 vm_area_cachep
= kmem_cache_create("vm_area_struct",
1468 sizeof(struct vm_area_struct
), 0,
1470 mm_cachep
= kmem_cache_create("mm_struct",
1471 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1472 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1476 * Check constraints on flags passed to the unshare system call and
1477 * force unsharing of additional process context as appropriate.
1479 static void check_unshare_flags(unsigned long *flags_ptr
)
1482 * If unsharing a thread from a thread group, must also
1485 if (*flags_ptr
& CLONE_THREAD
)
1486 *flags_ptr
|= CLONE_VM
;
1489 * If unsharing vm, must also unshare signal handlers.
1491 if (*flags_ptr
& CLONE_VM
)
1492 *flags_ptr
|= CLONE_SIGHAND
;
1495 * If unsharing signal handlers and the task was created
1496 * using CLONE_THREAD, then must unshare the thread
1498 if ((*flags_ptr
& CLONE_SIGHAND
) &&
1499 (atomic_read(¤t
->signal
->count
) > 1))
1500 *flags_ptr
|= CLONE_THREAD
;
1503 * If unsharing namespace, must also unshare filesystem information.
1505 if (*flags_ptr
& CLONE_NEWNS
)
1506 *flags_ptr
|= CLONE_FS
;
1510 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1512 static int unshare_thread(unsigned long unshare_flags
)
1514 if (unshare_flags
& CLONE_THREAD
)
1521 * Unshare the filesystem structure if it is being shared
1523 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1525 struct fs_struct
*fs
= current
->fs
;
1527 if ((unshare_flags
& CLONE_FS
) &&
1528 (fs
&& atomic_read(&fs
->count
) > 1)) {
1529 *new_fsp
= __copy_fs_struct(current
->fs
);
1538 * Unsharing of sighand is not supported yet
1540 static int unshare_sighand(unsigned long unshare_flags
, struct sighand_struct
**new_sighp
)
1542 struct sighand_struct
*sigh
= current
->sighand
;
1544 if ((unshare_flags
& CLONE_SIGHAND
) && atomic_read(&sigh
->count
) > 1)
1551 * Unshare vm if it is being shared
1553 static int unshare_vm(unsigned long unshare_flags
, struct mm_struct
**new_mmp
)
1555 struct mm_struct
*mm
= current
->mm
;
1557 if ((unshare_flags
& CLONE_VM
) &&
1558 (mm
&& atomic_read(&mm
->mm_users
) > 1)) {
1566 * Unshare file descriptor table if it is being shared
1568 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1570 struct files_struct
*fd
= current
->files
;
1573 if ((unshare_flags
& CLONE_FILES
) &&
1574 (fd
&& atomic_read(&fd
->count
) > 1)) {
1575 *new_fdp
= dup_fd(fd
, &error
);
1584 * unshare allows a process to 'unshare' part of the process
1585 * context which was originally shared using clone. copy_*
1586 * functions used by do_fork() cannot be used here directly
1587 * because they modify an inactive task_struct that is being
1588 * constructed. Here we are modifying the current, active,
1591 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
1594 struct fs_struct
*fs
, *new_fs
= NULL
;
1595 struct sighand_struct
*new_sigh
= NULL
;
1596 struct mm_struct
*mm
, *new_mm
= NULL
, *active_mm
= NULL
;
1597 struct files_struct
*fd
, *new_fd
= NULL
;
1598 struct nsproxy
*new_nsproxy
= NULL
;
1601 check_unshare_flags(&unshare_flags
);
1603 /* Return -EINVAL for all unsupported flags */
1605 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1606 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
1607 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWUSER
|
1609 goto bad_unshare_out
;
1612 * CLONE_NEWIPC must also detach from the undolist: after switching
1613 * to a new ipc namespace, the semaphore arrays from the old
1614 * namespace are unreachable.
1616 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
1618 if ((err
= unshare_thread(unshare_flags
)))
1619 goto bad_unshare_out
;
1620 if ((err
= unshare_fs(unshare_flags
, &new_fs
)))
1621 goto bad_unshare_cleanup_thread
;
1622 if ((err
= unshare_sighand(unshare_flags
, &new_sigh
)))
1623 goto bad_unshare_cleanup_fs
;
1624 if ((err
= unshare_vm(unshare_flags
, &new_mm
)))
1625 goto bad_unshare_cleanup_sigh
;
1626 if ((err
= unshare_fd(unshare_flags
, &new_fd
)))
1627 goto bad_unshare_cleanup_vm
;
1628 if ((err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
1630 goto bad_unshare_cleanup_fd
;
1632 if (new_fs
|| new_mm
|| new_fd
|| do_sysvsem
|| new_nsproxy
) {
1635 * CLONE_SYSVSEM is equivalent to sys_exit().
1641 switch_task_namespaces(current
, new_nsproxy
);
1649 current
->fs
= new_fs
;
1655 active_mm
= current
->active_mm
;
1656 current
->mm
= new_mm
;
1657 current
->active_mm
= new_mm
;
1658 activate_mm(active_mm
, new_mm
);
1663 fd
= current
->files
;
1664 current
->files
= new_fd
;
1668 task_unlock(current
);
1672 put_nsproxy(new_nsproxy
);
1674 bad_unshare_cleanup_fd
:
1676 put_files_struct(new_fd
);
1678 bad_unshare_cleanup_vm
:
1682 bad_unshare_cleanup_sigh
:
1684 if (atomic_dec_and_test(&new_sigh
->count
))
1685 kmem_cache_free(sighand_cachep
, new_sigh
);
1687 bad_unshare_cleanup_fs
:
1689 put_fs_struct(new_fs
);
1691 bad_unshare_cleanup_thread
:
1697 * Helper to unshare the files of the current task.
1698 * We don't want to expose copy_files internals to
1699 * the exec layer of the kernel.
1702 int unshare_files(struct files_struct
**displaced
)
1704 struct task_struct
*task
= current
;
1705 struct files_struct
*copy
= NULL
;
1708 error
= unshare_fd(CLONE_FILES
, ©
);
1709 if (error
|| !copy
) {
1713 *displaced
= task
->files
;