Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / signal.c
blob7ed8d5304bec2d2c9e51099f5c66ff304d40946a
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/capability.h>
26 #include <asm/param.h>
27 #include <asm/uaccess.h>
28 #include <asm/unistd.h>
29 #include <asm/siginfo.h>
30 #include "audit.h" /* audit_signal_info() */
33 * SLAB caches for signal bits.
36 static kmem_cache_t *sigqueue_cachep;
39 * In POSIX a signal is sent either to a specific thread (Linux task)
40 * or to the process as a whole (Linux thread group). How the signal
41 * is sent determines whether it's to one thread or the whole group,
42 * which determines which signal mask(s) are involved in blocking it
43 * from being delivered until later. When the signal is delivered,
44 * either it's caught or ignored by a user handler or it has a default
45 * effect that applies to the whole thread group (POSIX process).
47 * The possible effects an unblocked signal set to SIG_DFL can have are:
48 * ignore - Nothing Happens
49 * terminate - kill the process, i.e. all threads in the group,
50 * similar to exit_group. The group leader (only) reports
51 * WIFSIGNALED status to its parent.
52 * coredump - write a core dump file describing all threads using
53 * the same mm and then kill all those threads
54 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
57 * Other signals when not blocked and set to SIG_DFL behaves as follows.
58 * The job control signals also have other special effects.
60 * +--------------------+------------------+
61 * | POSIX signal | default action |
62 * +--------------------+------------------+
63 * | SIGHUP | terminate |
64 * | SIGINT | terminate |
65 * | SIGQUIT | coredump |
66 * | SIGILL | coredump |
67 * | SIGTRAP | coredump |
68 * | SIGABRT/SIGIOT | coredump |
69 * | SIGBUS | coredump |
70 * | SIGFPE | coredump |
71 * | SIGKILL | terminate(+) |
72 * | SIGUSR1 | terminate |
73 * | SIGSEGV | coredump |
74 * | SIGUSR2 | terminate |
75 * | SIGPIPE | terminate |
76 * | SIGALRM | terminate |
77 * | SIGTERM | terminate |
78 * | SIGCHLD | ignore |
79 * | SIGCONT | ignore(*) |
80 * | SIGSTOP | stop(*)(+) |
81 * | SIGTSTP | stop(*) |
82 * | SIGTTIN | stop(*) |
83 * | SIGTTOU | stop(*) |
84 * | SIGURG | ignore |
85 * | SIGXCPU | coredump |
86 * | SIGXFSZ | coredump |
87 * | SIGVTALRM | terminate |
88 * | SIGPROF | terminate |
89 * | SIGPOLL/SIGIO | terminate |
90 * | SIGSYS/SIGUNUSED | coredump |
91 * | SIGSTKFLT | terminate |
92 * | SIGWINCH | ignore |
93 * | SIGPWR | terminate |
94 * | SIGRTMIN-SIGRTMAX | terminate |
95 * +--------------------+------------------+
96 * | non-POSIX signal | default action |
97 * +--------------------+------------------+
98 * | SIGEMT | coredump |
99 * +--------------------+------------------+
101 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
102 * (*) Special job control effects:
103 * When SIGCONT is sent, it resumes the process (all threads in the group)
104 * from TASK_STOPPED state and also clears any pending/queued stop signals
105 * (any of those marked with "stop(*)"). This happens regardless of blocking,
106 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
107 * any pending/queued SIGCONT signals; this happens regardless of blocking,
108 * catching, or ignored the stop signal, though (except for SIGSTOP) the
109 * default action of stopping the process may happen later or never.
112 #ifdef SIGEMT
113 #define M_SIGEMT M(SIGEMT)
114 #else
115 #define M_SIGEMT 0
116 #endif
118 #if SIGRTMIN > BITS_PER_LONG
119 #define M(sig) (1ULL << ((sig)-1))
120 #else
121 #define M(sig) (1UL << ((sig)-1))
122 #endif
123 #define T(sig, mask) (M(sig) & (mask))
125 #define SIG_KERNEL_ONLY_MASK (\
126 M(SIGKILL) | M(SIGSTOP) )
128 #define SIG_KERNEL_STOP_MASK (\
129 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131 #define SIG_KERNEL_COREDUMP_MASK (\
132 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
133 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
134 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136 #define SIG_KERNEL_IGNORE_MASK (\
137 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139 #define sig_kernel_only(sig) \
140 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
141 #define sig_kernel_coredump(sig) \
142 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
143 #define sig_kernel_ignore(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
145 #define sig_kernel_stop(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
150 #define sig_user_defined(t, signr) \
151 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
152 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
154 #define sig_fatal(t, signr) \
155 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
156 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
158 static int sig_ignored(struct task_struct *t, int sig)
160 void __user * handler;
163 * Tracers always want to know about signals..
165 if (t->ptrace & PT_PTRACED)
166 return 0;
169 * Blocked signals are never ignored, since the
170 * signal handler may change by the time it is
171 * unblocked.
173 if (sigismember(&t->blocked, sig))
174 return 0;
176 /* Is it explicitly or implicitly ignored? */
177 handler = t->sighand->action[sig-1].sa.sa_handler;
178 return handler == SIG_IGN ||
179 (handler == SIG_DFL && sig_kernel_ignore(sig));
183 * Re-calculate pending state from the set of locally pending
184 * signals, globally pending signals, and blocked signals.
186 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
188 unsigned long ready;
189 long i;
191 switch (_NSIG_WORDS) {
192 default:
193 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
194 ready |= signal->sig[i] &~ blocked->sig[i];
195 break;
197 case 4: ready = signal->sig[3] &~ blocked->sig[3];
198 ready |= signal->sig[2] &~ blocked->sig[2];
199 ready |= signal->sig[1] &~ blocked->sig[1];
200 ready |= signal->sig[0] &~ blocked->sig[0];
201 break;
203 case 2: ready = signal->sig[1] &~ blocked->sig[1];
204 ready |= signal->sig[0] &~ blocked->sig[0];
205 break;
207 case 1: ready = signal->sig[0] &~ blocked->sig[0];
209 return ready != 0;
212 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
214 fastcall void recalc_sigpending_tsk(struct task_struct *t)
216 if (t->signal->group_stop_count > 0 ||
217 (freezing(t)) ||
218 PENDING(&t->pending, &t->blocked) ||
219 PENDING(&t->signal->shared_pending, &t->blocked))
220 set_tsk_thread_flag(t, TIF_SIGPENDING);
221 else
222 clear_tsk_thread_flag(t, TIF_SIGPENDING);
225 void recalc_sigpending(void)
227 recalc_sigpending_tsk(current);
230 /* Given the mask, find the first available signal that should be serviced. */
232 static int
233 next_signal(struct sigpending *pending, sigset_t *mask)
235 unsigned long i, *s, *m, x;
236 int sig = 0;
238 s = pending->signal.sig;
239 m = mask->sig;
240 switch (_NSIG_WORDS) {
241 default:
242 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
243 if ((x = *s &~ *m) != 0) {
244 sig = ffz(~x) + i*_NSIG_BPW + 1;
245 break;
247 break;
249 case 2: if ((x = s[0] &~ m[0]) != 0)
250 sig = 1;
251 else if ((x = s[1] &~ m[1]) != 0)
252 sig = _NSIG_BPW + 1;
253 else
254 break;
255 sig += ffz(~x);
256 break;
258 case 1: if ((x = *s &~ *m) != 0)
259 sig = ffz(~x) + 1;
260 break;
263 return sig;
266 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
267 int override_rlimit)
269 struct sigqueue *q = NULL;
271 atomic_inc(&t->user->sigpending);
272 if (override_rlimit ||
273 atomic_read(&t->user->sigpending) <=
274 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
275 q = kmem_cache_alloc(sigqueue_cachep, flags);
276 if (unlikely(q == NULL)) {
277 atomic_dec(&t->user->sigpending);
278 } else {
279 INIT_LIST_HEAD(&q->list);
280 q->flags = 0;
281 q->user = get_uid(t->user);
283 return(q);
286 static void __sigqueue_free(struct sigqueue *q)
288 if (q->flags & SIGQUEUE_PREALLOC)
289 return;
290 atomic_dec(&q->user->sigpending);
291 free_uid(q->user);
292 kmem_cache_free(sigqueue_cachep, q);
295 void flush_sigqueue(struct sigpending *queue)
297 struct sigqueue *q;
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
303 __sigqueue_free(q);
308 * Flush all pending signals for a task.
310 void flush_signals(struct task_struct *t)
312 unsigned long flags;
314 spin_lock_irqsave(&t->sighand->siglock, flags);
315 clear_tsk_thread_flag(t,TIF_SIGPENDING);
316 flush_sigqueue(&t->pending);
317 flush_sigqueue(&t->signal->shared_pending);
318 spin_unlock_irqrestore(&t->sighand->siglock, flags);
322 * Flush all handlers for a task.
325 void
326 flush_signal_handlers(struct task_struct *t, int force_default)
328 int i;
329 struct k_sigaction *ka = &t->sighand->action[0];
330 for (i = _NSIG ; i != 0 ; i--) {
331 if (force_default || ka->sa.sa_handler != SIG_IGN)
332 ka->sa.sa_handler = SIG_DFL;
333 ka->sa.sa_flags = 0;
334 sigemptyset(&ka->sa.sa_mask);
335 ka++;
340 /* Notify the system that a driver wants to block all signals for this
341 * process, and wants to be notified if any signals at all were to be
342 * sent/acted upon. If the notifier routine returns non-zero, then the
343 * signal will be acted upon after all. If the notifier routine returns 0,
344 * then then signal will be blocked. Only one block per process is
345 * allowed. priv is a pointer to private data that the notifier routine
346 * can use to determine if the signal should be blocked or not. */
348 void
349 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
351 unsigned long flags;
353 spin_lock_irqsave(&current->sighand->siglock, flags);
354 current->notifier_mask = mask;
355 current->notifier_data = priv;
356 current->notifier = notifier;
357 spin_unlock_irqrestore(&current->sighand->siglock, flags);
360 /* Notify the system that blocking has ended. */
362 void
363 unblock_all_signals(void)
365 unsigned long flags;
367 spin_lock_irqsave(&current->sighand->siglock, flags);
368 current->notifier = NULL;
369 current->notifier_data = NULL;
370 recalc_sigpending();
371 spin_unlock_irqrestore(&current->sighand->siglock, flags);
374 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
376 struct sigqueue *q, *first = NULL;
377 int still_pending = 0;
379 if (unlikely(!sigismember(&list->signal, sig)))
380 return 0;
383 * Collect the siginfo appropriate to this signal. Check if
384 * there is another siginfo for the same signal.
386 list_for_each_entry(q, &list->list, list) {
387 if (q->info.si_signo == sig) {
388 if (first) {
389 still_pending = 1;
390 break;
392 first = q;
395 if (first) {
396 list_del_init(&first->list);
397 copy_siginfo(info, &first->info);
398 __sigqueue_free(first);
399 if (!still_pending)
400 sigdelset(&list->signal, sig);
401 } else {
403 /* Ok, it wasn't in the queue. This must be
404 a fast-pathed signal or we must have been
405 out of queue space. So zero out the info.
407 sigdelset(&list->signal, sig);
408 info->si_signo = sig;
409 info->si_errno = 0;
410 info->si_code = 0;
411 info->si_pid = 0;
412 info->si_uid = 0;
414 return 1;
417 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
418 siginfo_t *info)
420 int sig = next_signal(pending, mask);
422 if (sig) {
423 if (current->notifier) {
424 if (sigismember(current->notifier_mask, sig)) {
425 if (!(current->notifier)(current->notifier_data)) {
426 clear_thread_flag(TIF_SIGPENDING);
427 return 0;
432 if (!collect_signal(sig, pending, info))
433 sig = 0;
436 return sig;
440 * Dequeue a signal and return the element to the caller, which is
441 * expected to free it.
443 * All callers have to hold the siglock.
445 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
447 int signr = __dequeue_signal(&tsk->pending, mask, info);
448 if (!signr)
449 signr = __dequeue_signal(&tsk->signal->shared_pending,
450 mask, info);
451 recalc_sigpending_tsk(tsk);
452 if (signr && unlikely(sig_kernel_stop(signr))) {
454 * Set a marker that we have dequeued a stop signal. Our
455 * caller might release the siglock and then the pending
456 * stop signal it is about to process is no longer in the
457 * pending bitmasks, but must still be cleared by a SIGCONT
458 * (and overruled by a SIGKILL). So those cases clear this
459 * shared flag after we've set it. Note that this flag may
460 * remain set after the signal we return is ignored or
461 * handled. That doesn't matter because its only purpose
462 * is to alert stop-signal processing code when another
463 * processor has come along and cleared the flag.
465 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
466 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
468 if ( signr &&
469 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
470 info->si_sys_private){
472 * Release the siglock to ensure proper locking order
473 * of timer locks outside of siglocks. Note, we leave
474 * irqs disabled here, since the posix-timers code is
475 * about to disable them again anyway.
477 spin_unlock(&tsk->sighand->siglock);
478 do_schedule_next_timer(info);
479 spin_lock(&tsk->sighand->siglock);
481 return signr;
485 * Tell a process that it has a new active signal..
487 * NOTE! we rely on the previous spin_lock to
488 * lock interrupts for us! We can only be called with
489 * "siglock" held, and the local interrupt must
490 * have been disabled when that got acquired!
492 * No need to set need_resched since signal event passing
493 * goes through ->blocked
495 void signal_wake_up(struct task_struct *t, int resume)
497 unsigned int mask;
499 set_tsk_thread_flag(t, TIF_SIGPENDING);
502 * For SIGKILL, we want to wake it up in the stopped/traced case.
503 * We don't check t->state here because there is a race with it
504 * executing another processor and just now entering stopped state.
505 * By using wake_up_state, we ensure the process will wake up and
506 * handle its death signal.
508 mask = TASK_INTERRUPTIBLE;
509 if (resume)
510 mask |= TASK_STOPPED | TASK_TRACED;
511 if (!wake_up_state(t, mask))
512 kick_process(t);
516 * Remove signals in mask from the pending set and queue.
517 * Returns 1 if any signals were found.
519 * All callers must be holding the siglock.
521 * This version takes a sigset mask and looks at all signals,
522 * not just those in the first mask word.
524 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
526 struct sigqueue *q, *n;
527 sigset_t m;
529 sigandsets(&m, mask, &s->signal);
530 if (sigisemptyset(&m))
531 return 0;
533 signandsets(&s->signal, &s->signal, mask);
534 list_for_each_entry_safe(q, n, &s->list, list) {
535 if (sigismember(mask, q->info.si_signo)) {
536 list_del_init(&q->list);
537 __sigqueue_free(q);
540 return 1;
543 * Remove signals in mask from the pending set and queue.
544 * Returns 1 if any signals were found.
546 * All callers must be holding the siglock.
548 static int rm_from_queue(unsigned long mask, struct sigpending *s)
550 struct sigqueue *q, *n;
552 if (!sigtestsetmask(&s->signal, mask))
553 return 0;
555 sigdelsetmask(&s->signal, mask);
556 list_for_each_entry_safe(q, n, &s->list, list) {
557 if (q->info.si_signo < SIGRTMIN &&
558 (mask & sigmask(q->info.si_signo))) {
559 list_del_init(&q->list);
560 __sigqueue_free(q);
563 return 1;
567 * Bad permissions for sending the signal
569 static int check_kill_permission(int sig, struct siginfo *info,
570 struct task_struct *t)
572 int error = -EINVAL;
573 if (!valid_signal(sig))
574 return error;
575 error = -EPERM;
576 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
577 && ((sig != SIGCONT) ||
578 (current->signal->session != t->signal->session))
579 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
580 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
581 && !capable(CAP_KILL))
582 return error;
584 error = security_task_kill(t, info, sig, 0);
585 if (!error)
586 audit_signal_info(sig, t); /* Let audit system see the signal */
587 return error;
590 /* forward decl */
591 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
594 * Handle magic process-wide effects of stop/continue signals.
595 * Unlike the signal actions, these happen immediately at signal-generation
596 * time regardless of blocking, ignoring, or handling. This does the
597 * actual continuing for SIGCONT, but not the actual stopping for stop
598 * signals. The process stop is done as a signal action for SIG_DFL.
600 static void handle_stop_signal(int sig, struct task_struct *p)
602 struct task_struct *t;
604 if (p->signal->flags & SIGNAL_GROUP_EXIT)
606 * The process is in the middle of dying already.
608 return;
610 if (sig_kernel_stop(sig)) {
612 * This is a stop signal. Remove SIGCONT from all queues.
614 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
615 t = p;
616 do {
617 rm_from_queue(sigmask(SIGCONT), &t->pending);
618 t = next_thread(t);
619 } while (t != p);
620 } else if (sig == SIGCONT) {
622 * Remove all stop signals from all queues,
623 * and wake all threads.
625 if (unlikely(p->signal->group_stop_count > 0)) {
627 * There was a group stop in progress. We'll
628 * pretend it finished before we got here. We are
629 * obliged to report it to the parent: if the
630 * SIGSTOP happened "after" this SIGCONT, then it
631 * would have cleared this pending SIGCONT. If it
632 * happened "before" this SIGCONT, then the parent
633 * got the SIGCHLD about the stop finishing before
634 * the continue happened. We do the notification
635 * now, and it's as if the stop had finished and
636 * the SIGCHLD was pending on entry to this kill.
638 p->signal->group_stop_count = 0;
639 p->signal->flags = SIGNAL_STOP_CONTINUED;
640 spin_unlock(&p->sighand->siglock);
641 do_notify_parent_cldstop(p, CLD_STOPPED);
642 spin_lock(&p->sighand->siglock);
644 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
645 t = p;
646 do {
647 unsigned int state;
648 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
651 * If there is a handler for SIGCONT, we must make
652 * sure that no thread returns to user mode before
653 * we post the signal, in case it was the only
654 * thread eligible to run the signal handler--then
655 * it must not do anything between resuming and
656 * running the handler. With the TIF_SIGPENDING
657 * flag set, the thread will pause and acquire the
658 * siglock that we hold now and until we've queued
659 * the pending signal.
661 * Wake up the stopped thread _after_ setting
662 * TIF_SIGPENDING
664 state = TASK_STOPPED;
665 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
666 set_tsk_thread_flag(t, TIF_SIGPENDING);
667 state |= TASK_INTERRUPTIBLE;
669 wake_up_state(t, state);
671 t = next_thread(t);
672 } while (t != p);
674 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
676 * We were in fact stopped, and are now continued.
677 * Notify the parent with CLD_CONTINUED.
679 p->signal->flags = SIGNAL_STOP_CONTINUED;
680 p->signal->group_exit_code = 0;
681 spin_unlock(&p->sighand->siglock);
682 do_notify_parent_cldstop(p, CLD_CONTINUED);
683 spin_lock(&p->sighand->siglock);
684 } else {
686 * We are not stopped, but there could be a stop
687 * signal in the middle of being processed after
688 * being removed from the queue. Clear that too.
690 p->signal->flags = 0;
692 } else if (sig == SIGKILL) {
694 * Make sure that any pending stop signal already dequeued
695 * is undone by the wakeup for SIGKILL.
697 p->signal->flags = 0;
701 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
702 struct sigpending *signals)
704 struct sigqueue * q = NULL;
705 int ret = 0;
708 * fast-pathed signals for kernel-internal things like SIGSTOP
709 * or SIGKILL.
711 if (info == SEND_SIG_FORCED)
712 goto out_set;
714 /* Real-time signals must be queued if sent by sigqueue, or
715 some other real-time mechanism. It is implementation
716 defined whether kill() does so. We attempt to do so, on
717 the principle of least surprise, but since kill is not
718 allowed to fail with EAGAIN when low on memory we just
719 make sure at least one signal gets delivered and don't
720 pass on the info struct. */
722 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
723 (is_si_special(info) ||
724 info->si_code >= 0)));
725 if (q) {
726 list_add_tail(&q->list, &signals->list);
727 switch ((unsigned long) info) {
728 case (unsigned long) SEND_SIG_NOINFO:
729 q->info.si_signo = sig;
730 q->info.si_errno = 0;
731 q->info.si_code = SI_USER;
732 q->info.si_pid = current->pid;
733 q->info.si_uid = current->uid;
734 break;
735 case (unsigned long) SEND_SIG_PRIV:
736 q->info.si_signo = sig;
737 q->info.si_errno = 0;
738 q->info.si_code = SI_KERNEL;
739 q->info.si_pid = 0;
740 q->info.si_uid = 0;
741 break;
742 default:
743 copy_siginfo(&q->info, info);
744 break;
746 } else if (!is_si_special(info)) {
747 if (sig >= SIGRTMIN && info->si_code != SI_USER)
749 * Queue overflow, abort. We may abort if the signal was rt
750 * and sent by user using something other than kill().
752 return -EAGAIN;
755 out_set:
756 sigaddset(&signals->signal, sig);
757 return ret;
760 #define LEGACY_QUEUE(sigptr, sig) \
761 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
764 static int
765 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
767 int ret = 0;
769 BUG_ON(!irqs_disabled());
770 assert_spin_locked(&t->sighand->siglock);
772 /* Short-circuit ignored signals. */
773 if (sig_ignored(t, sig))
774 goto out;
776 /* Support queueing exactly one non-rt signal, so that we
777 can get more detailed information about the cause of
778 the signal. */
779 if (LEGACY_QUEUE(&t->pending, sig))
780 goto out;
782 ret = send_signal(sig, info, t, &t->pending);
783 if (!ret && !sigismember(&t->blocked, sig))
784 signal_wake_up(t, sig == SIGKILL);
785 out:
786 return ret;
790 * Force a signal that the process can't ignore: if necessary
791 * we unblock the signal and change any SIG_IGN to SIG_DFL.
793 * Note: If we unblock the signal, we always reset it to SIG_DFL,
794 * since we do not want to have a signal handler that was blocked
795 * be invoked when user space had explicitly blocked it.
797 * We don't want to have recursive SIGSEGV's etc, for example.
800 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
802 unsigned long int flags;
803 int ret, blocked, ignored;
804 struct k_sigaction *action;
806 spin_lock_irqsave(&t->sighand->siglock, flags);
807 action = &t->sighand->action[sig-1];
808 ignored = action->sa.sa_handler == SIG_IGN;
809 blocked = sigismember(&t->blocked, sig);
810 if (blocked || ignored) {
811 action->sa.sa_handler = SIG_DFL;
812 if (blocked) {
813 sigdelset(&t->blocked, sig);
814 recalc_sigpending_tsk(t);
817 ret = specific_send_sig_info(sig, info, t);
818 spin_unlock_irqrestore(&t->sighand->siglock, flags);
820 return ret;
823 void
824 force_sig_specific(int sig, struct task_struct *t)
826 force_sig_info(sig, SEND_SIG_FORCED, t);
830 * Test if P wants to take SIG. After we've checked all threads with this,
831 * it's equivalent to finding no threads not blocking SIG. Any threads not
832 * blocking SIG were ruled out because they are not running and already
833 * have pending signals. Such threads will dequeue from the shared queue
834 * as soon as they're available, so putting the signal on the shared queue
835 * will be equivalent to sending it to one such thread.
837 static inline int wants_signal(int sig, struct task_struct *p)
839 if (sigismember(&p->blocked, sig))
840 return 0;
841 if (p->flags & PF_EXITING)
842 return 0;
843 if (sig == SIGKILL)
844 return 1;
845 if (p->state & (TASK_STOPPED | TASK_TRACED))
846 return 0;
847 return task_curr(p) || !signal_pending(p);
850 static void
851 __group_complete_signal(int sig, struct task_struct *p)
853 struct task_struct *t;
856 * Now find a thread we can wake up to take the signal off the queue.
858 * If the main thread wants the signal, it gets first crack.
859 * Probably the least surprising to the average bear.
861 if (wants_signal(sig, p))
862 t = p;
863 else if (thread_group_empty(p))
865 * There is just one thread and it does not need to be woken.
866 * It will dequeue unblocked signals before it runs again.
868 return;
869 else {
871 * Otherwise try to find a suitable thread.
873 t = p->signal->curr_target;
874 if (t == NULL)
875 /* restart balancing at this thread */
876 t = p->signal->curr_target = p;
878 while (!wants_signal(sig, t)) {
879 t = next_thread(t);
880 if (t == p->signal->curr_target)
882 * No thread needs to be woken.
883 * Any eligible threads will see
884 * the signal in the queue soon.
886 return;
888 p->signal->curr_target = t;
892 * Found a killable thread. If the signal will be fatal,
893 * then start taking the whole group down immediately.
895 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
896 !sigismember(&t->real_blocked, sig) &&
897 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
899 * This signal will be fatal to the whole group.
901 if (!sig_kernel_coredump(sig)) {
903 * Start a group exit and wake everybody up.
904 * This way we don't have other threads
905 * running and doing things after a slower
906 * thread has the fatal signal pending.
908 p->signal->flags = SIGNAL_GROUP_EXIT;
909 p->signal->group_exit_code = sig;
910 p->signal->group_stop_count = 0;
911 t = p;
912 do {
913 sigaddset(&t->pending.signal, SIGKILL);
914 signal_wake_up(t, 1);
915 t = next_thread(t);
916 } while (t != p);
917 return;
921 * There will be a core dump. We make all threads other
922 * than the chosen one go into a group stop so that nothing
923 * happens until it gets scheduled, takes the signal off
924 * the shared queue, and does the core dump. This is a
925 * little more complicated than strictly necessary, but it
926 * keeps the signal state that winds up in the core dump
927 * unchanged from the death state, e.g. which thread had
928 * the core-dump signal unblocked.
930 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
931 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
932 p->signal->group_stop_count = 0;
933 p->signal->group_exit_task = t;
934 t = p;
935 do {
936 p->signal->group_stop_count++;
937 signal_wake_up(t, 0);
938 t = next_thread(t);
939 } while (t != p);
940 wake_up_process(p->signal->group_exit_task);
941 return;
945 * The signal is already in the shared-pending queue.
946 * Tell the chosen thread to wake up and dequeue it.
948 signal_wake_up(t, sig == SIGKILL);
949 return;
953 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
955 int ret = 0;
957 assert_spin_locked(&p->sighand->siglock);
958 handle_stop_signal(sig, p);
960 /* Short-circuit ignored signals. */
961 if (sig_ignored(p, sig))
962 return ret;
964 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
965 /* This is a non-RT signal and we already have one queued. */
966 return ret;
969 * Put this signal on the shared-pending queue, or fail with EAGAIN.
970 * We always use the shared queue for process-wide signals,
971 * to avoid several races.
973 ret = send_signal(sig, info, p, &p->signal->shared_pending);
974 if (unlikely(ret))
975 return ret;
977 __group_complete_signal(sig, p);
978 return 0;
982 * Nuke all other threads in the group.
984 void zap_other_threads(struct task_struct *p)
986 struct task_struct *t;
988 p->signal->flags = SIGNAL_GROUP_EXIT;
989 p->signal->group_stop_count = 0;
991 if (thread_group_empty(p))
992 return;
994 for (t = next_thread(p); t != p; t = next_thread(t)) {
996 * Don't bother with already dead threads
998 if (t->exit_state)
999 continue;
1002 * We don't want to notify the parent, since we are
1003 * killed as part of a thread group due to another
1004 * thread doing an execve() or similar. So set the
1005 * exit signal to -1 to allow immediate reaping of
1006 * the process. But don't detach the thread group
1007 * leader.
1009 if (t != p->group_leader)
1010 t->exit_signal = -1;
1012 /* SIGKILL will be handled before any pending SIGSTOP */
1013 sigaddset(&t->pending.signal, SIGKILL);
1014 signal_wake_up(t, 1);
1019 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1021 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1023 struct sighand_struct *sighand;
1025 for (;;) {
1026 sighand = rcu_dereference(tsk->sighand);
1027 if (unlikely(sighand == NULL))
1028 break;
1030 spin_lock_irqsave(&sighand->siglock, *flags);
1031 if (likely(sighand == tsk->sighand))
1032 break;
1033 spin_unlock_irqrestore(&sighand->siglock, *flags);
1036 return sighand;
1039 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1041 unsigned long flags;
1042 int ret;
1044 ret = check_kill_permission(sig, info, p);
1046 if (!ret && sig) {
1047 ret = -ESRCH;
1048 if (lock_task_sighand(p, &flags)) {
1049 ret = __group_send_sig_info(sig, info, p);
1050 unlock_task_sighand(p, &flags);
1054 return ret;
1058 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1059 * control characters do (^C, ^Z etc)
1062 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1064 struct task_struct *p = NULL;
1065 int retval, success;
1067 success = 0;
1068 retval = -ESRCH;
1069 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1070 int err = group_send_sig_info(sig, info, p);
1071 success |= !err;
1072 retval = err;
1073 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1074 return success ? 0 : retval;
1077 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1079 int retval;
1081 read_lock(&tasklist_lock);
1082 retval = __kill_pgrp_info(sig, info, pgrp);
1083 read_unlock(&tasklist_lock);
1085 return retval;
1088 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1090 if (pgrp <= 0)
1091 return -EINVAL;
1093 return __kill_pgrp_info(sig, info, find_pid(pgrp));
1097 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1099 int retval;
1101 read_lock(&tasklist_lock);
1102 retval = __kill_pg_info(sig, info, pgrp);
1103 read_unlock(&tasklist_lock);
1105 return retval;
1108 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1110 int error;
1111 int acquired_tasklist_lock = 0;
1112 struct task_struct *p;
1114 rcu_read_lock();
1115 if (unlikely(sig_needs_tasklist(sig))) {
1116 read_lock(&tasklist_lock);
1117 acquired_tasklist_lock = 1;
1119 p = pid_task(pid, PIDTYPE_PID);
1120 error = -ESRCH;
1121 if (p)
1122 error = group_send_sig_info(sig, info, p);
1123 if (unlikely(acquired_tasklist_lock))
1124 read_unlock(&tasklist_lock);
1125 rcu_read_unlock();
1126 return error;
1130 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1132 int error;
1133 rcu_read_lock();
1134 error = kill_pid_info(sig, info, find_pid(pid));
1135 rcu_read_unlock();
1136 return error;
1139 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1140 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1141 uid_t uid, uid_t euid, u32 secid)
1143 int ret = -EINVAL;
1144 struct task_struct *p;
1146 if (!valid_signal(sig))
1147 return ret;
1149 read_lock(&tasklist_lock);
1150 p = pid_task(pid, PIDTYPE_PID);
1151 if (!p) {
1152 ret = -ESRCH;
1153 goto out_unlock;
1155 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1156 && (euid != p->suid) && (euid != p->uid)
1157 && (uid != p->suid) && (uid != p->uid)) {
1158 ret = -EPERM;
1159 goto out_unlock;
1161 ret = security_task_kill(p, info, sig, secid);
1162 if (ret)
1163 goto out_unlock;
1164 if (sig && p->sighand) {
1165 unsigned long flags;
1166 spin_lock_irqsave(&p->sighand->siglock, flags);
1167 ret = __group_send_sig_info(sig, info, p);
1168 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1170 out_unlock:
1171 read_unlock(&tasklist_lock);
1172 return ret;
1174 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1177 * kill_something_info() interprets pid in interesting ways just like kill(2).
1179 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1180 * is probably wrong. Should make it like BSD or SYSV.
1183 static int kill_something_info(int sig, struct siginfo *info, int pid)
1185 if (!pid) {
1186 return kill_pg_info(sig, info, process_group(current));
1187 } else if (pid == -1) {
1188 int retval = 0, count = 0;
1189 struct task_struct * p;
1191 read_lock(&tasklist_lock);
1192 for_each_process(p) {
1193 if (p->pid > 1 && p->tgid != current->tgid) {
1194 int err = group_send_sig_info(sig, info, p);
1195 ++count;
1196 if (err != -EPERM)
1197 retval = err;
1200 read_unlock(&tasklist_lock);
1201 return count ? retval : -ESRCH;
1202 } else if (pid < 0) {
1203 return kill_pg_info(sig, info, -pid);
1204 } else {
1205 return kill_proc_info(sig, info, pid);
1210 * These are for backward compatibility with the rest of the kernel source.
1214 * These two are the most common entry points. They send a signal
1215 * just to the specific thread.
1218 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1220 int ret;
1221 unsigned long flags;
1224 * Make sure legacy kernel users don't send in bad values
1225 * (normal paths check this in check_kill_permission).
1227 if (!valid_signal(sig))
1228 return -EINVAL;
1231 * We need the tasklist lock even for the specific
1232 * thread case (when we don't need to follow the group
1233 * lists) in order to avoid races with "p->sighand"
1234 * going away or changing from under us.
1236 read_lock(&tasklist_lock);
1237 spin_lock_irqsave(&p->sighand->siglock, flags);
1238 ret = specific_send_sig_info(sig, info, p);
1239 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1240 read_unlock(&tasklist_lock);
1241 return ret;
1244 #define __si_special(priv) \
1245 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1248 send_sig(int sig, struct task_struct *p, int priv)
1250 return send_sig_info(sig, __si_special(priv), p);
1254 * This is the entry point for "process-wide" signals.
1255 * They will go to an appropriate thread in the thread group.
1258 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1260 int ret;
1261 read_lock(&tasklist_lock);
1262 ret = group_send_sig_info(sig, info, p);
1263 read_unlock(&tasklist_lock);
1264 return ret;
1267 void
1268 force_sig(int sig, struct task_struct *p)
1270 force_sig_info(sig, SEND_SIG_PRIV, p);
1274 * When things go south during signal handling, we
1275 * will force a SIGSEGV. And if the signal that caused
1276 * the problem was already a SIGSEGV, we'll want to
1277 * make sure we don't even try to deliver the signal..
1280 force_sigsegv(int sig, struct task_struct *p)
1282 if (sig == SIGSEGV) {
1283 unsigned long flags;
1284 spin_lock_irqsave(&p->sighand->siglock, flags);
1285 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1286 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1288 force_sig(SIGSEGV, p);
1289 return 0;
1292 int kill_pgrp(struct pid *pid, int sig, int priv)
1294 return kill_pgrp_info(sig, __si_special(priv), pid);
1296 EXPORT_SYMBOL(kill_pgrp);
1298 int kill_pid(struct pid *pid, int sig, int priv)
1300 return kill_pid_info(sig, __si_special(priv), pid);
1302 EXPORT_SYMBOL(kill_pid);
1305 kill_pg(pid_t pgrp, int sig, int priv)
1307 return kill_pg_info(sig, __si_special(priv), pgrp);
1311 kill_proc(pid_t pid, int sig, int priv)
1313 return kill_proc_info(sig, __si_special(priv), pid);
1317 * These functions support sending signals using preallocated sigqueue
1318 * structures. This is needed "because realtime applications cannot
1319 * afford to lose notifications of asynchronous events, like timer
1320 * expirations or I/O completions". In the case of Posix Timers
1321 * we allocate the sigqueue structure from the timer_create. If this
1322 * allocation fails we are able to report the failure to the application
1323 * with an EAGAIN error.
1326 struct sigqueue *sigqueue_alloc(void)
1328 struct sigqueue *q;
1330 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1331 q->flags |= SIGQUEUE_PREALLOC;
1332 return(q);
1335 void sigqueue_free(struct sigqueue *q)
1337 unsigned long flags;
1338 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1340 * If the signal is still pending remove it from the
1341 * pending queue.
1343 if (unlikely(!list_empty(&q->list))) {
1344 spinlock_t *lock = &current->sighand->siglock;
1345 read_lock(&tasklist_lock);
1346 spin_lock_irqsave(lock, flags);
1347 if (!list_empty(&q->list))
1348 list_del_init(&q->list);
1349 spin_unlock_irqrestore(lock, flags);
1350 read_unlock(&tasklist_lock);
1352 q->flags &= ~SIGQUEUE_PREALLOC;
1353 __sigqueue_free(q);
1356 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1358 unsigned long flags;
1359 int ret = 0;
1361 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1364 * The rcu based delayed sighand destroy makes it possible to
1365 * run this without tasklist lock held. The task struct itself
1366 * cannot go away as create_timer did get_task_struct().
1368 * We return -1, when the task is marked exiting, so
1369 * posix_timer_event can redirect it to the group leader
1371 rcu_read_lock();
1373 if (!likely(lock_task_sighand(p, &flags))) {
1374 ret = -1;
1375 goto out_err;
1378 if (unlikely(!list_empty(&q->list))) {
1380 * If an SI_TIMER entry is already queue just increment
1381 * the overrun count.
1383 BUG_ON(q->info.si_code != SI_TIMER);
1384 q->info.si_overrun++;
1385 goto out;
1387 /* Short-circuit ignored signals. */
1388 if (sig_ignored(p, sig)) {
1389 ret = 1;
1390 goto out;
1393 list_add_tail(&q->list, &p->pending.list);
1394 sigaddset(&p->pending.signal, sig);
1395 if (!sigismember(&p->blocked, sig))
1396 signal_wake_up(p, sig == SIGKILL);
1398 out:
1399 unlock_task_sighand(p, &flags);
1400 out_err:
1401 rcu_read_unlock();
1403 return ret;
1407 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1409 unsigned long flags;
1410 int ret = 0;
1412 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1414 read_lock(&tasklist_lock);
1415 /* Since it_lock is held, p->sighand cannot be NULL. */
1416 spin_lock_irqsave(&p->sighand->siglock, flags);
1417 handle_stop_signal(sig, p);
1419 /* Short-circuit ignored signals. */
1420 if (sig_ignored(p, sig)) {
1421 ret = 1;
1422 goto out;
1425 if (unlikely(!list_empty(&q->list))) {
1427 * If an SI_TIMER entry is already queue just increment
1428 * the overrun count. Other uses should not try to
1429 * send the signal multiple times.
1431 BUG_ON(q->info.si_code != SI_TIMER);
1432 q->info.si_overrun++;
1433 goto out;
1437 * Put this signal on the shared-pending queue.
1438 * We always use the shared queue for process-wide signals,
1439 * to avoid several races.
1441 list_add_tail(&q->list, &p->signal->shared_pending.list);
1442 sigaddset(&p->signal->shared_pending.signal, sig);
1444 __group_complete_signal(sig, p);
1445 out:
1446 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1447 read_unlock(&tasklist_lock);
1448 return ret;
1452 * Wake up any threads in the parent blocked in wait* syscalls.
1454 static inline void __wake_up_parent(struct task_struct *p,
1455 struct task_struct *parent)
1457 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1461 * Let a parent know about the death of a child.
1462 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1465 void do_notify_parent(struct task_struct *tsk, int sig)
1467 struct siginfo info;
1468 unsigned long flags;
1469 struct sighand_struct *psig;
1471 BUG_ON(sig == -1);
1473 /* do_notify_parent_cldstop should have been called instead. */
1474 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1476 BUG_ON(!tsk->ptrace &&
1477 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1479 info.si_signo = sig;
1480 info.si_errno = 0;
1481 info.si_pid = tsk->pid;
1482 info.si_uid = tsk->uid;
1484 /* FIXME: find out whether or not this is supposed to be c*time. */
1485 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1486 tsk->signal->utime));
1487 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1488 tsk->signal->stime));
1490 info.si_status = tsk->exit_code & 0x7f;
1491 if (tsk->exit_code & 0x80)
1492 info.si_code = CLD_DUMPED;
1493 else if (tsk->exit_code & 0x7f)
1494 info.si_code = CLD_KILLED;
1495 else {
1496 info.si_code = CLD_EXITED;
1497 info.si_status = tsk->exit_code >> 8;
1500 psig = tsk->parent->sighand;
1501 spin_lock_irqsave(&psig->siglock, flags);
1502 if (!tsk->ptrace && sig == SIGCHLD &&
1503 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1504 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1506 * We are exiting and our parent doesn't care. POSIX.1
1507 * defines special semantics for setting SIGCHLD to SIG_IGN
1508 * or setting the SA_NOCLDWAIT flag: we should be reaped
1509 * automatically and not left for our parent's wait4 call.
1510 * Rather than having the parent do it as a magic kind of
1511 * signal handler, we just set this to tell do_exit that we
1512 * can be cleaned up without becoming a zombie. Note that
1513 * we still call __wake_up_parent in this case, because a
1514 * blocked sys_wait4 might now return -ECHILD.
1516 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1517 * is implementation-defined: we do (if you don't want
1518 * it, just use SIG_IGN instead).
1520 tsk->exit_signal = -1;
1521 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1522 sig = 0;
1524 if (valid_signal(sig) && sig > 0)
1525 __group_send_sig_info(sig, &info, tsk->parent);
1526 __wake_up_parent(tsk, tsk->parent);
1527 spin_unlock_irqrestore(&psig->siglock, flags);
1530 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1532 struct siginfo info;
1533 unsigned long flags;
1534 struct task_struct *parent;
1535 struct sighand_struct *sighand;
1537 if (tsk->ptrace & PT_PTRACED)
1538 parent = tsk->parent;
1539 else {
1540 tsk = tsk->group_leader;
1541 parent = tsk->real_parent;
1544 info.si_signo = SIGCHLD;
1545 info.si_errno = 0;
1546 info.si_pid = tsk->pid;
1547 info.si_uid = tsk->uid;
1549 /* FIXME: find out whether or not this is supposed to be c*time. */
1550 info.si_utime = cputime_to_jiffies(tsk->utime);
1551 info.si_stime = cputime_to_jiffies(tsk->stime);
1553 info.si_code = why;
1554 switch (why) {
1555 case CLD_CONTINUED:
1556 info.si_status = SIGCONT;
1557 break;
1558 case CLD_STOPPED:
1559 info.si_status = tsk->signal->group_exit_code & 0x7f;
1560 break;
1561 case CLD_TRAPPED:
1562 info.si_status = tsk->exit_code & 0x7f;
1563 break;
1564 default:
1565 BUG();
1568 sighand = parent->sighand;
1569 spin_lock_irqsave(&sighand->siglock, flags);
1570 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1571 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1572 __group_send_sig_info(SIGCHLD, &info, parent);
1574 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1576 __wake_up_parent(tsk, parent);
1577 spin_unlock_irqrestore(&sighand->siglock, flags);
1580 static inline int may_ptrace_stop(void)
1582 if (!likely(current->ptrace & PT_PTRACED))
1583 return 0;
1585 if (unlikely(current->parent == current->real_parent &&
1586 (current->ptrace & PT_ATTACHED)))
1587 return 0;
1589 if (unlikely(current->signal == current->parent->signal) &&
1590 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1591 return 0;
1594 * Are we in the middle of do_coredump?
1595 * If so and our tracer is also part of the coredump stopping
1596 * is a deadlock situation, and pointless because our tracer
1597 * is dead so don't allow us to stop.
1598 * If SIGKILL was already sent before the caller unlocked
1599 * ->siglock we must see ->core_waiters != 0. Otherwise it
1600 * is safe to enter schedule().
1602 if (unlikely(current->mm->core_waiters) &&
1603 unlikely(current->mm == current->parent->mm))
1604 return 0;
1606 return 1;
1610 * This must be called with current->sighand->siglock held.
1612 * This should be the path for all ptrace stops.
1613 * We always set current->last_siginfo while stopped here.
1614 * That makes it a way to test a stopped process for
1615 * being ptrace-stopped vs being job-control-stopped.
1617 * If we actually decide not to stop at all because the tracer is gone,
1618 * we leave nostop_code in current->exit_code.
1620 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1623 * If there is a group stop in progress,
1624 * we must participate in the bookkeeping.
1626 if (current->signal->group_stop_count > 0)
1627 --current->signal->group_stop_count;
1629 current->last_siginfo = info;
1630 current->exit_code = exit_code;
1632 /* Let the debugger run. */
1633 set_current_state(TASK_TRACED);
1634 spin_unlock_irq(&current->sighand->siglock);
1635 try_to_freeze();
1636 read_lock(&tasklist_lock);
1637 if (may_ptrace_stop()) {
1638 do_notify_parent_cldstop(current, CLD_TRAPPED);
1639 read_unlock(&tasklist_lock);
1640 schedule();
1641 } else {
1643 * By the time we got the lock, our tracer went away.
1644 * Don't stop here.
1646 read_unlock(&tasklist_lock);
1647 set_current_state(TASK_RUNNING);
1648 current->exit_code = nostop_code;
1652 * We are back. Now reacquire the siglock before touching
1653 * last_siginfo, so that we are sure to have synchronized with
1654 * any signal-sending on another CPU that wants to examine it.
1656 spin_lock_irq(&current->sighand->siglock);
1657 current->last_siginfo = NULL;
1660 * Queued signals ignored us while we were stopped for tracing.
1661 * So check for any that we should take before resuming user mode.
1663 recalc_sigpending();
1666 void ptrace_notify(int exit_code)
1668 siginfo_t info;
1670 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1672 memset(&info, 0, sizeof info);
1673 info.si_signo = SIGTRAP;
1674 info.si_code = exit_code;
1675 info.si_pid = current->pid;
1676 info.si_uid = current->uid;
1678 /* Let the debugger run. */
1679 spin_lock_irq(&current->sighand->siglock);
1680 ptrace_stop(exit_code, 0, &info);
1681 spin_unlock_irq(&current->sighand->siglock);
1684 static void
1685 finish_stop(int stop_count)
1688 * If there are no other threads in the group, or if there is
1689 * a group stop in progress and we are the last to stop,
1690 * report to the parent. When ptraced, every thread reports itself.
1692 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1693 read_lock(&tasklist_lock);
1694 do_notify_parent_cldstop(current, CLD_STOPPED);
1695 read_unlock(&tasklist_lock);
1698 schedule();
1700 * Now we don't run again until continued.
1702 current->exit_code = 0;
1706 * This performs the stopping for SIGSTOP and other stop signals.
1707 * We have to stop all threads in the thread group.
1708 * Returns nonzero if we've actually stopped and released the siglock.
1709 * Returns zero if we didn't stop and still hold the siglock.
1711 static int do_signal_stop(int signr)
1713 struct signal_struct *sig = current->signal;
1714 int stop_count;
1716 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1717 return 0;
1719 if (sig->group_stop_count > 0) {
1721 * There is a group stop in progress. We don't need to
1722 * start another one.
1724 stop_count = --sig->group_stop_count;
1725 } else {
1727 * There is no group stop already in progress.
1728 * We must initiate one now.
1730 struct task_struct *t;
1732 sig->group_exit_code = signr;
1734 stop_count = 0;
1735 for (t = next_thread(current); t != current; t = next_thread(t))
1737 * Setting state to TASK_STOPPED for a group
1738 * stop is always done with the siglock held,
1739 * so this check has no races.
1741 if (!t->exit_state &&
1742 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1743 stop_count++;
1744 signal_wake_up(t, 0);
1746 sig->group_stop_count = stop_count;
1749 if (stop_count == 0)
1750 sig->flags = SIGNAL_STOP_STOPPED;
1751 current->exit_code = sig->group_exit_code;
1752 __set_current_state(TASK_STOPPED);
1754 spin_unlock_irq(&current->sighand->siglock);
1755 finish_stop(stop_count);
1756 return 1;
1760 * Do appropriate magic when group_stop_count > 0.
1761 * We return nonzero if we stopped, after releasing the siglock.
1762 * We return zero if we still hold the siglock and should look
1763 * for another signal without checking group_stop_count again.
1765 static int handle_group_stop(void)
1767 int stop_count;
1769 if (current->signal->group_exit_task == current) {
1771 * Group stop is so we can do a core dump,
1772 * We are the initiating thread, so get on with it.
1774 current->signal->group_exit_task = NULL;
1775 return 0;
1778 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1780 * Group stop is so another thread can do a core dump,
1781 * or else we are racing against a death signal.
1782 * Just punt the stop so we can get the next signal.
1784 return 0;
1787 * There is a group stop in progress. We stop
1788 * without any associated signal being in our queue.
1790 stop_count = --current->signal->group_stop_count;
1791 if (stop_count == 0)
1792 current->signal->flags = SIGNAL_STOP_STOPPED;
1793 current->exit_code = current->signal->group_exit_code;
1794 set_current_state(TASK_STOPPED);
1795 spin_unlock_irq(&current->sighand->siglock);
1796 finish_stop(stop_count);
1797 return 1;
1800 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1801 struct pt_regs *regs, void *cookie)
1803 sigset_t *mask = &current->blocked;
1804 int signr = 0;
1806 try_to_freeze();
1808 relock:
1809 spin_lock_irq(&current->sighand->siglock);
1810 for (;;) {
1811 struct k_sigaction *ka;
1813 if (unlikely(current->signal->group_stop_count > 0) &&
1814 handle_group_stop())
1815 goto relock;
1817 signr = dequeue_signal(current, mask, info);
1819 if (!signr)
1820 break; /* will return 0 */
1822 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1823 ptrace_signal_deliver(regs, cookie);
1825 /* Let the debugger run. */
1826 ptrace_stop(signr, signr, info);
1828 /* We're back. Did the debugger cancel the sig? */
1829 signr = current->exit_code;
1830 if (signr == 0)
1831 continue;
1833 current->exit_code = 0;
1835 /* Update the siginfo structure if the signal has
1836 changed. If the debugger wanted something
1837 specific in the siginfo structure then it should
1838 have updated *info via PTRACE_SETSIGINFO. */
1839 if (signr != info->si_signo) {
1840 info->si_signo = signr;
1841 info->si_errno = 0;
1842 info->si_code = SI_USER;
1843 info->si_pid = current->parent->pid;
1844 info->si_uid = current->parent->uid;
1847 /* If the (new) signal is now blocked, requeue it. */
1848 if (sigismember(&current->blocked, signr)) {
1849 specific_send_sig_info(signr, info, current);
1850 continue;
1854 ka = &current->sighand->action[signr-1];
1855 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1856 continue;
1857 if (ka->sa.sa_handler != SIG_DFL) {
1858 /* Run the handler. */
1859 *return_ka = *ka;
1861 if (ka->sa.sa_flags & SA_ONESHOT)
1862 ka->sa.sa_handler = SIG_DFL;
1864 break; /* will return non-zero "signr" value */
1868 * Now we are doing the default action for this signal.
1870 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1871 continue;
1873 /* Init gets no signals it doesn't want. */
1874 if (current == child_reaper)
1875 continue;
1877 if (sig_kernel_stop(signr)) {
1879 * The default action is to stop all threads in
1880 * the thread group. The job control signals
1881 * do nothing in an orphaned pgrp, but SIGSTOP
1882 * always works. Note that siglock needs to be
1883 * dropped during the call to is_orphaned_pgrp()
1884 * because of lock ordering with tasklist_lock.
1885 * This allows an intervening SIGCONT to be posted.
1886 * We need to check for that and bail out if necessary.
1888 if (signr != SIGSTOP) {
1889 spin_unlock_irq(&current->sighand->siglock);
1891 /* signals can be posted during this window */
1893 if (is_orphaned_pgrp(process_group(current)))
1894 goto relock;
1896 spin_lock_irq(&current->sighand->siglock);
1899 if (likely(do_signal_stop(signr))) {
1900 /* It released the siglock. */
1901 goto relock;
1905 * We didn't actually stop, due to a race
1906 * with SIGCONT or something like that.
1908 continue;
1911 spin_unlock_irq(&current->sighand->siglock);
1914 * Anything else is fatal, maybe with a core dump.
1916 current->flags |= PF_SIGNALED;
1917 if (sig_kernel_coredump(signr)) {
1919 * If it was able to dump core, this kills all
1920 * other threads in the group and synchronizes with
1921 * their demise. If we lost the race with another
1922 * thread getting here, it set group_exit_code
1923 * first and our do_group_exit call below will use
1924 * that value and ignore the one we pass it.
1926 do_coredump((long)signr, signr, regs);
1930 * Death signals, no core dump.
1932 do_group_exit(signr);
1933 /* NOTREACHED */
1935 spin_unlock_irq(&current->sighand->siglock);
1936 return signr;
1939 EXPORT_SYMBOL(recalc_sigpending);
1940 EXPORT_SYMBOL_GPL(dequeue_signal);
1941 EXPORT_SYMBOL(flush_signals);
1942 EXPORT_SYMBOL(force_sig);
1943 EXPORT_SYMBOL(kill_pg);
1944 EXPORT_SYMBOL(kill_proc);
1945 EXPORT_SYMBOL(ptrace_notify);
1946 EXPORT_SYMBOL(send_sig);
1947 EXPORT_SYMBOL(send_sig_info);
1948 EXPORT_SYMBOL(sigprocmask);
1949 EXPORT_SYMBOL(block_all_signals);
1950 EXPORT_SYMBOL(unblock_all_signals);
1954 * System call entry points.
1957 asmlinkage long sys_restart_syscall(void)
1959 struct restart_block *restart = &current_thread_info()->restart_block;
1960 return restart->fn(restart);
1963 long do_no_restart_syscall(struct restart_block *param)
1965 return -EINTR;
1969 * We don't need to get the kernel lock - this is all local to this
1970 * particular thread.. (and that's good, because this is _heavily_
1971 * used by various programs)
1975 * This is also useful for kernel threads that want to temporarily
1976 * (or permanently) block certain signals.
1978 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1979 * interface happily blocks "unblockable" signals like SIGKILL
1980 * and friends.
1982 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1984 int error;
1986 spin_lock_irq(&current->sighand->siglock);
1987 if (oldset)
1988 *oldset = current->blocked;
1990 error = 0;
1991 switch (how) {
1992 case SIG_BLOCK:
1993 sigorsets(&current->blocked, &current->blocked, set);
1994 break;
1995 case SIG_UNBLOCK:
1996 signandsets(&current->blocked, &current->blocked, set);
1997 break;
1998 case SIG_SETMASK:
1999 current->blocked = *set;
2000 break;
2001 default:
2002 error = -EINVAL;
2004 recalc_sigpending();
2005 spin_unlock_irq(&current->sighand->siglock);
2007 return error;
2010 asmlinkage long
2011 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2013 int error = -EINVAL;
2014 sigset_t old_set, new_set;
2016 /* XXX: Don't preclude handling different sized sigset_t's. */
2017 if (sigsetsize != sizeof(sigset_t))
2018 goto out;
2020 if (set) {
2021 error = -EFAULT;
2022 if (copy_from_user(&new_set, set, sizeof(*set)))
2023 goto out;
2024 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2026 error = sigprocmask(how, &new_set, &old_set);
2027 if (error)
2028 goto out;
2029 if (oset)
2030 goto set_old;
2031 } else if (oset) {
2032 spin_lock_irq(&current->sighand->siglock);
2033 old_set = current->blocked;
2034 spin_unlock_irq(&current->sighand->siglock);
2036 set_old:
2037 error = -EFAULT;
2038 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2039 goto out;
2041 error = 0;
2042 out:
2043 return error;
2046 long do_sigpending(void __user *set, unsigned long sigsetsize)
2048 long error = -EINVAL;
2049 sigset_t pending;
2051 if (sigsetsize > sizeof(sigset_t))
2052 goto out;
2054 spin_lock_irq(&current->sighand->siglock);
2055 sigorsets(&pending, &current->pending.signal,
2056 &current->signal->shared_pending.signal);
2057 spin_unlock_irq(&current->sighand->siglock);
2059 /* Outside the lock because only this thread touches it. */
2060 sigandsets(&pending, &current->blocked, &pending);
2062 error = -EFAULT;
2063 if (!copy_to_user(set, &pending, sigsetsize))
2064 error = 0;
2066 out:
2067 return error;
2070 asmlinkage long
2071 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2073 return do_sigpending(set, sigsetsize);
2076 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2078 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2080 int err;
2082 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2083 return -EFAULT;
2084 if (from->si_code < 0)
2085 return __copy_to_user(to, from, sizeof(siginfo_t))
2086 ? -EFAULT : 0;
2088 * If you change siginfo_t structure, please be sure
2089 * this code is fixed accordingly.
2090 * It should never copy any pad contained in the structure
2091 * to avoid security leaks, but must copy the generic
2092 * 3 ints plus the relevant union member.
2094 err = __put_user(from->si_signo, &to->si_signo);
2095 err |= __put_user(from->si_errno, &to->si_errno);
2096 err |= __put_user((short)from->si_code, &to->si_code);
2097 switch (from->si_code & __SI_MASK) {
2098 case __SI_KILL:
2099 err |= __put_user(from->si_pid, &to->si_pid);
2100 err |= __put_user(from->si_uid, &to->si_uid);
2101 break;
2102 case __SI_TIMER:
2103 err |= __put_user(from->si_tid, &to->si_tid);
2104 err |= __put_user(from->si_overrun, &to->si_overrun);
2105 err |= __put_user(from->si_ptr, &to->si_ptr);
2106 break;
2107 case __SI_POLL:
2108 err |= __put_user(from->si_band, &to->si_band);
2109 err |= __put_user(from->si_fd, &to->si_fd);
2110 break;
2111 case __SI_FAULT:
2112 err |= __put_user(from->si_addr, &to->si_addr);
2113 #ifdef __ARCH_SI_TRAPNO
2114 err |= __put_user(from->si_trapno, &to->si_trapno);
2115 #endif
2116 break;
2117 case __SI_CHLD:
2118 err |= __put_user(from->si_pid, &to->si_pid);
2119 err |= __put_user(from->si_uid, &to->si_uid);
2120 err |= __put_user(from->si_status, &to->si_status);
2121 err |= __put_user(from->si_utime, &to->si_utime);
2122 err |= __put_user(from->si_stime, &to->si_stime);
2123 break;
2124 case __SI_RT: /* This is not generated by the kernel as of now. */
2125 case __SI_MESGQ: /* But this is */
2126 err |= __put_user(from->si_pid, &to->si_pid);
2127 err |= __put_user(from->si_uid, &to->si_uid);
2128 err |= __put_user(from->si_ptr, &to->si_ptr);
2129 break;
2130 default: /* this is just in case for now ... */
2131 err |= __put_user(from->si_pid, &to->si_pid);
2132 err |= __put_user(from->si_uid, &to->si_uid);
2133 break;
2135 return err;
2138 #endif
2140 asmlinkage long
2141 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2142 siginfo_t __user *uinfo,
2143 const struct timespec __user *uts,
2144 size_t sigsetsize)
2146 int ret, sig;
2147 sigset_t these;
2148 struct timespec ts;
2149 siginfo_t info;
2150 long timeout = 0;
2152 /* XXX: Don't preclude handling different sized sigset_t's. */
2153 if (sigsetsize != sizeof(sigset_t))
2154 return -EINVAL;
2156 if (copy_from_user(&these, uthese, sizeof(these)))
2157 return -EFAULT;
2160 * Invert the set of allowed signals to get those we
2161 * want to block.
2163 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2164 signotset(&these);
2166 if (uts) {
2167 if (copy_from_user(&ts, uts, sizeof(ts)))
2168 return -EFAULT;
2169 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2170 || ts.tv_sec < 0)
2171 return -EINVAL;
2174 spin_lock_irq(&current->sighand->siglock);
2175 sig = dequeue_signal(current, &these, &info);
2176 if (!sig) {
2177 timeout = MAX_SCHEDULE_TIMEOUT;
2178 if (uts)
2179 timeout = (timespec_to_jiffies(&ts)
2180 + (ts.tv_sec || ts.tv_nsec));
2182 if (timeout) {
2183 /* None ready -- temporarily unblock those we're
2184 * interested while we are sleeping in so that we'll
2185 * be awakened when they arrive. */
2186 current->real_blocked = current->blocked;
2187 sigandsets(&current->blocked, &current->blocked, &these);
2188 recalc_sigpending();
2189 spin_unlock_irq(&current->sighand->siglock);
2191 timeout = schedule_timeout_interruptible(timeout);
2193 spin_lock_irq(&current->sighand->siglock);
2194 sig = dequeue_signal(current, &these, &info);
2195 current->blocked = current->real_blocked;
2196 siginitset(&current->real_blocked, 0);
2197 recalc_sigpending();
2200 spin_unlock_irq(&current->sighand->siglock);
2202 if (sig) {
2203 ret = sig;
2204 if (uinfo) {
2205 if (copy_siginfo_to_user(uinfo, &info))
2206 ret = -EFAULT;
2208 } else {
2209 ret = -EAGAIN;
2210 if (timeout)
2211 ret = -EINTR;
2214 return ret;
2217 asmlinkage long
2218 sys_kill(int pid, int sig)
2220 struct siginfo info;
2222 info.si_signo = sig;
2223 info.si_errno = 0;
2224 info.si_code = SI_USER;
2225 info.si_pid = current->tgid;
2226 info.si_uid = current->uid;
2228 return kill_something_info(sig, &info, pid);
2231 static int do_tkill(int tgid, int pid, int sig)
2233 int error;
2234 struct siginfo info;
2235 struct task_struct *p;
2237 error = -ESRCH;
2238 info.si_signo = sig;
2239 info.si_errno = 0;
2240 info.si_code = SI_TKILL;
2241 info.si_pid = current->tgid;
2242 info.si_uid = current->uid;
2244 read_lock(&tasklist_lock);
2245 p = find_task_by_pid(pid);
2246 if (p && (tgid <= 0 || p->tgid == tgid)) {
2247 error = check_kill_permission(sig, &info, p);
2249 * The null signal is a permissions and process existence
2250 * probe. No signal is actually delivered.
2252 if (!error && sig && p->sighand) {
2253 spin_lock_irq(&p->sighand->siglock);
2254 handle_stop_signal(sig, p);
2255 error = specific_send_sig_info(sig, &info, p);
2256 spin_unlock_irq(&p->sighand->siglock);
2259 read_unlock(&tasklist_lock);
2261 return error;
2265 * sys_tgkill - send signal to one specific thread
2266 * @tgid: the thread group ID of the thread
2267 * @pid: the PID of the thread
2268 * @sig: signal to be sent
2270 * This syscall also checks the tgid and returns -ESRCH even if the PID
2271 * exists but it's not belonging to the target process anymore. This
2272 * method solves the problem of threads exiting and PIDs getting reused.
2274 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2276 /* This is only valid for single tasks */
2277 if (pid <= 0 || tgid <= 0)
2278 return -EINVAL;
2280 return do_tkill(tgid, pid, sig);
2284 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2286 asmlinkage long
2287 sys_tkill(int pid, int sig)
2289 /* This is only valid for single tasks */
2290 if (pid <= 0)
2291 return -EINVAL;
2293 return do_tkill(0, pid, sig);
2296 asmlinkage long
2297 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2299 siginfo_t info;
2301 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2302 return -EFAULT;
2304 /* Not even root can pretend to send signals from the kernel.
2305 Nor can they impersonate a kill(), which adds source info. */
2306 if (info.si_code >= 0)
2307 return -EPERM;
2308 info.si_signo = sig;
2310 /* POSIX.1b doesn't mention process groups. */
2311 return kill_proc_info(sig, &info, pid);
2314 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2316 struct k_sigaction *k;
2317 sigset_t mask;
2319 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2320 return -EINVAL;
2322 k = &current->sighand->action[sig-1];
2324 spin_lock_irq(&current->sighand->siglock);
2325 if (signal_pending(current)) {
2327 * If there might be a fatal signal pending on multiple
2328 * threads, make sure we take it before changing the action.
2330 spin_unlock_irq(&current->sighand->siglock);
2331 return -ERESTARTNOINTR;
2334 if (oact)
2335 *oact = *k;
2337 if (act) {
2338 sigdelsetmask(&act->sa.sa_mask,
2339 sigmask(SIGKILL) | sigmask(SIGSTOP));
2340 *k = *act;
2342 * POSIX 3.3.1.3:
2343 * "Setting a signal action to SIG_IGN for a signal that is
2344 * pending shall cause the pending signal to be discarded,
2345 * whether or not it is blocked."
2347 * "Setting a signal action to SIG_DFL for a signal that is
2348 * pending and whose default action is to ignore the signal
2349 * (for example, SIGCHLD), shall cause the pending signal to
2350 * be discarded, whether or not it is blocked"
2352 if (act->sa.sa_handler == SIG_IGN ||
2353 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2354 struct task_struct *t = current;
2355 sigemptyset(&mask);
2356 sigaddset(&mask, sig);
2357 rm_from_queue_full(&mask, &t->signal->shared_pending);
2358 do {
2359 rm_from_queue_full(&mask, &t->pending);
2360 recalc_sigpending_tsk(t);
2361 t = next_thread(t);
2362 } while (t != current);
2366 spin_unlock_irq(&current->sighand->siglock);
2367 return 0;
2370 int
2371 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2373 stack_t oss;
2374 int error;
2376 if (uoss) {
2377 oss.ss_sp = (void __user *) current->sas_ss_sp;
2378 oss.ss_size = current->sas_ss_size;
2379 oss.ss_flags = sas_ss_flags(sp);
2382 if (uss) {
2383 void __user *ss_sp;
2384 size_t ss_size;
2385 int ss_flags;
2387 error = -EFAULT;
2388 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2389 || __get_user(ss_sp, &uss->ss_sp)
2390 || __get_user(ss_flags, &uss->ss_flags)
2391 || __get_user(ss_size, &uss->ss_size))
2392 goto out;
2394 error = -EPERM;
2395 if (on_sig_stack(sp))
2396 goto out;
2398 error = -EINVAL;
2401 * Note - this code used to test ss_flags incorrectly
2402 * old code may have been written using ss_flags==0
2403 * to mean ss_flags==SS_ONSTACK (as this was the only
2404 * way that worked) - this fix preserves that older
2405 * mechanism
2407 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2408 goto out;
2410 if (ss_flags == SS_DISABLE) {
2411 ss_size = 0;
2412 ss_sp = NULL;
2413 } else {
2414 error = -ENOMEM;
2415 if (ss_size < MINSIGSTKSZ)
2416 goto out;
2419 current->sas_ss_sp = (unsigned long) ss_sp;
2420 current->sas_ss_size = ss_size;
2423 if (uoss) {
2424 error = -EFAULT;
2425 if (copy_to_user(uoss, &oss, sizeof(oss)))
2426 goto out;
2429 error = 0;
2430 out:
2431 return error;
2434 #ifdef __ARCH_WANT_SYS_SIGPENDING
2436 asmlinkage long
2437 sys_sigpending(old_sigset_t __user *set)
2439 return do_sigpending(set, sizeof(*set));
2442 #endif
2444 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2445 /* Some platforms have their own version with special arguments others
2446 support only sys_rt_sigprocmask. */
2448 asmlinkage long
2449 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2451 int error;
2452 old_sigset_t old_set, new_set;
2454 if (set) {
2455 error = -EFAULT;
2456 if (copy_from_user(&new_set, set, sizeof(*set)))
2457 goto out;
2458 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2460 spin_lock_irq(&current->sighand->siglock);
2461 old_set = current->blocked.sig[0];
2463 error = 0;
2464 switch (how) {
2465 default:
2466 error = -EINVAL;
2467 break;
2468 case SIG_BLOCK:
2469 sigaddsetmask(&current->blocked, new_set);
2470 break;
2471 case SIG_UNBLOCK:
2472 sigdelsetmask(&current->blocked, new_set);
2473 break;
2474 case SIG_SETMASK:
2475 current->blocked.sig[0] = new_set;
2476 break;
2479 recalc_sigpending();
2480 spin_unlock_irq(&current->sighand->siglock);
2481 if (error)
2482 goto out;
2483 if (oset)
2484 goto set_old;
2485 } else if (oset) {
2486 old_set = current->blocked.sig[0];
2487 set_old:
2488 error = -EFAULT;
2489 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2490 goto out;
2492 error = 0;
2493 out:
2494 return error;
2496 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2498 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2499 asmlinkage long
2500 sys_rt_sigaction(int sig,
2501 const struct sigaction __user *act,
2502 struct sigaction __user *oact,
2503 size_t sigsetsize)
2505 struct k_sigaction new_sa, old_sa;
2506 int ret = -EINVAL;
2508 /* XXX: Don't preclude handling different sized sigset_t's. */
2509 if (sigsetsize != sizeof(sigset_t))
2510 goto out;
2512 if (act) {
2513 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2514 return -EFAULT;
2517 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2519 if (!ret && oact) {
2520 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2521 return -EFAULT;
2523 out:
2524 return ret;
2526 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2528 #ifdef __ARCH_WANT_SYS_SGETMASK
2531 * For backwards compatibility. Functionality superseded by sigprocmask.
2533 asmlinkage long
2534 sys_sgetmask(void)
2536 /* SMP safe */
2537 return current->blocked.sig[0];
2540 asmlinkage long
2541 sys_ssetmask(int newmask)
2543 int old;
2545 spin_lock_irq(&current->sighand->siglock);
2546 old = current->blocked.sig[0];
2548 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2549 sigmask(SIGSTOP)));
2550 recalc_sigpending();
2551 spin_unlock_irq(&current->sighand->siglock);
2553 return old;
2555 #endif /* __ARCH_WANT_SGETMASK */
2557 #ifdef __ARCH_WANT_SYS_SIGNAL
2559 * For backwards compatibility. Functionality superseded by sigaction.
2561 asmlinkage unsigned long
2562 sys_signal(int sig, __sighandler_t handler)
2564 struct k_sigaction new_sa, old_sa;
2565 int ret;
2567 new_sa.sa.sa_handler = handler;
2568 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2569 sigemptyset(&new_sa.sa.sa_mask);
2571 ret = do_sigaction(sig, &new_sa, &old_sa);
2573 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2575 #endif /* __ARCH_WANT_SYS_SIGNAL */
2577 #ifdef __ARCH_WANT_SYS_PAUSE
2579 asmlinkage long
2580 sys_pause(void)
2582 current->state = TASK_INTERRUPTIBLE;
2583 schedule();
2584 return -ERESTARTNOHAND;
2587 #endif
2589 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2590 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2592 sigset_t newset;
2594 /* XXX: Don't preclude handling different sized sigset_t's. */
2595 if (sigsetsize != sizeof(sigset_t))
2596 return -EINVAL;
2598 if (copy_from_user(&newset, unewset, sizeof(newset)))
2599 return -EFAULT;
2600 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2602 spin_lock_irq(&current->sighand->siglock);
2603 current->saved_sigmask = current->blocked;
2604 current->blocked = newset;
2605 recalc_sigpending();
2606 spin_unlock_irq(&current->sighand->siglock);
2608 current->state = TASK_INTERRUPTIBLE;
2609 schedule();
2610 set_thread_flag(TIF_RESTORE_SIGMASK);
2611 return -ERESTARTNOHAND;
2613 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2615 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2617 return NULL;
2620 void __init signals_init(void)
2622 sigqueue_cachep =
2623 kmem_cache_create("sigqueue",
2624 sizeof(struct sigqueue),
2625 __alignof__(struct sigqueue),
2626 SLAB_PANIC, NULL, NULL);