2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
21 #include <asm/pgalloc.h>
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
31 unsigned long transparent_hugepage_flags __read_mostly
=
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
)|
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly
= HPAGE_PMD_NR
*8;
43 static unsigned int khugepaged_pages_collapsed
;
44 static unsigned int khugepaged_full_scans
;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
48 static struct task_struct
*khugepaged_thread __read_mostly
;
49 static DEFINE_MUTEX(khugepaged_mutex
);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
57 static unsigned int khugepaged_max_ptes_none __read_mostly
= HPAGE_PMD_NR
-1;
59 static int khugepaged(void *none
);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head
*mm_slots_hash __read_mostly
;
66 static struct kmem_cache
*mm_slot_cache __read_mostly
;
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
75 struct hlist_node hash
;
76 struct list_head mm_node
;
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
86 * There is only the one khugepaged_scan instance of this cursor structure.
88 struct khugepaged_scan
{
89 struct list_head mm_head
;
90 struct mm_slot
*mm_slot
;
91 unsigned long address
;
93 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
97 static int set_recommended_min_free_kbytes(void)
101 unsigned long recommended_min
;
102 extern int min_free_kbytes
;
104 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG
,
105 &transparent_hugepage_flags
) &&
106 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
107 &transparent_hugepage_flags
))
110 for_each_populated_zone(zone
)
113 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
117 * Make sure that on average at least two pageblocks are almost free
118 * of another type, one for a migratetype to fall back to and a
119 * second to avoid subsequent fallbacks of other types There are 3
120 * MIGRATE_TYPES we care about.
122 recommended_min
+= pageblock_nr_pages
* nr_zones
*
123 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
125 /* don't ever allow to reserve more than 5% of the lowmem */
126 recommended_min
= min(recommended_min
,
127 (unsigned long) nr_free_buffer_pages() / 20);
128 recommended_min
<<= (PAGE_SHIFT
-10);
130 if (recommended_min
> min_free_kbytes
)
131 min_free_kbytes
= recommended_min
;
132 setup_per_zone_wmarks();
135 late_initcall(set_recommended_min_free_kbytes
);
137 static int start_khugepaged(void)
140 if (khugepaged_enabled()) {
142 if (unlikely(!mm_slot_cache
|| !mm_slots_hash
)) {
146 mutex_lock(&khugepaged_mutex
);
147 if (!khugepaged_thread
)
148 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
150 if (unlikely(IS_ERR(khugepaged_thread
))) {
152 "khugepaged: kthread_run(khugepaged) failed\n");
153 err
= PTR_ERR(khugepaged_thread
);
154 khugepaged_thread
= NULL
;
156 wakeup
= !list_empty(&khugepaged_scan
.mm_head
);
157 mutex_unlock(&khugepaged_mutex
);
159 wake_up_interruptible(&khugepaged_wait
);
161 set_recommended_min_free_kbytes();
164 wake_up_interruptible(&khugepaged_wait
);
171 static ssize_t
double_flag_show(struct kobject
*kobj
,
172 struct kobj_attribute
*attr
, char *buf
,
173 enum transparent_hugepage_flag enabled
,
174 enum transparent_hugepage_flag req_madv
)
176 if (test_bit(enabled
, &transparent_hugepage_flags
)) {
177 VM_BUG_ON(test_bit(req_madv
, &transparent_hugepage_flags
));
178 return sprintf(buf
, "[always] madvise never\n");
179 } else if (test_bit(req_madv
, &transparent_hugepage_flags
))
180 return sprintf(buf
, "always [madvise] never\n");
182 return sprintf(buf
, "always madvise [never]\n");
184 static ssize_t
double_flag_store(struct kobject
*kobj
,
185 struct kobj_attribute
*attr
,
186 const char *buf
, size_t count
,
187 enum transparent_hugepage_flag enabled
,
188 enum transparent_hugepage_flag req_madv
)
190 if (!memcmp("always", buf
,
191 min(sizeof("always")-1, count
))) {
192 set_bit(enabled
, &transparent_hugepage_flags
);
193 clear_bit(req_madv
, &transparent_hugepage_flags
);
194 } else if (!memcmp("madvise", buf
,
195 min(sizeof("madvise")-1, count
))) {
196 clear_bit(enabled
, &transparent_hugepage_flags
);
197 set_bit(req_madv
, &transparent_hugepage_flags
);
198 } else if (!memcmp("never", buf
,
199 min(sizeof("never")-1, count
))) {
200 clear_bit(enabled
, &transparent_hugepage_flags
);
201 clear_bit(req_madv
, &transparent_hugepage_flags
);
208 static ssize_t
enabled_show(struct kobject
*kobj
,
209 struct kobj_attribute
*attr
, char *buf
)
211 return double_flag_show(kobj
, attr
, buf
,
212 TRANSPARENT_HUGEPAGE_FLAG
,
213 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
215 static ssize_t
enabled_store(struct kobject
*kobj
,
216 struct kobj_attribute
*attr
,
217 const char *buf
, size_t count
)
221 ret
= double_flag_store(kobj
, attr
, buf
, count
,
222 TRANSPARENT_HUGEPAGE_FLAG
,
223 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
226 int err
= start_khugepaged();
232 (test_bit(TRANSPARENT_HUGEPAGE_FLAG
,
233 &transparent_hugepage_flags
) ||
234 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
235 &transparent_hugepage_flags
)))
236 set_recommended_min_free_kbytes();
240 static struct kobj_attribute enabled_attr
=
241 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
243 static ssize_t
single_flag_show(struct kobject
*kobj
,
244 struct kobj_attribute
*attr
, char *buf
,
245 enum transparent_hugepage_flag flag
)
247 if (test_bit(flag
, &transparent_hugepage_flags
))
248 return sprintf(buf
, "[yes] no\n");
250 return sprintf(buf
, "yes [no]\n");
252 static ssize_t
single_flag_store(struct kobject
*kobj
,
253 struct kobj_attribute
*attr
,
254 const char *buf
, size_t count
,
255 enum transparent_hugepage_flag flag
)
257 if (!memcmp("yes", buf
,
258 min(sizeof("yes")-1, count
))) {
259 set_bit(flag
, &transparent_hugepage_flags
);
260 } else if (!memcmp("no", buf
,
261 min(sizeof("no")-1, count
))) {
262 clear_bit(flag
, &transparent_hugepage_flags
);
270 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
271 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
272 * memory just to allocate one more hugepage.
274 static ssize_t
defrag_show(struct kobject
*kobj
,
275 struct kobj_attribute
*attr
, char *buf
)
277 return double_flag_show(kobj
, attr
, buf
,
278 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
279 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
281 static ssize_t
defrag_store(struct kobject
*kobj
,
282 struct kobj_attribute
*attr
,
283 const char *buf
, size_t count
)
285 return double_flag_store(kobj
, attr
, buf
, count
,
286 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
287 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
289 static struct kobj_attribute defrag_attr
=
290 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
292 #ifdef CONFIG_DEBUG_VM
293 static ssize_t
debug_cow_show(struct kobject
*kobj
,
294 struct kobj_attribute
*attr
, char *buf
)
296 return single_flag_show(kobj
, attr
, buf
,
297 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
299 static ssize_t
debug_cow_store(struct kobject
*kobj
,
300 struct kobj_attribute
*attr
,
301 const char *buf
, size_t count
)
303 return single_flag_store(kobj
, attr
, buf
, count
,
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
306 static struct kobj_attribute debug_cow_attr
=
307 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
308 #endif /* CONFIG_DEBUG_VM */
310 static struct attribute
*hugepage_attr
[] = {
313 #ifdef CONFIG_DEBUG_VM
314 &debug_cow_attr
.attr
,
319 static struct attribute_group hugepage_attr_group
= {
320 .attrs
= hugepage_attr
,
323 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
324 struct kobj_attribute
*attr
,
327 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
330 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
331 struct kobj_attribute
*attr
,
332 const char *buf
, size_t count
)
337 err
= strict_strtoul(buf
, 10, &msecs
);
338 if (err
|| msecs
> UINT_MAX
)
341 khugepaged_scan_sleep_millisecs
= msecs
;
342 wake_up_interruptible(&khugepaged_wait
);
346 static struct kobj_attribute scan_sleep_millisecs_attr
=
347 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
348 scan_sleep_millisecs_store
);
350 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
351 struct kobj_attribute
*attr
,
354 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
357 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
358 struct kobj_attribute
*attr
,
359 const char *buf
, size_t count
)
364 err
= strict_strtoul(buf
, 10, &msecs
);
365 if (err
|| msecs
> UINT_MAX
)
368 khugepaged_alloc_sleep_millisecs
= msecs
;
369 wake_up_interruptible(&khugepaged_wait
);
373 static struct kobj_attribute alloc_sleep_millisecs_attr
=
374 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
375 alloc_sleep_millisecs_store
);
377 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
378 struct kobj_attribute
*attr
,
381 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
383 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
384 struct kobj_attribute
*attr
,
385 const char *buf
, size_t count
)
390 err
= strict_strtoul(buf
, 10, &pages
);
391 if (err
|| !pages
|| pages
> UINT_MAX
)
394 khugepaged_pages_to_scan
= pages
;
398 static struct kobj_attribute pages_to_scan_attr
=
399 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
400 pages_to_scan_store
);
402 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
403 struct kobj_attribute
*attr
,
406 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
408 static struct kobj_attribute pages_collapsed_attr
=
409 __ATTR_RO(pages_collapsed
);
411 static ssize_t
full_scans_show(struct kobject
*kobj
,
412 struct kobj_attribute
*attr
,
415 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
417 static struct kobj_attribute full_scans_attr
=
418 __ATTR_RO(full_scans
);
420 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
421 struct kobj_attribute
*attr
, char *buf
)
423 return single_flag_show(kobj
, attr
, buf
,
424 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
426 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
427 struct kobj_attribute
*attr
,
428 const char *buf
, size_t count
)
430 return single_flag_store(kobj
, attr
, buf
, count
,
431 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
433 static struct kobj_attribute khugepaged_defrag_attr
=
434 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
435 khugepaged_defrag_store
);
438 * max_ptes_none controls if khugepaged should collapse hugepages over
439 * any unmapped ptes in turn potentially increasing the memory
440 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
441 * reduce the available free memory in the system as it
442 * runs. Increasing max_ptes_none will instead potentially reduce the
443 * free memory in the system during the khugepaged scan.
445 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
446 struct kobj_attribute
*attr
,
449 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
451 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
452 struct kobj_attribute
*attr
,
453 const char *buf
, size_t count
)
456 unsigned long max_ptes_none
;
458 err
= strict_strtoul(buf
, 10, &max_ptes_none
);
459 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
462 khugepaged_max_ptes_none
= max_ptes_none
;
466 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
467 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
468 khugepaged_max_ptes_none_store
);
470 static struct attribute
*khugepaged_attr
[] = {
471 &khugepaged_defrag_attr
.attr
,
472 &khugepaged_max_ptes_none_attr
.attr
,
473 &pages_to_scan_attr
.attr
,
474 &pages_collapsed_attr
.attr
,
475 &full_scans_attr
.attr
,
476 &scan_sleep_millisecs_attr
.attr
,
477 &alloc_sleep_millisecs_attr
.attr
,
481 static struct attribute_group khugepaged_attr_group
= {
482 .attrs
= khugepaged_attr
,
483 .name
= "khugepaged",
485 #endif /* CONFIG_SYSFS */
487 static int __init
hugepage_init(void)
491 static struct kobject
*hugepage_kobj
;
495 if (!has_transparent_hugepage()) {
496 transparent_hugepage_flags
= 0;
502 hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
503 if (unlikely(!hugepage_kobj
)) {
504 printk(KERN_ERR
"hugepage: failed kobject create\n");
508 err
= sysfs_create_group(hugepage_kobj
, &hugepage_attr_group
);
510 printk(KERN_ERR
"hugepage: failed register hugeage group\n");
514 err
= sysfs_create_group(hugepage_kobj
, &khugepaged_attr_group
);
516 printk(KERN_ERR
"hugepage: failed register hugeage group\n");
521 err
= khugepaged_slab_init();
525 err
= mm_slots_hash_init();
527 khugepaged_slab_free();
532 * By default disable transparent hugepages on smaller systems,
533 * where the extra memory used could hurt more than TLB overhead
534 * is likely to save. The admin can still enable it through /sys.
536 if (totalram_pages
< (512 << (20 - PAGE_SHIFT
)))
537 transparent_hugepage_flags
= 0;
541 set_recommended_min_free_kbytes();
546 module_init(hugepage_init
)
548 static int __init
setup_transparent_hugepage(char *str
)
553 if (!strcmp(str
, "always")) {
554 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
555 &transparent_hugepage_flags
);
556 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
557 &transparent_hugepage_flags
);
559 } else if (!strcmp(str
, "madvise")) {
560 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
561 &transparent_hugepage_flags
);
562 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
563 &transparent_hugepage_flags
);
565 } else if (!strcmp(str
, "never")) {
566 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
567 &transparent_hugepage_flags
);
568 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
569 &transparent_hugepage_flags
);
575 "transparent_hugepage= cannot parse, ignored\n");
578 __setup("transparent_hugepage=", setup_transparent_hugepage
);
580 static void prepare_pmd_huge_pte(pgtable_t pgtable
,
581 struct mm_struct
*mm
)
583 assert_spin_locked(&mm
->page_table_lock
);
586 if (!mm
->pmd_huge_pte
)
587 INIT_LIST_HEAD(&pgtable
->lru
);
589 list_add(&pgtable
->lru
, &mm
->pmd_huge_pte
->lru
);
590 mm
->pmd_huge_pte
= pgtable
;
593 static inline pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
595 if (likely(vma
->vm_flags
& VM_WRITE
))
596 pmd
= pmd_mkwrite(pmd
);
600 static int __do_huge_pmd_anonymous_page(struct mm_struct
*mm
,
601 struct vm_area_struct
*vma
,
602 unsigned long haddr
, pmd_t
*pmd
,
608 VM_BUG_ON(!PageCompound(page
));
609 pgtable
= pte_alloc_one(mm
, haddr
);
610 if (unlikely(!pgtable
)) {
611 mem_cgroup_uncharge_page(page
);
616 clear_huge_page(page
, haddr
, HPAGE_PMD_NR
);
617 __SetPageUptodate(page
);
619 spin_lock(&mm
->page_table_lock
);
620 if (unlikely(!pmd_none(*pmd
))) {
621 spin_unlock(&mm
->page_table_lock
);
622 mem_cgroup_uncharge_page(page
);
624 pte_free(mm
, pgtable
);
627 entry
= mk_pmd(page
, vma
->vm_page_prot
);
628 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
629 entry
= pmd_mkhuge(entry
);
631 * The spinlocking to take the lru_lock inside
632 * page_add_new_anon_rmap() acts as a full memory
633 * barrier to be sure clear_huge_page writes become
634 * visible after the set_pmd_at() write.
636 page_add_new_anon_rmap(page
, vma
, haddr
);
637 set_pmd_at(mm
, haddr
, pmd
, entry
);
638 prepare_pmd_huge_pte(pgtable
, mm
);
639 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
640 spin_unlock(&mm
->page_table_lock
);
646 static inline gfp_t
alloc_hugepage_gfpmask(int defrag
, gfp_t extra_gfp
)
648 return (GFP_TRANSHUGE
& ~(defrag
? 0 : __GFP_WAIT
)) | extra_gfp
;
651 static inline struct page
*alloc_hugepage_vma(int defrag
,
652 struct vm_area_struct
*vma
,
653 unsigned long haddr
, int nd
,
656 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag
, extra_gfp
),
657 HPAGE_PMD_ORDER
, vma
, haddr
, nd
);
661 static inline struct page
*alloc_hugepage(int defrag
)
663 return alloc_pages(alloc_hugepage_gfpmask(defrag
, 0),
668 int do_huge_pmd_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
669 unsigned long address
, pmd_t
*pmd
,
673 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
676 if (haddr
>= vma
->vm_start
&& haddr
+ HPAGE_PMD_SIZE
<= vma
->vm_end
) {
677 if (unlikely(anon_vma_prepare(vma
)))
679 if (unlikely(khugepaged_enter(vma
)))
681 page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
682 vma
, haddr
, numa_node_id(), 0);
685 if (unlikely(mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))) {
690 return __do_huge_pmd_anonymous_page(mm
, vma
, haddr
, pmd
, page
);
694 * Use __pte_alloc instead of pte_alloc_map, because we can't
695 * run pte_offset_map on the pmd, if an huge pmd could
696 * materialize from under us from a different thread.
698 if (unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
700 /* if an huge pmd materialized from under us just retry later */
701 if (unlikely(pmd_trans_huge(*pmd
)))
704 * A regular pmd is established and it can't morph into a huge pmd
705 * from under us anymore at this point because we hold the mmap_sem
706 * read mode and khugepaged takes it in write mode. So now it's
707 * safe to run pte_offset_map().
709 pte
= pte_offset_map(pmd
, address
);
710 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
713 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
714 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
715 struct vm_area_struct
*vma
)
717 struct page
*src_page
;
723 pgtable
= pte_alloc_one(dst_mm
, addr
);
724 if (unlikely(!pgtable
))
727 spin_lock(&dst_mm
->page_table_lock
);
728 spin_lock_nested(&src_mm
->page_table_lock
, SINGLE_DEPTH_NESTING
);
732 if (unlikely(!pmd_trans_huge(pmd
))) {
733 pte_free(dst_mm
, pgtable
);
736 if (unlikely(pmd_trans_splitting(pmd
))) {
737 /* split huge page running from under us */
738 spin_unlock(&src_mm
->page_table_lock
);
739 spin_unlock(&dst_mm
->page_table_lock
);
740 pte_free(dst_mm
, pgtable
);
742 wait_split_huge_page(vma
->anon_vma
, src_pmd
); /* src_vma */
745 src_page
= pmd_page(pmd
);
746 VM_BUG_ON(!PageHead(src_page
));
748 page_dup_rmap(src_page
);
749 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
751 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
752 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
753 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
754 prepare_pmd_huge_pte(pgtable
, dst_mm
);
758 spin_unlock(&src_mm
->page_table_lock
);
759 spin_unlock(&dst_mm
->page_table_lock
);
764 /* no "address" argument so destroys page coloring of some arch */
765 pgtable_t
get_pmd_huge_pte(struct mm_struct
*mm
)
769 assert_spin_locked(&mm
->page_table_lock
);
772 pgtable
= mm
->pmd_huge_pte
;
773 if (list_empty(&pgtable
->lru
))
774 mm
->pmd_huge_pte
= NULL
;
776 mm
->pmd_huge_pte
= list_entry(pgtable
->lru
.next
,
778 list_del(&pgtable
->lru
);
783 static int do_huge_pmd_wp_page_fallback(struct mm_struct
*mm
,
784 struct vm_area_struct
*vma
,
785 unsigned long address
,
786 pmd_t
*pmd
, pmd_t orig_pmd
,
795 pages
= kmalloc(sizeof(struct page
*) * HPAGE_PMD_NR
,
797 if (unlikely(!pages
)) {
802 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
803 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
|
805 vma
, address
, page_to_nid(page
));
806 if (unlikely(!pages
[i
] ||
807 mem_cgroup_newpage_charge(pages
[i
], mm
,
811 mem_cgroup_uncharge_start();
813 mem_cgroup_uncharge_page(pages
[i
]);
816 mem_cgroup_uncharge_end();
823 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
824 copy_user_highpage(pages
[i
], page
+ i
,
825 haddr
+ PAGE_SHIFT
*i
, vma
);
826 __SetPageUptodate(pages
[i
]);
830 spin_lock(&mm
->page_table_lock
);
831 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
833 VM_BUG_ON(!PageHead(page
));
835 pmdp_clear_flush_notify(vma
, haddr
, pmd
);
836 /* leave pmd empty until pte is filled */
838 pgtable
= get_pmd_huge_pte(mm
);
839 pmd_populate(mm
, &_pmd
, pgtable
);
841 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
843 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
844 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
845 page_add_new_anon_rmap(pages
[i
], vma
, haddr
);
846 pte
= pte_offset_map(&_pmd
, haddr
);
847 VM_BUG_ON(!pte_none(*pte
));
848 set_pte_at(mm
, haddr
, pte
, entry
);
854 smp_wmb(); /* make pte visible before pmd */
855 pmd_populate(mm
, pmd
, pgtable
);
856 page_remove_rmap(page
);
857 spin_unlock(&mm
->page_table_lock
);
859 ret
|= VM_FAULT_WRITE
;
866 spin_unlock(&mm
->page_table_lock
);
867 mem_cgroup_uncharge_start();
868 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
869 mem_cgroup_uncharge_page(pages
[i
]);
872 mem_cgroup_uncharge_end();
877 int do_huge_pmd_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
878 unsigned long address
, pmd_t
*pmd
, pmd_t orig_pmd
)
881 struct page
*page
, *new_page
;
884 VM_BUG_ON(!vma
->anon_vma
);
885 spin_lock(&mm
->page_table_lock
);
886 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
889 page
= pmd_page(orig_pmd
);
890 VM_BUG_ON(!PageCompound(page
) || !PageHead(page
));
891 haddr
= address
& HPAGE_PMD_MASK
;
892 if (page_mapcount(page
) == 1) {
894 entry
= pmd_mkyoung(orig_pmd
);
895 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
896 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, 1))
897 update_mmu_cache(vma
, address
, entry
);
898 ret
|= VM_FAULT_WRITE
;
902 spin_unlock(&mm
->page_table_lock
);
904 if (transparent_hugepage_enabled(vma
) &&
905 !transparent_hugepage_debug_cow())
906 new_page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
907 vma
, haddr
, numa_node_id(), 0);
911 if (unlikely(!new_page
)) {
912 ret
= do_huge_pmd_wp_page_fallback(mm
, vma
, address
,
913 pmd
, orig_pmd
, page
, haddr
);
918 if (unlikely(mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))) {
925 copy_user_huge_page(new_page
, page
, haddr
, vma
, HPAGE_PMD_NR
);
926 __SetPageUptodate(new_page
);
928 spin_lock(&mm
->page_table_lock
);
930 if (unlikely(!pmd_same(*pmd
, orig_pmd
))) {
931 mem_cgroup_uncharge_page(new_page
);
935 VM_BUG_ON(!PageHead(page
));
936 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
937 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
938 entry
= pmd_mkhuge(entry
);
939 pmdp_clear_flush_notify(vma
, haddr
, pmd
);
940 page_add_new_anon_rmap(new_page
, vma
, haddr
);
941 set_pmd_at(mm
, haddr
, pmd
, entry
);
942 update_mmu_cache(vma
, address
, entry
);
943 page_remove_rmap(page
);
945 ret
|= VM_FAULT_WRITE
;
948 spin_unlock(&mm
->page_table_lock
);
953 struct page
*follow_trans_huge_pmd(struct mm_struct
*mm
,
958 struct page
*page
= NULL
;
960 assert_spin_locked(&mm
->page_table_lock
);
962 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
965 page
= pmd_page(*pmd
);
966 VM_BUG_ON(!PageHead(page
));
967 if (flags
& FOLL_TOUCH
) {
970 * We should set the dirty bit only for FOLL_WRITE but
971 * for now the dirty bit in the pmd is meaningless.
972 * And if the dirty bit will become meaningful and
973 * we'll only set it with FOLL_WRITE, an atomic
974 * set_bit will be required on the pmd to set the
975 * young bit, instead of the current set_pmd_at.
977 _pmd
= pmd_mkyoung(pmd_mkdirty(*pmd
));
978 set_pmd_at(mm
, addr
& HPAGE_PMD_MASK
, pmd
, _pmd
);
980 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
981 VM_BUG_ON(!PageCompound(page
));
982 if (flags
& FOLL_GET
)
989 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
994 spin_lock(&tlb
->mm
->page_table_lock
);
995 if (likely(pmd_trans_huge(*pmd
))) {
996 if (unlikely(pmd_trans_splitting(*pmd
))) {
997 spin_unlock(&tlb
->mm
->page_table_lock
);
998 wait_split_huge_page(vma
->anon_vma
,
1003 pgtable
= get_pmd_huge_pte(tlb
->mm
);
1004 page
= pmd_page(*pmd
);
1006 page_remove_rmap(page
);
1007 VM_BUG_ON(page_mapcount(page
) < 0);
1008 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1009 VM_BUG_ON(!PageHead(page
));
1010 spin_unlock(&tlb
->mm
->page_table_lock
);
1011 tlb_remove_page(tlb
, page
);
1012 pte_free(tlb
->mm
, pgtable
);
1016 spin_unlock(&tlb
->mm
->page_table_lock
);
1021 int mincore_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1022 unsigned long addr
, unsigned long end
,
1027 spin_lock(&vma
->vm_mm
->page_table_lock
);
1028 if (likely(pmd_trans_huge(*pmd
))) {
1029 ret
= !pmd_trans_splitting(*pmd
);
1030 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1032 wait_split_huge_page(vma
->anon_vma
, pmd
);
1035 * All logical pages in the range are present
1036 * if backed by a huge page.
1038 memset(vec
, 1, (end
- addr
) >> PAGE_SHIFT
);
1041 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1046 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1047 unsigned long addr
, pgprot_t newprot
)
1049 struct mm_struct
*mm
= vma
->vm_mm
;
1052 spin_lock(&mm
->page_table_lock
);
1053 if (likely(pmd_trans_huge(*pmd
))) {
1054 if (unlikely(pmd_trans_splitting(*pmd
))) {
1055 spin_unlock(&mm
->page_table_lock
);
1056 wait_split_huge_page(vma
->anon_vma
, pmd
);
1060 entry
= pmdp_get_and_clear(mm
, addr
, pmd
);
1061 entry
= pmd_modify(entry
, newprot
);
1062 set_pmd_at(mm
, addr
, pmd
, entry
);
1063 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1064 flush_tlb_range(vma
, addr
, addr
+ HPAGE_PMD_SIZE
);
1068 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1073 pmd_t
*page_check_address_pmd(struct page
*page
,
1074 struct mm_struct
*mm
,
1075 unsigned long address
,
1076 enum page_check_address_pmd_flag flag
)
1080 pmd_t
*pmd
, *ret
= NULL
;
1082 if (address
& ~HPAGE_PMD_MASK
)
1085 pgd
= pgd_offset(mm
, address
);
1086 if (!pgd_present(*pgd
))
1089 pud
= pud_offset(pgd
, address
);
1090 if (!pud_present(*pud
))
1093 pmd
= pmd_offset(pud
, address
);
1096 if (pmd_page(*pmd
) != page
)
1099 * split_vma() may create temporary aliased mappings. There is
1100 * no risk as long as all huge pmd are found and have their
1101 * splitting bit set before __split_huge_page_refcount
1102 * runs. Finding the same huge pmd more than once during the
1103 * same rmap walk is not a problem.
1105 if (flag
== PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
&&
1106 pmd_trans_splitting(*pmd
))
1108 if (pmd_trans_huge(*pmd
)) {
1109 VM_BUG_ON(flag
== PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
&&
1110 !pmd_trans_splitting(*pmd
));
1117 static int __split_huge_page_splitting(struct page
*page
,
1118 struct vm_area_struct
*vma
,
1119 unsigned long address
)
1121 struct mm_struct
*mm
= vma
->vm_mm
;
1125 spin_lock(&mm
->page_table_lock
);
1126 pmd
= page_check_address_pmd(page
, mm
, address
,
1127 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
);
1130 * We can't temporarily set the pmd to null in order
1131 * to split it, the pmd must remain marked huge at all
1132 * times or the VM won't take the pmd_trans_huge paths
1133 * and it won't wait on the anon_vma->root->lock to
1134 * serialize against split_huge_page*.
1136 pmdp_splitting_flush_notify(vma
, address
, pmd
);
1139 spin_unlock(&mm
->page_table_lock
);
1144 static void __split_huge_page_refcount(struct page
*page
)
1147 unsigned long head_index
= page
->index
;
1148 struct zone
*zone
= page_zone(page
);
1151 /* prevent PageLRU to go away from under us, and freeze lru stats */
1152 spin_lock_irq(&zone
->lru_lock
);
1153 compound_lock(page
);
1155 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
1156 struct page
*page_tail
= page
+ i
;
1158 /* tail_page->_count cannot change */
1159 atomic_sub(atomic_read(&page_tail
->_count
), &page
->_count
);
1160 BUG_ON(page_count(page
) <= 0);
1161 atomic_add(page_mapcount(page
) + 1, &page_tail
->_count
);
1162 BUG_ON(atomic_read(&page_tail
->_count
) <= 0);
1164 /* after clearing PageTail the gup refcount can be released */
1168 * retain hwpoison flag of the poisoned tail page:
1169 * fix for the unsuitable process killed on Guest Machine(KVM)
1170 * by the memory-failure.
1172 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
| __PG_HWPOISON
;
1173 page_tail
->flags
|= (page
->flags
&
1174 ((1L << PG_referenced
) |
1175 (1L << PG_swapbacked
) |
1176 (1L << PG_mlocked
) |
1177 (1L << PG_uptodate
)));
1178 page_tail
->flags
|= (1L << PG_dirty
);
1181 * 1) clear PageTail before overwriting first_page
1182 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1187 * __split_huge_page_splitting() already set the
1188 * splitting bit in all pmd that could map this
1189 * hugepage, that will ensure no CPU can alter the
1190 * mapcount on the head page. The mapcount is only
1191 * accounted in the head page and it has to be
1192 * transferred to all tail pages in the below code. So
1193 * for this code to be safe, the split the mapcount
1194 * can't change. But that doesn't mean userland can't
1195 * keep changing and reading the page contents while
1196 * we transfer the mapcount, so the pmd splitting
1197 * status is achieved setting a reserved bit in the
1198 * pmd, not by clearing the present bit.
1200 BUG_ON(page_mapcount(page_tail
));
1201 page_tail
->_mapcount
= page
->_mapcount
;
1203 BUG_ON(page_tail
->mapping
);
1204 page_tail
->mapping
= page
->mapping
;
1206 page_tail
->index
= ++head_index
;
1208 BUG_ON(!PageAnon(page_tail
));
1209 BUG_ON(!PageUptodate(page_tail
));
1210 BUG_ON(!PageDirty(page_tail
));
1211 BUG_ON(!PageSwapBacked(page_tail
));
1213 mem_cgroup_split_huge_fixup(page
, page_tail
);
1215 lru_add_page_tail(zone
, page
, page_tail
);
1218 __dec_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1219 __mod_zone_page_state(zone
, NR_ANON_PAGES
, HPAGE_PMD_NR
);
1222 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1223 * so adjust those appropriately if this page is on the LRU.
1225 if (PageLRU(page
)) {
1226 zonestat
= NR_LRU_BASE
+ page_lru(page
);
1227 __mod_zone_page_state(zone
, zonestat
, -(HPAGE_PMD_NR
-1));
1230 ClearPageCompound(page
);
1231 compound_unlock(page
);
1232 spin_unlock_irq(&zone
->lru_lock
);
1234 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
1235 struct page
*page_tail
= page
+ i
;
1236 BUG_ON(page_count(page_tail
) <= 0);
1238 * Tail pages may be freed if there wasn't any mapping
1239 * like if add_to_swap() is running on a lru page that
1240 * had its mapping zapped. And freeing these pages
1241 * requires taking the lru_lock so we do the put_page
1242 * of the tail pages after the split is complete.
1244 put_page(page_tail
);
1248 * Only the head page (now become a regular page) is required
1249 * to be pinned by the caller.
1251 BUG_ON(page_count(page
) <= 0);
1254 static int __split_huge_page_map(struct page
*page
,
1255 struct vm_area_struct
*vma
,
1256 unsigned long address
)
1258 struct mm_struct
*mm
= vma
->vm_mm
;
1262 unsigned long haddr
;
1264 spin_lock(&mm
->page_table_lock
);
1265 pmd
= page_check_address_pmd(page
, mm
, address
,
1266 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
);
1268 pgtable
= get_pmd_huge_pte(mm
);
1269 pmd_populate(mm
, &_pmd
, pgtable
);
1271 for (i
= 0, haddr
= address
; i
< HPAGE_PMD_NR
;
1272 i
++, haddr
+= PAGE_SIZE
) {
1274 BUG_ON(PageCompound(page
+i
));
1275 entry
= mk_pte(page
+ i
, vma
->vm_page_prot
);
1276 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1277 if (!pmd_write(*pmd
))
1278 entry
= pte_wrprotect(entry
);
1280 BUG_ON(page_mapcount(page
) != 1);
1281 if (!pmd_young(*pmd
))
1282 entry
= pte_mkold(entry
);
1283 pte
= pte_offset_map(&_pmd
, haddr
);
1284 BUG_ON(!pte_none(*pte
));
1285 set_pte_at(mm
, haddr
, pte
, entry
);
1290 smp_wmb(); /* make pte visible before pmd */
1292 * Up to this point the pmd is present and huge and
1293 * userland has the whole access to the hugepage
1294 * during the split (which happens in place). If we
1295 * overwrite the pmd with the not-huge version
1296 * pointing to the pte here (which of course we could
1297 * if all CPUs were bug free), userland could trigger
1298 * a small page size TLB miss on the small sized TLB
1299 * while the hugepage TLB entry is still established
1300 * in the huge TLB. Some CPU doesn't like that. See
1301 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1302 * Erratum 383 on page 93. Intel should be safe but is
1303 * also warns that it's only safe if the permission
1304 * and cache attributes of the two entries loaded in
1305 * the two TLB is identical (which should be the case
1306 * here). But it is generally safer to never allow
1307 * small and huge TLB entries for the same virtual
1308 * address to be loaded simultaneously. So instead of
1309 * doing "pmd_populate(); flush_tlb_range();" we first
1310 * mark the current pmd notpresent (atomically because
1311 * here the pmd_trans_huge and pmd_trans_splitting
1312 * must remain set at all times on the pmd until the
1313 * split is complete for this pmd), then we flush the
1314 * SMP TLB and finally we write the non-huge version
1315 * of the pmd entry with pmd_populate.
1317 set_pmd_at(mm
, address
, pmd
, pmd_mknotpresent(*pmd
));
1318 flush_tlb_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
1319 pmd_populate(mm
, pmd
, pgtable
);
1322 spin_unlock(&mm
->page_table_lock
);
1327 /* must be called with anon_vma->root->lock hold */
1328 static void __split_huge_page(struct page
*page
,
1329 struct anon_vma
*anon_vma
)
1331 int mapcount
, mapcount2
;
1332 struct anon_vma_chain
*avc
;
1334 BUG_ON(!PageHead(page
));
1335 BUG_ON(PageTail(page
));
1338 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1339 struct vm_area_struct
*vma
= avc
->vma
;
1340 unsigned long addr
= vma_address(page
, vma
);
1341 BUG_ON(is_vma_temporary_stack(vma
));
1342 if (addr
== -EFAULT
)
1344 mapcount
+= __split_huge_page_splitting(page
, vma
, addr
);
1347 * It is critical that new vmas are added to the tail of the
1348 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1349 * and establishes a child pmd before
1350 * __split_huge_page_splitting() freezes the parent pmd (so if
1351 * we fail to prevent copy_huge_pmd() from running until the
1352 * whole __split_huge_page() is complete), we will still see
1353 * the newly established pmd of the child later during the
1354 * walk, to be able to set it as pmd_trans_splitting too.
1356 if (mapcount
!= page_mapcount(page
))
1357 printk(KERN_ERR
"mapcount %d page_mapcount %d\n",
1358 mapcount
, page_mapcount(page
));
1359 BUG_ON(mapcount
!= page_mapcount(page
));
1361 __split_huge_page_refcount(page
);
1364 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1365 struct vm_area_struct
*vma
= avc
->vma
;
1366 unsigned long addr
= vma_address(page
, vma
);
1367 BUG_ON(is_vma_temporary_stack(vma
));
1368 if (addr
== -EFAULT
)
1370 mapcount2
+= __split_huge_page_map(page
, vma
, addr
);
1372 if (mapcount
!= mapcount2
)
1373 printk(KERN_ERR
"mapcount %d mapcount2 %d page_mapcount %d\n",
1374 mapcount
, mapcount2
, page_mapcount(page
));
1375 BUG_ON(mapcount
!= mapcount2
);
1378 int split_huge_page(struct page
*page
)
1380 struct anon_vma
*anon_vma
;
1383 BUG_ON(!PageAnon(page
));
1384 anon_vma
= page_lock_anon_vma(page
);
1388 if (!PageCompound(page
))
1391 BUG_ON(!PageSwapBacked(page
));
1392 __split_huge_page(page
, anon_vma
);
1394 BUG_ON(PageCompound(page
));
1396 page_unlock_anon_vma(anon_vma
);
1401 int hugepage_madvise(struct vm_area_struct
*vma
,
1402 unsigned long *vm_flags
, int advice
)
1407 * Be somewhat over-protective like KSM for now!
1409 if (*vm_flags
& (VM_HUGEPAGE
|
1410 VM_SHARED
| VM_MAYSHARE
|
1411 VM_PFNMAP
| VM_IO
| VM_DONTEXPAND
|
1412 VM_RESERVED
| VM_HUGETLB
| VM_INSERTPAGE
|
1413 VM_MIXEDMAP
| VM_SAO
))
1415 *vm_flags
&= ~VM_NOHUGEPAGE
;
1416 *vm_flags
|= VM_HUGEPAGE
;
1418 * If the vma become good for khugepaged to scan,
1419 * register it here without waiting a page fault that
1420 * may not happen any time soon.
1422 if (unlikely(khugepaged_enter_vma_merge(vma
)))
1425 case MADV_NOHUGEPAGE
:
1427 * Be somewhat over-protective like KSM for now!
1429 if (*vm_flags
& (VM_NOHUGEPAGE
|
1430 VM_SHARED
| VM_MAYSHARE
|
1431 VM_PFNMAP
| VM_IO
| VM_DONTEXPAND
|
1432 VM_RESERVED
| VM_HUGETLB
| VM_INSERTPAGE
|
1433 VM_MIXEDMAP
| VM_SAO
))
1435 *vm_flags
&= ~VM_HUGEPAGE
;
1436 *vm_flags
|= VM_NOHUGEPAGE
;
1438 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1439 * this vma even if we leave the mm registered in khugepaged if
1440 * it got registered before VM_NOHUGEPAGE was set.
1448 static int __init
khugepaged_slab_init(void)
1450 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
1451 sizeof(struct mm_slot
),
1452 __alignof__(struct mm_slot
), 0, NULL
);
1459 static void __init
khugepaged_slab_free(void)
1461 kmem_cache_destroy(mm_slot_cache
);
1462 mm_slot_cache
= NULL
;
1465 static inline struct mm_slot
*alloc_mm_slot(void)
1467 if (!mm_slot_cache
) /* initialization failed */
1469 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
1472 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
1474 kmem_cache_free(mm_slot_cache
, mm_slot
);
1477 static int __init
mm_slots_hash_init(void)
1479 mm_slots_hash
= kzalloc(MM_SLOTS_HASH_HEADS
* sizeof(struct hlist_head
),
1487 static void __init
mm_slots_hash_free(void)
1489 kfree(mm_slots_hash
);
1490 mm_slots_hash
= NULL
;
1494 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
1496 struct mm_slot
*mm_slot
;
1497 struct hlist_head
*bucket
;
1498 struct hlist_node
*node
;
1500 bucket
= &mm_slots_hash
[((unsigned long)mm
/ sizeof(struct mm_struct
))
1501 % MM_SLOTS_HASH_HEADS
];
1502 hlist_for_each_entry(mm_slot
, node
, bucket
, hash
) {
1503 if (mm
== mm_slot
->mm
)
1509 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
1510 struct mm_slot
*mm_slot
)
1512 struct hlist_head
*bucket
;
1514 bucket
= &mm_slots_hash
[((unsigned long)mm
/ sizeof(struct mm_struct
))
1515 % MM_SLOTS_HASH_HEADS
];
1517 hlist_add_head(&mm_slot
->hash
, bucket
);
1520 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
1522 return atomic_read(&mm
->mm_users
) == 0;
1525 int __khugepaged_enter(struct mm_struct
*mm
)
1527 struct mm_slot
*mm_slot
;
1530 mm_slot
= alloc_mm_slot();
1534 /* __khugepaged_exit() must not run from under us */
1535 VM_BUG_ON(khugepaged_test_exit(mm
));
1536 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
1537 free_mm_slot(mm_slot
);
1541 spin_lock(&khugepaged_mm_lock
);
1542 insert_to_mm_slots_hash(mm
, mm_slot
);
1544 * Insert just behind the scanning cursor, to let the area settle
1547 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
1548 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
1549 spin_unlock(&khugepaged_mm_lock
);
1551 atomic_inc(&mm
->mm_count
);
1553 wake_up_interruptible(&khugepaged_wait
);
1558 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
)
1560 unsigned long hstart
, hend
;
1563 * Not yet faulted in so we will register later in the
1564 * page fault if needed.
1567 if (vma
->vm_file
|| vma
->vm_ops
)
1568 /* khugepaged not yet working on file or special mappings */
1570 VM_BUG_ON(is_linear_pfn_mapping(vma
) || is_pfn_mapping(vma
));
1571 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
1572 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
1574 return khugepaged_enter(vma
);
1578 void __khugepaged_exit(struct mm_struct
*mm
)
1580 struct mm_slot
*mm_slot
;
1583 spin_lock(&khugepaged_mm_lock
);
1584 mm_slot
= get_mm_slot(mm
);
1585 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
1586 hlist_del(&mm_slot
->hash
);
1587 list_del(&mm_slot
->mm_node
);
1592 spin_unlock(&khugepaged_mm_lock
);
1593 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
1594 free_mm_slot(mm_slot
);
1596 } else if (mm_slot
) {
1597 spin_unlock(&khugepaged_mm_lock
);
1599 * This is required to serialize against
1600 * khugepaged_test_exit() (which is guaranteed to run
1601 * under mmap sem read mode). Stop here (after we
1602 * return all pagetables will be destroyed) until
1603 * khugepaged has finished working on the pagetables
1604 * under the mmap_sem.
1606 down_write(&mm
->mmap_sem
);
1607 up_write(&mm
->mmap_sem
);
1609 spin_unlock(&khugepaged_mm_lock
);
1612 static void release_pte_page(struct page
*page
)
1614 /* 0 stands for page_is_file_cache(page) == false */
1615 dec_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
1617 putback_lru_page(page
);
1620 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
1622 while (--_pte
>= pte
) {
1623 pte_t pteval
= *_pte
;
1624 if (!pte_none(pteval
))
1625 release_pte_page(pte_page(pteval
));
1629 static void release_all_pte_pages(pte_t
*pte
)
1631 release_pte_pages(pte
, pte
+ HPAGE_PMD_NR
);
1634 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
1635 unsigned long address
,
1640 int referenced
= 0, isolated
= 0, none
= 0;
1641 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
1642 _pte
++, address
+= PAGE_SIZE
) {
1643 pte_t pteval
= *_pte
;
1644 if (pte_none(pteval
)) {
1645 if (++none
<= khugepaged_max_ptes_none
)
1648 release_pte_pages(pte
, _pte
);
1652 if (!pte_present(pteval
) || !pte_write(pteval
)) {
1653 release_pte_pages(pte
, _pte
);
1656 page
= vm_normal_page(vma
, address
, pteval
);
1657 if (unlikely(!page
)) {
1658 release_pte_pages(pte
, _pte
);
1661 VM_BUG_ON(PageCompound(page
));
1662 BUG_ON(!PageAnon(page
));
1663 VM_BUG_ON(!PageSwapBacked(page
));
1665 /* cannot use mapcount: can't collapse if there's a gup pin */
1666 if (page_count(page
) != 1) {
1667 release_pte_pages(pte
, _pte
);
1671 * We can do it before isolate_lru_page because the
1672 * page can't be freed from under us. NOTE: PG_lock
1673 * is needed to serialize against split_huge_page
1674 * when invoked from the VM.
1676 if (!trylock_page(page
)) {
1677 release_pte_pages(pte
, _pte
);
1681 * Isolate the page to avoid collapsing an hugepage
1682 * currently in use by the VM.
1684 if (isolate_lru_page(page
)) {
1686 release_pte_pages(pte
, _pte
);
1689 /* 0 stands for page_is_file_cache(page) == false */
1690 inc_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
1691 VM_BUG_ON(!PageLocked(page
));
1692 VM_BUG_ON(PageLRU(page
));
1694 /* If there is no mapped pte young don't collapse the page */
1695 if (pte_young(pteval
) || PageReferenced(page
) ||
1696 mmu_notifier_test_young(vma
->vm_mm
, address
))
1699 if (unlikely(!referenced
))
1700 release_all_pte_pages(pte
);
1707 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
1708 struct vm_area_struct
*vma
,
1709 unsigned long address
,
1713 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
; _pte
++) {
1714 pte_t pteval
= *_pte
;
1715 struct page
*src_page
;
1717 if (pte_none(pteval
)) {
1718 clear_user_highpage(page
, address
);
1719 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
1721 src_page
= pte_page(pteval
);
1722 copy_user_highpage(page
, src_page
, address
, vma
);
1723 VM_BUG_ON(page_mapcount(src_page
) != 1);
1724 VM_BUG_ON(page_count(src_page
) != 2);
1725 release_pte_page(src_page
);
1727 * ptl mostly unnecessary, but preempt has to
1728 * be disabled to update the per-cpu stats
1729 * inside page_remove_rmap().
1733 * paravirt calls inside pte_clear here are
1736 pte_clear(vma
->vm_mm
, address
, _pte
);
1737 page_remove_rmap(src_page
);
1739 free_page_and_swap_cache(src_page
);
1742 address
+= PAGE_SIZE
;
1747 static void collapse_huge_page(struct mm_struct
*mm
,
1748 unsigned long address
,
1749 struct page
**hpage
,
1750 struct vm_area_struct
*vma
,
1758 struct page
*new_page
;
1761 unsigned long hstart
, hend
;
1763 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
1767 if (unlikely(mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))) {
1768 up_read(&mm
->mmap_sem
);
1774 * Allocate the page while the vma is still valid and under
1775 * the mmap_sem read mode so there is no memory allocation
1776 * later when we take the mmap_sem in write mode. This is more
1777 * friendly behavior (OTOH it may actually hide bugs) to
1778 * filesystems in userland with daemons allocating memory in
1779 * the userland I/O paths. Allocating memory with the
1780 * mmap_sem in read mode is good idea also to allow greater
1783 new_page
= alloc_hugepage_vma(khugepaged_defrag(), vma
, address
,
1784 node
, __GFP_OTHER_NODE
);
1785 if (unlikely(!new_page
)) {
1786 up_read(&mm
->mmap_sem
);
1787 *hpage
= ERR_PTR(-ENOMEM
);
1790 if (unlikely(mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))) {
1791 up_read(&mm
->mmap_sem
);
1797 /* after allocating the hugepage upgrade to mmap_sem write mode */
1798 up_read(&mm
->mmap_sem
);
1801 * Prevent all access to pagetables with the exception of
1802 * gup_fast later hanlded by the ptep_clear_flush and the VM
1803 * handled by the anon_vma lock + PG_lock.
1805 down_write(&mm
->mmap_sem
);
1806 if (unlikely(khugepaged_test_exit(mm
)))
1809 vma
= find_vma(mm
, address
);
1810 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
1811 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
1812 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
1815 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
1816 (vma
->vm_flags
& VM_NOHUGEPAGE
))
1819 /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
1820 if (!vma
->anon_vma
|| vma
->vm_ops
|| vma
->vm_file
)
1822 if (is_vma_temporary_stack(vma
))
1824 VM_BUG_ON(is_linear_pfn_mapping(vma
) || is_pfn_mapping(vma
));
1826 pgd
= pgd_offset(mm
, address
);
1827 if (!pgd_present(*pgd
))
1830 pud
= pud_offset(pgd
, address
);
1831 if (!pud_present(*pud
))
1834 pmd
= pmd_offset(pud
, address
);
1835 /* pmd can't go away or become huge under us */
1836 if (!pmd_present(*pmd
) || pmd_trans_huge(*pmd
))
1839 anon_vma_lock(vma
->anon_vma
);
1841 pte
= pte_offset_map(pmd
, address
);
1842 ptl
= pte_lockptr(mm
, pmd
);
1844 spin_lock(&mm
->page_table_lock
); /* probably unnecessary */
1846 * After this gup_fast can't run anymore. This also removes
1847 * any huge TLB entry from the CPU so we won't allow
1848 * huge and small TLB entries for the same virtual address
1849 * to avoid the risk of CPU bugs in that area.
1851 _pmd
= pmdp_clear_flush_notify(vma
, address
, pmd
);
1852 spin_unlock(&mm
->page_table_lock
);
1855 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
1858 if (unlikely(!isolated
)) {
1860 spin_lock(&mm
->page_table_lock
);
1861 BUG_ON(!pmd_none(*pmd
));
1862 set_pmd_at(mm
, address
, pmd
, _pmd
);
1863 spin_unlock(&mm
->page_table_lock
);
1864 anon_vma_unlock(vma
->anon_vma
);
1869 * All pages are isolated and locked so anon_vma rmap
1870 * can't run anymore.
1872 anon_vma_unlock(vma
->anon_vma
);
1874 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, ptl
);
1876 __SetPageUptodate(new_page
);
1877 pgtable
= pmd_pgtable(_pmd
);
1878 VM_BUG_ON(page_count(pgtable
) != 1);
1879 VM_BUG_ON(page_mapcount(pgtable
) != 0);
1881 _pmd
= mk_pmd(new_page
, vma
->vm_page_prot
);
1882 _pmd
= maybe_pmd_mkwrite(pmd_mkdirty(_pmd
), vma
);
1883 _pmd
= pmd_mkhuge(_pmd
);
1886 * spin_lock() below is not the equivalent of smp_wmb(), so
1887 * this is needed to avoid the copy_huge_page writes to become
1888 * visible after the set_pmd_at() write.
1892 spin_lock(&mm
->page_table_lock
);
1893 BUG_ON(!pmd_none(*pmd
));
1894 page_add_new_anon_rmap(new_page
, vma
, address
);
1895 set_pmd_at(mm
, address
, pmd
, _pmd
);
1896 update_mmu_cache(vma
, address
, entry
);
1897 prepare_pmd_huge_pte(pgtable
, mm
);
1899 spin_unlock(&mm
->page_table_lock
);
1904 khugepaged_pages_collapsed
++;
1906 up_write(&mm
->mmap_sem
);
1910 mem_cgroup_uncharge_page(new_page
);
1917 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
1918 struct vm_area_struct
*vma
,
1919 unsigned long address
,
1920 struct page
**hpage
)
1926 int ret
= 0, referenced
= 0, none
= 0;
1928 unsigned long _address
;
1932 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
1934 pgd
= pgd_offset(mm
, address
);
1935 if (!pgd_present(*pgd
))
1938 pud
= pud_offset(pgd
, address
);
1939 if (!pud_present(*pud
))
1942 pmd
= pmd_offset(pud
, address
);
1943 if (!pmd_present(*pmd
) || pmd_trans_huge(*pmd
))
1946 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1947 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
1948 _pte
++, _address
+= PAGE_SIZE
) {
1949 pte_t pteval
= *_pte
;
1950 if (pte_none(pteval
)) {
1951 if (++none
<= khugepaged_max_ptes_none
)
1956 if (!pte_present(pteval
) || !pte_write(pteval
))
1958 page
= vm_normal_page(vma
, _address
, pteval
);
1959 if (unlikely(!page
))
1962 * Chose the node of the first page. This could
1963 * be more sophisticated and look at more pages,
1964 * but isn't for now.
1967 node
= page_to_nid(page
);
1968 VM_BUG_ON(PageCompound(page
));
1969 if (!PageLRU(page
) || PageLocked(page
) || !PageAnon(page
))
1971 /* cannot use mapcount: can't collapse if there's a gup pin */
1972 if (page_count(page
) != 1)
1974 if (pte_young(pteval
) || PageReferenced(page
) ||
1975 mmu_notifier_test_young(vma
->vm_mm
, address
))
1981 pte_unmap_unlock(pte
, ptl
);
1983 /* collapse_huge_page will return with the mmap_sem released */
1984 collapse_huge_page(mm
, address
, hpage
, vma
, node
);
1989 static void collect_mm_slot(struct mm_slot
*mm_slot
)
1991 struct mm_struct
*mm
= mm_slot
->mm
;
1993 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock
));
1995 if (khugepaged_test_exit(mm
)) {
1997 hlist_del(&mm_slot
->hash
);
1998 list_del(&mm_slot
->mm_node
);
2001 * Not strictly needed because the mm exited already.
2003 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2006 /* khugepaged_mm_lock actually not necessary for the below */
2007 free_mm_slot(mm_slot
);
2012 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
2013 struct page
**hpage
)
2015 struct mm_slot
*mm_slot
;
2016 struct mm_struct
*mm
;
2017 struct vm_area_struct
*vma
;
2021 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock
));
2023 if (khugepaged_scan
.mm_slot
)
2024 mm_slot
= khugepaged_scan
.mm_slot
;
2026 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
2027 struct mm_slot
, mm_node
);
2028 khugepaged_scan
.address
= 0;
2029 khugepaged_scan
.mm_slot
= mm_slot
;
2031 spin_unlock(&khugepaged_mm_lock
);
2034 down_read(&mm
->mmap_sem
);
2035 if (unlikely(khugepaged_test_exit(mm
)))
2038 vma
= find_vma(mm
, khugepaged_scan
.address
);
2041 for (; vma
; vma
= vma
->vm_next
) {
2042 unsigned long hstart
, hend
;
2045 if (unlikely(khugepaged_test_exit(mm
))) {
2050 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) &&
2051 !khugepaged_always()) ||
2052 (vma
->vm_flags
& VM_NOHUGEPAGE
)) {
2057 /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
2058 if (!vma
->anon_vma
|| vma
->vm_ops
|| vma
->vm_file
)
2060 if (is_vma_temporary_stack(vma
))
2063 VM_BUG_ON(is_linear_pfn_mapping(vma
) || is_pfn_mapping(vma
));
2065 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2066 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2069 if (khugepaged_scan
.address
> hend
)
2071 if (khugepaged_scan
.address
< hstart
)
2072 khugepaged_scan
.address
= hstart
;
2073 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
2075 while (khugepaged_scan
.address
< hend
) {
2078 if (unlikely(khugepaged_test_exit(mm
)))
2079 goto breakouterloop
;
2081 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
2082 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
2084 ret
= khugepaged_scan_pmd(mm
, vma
,
2085 khugepaged_scan
.address
,
2087 /* move to next address */
2088 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
2089 progress
+= HPAGE_PMD_NR
;
2091 /* we released mmap_sem so break loop */
2092 goto breakouterloop_mmap_sem
;
2093 if (progress
>= pages
)
2094 goto breakouterloop
;
2098 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
2099 breakouterloop_mmap_sem
:
2101 spin_lock(&khugepaged_mm_lock
);
2102 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
2104 * Release the current mm_slot if this mm is about to die, or
2105 * if we scanned all vmas of this mm.
2107 if (khugepaged_test_exit(mm
) || !vma
) {
2109 * Make sure that if mm_users is reaching zero while
2110 * khugepaged runs here, khugepaged_exit will find
2111 * mm_slot not pointing to the exiting mm.
2113 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
2114 khugepaged_scan
.mm_slot
= list_entry(
2115 mm_slot
->mm_node
.next
,
2116 struct mm_slot
, mm_node
);
2117 khugepaged_scan
.address
= 0;
2119 khugepaged_scan
.mm_slot
= NULL
;
2120 khugepaged_full_scans
++;
2123 collect_mm_slot(mm_slot
);
2129 static int khugepaged_has_work(void)
2131 return !list_empty(&khugepaged_scan
.mm_head
) &&
2132 khugepaged_enabled();
2135 static int khugepaged_wait_event(void)
2137 return !list_empty(&khugepaged_scan
.mm_head
) ||
2138 !khugepaged_enabled();
2141 static void khugepaged_do_scan(struct page
**hpage
)
2143 unsigned int progress
= 0, pass_through_head
= 0;
2144 unsigned int pages
= khugepaged_pages_to_scan
;
2146 barrier(); /* write khugepaged_pages_to_scan to local stack */
2148 while (progress
< pages
) {
2153 *hpage
= alloc_hugepage(khugepaged_defrag());
2154 if (unlikely(!*hpage
))
2162 if (unlikely(kthread_should_stop() || freezing(current
)))
2165 spin_lock(&khugepaged_mm_lock
);
2166 if (!khugepaged_scan
.mm_slot
)
2167 pass_through_head
++;
2168 if (khugepaged_has_work() &&
2169 pass_through_head
< 2)
2170 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
2174 spin_unlock(&khugepaged_mm_lock
);
2178 static void khugepaged_alloc_sleep(void)
2181 add_wait_queue(&khugepaged_wait
, &wait
);
2182 schedule_timeout_interruptible(
2184 khugepaged_alloc_sleep_millisecs
));
2185 remove_wait_queue(&khugepaged_wait
, &wait
);
2189 static struct page
*khugepaged_alloc_hugepage(void)
2194 hpage
= alloc_hugepage(khugepaged_defrag());
2196 khugepaged_alloc_sleep();
2197 } while (unlikely(!hpage
) &&
2198 likely(khugepaged_enabled()));
2203 static void khugepaged_loop(void)
2210 while (likely(khugepaged_enabled())) {
2212 hpage
= khugepaged_alloc_hugepage();
2213 if (unlikely(!hpage
))
2216 if (IS_ERR(hpage
)) {
2217 khugepaged_alloc_sleep();
2222 khugepaged_do_scan(&hpage
);
2228 if (unlikely(kthread_should_stop()))
2230 if (khugepaged_has_work()) {
2232 if (!khugepaged_scan_sleep_millisecs
)
2234 add_wait_queue(&khugepaged_wait
, &wait
);
2235 schedule_timeout_interruptible(
2237 khugepaged_scan_sleep_millisecs
));
2238 remove_wait_queue(&khugepaged_wait
, &wait
);
2239 } else if (khugepaged_enabled())
2240 wait_event_freezable(khugepaged_wait
,
2241 khugepaged_wait_event());
2245 static int khugepaged(void *none
)
2247 struct mm_slot
*mm_slot
;
2250 set_user_nice(current
, 19);
2252 /* serialize with start_khugepaged() */
2253 mutex_lock(&khugepaged_mutex
);
2256 mutex_unlock(&khugepaged_mutex
);
2257 VM_BUG_ON(khugepaged_thread
!= current
);
2259 VM_BUG_ON(khugepaged_thread
!= current
);
2261 mutex_lock(&khugepaged_mutex
);
2262 if (!khugepaged_enabled())
2264 if (unlikely(kthread_should_stop()))
2268 spin_lock(&khugepaged_mm_lock
);
2269 mm_slot
= khugepaged_scan
.mm_slot
;
2270 khugepaged_scan
.mm_slot
= NULL
;
2272 collect_mm_slot(mm_slot
);
2273 spin_unlock(&khugepaged_mm_lock
);
2275 khugepaged_thread
= NULL
;
2276 mutex_unlock(&khugepaged_mutex
);
2281 void __split_huge_page_pmd(struct mm_struct
*mm
, pmd_t
*pmd
)
2285 spin_lock(&mm
->page_table_lock
);
2286 if (unlikely(!pmd_trans_huge(*pmd
))) {
2287 spin_unlock(&mm
->page_table_lock
);
2290 page
= pmd_page(*pmd
);
2291 VM_BUG_ON(!page_count(page
));
2293 spin_unlock(&mm
->page_table_lock
);
2295 split_huge_page(page
);
2298 BUG_ON(pmd_trans_huge(*pmd
));
2301 static void split_huge_page_address(struct mm_struct
*mm
,
2302 unsigned long address
)
2308 VM_BUG_ON(!(address
& ~HPAGE_PMD_MASK
));
2310 pgd
= pgd_offset(mm
, address
);
2311 if (!pgd_present(*pgd
))
2314 pud
= pud_offset(pgd
, address
);
2315 if (!pud_present(*pud
))
2318 pmd
= pmd_offset(pud
, address
);
2319 if (!pmd_present(*pmd
))
2322 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2323 * materialize from under us.
2325 split_huge_page_pmd(mm
, pmd
);
2328 void __vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2329 unsigned long start
,
2334 * If the new start address isn't hpage aligned and it could
2335 * previously contain an hugepage: check if we need to split
2338 if (start
& ~HPAGE_PMD_MASK
&&
2339 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2340 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2341 split_huge_page_address(vma
->vm_mm
, start
);
2344 * If the new end address isn't hpage aligned and it could
2345 * previously contain an hugepage: check if we need to split
2348 if (end
& ~HPAGE_PMD_MASK
&&
2349 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2350 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2351 split_huge_page_address(vma
->vm_mm
, end
);
2354 * If we're also updating the vma->vm_next->vm_start, if the new
2355 * vm_next->vm_start isn't page aligned and it could previously
2356 * contain an hugepage: check if we need to split an huge pmd.
2358 if (adjust_next
> 0) {
2359 struct vm_area_struct
*next
= vma
->vm_next
;
2360 unsigned long nstart
= next
->vm_start
;
2361 nstart
+= adjust_next
<< PAGE_SHIFT
;
2362 if (nstart
& ~HPAGE_PMD_MASK
&&
2363 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2364 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2365 split_huge_page_address(next
->vm_mm
, nstart
);