4 * Copyright (C) 2002, Linus Torvalds.
8 * 04Jul2002 Andrew Morton
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <asm/atomic.h>
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure on the stack.
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
59 /* BIO submission state */
60 struct bio
*bio
; /* bio under assembly */
63 loff_t i_size
; /* i_size when submitted */
64 int flags
; /* doesn't change */
65 unsigned blkbits
; /* doesn't change */
66 unsigned blkfactor
; /* When we're using an alignment which
67 is finer than the filesystem's soft
68 blocksize, this specifies how much
69 finer. blkfactor=2 means 1/4-block
70 alignment. Does not change */
71 unsigned start_zero_done
; /* flag: sub-blocksize zeroing has
72 been performed at the start of a
74 int pages_in_io
; /* approximate total IO pages */
75 size_t size
; /* total request size (doesn't change)*/
76 sector_t block_in_file
; /* Current offset into the underlying
77 file in dio_block units. */
78 unsigned blocks_available
; /* At block_in_file. changes */
79 sector_t final_block_in_request
;/* doesn't change */
80 unsigned first_block_in_page
; /* doesn't change, Used only once */
81 int boundary
; /* prev block is at a boundary */
82 int reap_counter
; /* rate limit reaping */
83 get_block_t
*get_block
; /* block mapping function */
84 dio_iodone_t
*end_io
; /* IO completion function */
85 dio_submit_t
*submit_io
; /* IO submition function */
86 loff_t logical_offset_in_bio
; /* current first logical block in bio */
87 sector_t final_block_in_bio
; /* current final block in bio + 1 */
88 sector_t next_block_for_io
; /* next block to be put under IO,
89 in dio_blocks units */
90 struct buffer_head map_bh
; /* last get_block() result */
93 * Deferred addition of a page to the dio. These variables are
94 * private to dio_send_cur_page(), submit_page_section() and
97 struct page
*cur_page
; /* The page */
98 unsigned cur_page_offset
; /* Offset into it, in bytes */
99 unsigned cur_page_len
; /* Nr of bytes at cur_page_offset */
100 sector_t cur_page_block
; /* Where it starts */
101 loff_t cur_page_fs_offset
; /* Offset in file */
103 /* BIO completion state */
104 spinlock_t bio_lock
; /* protects BIO fields below */
105 unsigned long refcount
; /* direct_io_worker() and bios */
106 struct bio
*bio_list
; /* singly linked via bi_private */
107 struct task_struct
*waiter
; /* waiting task (NULL if none) */
109 /* AIO related stuff */
110 struct kiocb
*iocb
; /* kiocb */
111 int is_async
; /* is IO async ? */
112 int io_error
; /* IO error in completion path */
113 ssize_t result
; /* IO result */
116 * Page fetching state. These variables belong to dio_refill_pages().
118 int curr_page
; /* changes */
119 int total_pages
; /* doesn't change */
120 unsigned long curr_user_address
;/* changes */
123 * Page queue. These variables belong to dio_refill_pages() and
126 unsigned head
; /* next page to process */
127 unsigned tail
; /* last valid page + 1 */
128 int page_errors
; /* errno from get_user_pages() */
131 * pages[] (and any fields placed after it) are not zeroed out at
132 * allocation time. Don't add new fields after pages[] unless you
133 * wish that they not be zeroed.
135 struct page
*pages
[DIO_PAGES
]; /* page buffer */
139 * How many pages are in the queue?
141 static inline unsigned dio_pages_present(struct dio
*dio
)
143 return dio
->tail
- dio
->head
;
147 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
149 static int dio_refill_pages(struct dio
*dio
)
154 nr_pages
= min(dio
->total_pages
- dio
->curr_page
, DIO_PAGES
);
155 ret
= get_user_pages_fast(
156 dio
->curr_user_address
, /* Where from? */
157 nr_pages
, /* How many pages? */
158 dio
->rw
== READ
, /* Write to memory? */
159 &dio
->pages
[0]); /* Put results here */
161 if (ret
< 0 && dio
->blocks_available
&& (dio
->rw
& WRITE
)) {
162 struct page
*page
= ZERO_PAGE(0);
164 * A memory fault, but the filesystem has some outstanding
165 * mapped blocks. We need to use those blocks up to avoid
166 * leaking stale data in the file.
168 if (dio
->page_errors
== 0)
169 dio
->page_errors
= ret
;
170 page_cache_get(page
);
171 dio
->pages
[0] = page
;
179 dio
->curr_user_address
+= ret
* PAGE_SIZE
;
180 dio
->curr_page
+= ret
;
190 * Get another userspace page. Returns an ERR_PTR on error. Pages are
191 * buffered inside the dio so that we can call get_user_pages() against a
192 * decent number of pages, less frequently. To provide nicer use of the
195 static struct page
*dio_get_page(struct dio
*dio
)
197 if (dio_pages_present(dio
) == 0) {
200 ret
= dio_refill_pages(dio
);
203 BUG_ON(dio_pages_present(dio
) == 0);
205 return dio
->pages
[dio
->head
++];
209 * dio_complete() - called when all DIO BIO I/O has been completed
210 * @offset: the byte offset in the file of the completed operation
212 * This releases locks as dictated by the locking type, lets interested parties
213 * know that a DIO operation has completed, and calculates the resulting return
214 * code for the operation.
216 * It lets the filesystem know if it registered an interest earlier via
217 * get_block. Pass the private field of the map buffer_head so that
218 * filesystems can use it to hold additional state between get_block calls and
221 static ssize_t
dio_complete(struct dio
*dio
, loff_t offset
, ssize_t ret
, bool is_async
)
223 ssize_t transferred
= 0;
226 * AIO submission can race with bio completion to get here while
227 * expecting to have the last io completed by bio completion.
228 * In that case -EIOCBQUEUED is in fact not an error we want
229 * to preserve through this call.
231 if (ret
== -EIOCBQUEUED
)
235 transferred
= dio
->result
;
237 /* Check for short read case */
238 if ((dio
->rw
== READ
) && ((offset
+ transferred
) > dio
->i_size
))
239 transferred
= dio
->i_size
- offset
;
243 ret
= dio
->page_errors
;
249 if (dio
->end_io
&& dio
->result
) {
250 dio
->end_io(dio
->iocb
, offset
, transferred
,
251 dio
->map_bh
.b_private
, ret
, is_async
);
252 } else if (is_async
) {
253 aio_complete(dio
->iocb
, ret
, 0);
256 if (dio
->flags
& DIO_LOCKING
)
257 /* lockdep: non-owner release */
258 up_read_non_owner(&dio
->inode
->i_alloc_sem
);
263 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
);
265 * Asynchronous IO callback.
267 static void dio_bio_end_aio(struct bio
*bio
, int error
)
269 struct dio
*dio
= bio
->bi_private
;
270 unsigned long remaining
;
273 /* cleanup the bio */
274 dio_bio_complete(dio
, bio
);
276 spin_lock_irqsave(&dio
->bio_lock
, flags
);
277 remaining
= --dio
->refcount
;
278 if (remaining
== 1 && dio
->waiter
)
279 wake_up_process(dio
->waiter
);
280 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
282 if (remaining
== 0) {
283 dio_complete(dio
, dio
->iocb
->ki_pos
, 0, true);
289 * The BIO completion handler simply queues the BIO up for the process-context
292 * During I/O bi_private points at the dio. After I/O, bi_private is used to
293 * implement a singly-linked list of completed BIOs, at dio->bio_list.
295 static void dio_bio_end_io(struct bio
*bio
, int error
)
297 struct dio
*dio
= bio
->bi_private
;
300 spin_lock_irqsave(&dio
->bio_lock
, flags
);
301 bio
->bi_private
= dio
->bio_list
;
303 if (--dio
->refcount
== 1 && dio
->waiter
)
304 wake_up_process(dio
->waiter
);
305 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
309 * dio_end_io - handle the end io action for the given bio
310 * @bio: The direct io bio thats being completed
311 * @error: Error if there was one
313 * This is meant to be called by any filesystem that uses their own dio_submit_t
314 * so that the DIO specific endio actions are dealt with after the filesystem
315 * has done it's completion work.
317 void dio_end_io(struct bio
*bio
, int error
)
319 struct dio
*dio
= bio
->bi_private
;
322 dio_bio_end_aio(bio
, error
);
324 dio_bio_end_io(bio
, error
);
326 EXPORT_SYMBOL_GPL(dio_end_io
);
329 dio_bio_alloc(struct dio
*dio
, struct block_device
*bdev
,
330 sector_t first_sector
, int nr_vecs
)
335 * bio_alloc() is guaranteed to return a bio when called with
336 * __GFP_WAIT and we request a valid number of vectors.
338 bio
= bio_alloc(GFP_KERNEL
, nr_vecs
);
341 bio
->bi_sector
= first_sector
;
343 bio
->bi_end_io
= dio_bio_end_aio
;
345 bio
->bi_end_io
= dio_bio_end_io
;
348 dio
->logical_offset_in_bio
= dio
->cur_page_fs_offset
;
352 * In the AIO read case we speculatively dirty the pages before starting IO.
353 * During IO completion, any of these pages which happen to have been written
354 * back will be redirtied by bio_check_pages_dirty().
356 * bios hold a dio reference between submit_bio and ->end_io.
358 static void dio_bio_submit(struct dio
*dio
)
360 struct bio
*bio
= dio
->bio
;
363 bio
->bi_private
= dio
;
365 spin_lock_irqsave(&dio
->bio_lock
, flags
);
367 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
369 if (dio
->is_async
&& dio
->rw
== READ
)
370 bio_set_pages_dirty(bio
);
373 dio
->submit_io(dio
->rw
, bio
, dio
->inode
,
374 dio
->logical_offset_in_bio
);
376 submit_bio(dio
->rw
, bio
);
380 dio
->logical_offset_in_bio
= 0;
384 * Release any resources in case of a failure
386 static void dio_cleanup(struct dio
*dio
)
388 while (dio_pages_present(dio
))
389 page_cache_release(dio_get_page(dio
));
393 * Wait for the next BIO to complete. Remove it and return it. NULL is
394 * returned once all BIOs have been completed. This must only be called once
395 * all bios have been issued so that dio->refcount can only decrease. This
396 * requires that that the caller hold a reference on the dio.
398 static struct bio
*dio_await_one(struct dio
*dio
)
401 struct bio
*bio
= NULL
;
403 spin_lock_irqsave(&dio
->bio_lock
, flags
);
406 * Wait as long as the list is empty and there are bios in flight. bio
407 * completion drops the count, maybe adds to the list, and wakes while
408 * holding the bio_lock so we don't need set_current_state()'s barrier
409 * and can call it after testing our condition.
411 while (dio
->refcount
> 1 && dio
->bio_list
== NULL
) {
412 __set_current_state(TASK_UNINTERRUPTIBLE
);
413 dio
->waiter
= current
;
414 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
416 /* wake up sets us TASK_RUNNING */
417 spin_lock_irqsave(&dio
->bio_lock
, flags
);
422 dio
->bio_list
= bio
->bi_private
;
424 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
429 * Process one completed BIO. No locks are held.
431 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
)
433 const int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
434 struct bio_vec
*bvec
= bio
->bi_io_vec
;
438 dio
->io_error
= -EIO
;
440 if (dio
->is_async
&& dio
->rw
== READ
) {
441 bio_check_pages_dirty(bio
); /* transfers ownership */
443 for (page_no
= 0; page_no
< bio
->bi_vcnt
; page_no
++) {
444 struct page
*page
= bvec
[page_no
].bv_page
;
446 if (dio
->rw
== READ
&& !PageCompound(page
))
447 set_page_dirty_lock(page
);
448 page_cache_release(page
);
452 return uptodate
? 0 : -EIO
;
456 * Wait on and process all in-flight BIOs. This must only be called once
457 * all bios have been issued so that the refcount can only decrease.
458 * This just waits for all bios to make it through dio_bio_complete. IO
459 * errors are propagated through dio->io_error and should be propagated via
462 static void dio_await_completion(struct dio
*dio
)
466 bio
= dio_await_one(dio
);
468 dio_bio_complete(dio
, bio
);
473 * A really large O_DIRECT read or write can generate a lot of BIOs. So
474 * to keep the memory consumption sane we periodically reap any completed BIOs
475 * during the BIO generation phase.
477 * This also helps to limit the peak amount of pinned userspace memory.
479 static int dio_bio_reap(struct dio
*dio
)
483 if (dio
->reap_counter
++ >= 64) {
484 while (dio
->bio_list
) {
489 spin_lock_irqsave(&dio
->bio_lock
, flags
);
491 dio
->bio_list
= bio
->bi_private
;
492 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
493 ret2
= dio_bio_complete(dio
, bio
);
497 dio
->reap_counter
= 0;
503 * Call into the fs to map some more disk blocks. We record the current number
504 * of available blocks at dio->blocks_available. These are in units of the
505 * fs blocksize, (1 << inode->i_blkbits).
507 * The fs is allowed to map lots of blocks at once. If it wants to do that,
508 * it uses the passed inode-relative block number as the file offset, as usual.
510 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
511 * has remaining to do. The fs should not map more than this number of blocks.
513 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
514 * indicate how much contiguous disk space has been made available at
517 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
518 * This isn't very efficient...
520 * In the case of filesystem holes: the fs may return an arbitrarily-large
521 * hole by returning an appropriate value in b_size and by clearing
522 * buffer_mapped(). However the direct-io code will only process holes one
523 * block at a time - it will repeatedly call get_block() as it walks the hole.
525 static int get_more_blocks(struct dio
*dio
)
528 struct buffer_head
*map_bh
= &dio
->map_bh
;
529 sector_t fs_startblk
; /* Into file, in filesystem-sized blocks */
530 unsigned long fs_count
; /* Number of filesystem-sized blocks */
531 unsigned long dio_count
;/* Number of dio_block-sized blocks */
532 unsigned long blkmask
;
536 * If there was a memory error and we've overwritten all the
537 * mapped blocks then we can now return that memory error
539 ret
= dio
->page_errors
;
541 BUG_ON(dio
->block_in_file
>= dio
->final_block_in_request
);
542 fs_startblk
= dio
->block_in_file
>> dio
->blkfactor
;
543 dio_count
= dio
->final_block_in_request
- dio
->block_in_file
;
544 fs_count
= dio_count
>> dio
->blkfactor
;
545 blkmask
= (1 << dio
->blkfactor
) - 1;
546 if (dio_count
& blkmask
)
550 map_bh
->b_size
= fs_count
<< dio
->inode
->i_blkbits
;
553 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
554 * forbid block creations: only overwrites are permitted.
555 * We will return early to the caller once we see an
556 * unmapped buffer head returned, and the caller will fall
557 * back to buffered I/O.
559 * Otherwise the decision is left to the get_blocks method,
560 * which may decide to handle it or also return an unmapped
563 create
= dio
->rw
& WRITE
;
564 if (dio
->flags
& DIO_SKIP_HOLES
) {
565 if (dio
->block_in_file
< (i_size_read(dio
->inode
) >>
570 ret
= (*dio
->get_block
)(dio
->inode
, fs_startblk
,
577 * There is no bio. Make one now.
579 static int dio_new_bio(struct dio
*dio
, sector_t start_sector
)
584 ret
= dio_bio_reap(dio
);
587 sector
= start_sector
<< (dio
->blkbits
- 9);
588 nr_pages
= min(dio
->pages_in_io
, bio_get_nr_vecs(dio
->map_bh
.b_bdev
));
589 nr_pages
= min(nr_pages
, BIO_MAX_PAGES
);
590 BUG_ON(nr_pages
<= 0);
591 dio_bio_alloc(dio
, dio
->map_bh
.b_bdev
, sector
, nr_pages
);
598 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
599 * that was successful then update final_block_in_bio and take a ref against
600 * the just-added page.
602 * Return zero on success. Non-zero means the caller needs to start a new BIO.
604 static int dio_bio_add_page(struct dio
*dio
)
608 ret
= bio_add_page(dio
->bio
, dio
->cur_page
,
609 dio
->cur_page_len
, dio
->cur_page_offset
);
610 if (ret
== dio
->cur_page_len
) {
612 * Decrement count only, if we are done with this page
614 if ((dio
->cur_page_len
+ dio
->cur_page_offset
) == PAGE_SIZE
)
616 page_cache_get(dio
->cur_page
);
617 dio
->final_block_in_bio
= dio
->cur_page_block
+
618 (dio
->cur_page_len
>> dio
->blkbits
);
627 * Put cur_page under IO. The section of cur_page which is described by
628 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
629 * starts on-disk at cur_page_block.
631 * We take a ref against the page here (on behalf of its presence in the bio).
633 * The caller of this function is responsible for removing cur_page from the
634 * dio, and for dropping the refcount which came from that presence.
636 static int dio_send_cur_page(struct dio
*dio
)
641 loff_t cur_offset
= dio
->cur_page_fs_offset
;
642 loff_t bio_next_offset
= dio
->logical_offset_in_bio
+
646 * See whether this new request is contiguous with the old.
648 * Btrfs cannot handle having logically non-contiguous requests
649 * submitted. For example if you have
651 * Logical: [0-4095][HOLE][8192-12287]
652 * Physical: [0-4095] [4096-8191]
654 * We cannot submit those pages together as one BIO. So if our
655 * current logical offset in the file does not equal what would
656 * be the next logical offset in the bio, submit the bio we
659 if (dio
->final_block_in_bio
!= dio
->cur_page_block
||
660 cur_offset
!= bio_next_offset
)
663 * Submit now if the underlying fs is about to perform a
666 else if (dio
->boundary
)
670 if (dio
->bio
== NULL
) {
671 ret
= dio_new_bio(dio
, dio
->cur_page_block
);
676 if (dio_bio_add_page(dio
) != 0) {
678 ret
= dio_new_bio(dio
, dio
->cur_page_block
);
680 ret
= dio_bio_add_page(dio
);
689 * An autonomous function to put a chunk of a page under deferred IO.
691 * The caller doesn't actually know (or care) whether this piece of page is in
692 * a BIO, or is under IO or whatever. We just take care of all possible
693 * situations here. The separation between the logic of do_direct_IO() and
694 * that of submit_page_section() is important for clarity. Please don't break.
696 * The chunk of page starts on-disk at blocknr.
698 * We perform deferred IO, by recording the last-submitted page inside our
699 * private part of the dio structure. If possible, we just expand the IO
700 * across that page here.
702 * If that doesn't work out then we put the old page into the bio and add this
703 * page to the dio instead.
706 submit_page_section(struct dio
*dio
, struct page
*page
,
707 unsigned offset
, unsigned len
, sector_t blocknr
)
711 if (dio
->rw
& WRITE
) {
713 * Read accounting is performed in submit_bio()
715 task_io_account_write(len
);
719 * Can we just grow the current page's presence in the dio?
721 if ( (dio
->cur_page
== page
) &&
722 (dio
->cur_page_offset
+ dio
->cur_page_len
== offset
) &&
723 (dio
->cur_page_block
+
724 (dio
->cur_page_len
>> dio
->blkbits
) == blocknr
)) {
725 dio
->cur_page_len
+= len
;
728 * If dio->boundary then we want to schedule the IO now to
729 * avoid metadata seeks.
732 ret
= dio_send_cur_page(dio
);
733 page_cache_release(dio
->cur_page
);
734 dio
->cur_page
= NULL
;
740 * If there's a deferred page already there then send it.
743 ret
= dio_send_cur_page(dio
);
744 page_cache_release(dio
->cur_page
);
745 dio
->cur_page
= NULL
;
750 page_cache_get(page
); /* It is in dio */
751 dio
->cur_page
= page
;
752 dio
->cur_page_offset
= offset
;
753 dio
->cur_page_len
= len
;
754 dio
->cur_page_block
= blocknr
;
755 dio
->cur_page_fs_offset
= dio
->block_in_file
<< dio
->blkbits
;
761 * Clean any dirty buffers in the blockdev mapping which alias newly-created
762 * file blocks. Only called for S_ISREG files - blockdevs do not set
765 static void clean_blockdev_aliases(struct dio
*dio
)
770 nblocks
= dio
->map_bh
.b_size
>> dio
->inode
->i_blkbits
;
772 for (i
= 0; i
< nblocks
; i
++) {
773 unmap_underlying_metadata(dio
->map_bh
.b_bdev
,
774 dio
->map_bh
.b_blocknr
+ i
);
779 * If we are not writing the entire block and get_block() allocated
780 * the block for us, we need to fill-in the unused portion of the
781 * block with zeros. This happens only if user-buffer, fileoffset or
782 * io length is not filesystem block-size multiple.
784 * `end' is zero if we're doing the start of the IO, 1 at the end of the
787 static void dio_zero_block(struct dio
*dio
, int end
)
789 unsigned dio_blocks_per_fs_block
;
790 unsigned this_chunk_blocks
; /* In dio_blocks */
791 unsigned this_chunk_bytes
;
794 dio
->start_zero_done
= 1;
795 if (!dio
->blkfactor
|| !buffer_new(&dio
->map_bh
))
798 dio_blocks_per_fs_block
= 1 << dio
->blkfactor
;
799 this_chunk_blocks
= dio
->block_in_file
& (dio_blocks_per_fs_block
- 1);
801 if (!this_chunk_blocks
)
805 * We need to zero out part of an fs block. It is either at the
806 * beginning or the end of the fs block.
809 this_chunk_blocks
= dio_blocks_per_fs_block
- this_chunk_blocks
;
811 this_chunk_bytes
= this_chunk_blocks
<< dio
->blkbits
;
814 if (submit_page_section(dio
, page
, 0, this_chunk_bytes
,
815 dio
->next_block_for_io
))
818 dio
->next_block_for_io
+= this_chunk_blocks
;
822 * Walk the user pages, and the file, mapping blocks to disk and generating
823 * a sequence of (page,offset,len,block) mappings. These mappings are injected
824 * into submit_page_section(), which takes care of the next stage of submission
826 * Direct IO against a blockdev is different from a file. Because we can
827 * happily perform page-sized but 512-byte aligned IOs. It is important that
828 * blockdev IO be able to have fine alignment and large sizes.
830 * So what we do is to permit the ->get_block function to populate bh.b_size
831 * with the size of IO which is permitted at this offset and this i_blkbits.
833 * For best results, the blockdev should be set up with 512-byte i_blkbits and
834 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
835 * fine alignment but still allows this function to work in PAGE_SIZE units.
837 static int do_direct_IO(struct dio
*dio
)
839 const unsigned blkbits
= dio
->blkbits
;
840 const unsigned blocks_per_page
= PAGE_SIZE
>> blkbits
;
842 unsigned block_in_page
;
843 struct buffer_head
*map_bh
= &dio
->map_bh
;
846 /* The I/O can start at any block offset within the first page */
847 block_in_page
= dio
->first_block_in_page
;
849 while (dio
->block_in_file
< dio
->final_block_in_request
) {
850 page
= dio_get_page(dio
);
856 while (block_in_page
< blocks_per_page
) {
857 unsigned offset_in_page
= block_in_page
<< blkbits
;
858 unsigned this_chunk_bytes
; /* # of bytes mapped */
859 unsigned this_chunk_blocks
; /* # of blocks */
862 if (dio
->blocks_available
== 0) {
864 * Need to go and map some more disk
866 unsigned long blkmask
;
867 unsigned long dio_remainder
;
869 ret
= get_more_blocks(dio
);
871 page_cache_release(page
);
874 if (!buffer_mapped(map_bh
))
877 dio
->blocks_available
=
878 map_bh
->b_size
>> dio
->blkbits
;
879 dio
->next_block_for_io
=
880 map_bh
->b_blocknr
<< dio
->blkfactor
;
881 if (buffer_new(map_bh
))
882 clean_blockdev_aliases(dio
);
887 blkmask
= (1 << dio
->blkfactor
) - 1;
888 dio_remainder
= (dio
->block_in_file
& blkmask
);
891 * If we are at the start of IO and that IO
892 * starts partway into a fs-block,
893 * dio_remainder will be non-zero. If the IO
894 * is a read then we can simply advance the IO
895 * cursor to the first block which is to be
896 * read. But if the IO is a write and the
897 * block was newly allocated we cannot do that;
898 * the start of the fs block must be zeroed out
901 if (!buffer_new(map_bh
))
902 dio
->next_block_for_io
+= dio_remainder
;
903 dio
->blocks_available
-= dio_remainder
;
907 if (!buffer_mapped(map_bh
)) {
908 loff_t i_size_aligned
;
910 /* AKPM: eargh, -ENOTBLK is a hack */
911 if (dio
->rw
& WRITE
) {
912 page_cache_release(page
);
917 * Be sure to account for a partial block as the
918 * last block in the file
920 i_size_aligned
= ALIGN(i_size_read(dio
->inode
),
922 if (dio
->block_in_file
>=
923 i_size_aligned
>> blkbits
) {
925 page_cache_release(page
);
928 zero_user(page
, block_in_page
<< blkbits
,
930 dio
->block_in_file
++;
936 * If we're performing IO which has an alignment which
937 * is finer than the underlying fs, go check to see if
938 * we must zero out the start of this block.
940 if (unlikely(dio
->blkfactor
&& !dio
->start_zero_done
))
941 dio_zero_block(dio
, 0);
944 * Work out, in this_chunk_blocks, how much disk we
945 * can add to this page
947 this_chunk_blocks
= dio
->blocks_available
;
948 u
= (PAGE_SIZE
- offset_in_page
) >> blkbits
;
949 if (this_chunk_blocks
> u
)
950 this_chunk_blocks
= u
;
951 u
= dio
->final_block_in_request
- dio
->block_in_file
;
952 if (this_chunk_blocks
> u
)
953 this_chunk_blocks
= u
;
954 this_chunk_bytes
= this_chunk_blocks
<< blkbits
;
955 BUG_ON(this_chunk_bytes
== 0);
957 dio
->boundary
= buffer_boundary(map_bh
);
958 ret
= submit_page_section(dio
, page
, offset_in_page
,
959 this_chunk_bytes
, dio
->next_block_for_io
);
961 page_cache_release(page
);
964 dio
->next_block_for_io
+= this_chunk_blocks
;
966 dio
->block_in_file
+= this_chunk_blocks
;
967 block_in_page
+= this_chunk_blocks
;
968 dio
->blocks_available
-= this_chunk_blocks
;
970 BUG_ON(dio
->block_in_file
> dio
->final_block_in_request
);
971 if (dio
->block_in_file
== dio
->final_block_in_request
)
975 /* Drop the ref which was taken in get_user_pages() */
976 page_cache_release(page
);
984 * Releases both i_mutex and i_alloc_sem
987 direct_io_worker(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
988 const struct iovec
*iov
, loff_t offset
, unsigned long nr_segs
,
989 unsigned blkbits
, get_block_t get_block
, dio_iodone_t end_io
,
990 dio_submit_t submit_io
, struct dio
*dio
)
992 unsigned long user_addr
;
1001 dio
->blkbits
= blkbits
;
1002 dio
->blkfactor
= inode
->i_blkbits
- blkbits
;
1003 dio
->block_in_file
= offset
>> blkbits
;
1005 dio
->get_block
= get_block
;
1006 dio
->end_io
= end_io
;
1007 dio
->submit_io
= submit_io
;
1008 dio
->final_block_in_bio
= -1;
1009 dio
->next_block_for_io
= -1;
1012 dio
->i_size
= i_size_read(inode
);
1014 spin_lock_init(&dio
->bio_lock
);
1018 * In case of non-aligned buffers, we may need 2 more
1019 * pages since we need to zero out first and last block.
1021 if (unlikely(dio
->blkfactor
))
1022 dio
->pages_in_io
= 2;
1024 for (seg
= 0; seg
< nr_segs
; seg
++) {
1025 user_addr
= (unsigned long)iov
[seg
].iov_base
;
1027 ((user_addr
+iov
[seg
].iov_len
+PAGE_SIZE
-1)/PAGE_SIZE
1028 - user_addr
/PAGE_SIZE
);
1031 for (seg
= 0; seg
< nr_segs
; seg
++) {
1032 user_addr
= (unsigned long)iov
[seg
].iov_base
;
1033 dio
->size
+= bytes
= iov
[seg
].iov_len
;
1035 /* Index into the first page of the first block */
1036 dio
->first_block_in_page
= (user_addr
& ~PAGE_MASK
) >> blkbits
;
1037 dio
->final_block_in_request
= dio
->block_in_file
+
1039 /* Page fetching state */
1044 dio
->total_pages
= 0;
1045 if (user_addr
& (PAGE_SIZE
-1)) {
1047 bytes
-= PAGE_SIZE
- (user_addr
& (PAGE_SIZE
- 1));
1049 dio
->total_pages
+= (bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
1050 dio
->curr_user_address
= user_addr
;
1052 ret
= do_direct_IO(dio
);
1054 dio
->result
+= iov
[seg
].iov_len
-
1055 ((dio
->final_block_in_request
- dio
->block_in_file
) <<
1062 } /* end iovec loop */
1064 if (ret
== -ENOTBLK
) {
1066 * The remaining part of the request will be
1067 * be handled by buffered I/O when we return
1072 * There may be some unwritten disk at the end of a part-written
1073 * fs-block-sized block. Go zero that now.
1075 dio_zero_block(dio
, 1);
1077 if (dio
->cur_page
) {
1078 ret2
= dio_send_cur_page(dio
);
1081 page_cache_release(dio
->cur_page
);
1082 dio
->cur_page
= NULL
;
1085 dio_bio_submit(dio
);
1088 * It is possible that, we return short IO due to end of file.
1089 * In that case, we need to release all the pages we got hold on.
1094 * All block lookups have been performed. For READ requests
1095 * we can let i_mutex go now that its achieved its purpose
1096 * of protecting us from looking up uninitialized blocks.
1098 if (rw
== READ
&& (dio
->flags
& DIO_LOCKING
))
1099 mutex_unlock(&dio
->inode
->i_mutex
);
1102 * The only time we want to leave bios in flight is when a successful
1103 * partial aio read or full aio write have been setup. In that case
1104 * bio completion will call aio_complete. The only time it's safe to
1105 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1106 * This had *better* be the only place that raises -EIOCBQUEUED.
1108 BUG_ON(ret
== -EIOCBQUEUED
);
1109 if (dio
->is_async
&& ret
== 0 && dio
->result
&&
1110 ((rw
& READ
) || (dio
->result
== dio
->size
)))
1113 if (ret
!= -EIOCBQUEUED
) {
1114 /* All IO is now issued, send it on its way */
1115 blk_run_address_space(inode
->i_mapping
);
1116 dio_await_completion(dio
);
1120 * Sync will always be dropping the final ref and completing the
1121 * operation. AIO can if it was a broken operation described above or
1122 * in fact if all the bios race to complete before we get here. In
1123 * that case dio_complete() translates the EIOCBQUEUED into the proper
1124 * return code that the caller will hand to aio_complete().
1126 * This is managed by the bio_lock instead of being an atomic_t so that
1127 * completion paths can drop their ref and use the remaining count to
1128 * decide to wake the submission path atomically.
1130 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1131 ret2
= --dio
->refcount
;
1132 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1135 ret
= dio_complete(dio
, offset
, ret
, false);
1138 BUG_ON(ret
!= -EIOCBQUEUED
);
1144 * This is a library function for use by filesystem drivers.
1146 * The locking rules are governed by the flags parameter:
1147 * - if the flags value contains DIO_LOCKING we use a fancy locking
1148 * scheme for dumb filesystems.
1149 * For writes this function is called under i_mutex and returns with
1150 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1151 * taken and dropped again before returning.
1152 * For reads and writes i_alloc_sem is taken in shared mode and released
1153 * on I/O completion (which may happen asynchronously after returning to
1156 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1157 * internal locking but rather rely on the filesystem to synchronize
1158 * direct I/O reads/writes versus each other and truncate.
1159 * For reads and writes both i_mutex and i_alloc_sem are not held on
1160 * entry and are never taken.
1163 __blockdev_direct_IO(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
1164 struct block_device
*bdev
, const struct iovec
*iov
, loff_t offset
,
1165 unsigned long nr_segs
, get_block_t get_block
, dio_iodone_t end_io
,
1166 dio_submit_t submit_io
, int flags
)
1171 unsigned blkbits
= inode
->i_blkbits
;
1172 unsigned bdev_blkbits
= 0;
1173 unsigned blocksize_mask
= (1 << blkbits
) - 1;
1174 ssize_t retval
= -EINVAL
;
1175 loff_t end
= offset
;
1179 rw
= WRITE_ODIRECT_PLUG
;
1182 bdev_blkbits
= blksize_bits(bdev_logical_block_size(bdev
));
1184 if (offset
& blocksize_mask
) {
1186 blkbits
= bdev_blkbits
;
1187 blocksize_mask
= (1 << blkbits
) - 1;
1188 if (offset
& blocksize_mask
)
1192 /* Check the memory alignment. Blocks cannot straddle pages */
1193 for (seg
= 0; seg
< nr_segs
; seg
++) {
1194 addr
= (unsigned long)iov
[seg
].iov_base
;
1195 size
= iov
[seg
].iov_len
;
1197 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
)) {
1199 blkbits
= bdev_blkbits
;
1200 blocksize_mask
= (1 << blkbits
) - 1;
1201 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
1206 dio
= kmalloc(sizeof(*dio
), GFP_KERNEL
);
1211 * Believe it or not, zeroing out the page array caused a .5%
1212 * performance regression in a database benchmark. So, we take
1213 * care to only zero out what's needed.
1215 memset(dio
, 0, offsetof(struct dio
, pages
));
1218 if (dio
->flags
& DIO_LOCKING
) {
1219 /* watch out for a 0 len io from a tricksy fs */
1220 if (rw
== READ
&& end
> offset
) {
1221 struct address_space
*mapping
=
1222 iocb
->ki_filp
->f_mapping
;
1224 /* will be released by direct_io_worker */
1225 mutex_lock(&inode
->i_mutex
);
1227 retval
= filemap_write_and_wait_range(mapping
, offset
,
1230 mutex_unlock(&inode
->i_mutex
);
1237 * Will be released at I/O completion, possibly in a
1240 down_read_non_owner(&inode
->i_alloc_sem
);
1244 * For file extending writes updating i_size before data
1245 * writeouts complete can expose uninitialized blocks. So
1246 * even for AIO, we need to wait for i/o to complete before
1247 * returning in this case.
1249 dio
->is_async
= !is_sync_kiocb(iocb
) && !((rw
& WRITE
) &&
1250 (end
> i_size_read(inode
)));
1252 retval
= direct_io_worker(rw
, iocb
, inode
, iov
, offset
,
1253 nr_segs
, blkbits
, get_block
, end_io
,
1259 EXPORT_SYMBOL(__blockdev_direct_IO
);