libata: use longer 0xff wait if parallel scan is enabled
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-core.c
blob134b5df80acee1e888f297dd9afbf1022e15c7a5
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
69 #include "libata.h"
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
77 const struct ata_port_operations ata_base_port_ops = {
78 .prereset = ata_std_prereset,
79 .postreset = ata_std_postreset,
80 .error_handler = ata_std_error_handler,
83 const struct ata_port_operations sata_port_ops = {
84 .inherits = &ata_base_port_ops,
86 .qc_defer = ata_std_qc_defer,
87 .hardreset = sata_std_hardreset,
90 static unsigned int ata_dev_init_params(struct ata_device *dev,
91 u16 heads, u16 sectors);
92 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
93 static unsigned int ata_dev_set_feature(struct ata_device *dev,
94 u8 enable, u8 feature);
95 static void ata_dev_xfermask(struct ata_device *dev);
96 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
98 unsigned int ata_print_id = 1;
99 static struct workqueue_struct *ata_wq;
101 struct workqueue_struct *ata_aux_wq;
103 struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
110 unsigned int lflags;
113 struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
119 static struct ata_force_ent *ata_force_tbl;
120 static int ata_force_tbl_size;
122 static char ata_force_param_buf[PAGE_SIZE] __initdata;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
127 static int atapi_enabled = 1;
128 module_param(atapi_enabled, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
131 static int atapi_dmadir = 0;
132 module_param(atapi_dmadir, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
135 int atapi_passthru16 = 1;
136 module_param(atapi_passthru16, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
139 int libata_fua = 0;
140 module_param_named(fua, libata_fua, int, 0444);
141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
143 static int ata_ignore_hpa;
144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148 module_param_named(dma, libata_dma_mask, int, 0444);
149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
151 static int ata_probe_timeout;
152 module_param(ata_probe_timeout, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
155 int libata_noacpi = 0;
156 module_param_named(noacpi, libata_noacpi, int, 0444);
157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
159 int libata_allow_tpm = 0;
160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
163 MODULE_AUTHOR("Jeff Garzik");
164 MODULE_DESCRIPTION("Library module for ATA devices");
165 MODULE_LICENSE("GPL");
166 MODULE_VERSION(DRV_VERSION);
169 static bool ata_sstatus_online(u32 sstatus)
171 return (sstatus & 0xf) == 0x3;
175 * ata_link_next - link iteration helper
176 * @link: the previous link, NULL to start
177 * @ap: ATA port containing links to iterate
178 * @mode: iteration mode, one of ATA_LITER_*
180 * LOCKING:
181 * Host lock or EH context.
183 * RETURNS:
184 * Pointer to the next link.
186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 enum ata_link_iter_mode mode)
189 BUG_ON(mode != ATA_LITER_EDGE &&
190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192 /* NULL link indicates start of iteration */
193 if (!link)
194 switch (mode) {
195 case ATA_LITER_EDGE:
196 case ATA_LITER_PMP_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 /* fall through */
200 case ATA_LITER_HOST_FIRST:
201 return &ap->link;
204 /* we just iterated over the host link, what's next? */
205 if (link == &ap->link)
206 switch (mode) {
207 case ATA_LITER_HOST_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_PMP_FIRST:
212 if (unlikely(ap->slave_link))
213 return ap->slave_link;
214 /* fall through */
215 case ATA_LITER_EDGE:
216 return NULL;
219 /* slave_link excludes PMP */
220 if (unlikely(link == ap->slave_link))
221 return NULL;
223 /* we were over a PMP link */
224 if (++link < ap->pmp_link + ap->nr_pmp_links)
225 return link;
227 if (mode == ATA_LITER_PMP_FIRST)
228 return &ap->link;
230 return NULL;
234 * ata_dev_next - device iteration helper
235 * @dev: the previous device, NULL to start
236 * @link: ATA link containing devices to iterate
237 * @mode: iteration mode, one of ATA_DITER_*
239 * LOCKING:
240 * Host lock or EH context.
242 * RETURNS:
243 * Pointer to the next device.
245 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
246 enum ata_dev_iter_mode mode)
248 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
249 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251 /* NULL dev indicates start of iteration */
252 if (!dev)
253 switch (mode) {
254 case ATA_DITER_ENABLED:
255 case ATA_DITER_ALL:
256 dev = link->device;
257 goto check;
258 case ATA_DITER_ENABLED_REVERSE:
259 case ATA_DITER_ALL_REVERSE:
260 dev = link->device + ata_link_max_devices(link) - 1;
261 goto check;
264 next:
265 /* move to the next one */
266 switch (mode) {
267 case ATA_DITER_ENABLED:
268 case ATA_DITER_ALL:
269 if (++dev < link->device + ata_link_max_devices(link))
270 goto check;
271 return NULL;
272 case ATA_DITER_ENABLED_REVERSE:
273 case ATA_DITER_ALL_REVERSE:
274 if (--dev >= link->device)
275 goto check;
276 return NULL;
279 check:
280 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
281 !ata_dev_enabled(dev))
282 goto next;
283 return dev;
287 * ata_dev_phys_link - find physical link for a device
288 * @dev: ATA device to look up physical link for
290 * Look up physical link which @dev is attached to. Note that
291 * this is different from @dev->link only when @dev is on slave
292 * link. For all other cases, it's the same as @dev->link.
294 * LOCKING:
295 * Don't care.
297 * RETURNS:
298 * Pointer to the found physical link.
300 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
302 struct ata_port *ap = dev->link->ap;
304 if (!ap->slave_link)
305 return dev->link;
306 if (!dev->devno)
307 return &ap->link;
308 return ap->slave_link;
312 * ata_force_cbl - force cable type according to libata.force
313 * @ap: ATA port of interest
315 * Force cable type according to libata.force and whine about it.
316 * The last entry which has matching port number is used, so it
317 * can be specified as part of device force parameters. For
318 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
319 * same effect.
321 * LOCKING:
322 * EH context.
324 void ata_force_cbl(struct ata_port *ap)
326 int i;
328 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
329 const struct ata_force_ent *fe = &ata_force_tbl[i];
331 if (fe->port != -1 && fe->port != ap->print_id)
332 continue;
334 if (fe->param.cbl == ATA_CBL_NONE)
335 continue;
337 ap->cbl = fe->param.cbl;
338 ata_port_printk(ap, KERN_NOTICE,
339 "FORCE: cable set to %s\n", fe->param.name);
340 return;
345 * ata_force_link_limits - force link limits according to libata.force
346 * @link: ATA link of interest
348 * Force link flags and SATA spd limit according to libata.force
349 * and whine about it. When only the port part is specified
350 * (e.g. 1:), the limit applies to all links connected to both
351 * the host link and all fan-out ports connected via PMP. If the
352 * device part is specified as 0 (e.g. 1.00:), it specifies the
353 * first fan-out link not the host link. Device number 15 always
354 * points to the host link whether PMP is attached or not. If the
355 * controller has slave link, device number 16 points to it.
357 * LOCKING:
358 * EH context.
360 static void ata_force_link_limits(struct ata_link *link)
362 bool did_spd = false;
363 int linkno = link->pmp;
364 int i;
366 if (ata_is_host_link(link))
367 linkno += 15;
369 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
370 const struct ata_force_ent *fe = &ata_force_tbl[i];
372 if (fe->port != -1 && fe->port != link->ap->print_id)
373 continue;
375 if (fe->device != -1 && fe->device != linkno)
376 continue;
378 /* only honor the first spd limit */
379 if (!did_spd && fe->param.spd_limit) {
380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
381 ata_link_printk(link, KERN_NOTICE,
382 "FORCE: PHY spd limit set to %s\n",
383 fe->param.name);
384 did_spd = true;
387 /* let lflags stack */
388 if (fe->param.lflags) {
389 link->flags |= fe->param.lflags;
390 ata_link_printk(link, KERN_NOTICE,
391 "FORCE: link flag 0x%x forced -> 0x%x\n",
392 fe->param.lflags, link->flags);
398 * ata_force_xfermask - force xfermask according to libata.force
399 * @dev: ATA device of interest
401 * Force xfer_mask according to libata.force and whine about it.
402 * For consistency with link selection, device number 15 selects
403 * the first device connected to the host link.
405 * LOCKING:
406 * EH context.
408 static void ata_force_xfermask(struct ata_device *dev)
410 int devno = dev->link->pmp + dev->devno;
411 int alt_devno = devno;
412 int i;
414 /* allow n.15/16 for devices attached to host port */
415 if (ata_is_host_link(dev->link))
416 alt_devno += 15;
418 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
419 const struct ata_force_ent *fe = &ata_force_tbl[i];
420 unsigned long pio_mask, mwdma_mask, udma_mask;
422 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
423 continue;
425 if (fe->device != -1 && fe->device != devno &&
426 fe->device != alt_devno)
427 continue;
429 if (!fe->param.xfer_mask)
430 continue;
432 ata_unpack_xfermask(fe->param.xfer_mask,
433 &pio_mask, &mwdma_mask, &udma_mask);
434 if (udma_mask)
435 dev->udma_mask = udma_mask;
436 else if (mwdma_mask) {
437 dev->udma_mask = 0;
438 dev->mwdma_mask = mwdma_mask;
439 } else {
440 dev->udma_mask = 0;
441 dev->mwdma_mask = 0;
442 dev->pio_mask = pio_mask;
445 ata_dev_printk(dev, KERN_NOTICE,
446 "FORCE: xfer_mask set to %s\n", fe->param.name);
447 return;
452 * ata_force_horkage - force horkage according to libata.force
453 * @dev: ATA device of interest
455 * Force horkage according to libata.force and whine about it.
456 * For consistency with link selection, device number 15 selects
457 * the first device connected to the host link.
459 * LOCKING:
460 * EH context.
462 static void ata_force_horkage(struct ata_device *dev)
464 int devno = dev->link->pmp + dev->devno;
465 int alt_devno = devno;
466 int i;
468 /* allow n.15/16 for devices attached to host port */
469 if (ata_is_host_link(dev->link))
470 alt_devno += 15;
472 for (i = 0; i < ata_force_tbl_size; i++) {
473 const struct ata_force_ent *fe = &ata_force_tbl[i];
475 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
476 continue;
478 if (fe->device != -1 && fe->device != devno &&
479 fe->device != alt_devno)
480 continue;
482 if (!(~dev->horkage & fe->param.horkage_on) &&
483 !(dev->horkage & fe->param.horkage_off))
484 continue;
486 dev->horkage |= fe->param.horkage_on;
487 dev->horkage &= ~fe->param.horkage_off;
489 ata_dev_printk(dev, KERN_NOTICE,
490 "FORCE: horkage modified (%s)\n", fe->param.name);
495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496 * @opcode: SCSI opcode
498 * Determine ATAPI command type from @opcode.
500 * LOCKING:
501 * None.
503 * RETURNS:
504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
506 int atapi_cmd_type(u8 opcode)
508 switch (opcode) {
509 case GPCMD_READ_10:
510 case GPCMD_READ_12:
511 return ATAPI_READ;
513 case GPCMD_WRITE_10:
514 case GPCMD_WRITE_12:
515 case GPCMD_WRITE_AND_VERIFY_10:
516 return ATAPI_WRITE;
518 case GPCMD_READ_CD:
519 case GPCMD_READ_CD_MSF:
520 return ATAPI_READ_CD;
522 case ATA_16:
523 case ATA_12:
524 if (atapi_passthru16)
525 return ATAPI_PASS_THRU;
526 /* fall thru */
527 default:
528 return ATAPI_MISC;
533 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
534 * @tf: Taskfile to convert
535 * @pmp: Port multiplier port
536 * @is_cmd: This FIS is for command
537 * @fis: Buffer into which data will output
539 * Converts a standard ATA taskfile to a Serial ATA
540 * FIS structure (Register - Host to Device).
542 * LOCKING:
543 * Inherited from caller.
545 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
547 fis[0] = 0x27; /* Register - Host to Device FIS */
548 fis[1] = pmp & 0xf; /* Port multiplier number*/
549 if (is_cmd)
550 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
552 fis[2] = tf->command;
553 fis[3] = tf->feature;
555 fis[4] = tf->lbal;
556 fis[5] = tf->lbam;
557 fis[6] = tf->lbah;
558 fis[7] = tf->device;
560 fis[8] = tf->hob_lbal;
561 fis[9] = tf->hob_lbam;
562 fis[10] = tf->hob_lbah;
563 fis[11] = tf->hob_feature;
565 fis[12] = tf->nsect;
566 fis[13] = tf->hob_nsect;
567 fis[14] = 0;
568 fis[15] = tf->ctl;
570 fis[16] = 0;
571 fis[17] = 0;
572 fis[18] = 0;
573 fis[19] = 0;
577 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
578 * @fis: Buffer from which data will be input
579 * @tf: Taskfile to output
581 * Converts a serial ATA FIS structure to a standard ATA taskfile.
583 * LOCKING:
584 * Inherited from caller.
587 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
589 tf->command = fis[2]; /* status */
590 tf->feature = fis[3]; /* error */
592 tf->lbal = fis[4];
593 tf->lbam = fis[5];
594 tf->lbah = fis[6];
595 tf->device = fis[7];
597 tf->hob_lbal = fis[8];
598 tf->hob_lbam = fis[9];
599 tf->hob_lbah = fis[10];
601 tf->nsect = fis[12];
602 tf->hob_nsect = fis[13];
605 static const u8 ata_rw_cmds[] = {
606 /* pio multi */
607 ATA_CMD_READ_MULTI,
608 ATA_CMD_WRITE_MULTI,
609 ATA_CMD_READ_MULTI_EXT,
610 ATA_CMD_WRITE_MULTI_EXT,
614 ATA_CMD_WRITE_MULTI_FUA_EXT,
615 /* pio */
616 ATA_CMD_PIO_READ,
617 ATA_CMD_PIO_WRITE,
618 ATA_CMD_PIO_READ_EXT,
619 ATA_CMD_PIO_WRITE_EXT,
624 /* dma */
625 ATA_CMD_READ,
626 ATA_CMD_WRITE,
627 ATA_CMD_READ_EXT,
628 ATA_CMD_WRITE_EXT,
632 ATA_CMD_WRITE_FUA_EXT
636 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
637 * @tf: command to examine and configure
638 * @dev: device tf belongs to
640 * Examine the device configuration and tf->flags to calculate
641 * the proper read/write commands and protocol to use.
643 * LOCKING:
644 * caller.
646 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
648 u8 cmd;
650 int index, fua, lba48, write;
652 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
653 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
654 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
656 if (dev->flags & ATA_DFLAG_PIO) {
657 tf->protocol = ATA_PROT_PIO;
658 index = dev->multi_count ? 0 : 8;
659 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
660 /* Unable to use DMA due to host limitation */
661 tf->protocol = ATA_PROT_PIO;
662 index = dev->multi_count ? 0 : 8;
663 } else {
664 tf->protocol = ATA_PROT_DMA;
665 index = 16;
668 cmd = ata_rw_cmds[index + fua + lba48 + write];
669 if (cmd) {
670 tf->command = cmd;
671 return 0;
673 return -1;
677 * ata_tf_read_block - Read block address from ATA taskfile
678 * @tf: ATA taskfile of interest
679 * @dev: ATA device @tf belongs to
681 * LOCKING:
682 * None.
684 * Read block address from @tf. This function can handle all
685 * three address formats - LBA, LBA48 and CHS. tf->protocol and
686 * flags select the address format to use.
688 * RETURNS:
689 * Block address read from @tf.
691 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
693 u64 block = 0;
695 if (tf->flags & ATA_TFLAG_LBA) {
696 if (tf->flags & ATA_TFLAG_LBA48) {
697 block |= (u64)tf->hob_lbah << 40;
698 block |= (u64)tf->hob_lbam << 32;
699 block |= (u64)tf->hob_lbal << 24;
700 } else
701 block |= (tf->device & 0xf) << 24;
703 block |= tf->lbah << 16;
704 block |= tf->lbam << 8;
705 block |= tf->lbal;
706 } else {
707 u32 cyl, head, sect;
709 cyl = tf->lbam | (tf->lbah << 8);
710 head = tf->device & 0xf;
711 sect = tf->lbal;
713 if (!sect) {
714 ata_dev_printk(dev, KERN_WARNING, "device reported "
715 "invalid CHS sector 0\n");
716 sect = 1; /* oh well */
719 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
722 return block;
726 * ata_build_rw_tf - Build ATA taskfile for given read/write request
727 * @tf: Target ATA taskfile
728 * @dev: ATA device @tf belongs to
729 * @block: Block address
730 * @n_block: Number of blocks
731 * @tf_flags: RW/FUA etc...
732 * @tag: tag
734 * LOCKING:
735 * None.
737 * Build ATA taskfile @tf for read/write request described by
738 * @block, @n_block, @tf_flags and @tag on @dev.
740 * RETURNS:
742 * 0 on success, -ERANGE if the request is too large for @dev,
743 * -EINVAL if the request is invalid.
745 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
746 u64 block, u32 n_block, unsigned int tf_flags,
747 unsigned int tag)
749 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
750 tf->flags |= tf_flags;
752 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
753 /* yay, NCQ */
754 if (!lba_48_ok(block, n_block))
755 return -ERANGE;
757 tf->protocol = ATA_PROT_NCQ;
758 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
760 if (tf->flags & ATA_TFLAG_WRITE)
761 tf->command = ATA_CMD_FPDMA_WRITE;
762 else
763 tf->command = ATA_CMD_FPDMA_READ;
765 tf->nsect = tag << 3;
766 tf->hob_feature = (n_block >> 8) & 0xff;
767 tf->feature = n_block & 0xff;
769 tf->hob_lbah = (block >> 40) & 0xff;
770 tf->hob_lbam = (block >> 32) & 0xff;
771 tf->hob_lbal = (block >> 24) & 0xff;
772 tf->lbah = (block >> 16) & 0xff;
773 tf->lbam = (block >> 8) & 0xff;
774 tf->lbal = block & 0xff;
776 tf->device = 1 << 6;
777 if (tf->flags & ATA_TFLAG_FUA)
778 tf->device |= 1 << 7;
779 } else if (dev->flags & ATA_DFLAG_LBA) {
780 tf->flags |= ATA_TFLAG_LBA;
782 if (lba_28_ok(block, n_block)) {
783 /* use LBA28 */
784 tf->device |= (block >> 24) & 0xf;
785 } else if (lba_48_ok(block, n_block)) {
786 if (!(dev->flags & ATA_DFLAG_LBA48))
787 return -ERANGE;
789 /* use LBA48 */
790 tf->flags |= ATA_TFLAG_LBA48;
792 tf->hob_nsect = (n_block >> 8) & 0xff;
794 tf->hob_lbah = (block >> 40) & 0xff;
795 tf->hob_lbam = (block >> 32) & 0xff;
796 tf->hob_lbal = (block >> 24) & 0xff;
797 } else
798 /* request too large even for LBA48 */
799 return -ERANGE;
801 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
802 return -EINVAL;
804 tf->nsect = n_block & 0xff;
806 tf->lbah = (block >> 16) & 0xff;
807 tf->lbam = (block >> 8) & 0xff;
808 tf->lbal = block & 0xff;
810 tf->device |= ATA_LBA;
811 } else {
812 /* CHS */
813 u32 sect, head, cyl, track;
815 /* The request -may- be too large for CHS addressing. */
816 if (!lba_28_ok(block, n_block))
817 return -ERANGE;
819 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
820 return -EINVAL;
822 /* Convert LBA to CHS */
823 track = (u32)block / dev->sectors;
824 cyl = track / dev->heads;
825 head = track % dev->heads;
826 sect = (u32)block % dev->sectors + 1;
828 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
829 (u32)block, track, cyl, head, sect);
831 /* Check whether the converted CHS can fit.
832 Cylinder: 0-65535
833 Head: 0-15
834 Sector: 1-255*/
835 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
836 return -ERANGE;
838 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
839 tf->lbal = sect;
840 tf->lbam = cyl;
841 tf->lbah = cyl >> 8;
842 tf->device |= head;
845 return 0;
849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
850 * @pio_mask: pio_mask
851 * @mwdma_mask: mwdma_mask
852 * @udma_mask: udma_mask
854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
855 * unsigned int xfer_mask.
857 * LOCKING:
858 * None.
860 * RETURNS:
861 * Packed xfer_mask.
863 unsigned long ata_pack_xfermask(unsigned long pio_mask,
864 unsigned long mwdma_mask,
865 unsigned long udma_mask)
867 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
868 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
869 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
874 * @xfer_mask: xfer_mask to unpack
875 * @pio_mask: resulting pio_mask
876 * @mwdma_mask: resulting mwdma_mask
877 * @udma_mask: resulting udma_mask
879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
880 * Any NULL distination masks will be ignored.
882 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
883 unsigned long *mwdma_mask, unsigned long *udma_mask)
885 if (pio_mask)
886 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
887 if (mwdma_mask)
888 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
889 if (udma_mask)
890 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
893 static const struct ata_xfer_ent {
894 int shift, bits;
895 u8 base;
896 } ata_xfer_tbl[] = {
897 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
898 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
899 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
900 { -1, },
904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
905 * @xfer_mask: xfer_mask of interest
907 * Return matching XFER_* value for @xfer_mask. Only the highest
908 * bit of @xfer_mask is considered.
910 * LOCKING:
911 * None.
913 * RETURNS:
914 * Matching XFER_* value, 0xff if no match found.
916 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
918 int highbit = fls(xfer_mask) - 1;
919 const struct ata_xfer_ent *ent;
921 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
922 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
923 return ent->base + highbit - ent->shift;
924 return 0xff;
928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
929 * @xfer_mode: XFER_* of interest
931 * Return matching xfer_mask for @xfer_mode.
933 * LOCKING:
934 * None.
936 * RETURNS:
937 * Matching xfer_mask, 0 if no match found.
939 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
941 const struct ata_xfer_ent *ent;
943 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
944 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
945 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
946 & ~((1 << ent->shift) - 1);
947 return 0;
951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
952 * @xfer_mode: XFER_* of interest
954 * Return matching xfer_shift for @xfer_mode.
956 * LOCKING:
957 * None.
959 * RETURNS:
960 * Matching xfer_shift, -1 if no match found.
962 int ata_xfer_mode2shift(unsigned long xfer_mode)
964 const struct ata_xfer_ent *ent;
966 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
967 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
968 return ent->shift;
969 return -1;
973 * ata_mode_string - convert xfer_mask to string
974 * @xfer_mask: mask of bits supported; only highest bit counts.
976 * Determine string which represents the highest speed
977 * (highest bit in @modemask).
979 * LOCKING:
980 * None.
982 * RETURNS:
983 * Constant C string representing highest speed listed in
984 * @mode_mask, or the constant C string "<n/a>".
986 const char *ata_mode_string(unsigned long xfer_mask)
988 static const char * const xfer_mode_str[] = {
989 "PIO0",
990 "PIO1",
991 "PIO2",
992 "PIO3",
993 "PIO4",
994 "PIO5",
995 "PIO6",
996 "MWDMA0",
997 "MWDMA1",
998 "MWDMA2",
999 "MWDMA3",
1000 "MWDMA4",
1001 "UDMA/16",
1002 "UDMA/25",
1003 "UDMA/33",
1004 "UDMA/44",
1005 "UDMA/66",
1006 "UDMA/100",
1007 "UDMA/133",
1008 "UDMA7",
1010 int highbit;
1012 highbit = fls(xfer_mask) - 1;
1013 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014 return xfer_mode_str[highbit];
1015 return "<n/a>";
1018 static const char *sata_spd_string(unsigned int spd)
1020 static const char * const spd_str[] = {
1021 "1.5 Gbps",
1022 "3.0 Gbps",
1023 "6.0 Gbps",
1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 return "<unknown>";
1028 return spd_str[spd - 1];
1031 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1033 struct ata_link *link = dev->link;
1034 struct ata_port *ap = link->ap;
1035 u32 scontrol;
1036 unsigned int err_mask;
1037 int rc;
1040 * disallow DIPM for drivers which haven't set
1041 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1042 * phy ready will be set in the interrupt status on
1043 * state changes, which will cause some drivers to
1044 * think there are errors - additionally drivers will
1045 * need to disable hot plug.
1047 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1048 ap->pm_policy = NOT_AVAILABLE;
1049 return -EINVAL;
1053 * For DIPM, we will only enable it for the
1054 * min_power setting.
1056 * Why? Because Disks are too stupid to know that
1057 * If the host rejects a request to go to SLUMBER
1058 * they should retry at PARTIAL, and instead it
1059 * just would give up. So, for medium_power to
1060 * work at all, we need to only allow HIPM.
1062 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1063 if (rc)
1064 return rc;
1066 switch (policy) {
1067 case MIN_POWER:
1068 /* no restrictions on IPM transitions */
1069 scontrol &= ~(0x3 << 8);
1070 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1071 if (rc)
1072 return rc;
1074 /* enable DIPM */
1075 if (dev->flags & ATA_DFLAG_DIPM)
1076 err_mask = ata_dev_set_feature(dev,
1077 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1078 break;
1079 case MEDIUM_POWER:
1080 /* allow IPM to PARTIAL */
1081 scontrol &= ~(0x1 << 8);
1082 scontrol |= (0x2 << 8);
1083 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1084 if (rc)
1085 return rc;
1088 * we don't have to disable DIPM since IPM flags
1089 * disallow transitions to SLUMBER, which effectively
1090 * disable DIPM if it does not support PARTIAL
1092 break;
1093 case NOT_AVAILABLE:
1094 case MAX_PERFORMANCE:
1095 /* disable all IPM transitions */
1096 scontrol |= (0x3 << 8);
1097 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1098 if (rc)
1099 return rc;
1102 * we don't have to disable DIPM since IPM flags
1103 * disallow all transitions which effectively
1104 * disable DIPM anyway.
1106 break;
1109 /* FIXME: handle SET FEATURES failure */
1110 (void) err_mask;
1112 return 0;
1116 * ata_dev_enable_pm - enable SATA interface power management
1117 * @dev: device to enable power management
1118 * @policy: the link power management policy
1120 * Enable SATA Interface power management. This will enable
1121 * Device Interface Power Management (DIPM) for min_power
1122 * policy, and then call driver specific callbacks for
1123 * enabling Host Initiated Power management.
1125 * Locking: Caller.
1126 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1128 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1130 int rc = 0;
1131 struct ata_port *ap = dev->link->ap;
1133 /* set HIPM first, then DIPM */
1134 if (ap->ops->enable_pm)
1135 rc = ap->ops->enable_pm(ap, policy);
1136 if (rc)
1137 goto enable_pm_out;
1138 rc = ata_dev_set_dipm(dev, policy);
1140 enable_pm_out:
1141 if (rc)
1142 ap->pm_policy = MAX_PERFORMANCE;
1143 else
1144 ap->pm_policy = policy;
1145 return /* rc */; /* hopefully we can use 'rc' eventually */
1148 #ifdef CONFIG_PM
1150 * ata_dev_disable_pm - disable SATA interface power management
1151 * @dev: device to disable power management
1153 * Disable SATA Interface power management. This will disable
1154 * Device Interface Power Management (DIPM) without changing
1155 * policy, call driver specific callbacks for disabling Host
1156 * Initiated Power management.
1158 * Locking: Caller.
1159 * Returns: void
1161 static void ata_dev_disable_pm(struct ata_device *dev)
1163 struct ata_port *ap = dev->link->ap;
1165 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1166 if (ap->ops->disable_pm)
1167 ap->ops->disable_pm(ap);
1169 #endif /* CONFIG_PM */
1171 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1173 ap->pm_policy = policy;
1174 ap->link.eh_info.action |= ATA_EH_LPM;
1175 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1176 ata_port_schedule_eh(ap);
1179 #ifdef CONFIG_PM
1180 static void ata_lpm_enable(struct ata_host *host)
1182 struct ata_link *link;
1183 struct ata_port *ap;
1184 struct ata_device *dev;
1185 int i;
1187 for (i = 0; i < host->n_ports; i++) {
1188 ap = host->ports[i];
1189 ata_for_each_link(link, ap, EDGE) {
1190 ata_for_each_dev(dev, link, ALL)
1191 ata_dev_disable_pm(dev);
1196 static void ata_lpm_disable(struct ata_host *host)
1198 int i;
1200 for (i = 0; i < host->n_ports; i++) {
1201 struct ata_port *ap = host->ports[i];
1202 ata_lpm_schedule(ap, ap->pm_policy);
1205 #endif /* CONFIG_PM */
1208 * ata_dev_classify - determine device type based on ATA-spec signature
1209 * @tf: ATA taskfile register set for device to be identified
1211 * Determine from taskfile register contents whether a device is
1212 * ATA or ATAPI, as per "Signature and persistence" section
1213 * of ATA/PI spec (volume 1, sect 5.14).
1215 * LOCKING:
1216 * None.
1218 * RETURNS:
1219 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1220 * %ATA_DEV_UNKNOWN the event of failure.
1222 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1224 /* Apple's open source Darwin code hints that some devices only
1225 * put a proper signature into the LBA mid/high registers,
1226 * So, we only check those. It's sufficient for uniqueness.
1228 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1229 * signatures for ATA and ATAPI devices attached on SerialATA,
1230 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1231 * spec has never mentioned about using different signatures
1232 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1233 * Multiplier specification began to use 0x69/0x96 to identify
1234 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1235 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1236 * 0x69/0x96 shortly and described them as reserved for
1237 * SerialATA.
1239 * We follow the current spec and consider that 0x69/0x96
1240 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1241 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1242 * SEMB signature. This is worked around in
1243 * ata_dev_read_id().
1245 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1246 DPRINTK("found ATA device by sig\n");
1247 return ATA_DEV_ATA;
1250 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1251 DPRINTK("found ATAPI device by sig\n");
1252 return ATA_DEV_ATAPI;
1255 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1256 DPRINTK("found PMP device by sig\n");
1257 return ATA_DEV_PMP;
1260 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1261 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1262 return ATA_DEV_SEMB;
1265 DPRINTK("unknown device\n");
1266 return ATA_DEV_UNKNOWN;
1270 * ata_id_string - Convert IDENTIFY DEVICE page into string
1271 * @id: IDENTIFY DEVICE results we will examine
1272 * @s: string into which data is output
1273 * @ofs: offset into identify device page
1274 * @len: length of string to return. must be an even number.
1276 * The strings in the IDENTIFY DEVICE page are broken up into
1277 * 16-bit chunks. Run through the string, and output each
1278 * 8-bit chunk linearly, regardless of platform.
1280 * LOCKING:
1281 * caller.
1284 void ata_id_string(const u16 *id, unsigned char *s,
1285 unsigned int ofs, unsigned int len)
1287 unsigned int c;
1289 BUG_ON(len & 1);
1291 while (len > 0) {
1292 c = id[ofs] >> 8;
1293 *s = c;
1294 s++;
1296 c = id[ofs] & 0xff;
1297 *s = c;
1298 s++;
1300 ofs++;
1301 len -= 2;
1306 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1307 * @id: IDENTIFY DEVICE results we will examine
1308 * @s: string into which data is output
1309 * @ofs: offset into identify device page
1310 * @len: length of string to return. must be an odd number.
1312 * This function is identical to ata_id_string except that it
1313 * trims trailing spaces and terminates the resulting string with
1314 * null. @len must be actual maximum length (even number) + 1.
1316 * LOCKING:
1317 * caller.
1319 void ata_id_c_string(const u16 *id, unsigned char *s,
1320 unsigned int ofs, unsigned int len)
1322 unsigned char *p;
1324 ata_id_string(id, s, ofs, len - 1);
1326 p = s + strnlen(s, len - 1);
1327 while (p > s && p[-1] == ' ')
1328 p--;
1329 *p = '\0';
1332 static u64 ata_id_n_sectors(const u16 *id)
1334 if (ata_id_has_lba(id)) {
1335 if (ata_id_has_lba48(id))
1336 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1337 else
1338 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1339 } else {
1340 if (ata_id_current_chs_valid(id))
1341 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1342 id[ATA_ID_CUR_SECTORS];
1343 else
1344 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1345 id[ATA_ID_SECTORS];
1349 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1351 u64 sectors = 0;
1353 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1354 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1355 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1356 sectors |= (tf->lbah & 0xff) << 16;
1357 sectors |= (tf->lbam & 0xff) << 8;
1358 sectors |= (tf->lbal & 0xff);
1360 return sectors;
1363 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1365 u64 sectors = 0;
1367 sectors |= (tf->device & 0x0f) << 24;
1368 sectors |= (tf->lbah & 0xff) << 16;
1369 sectors |= (tf->lbam & 0xff) << 8;
1370 sectors |= (tf->lbal & 0xff);
1372 return sectors;
1376 * ata_read_native_max_address - Read native max address
1377 * @dev: target device
1378 * @max_sectors: out parameter for the result native max address
1380 * Perform an LBA48 or LBA28 native size query upon the device in
1381 * question.
1383 * RETURNS:
1384 * 0 on success, -EACCES if command is aborted by the drive.
1385 * -EIO on other errors.
1387 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1389 unsigned int err_mask;
1390 struct ata_taskfile tf;
1391 int lba48 = ata_id_has_lba48(dev->id);
1393 ata_tf_init(dev, &tf);
1395 /* always clear all address registers */
1396 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1398 if (lba48) {
1399 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1400 tf.flags |= ATA_TFLAG_LBA48;
1401 } else
1402 tf.command = ATA_CMD_READ_NATIVE_MAX;
1404 tf.protocol |= ATA_PROT_NODATA;
1405 tf.device |= ATA_LBA;
1407 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1408 if (err_mask) {
1409 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1410 "max address (err_mask=0x%x)\n", err_mask);
1411 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1412 return -EACCES;
1413 return -EIO;
1416 if (lba48)
1417 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1418 else
1419 *max_sectors = ata_tf_to_lba(&tf) + 1;
1420 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1421 (*max_sectors)--;
1422 return 0;
1426 * ata_set_max_sectors - Set max sectors
1427 * @dev: target device
1428 * @new_sectors: new max sectors value to set for the device
1430 * Set max sectors of @dev to @new_sectors.
1432 * RETURNS:
1433 * 0 on success, -EACCES if command is aborted or denied (due to
1434 * previous non-volatile SET_MAX) by the drive. -EIO on other
1435 * errors.
1437 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1439 unsigned int err_mask;
1440 struct ata_taskfile tf;
1441 int lba48 = ata_id_has_lba48(dev->id);
1443 new_sectors--;
1445 ata_tf_init(dev, &tf);
1447 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1449 if (lba48) {
1450 tf.command = ATA_CMD_SET_MAX_EXT;
1451 tf.flags |= ATA_TFLAG_LBA48;
1453 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1454 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1455 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1456 } else {
1457 tf.command = ATA_CMD_SET_MAX;
1459 tf.device |= (new_sectors >> 24) & 0xf;
1462 tf.protocol |= ATA_PROT_NODATA;
1463 tf.device |= ATA_LBA;
1465 tf.lbal = (new_sectors >> 0) & 0xff;
1466 tf.lbam = (new_sectors >> 8) & 0xff;
1467 tf.lbah = (new_sectors >> 16) & 0xff;
1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1470 if (err_mask) {
1471 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1472 "max address (err_mask=0x%x)\n", err_mask);
1473 if (err_mask == AC_ERR_DEV &&
1474 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1475 return -EACCES;
1476 return -EIO;
1479 return 0;
1483 * ata_hpa_resize - Resize a device with an HPA set
1484 * @dev: Device to resize
1486 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1487 * it if required to the full size of the media. The caller must check
1488 * the drive has the HPA feature set enabled.
1490 * RETURNS:
1491 * 0 on success, -errno on failure.
1493 static int ata_hpa_resize(struct ata_device *dev)
1495 struct ata_eh_context *ehc = &dev->link->eh_context;
1496 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1497 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1498 u64 sectors = ata_id_n_sectors(dev->id);
1499 u64 native_sectors;
1500 int rc;
1502 /* do we need to do it? */
1503 if (dev->class != ATA_DEV_ATA ||
1504 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1505 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1506 return 0;
1508 /* read native max address */
1509 rc = ata_read_native_max_address(dev, &native_sectors);
1510 if (rc) {
1511 /* If device aborted the command or HPA isn't going to
1512 * be unlocked, skip HPA resizing.
1514 if (rc == -EACCES || !unlock_hpa) {
1515 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1516 "broken, skipping HPA handling\n");
1517 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1519 /* we can continue if device aborted the command */
1520 if (rc == -EACCES)
1521 rc = 0;
1524 return rc;
1526 dev->n_native_sectors = native_sectors;
1528 /* nothing to do? */
1529 if (native_sectors <= sectors || !unlock_hpa) {
1530 if (!print_info || native_sectors == sectors)
1531 return 0;
1533 if (native_sectors > sectors)
1534 ata_dev_printk(dev, KERN_INFO,
1535 "HPA detected: current %llu, native %llu\n",
1536 (unsigned long long)sectors,
1537 (unsigned long long)native_sectors);
1538 else if (native_sectors < sectors)
1539 ata_dev_printk(dev, KERN_WARNING,
1540 "native sectors (%llu) is smaller than "
1541 "sectors (%llu)\n",
1542 (unsigned long long)native_sectors,
1543 (unsigned long long)sectors);
1544 return 0;
1547 /* let's unlock HPA */
1548 rc = ata_set_max_sectors(dev, native_sectors);
1549 if (rc == -EACCES) {
1550 /* if device aborted the command, skip HPA resizing */
1551 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1552 "(%llu -> %llu), skipping HPA handling\n",
1553 (unsigned long long)sectors,
1554 (unsigned long long)native_sectors);
1555 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1556 return 0;
1557 } else if (rc)
1558 return rc;
1560 /* re-read IDENTIFY data */
1561 rc = ata_dev_reread_id(dev, 0);
1562 if (rc) {
1563 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1564 "data after HPA resizing\n");
1565 return rc;
1568 if (print_info) {
1569 u64 new_sectors = ata_id_n_sectors(dev->id);
1570 ata_dev_printk(dev, KERN_INFO,
1571 "HPA unlocked: %llu -> %llu, native %llu\n",
1572 (unsigned long long)sectors,
1573 (unsigned long long)new_sectors,
1574 (unsigned long long)native_sectors);
1577 return 0;
1581 * ata_dump_id - IDENTIFY DEVICE info debugging output
1582 * @id: IDENTIFY DEVICE page to dump
1584 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1585 * page.
1587 * LOCKING:
1588 * caller.
1591 static inline void ata_dump_id(const u16 *id)
1593 DPRINTK("49==0x%04x "
1594 "53==0x%04x "
1595 "63==0x%04x "
1596 "64==0x%04x "
1597 "75==0x%04x \n",
1598 id[49],
1599 id[53],
1600 id[63],
1601 id[64],
1602 id[75]);
1603 DPRINTK("80==0x%04x "
1604 "81==0x%04x "
1605 "82==0x%04x "
1606 "83==0x%04x "
1607 "84==0x%04x \n",
1608 id[80],
1609 id[81],
1610 id[82],
1611 id[83],
1612 id[84]);
1613 DPRINTK("88==0x%04x "
1614 "93==0x%04x\n",
1615 id[88],
1616 id[93]);
1620 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1621 * @id: IDENTIFY data to compute xfer mask from
1623 * Compute the xfermask for this device. This is not as trivial
1624 * as it seems if we must consider early devices correctly.
1626 * FIXME: pre IDE drive timing (do we care ?).
1628 * LOCKING:
1629 * None.
1631 * RETURNS:
1632 * Computed xfermask
1634 unsigned long ata_id_xfermask(const u16 *id)
1636 unsigned long pio_mask, mwdma_mask, udma_mask;
1638 /* Usual case. Word 53 indicates word 64 is valid */
1639 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1640 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1641 pio_mask <<= 3;
1642 pio_mask |= 0x7;
1643 } else {
1644 /* If word 64 isn't valid then Word 51 high byte holds
1645 * the PIO timing number for the maximum. Turn it into
1646 * a mask.
1648 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1649 if (mode < 5) /* Valid PIO range */
1650 pio_mask = (2 << mode) - 1;
1651 else
1652 pio_mask = 1;
1654 /* But wait.. there's more. Design your standards by
1655 * committee and you too can get a free iordy field to
1656 * process. However its the speeds not the modes that
1657 * are supported... Note drivers using the timing API
1658 * will get this right anyway
1662 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1664 if (ata_id_is_cfa(id)) {
1666 * Process compact flash extended modes
1668 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1669 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1671 if (pio)
1672 pio_mask |= (1 << 5);
1673 if (pio > 1)
1674 pio_mask |= (1 << 6);
1675 if (dma)
1676 mwdma_mask |= (1 << 3);
1677 if (dma > 1)
1678 mwdma_mask |= (1 << 4);
1681 udma_mask = 0;
1682 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1683 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1685 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1689 * ata_pio_queue_task - Queue port_task
1690 * @ap: The ata_port to queue port_task for
1691 * @data: data for @fn to use
1692 * @delay: delay time in msecs for workqueue function
1694 * Schedule @fn(@data) for execution after @delay jiffies using
1695 * port_task. There is one port_task per port and it's the
1696 * user(low level driver)'s responsibility to make sure that only
1697 * one task is active at any given time.
1699 * libata core layer takes care of synchronization between
1700 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1701 * synchronization.
1703 * LOCKING:
1704 * Inherited from caller.
1706 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1708 ap->port_task_data = data;
1710 /* may fail if ata_port_flush_task() in progress */
1711 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1715 * ata_port_flush_task - Flush port_task
1716 * @ap: The ata_port to flush port_task for
1718 * After this function completes, port_task is guranteed not to
1719 * be running or scheduled.
1721 * LOCKING:
1722 * Kernel thread context (may sleep)
1724 void ata_port_flush_task(struct ata_port *ap)
1726 DPRINTK("ENTER\n");
1728 cancel_rearming_delayed_work(&ap->port_task);
1730 if (ata_msg_ctl(ap))
1731 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1734 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1736 struct completion *waiting = qc->private_data;
1738 complete(waiting);
1742 * ata_exec_internal_sg - execute libata internal command
1743 * @dev: Device to which the command is sent
1744 * @tf: Taskfile registers for the command and the result
1745 * @cdb: CDB for packet command
1746 * @dma_dir: Data tranfer direction of the command
1747 * @sgl: sg list for the data buffer of the command
1748 * @n_elem: Number of sg entries
1749 * @timeout: Timeout in msecs (0 for default)
1751 * Executes libata internal command with timeout. @tf contains
1752 * command on entry and result on return. Timeout and error
1753 * conditions are reported via return value. No recovery action
1754 * is taken after a command times out. It's caller's duty to
1755 * clean up after timeout.
1757 * LOCKING:
1758 * None. Should be called with kernel context, might sleep.
1760 * RETURNS:
1761 * Zero on success, AC_ERR_* mask on failure
1763 unsigned ata_exec_internal_sg(struct ata_device *dev,
1764 struct ata_taskfile *tf, const u8 *cdb,
1765 int dma_dir, struct scatterlist *sgl,
1766 unsigned int n_elem, unsigned long timeout)
1768 struct ata_link *link = dev->link;
1769 struct ata_port *ap = link->ap;
1770 u8 command = tf->command;
1771 int auto_timeout = 0;
1772 struct ata_queued_cmd *qc;
1773 unsigned int tag, preempted_tag;
1774 u32 preempted_sactive, preempted_qc_active;
1775 int preempted_nr_active_links;
1776 DECLARE_COMPLETION_ONSTACK(wait);
1777 unsigned long flags;
1778 unsigned int err_mask;
1779 int rc;
1781 spin_lock_irqsave(ap->lock, flags);
1783 /* no internal command while frozen */
1784 if (ap->pflags & ATA_PFLAG_FROZEN) {
1785 spin_unlock_irqrestore(ap->lock, flags);
1786 return AC_ERR_SYSTEM;
1789 /* initialize internal qc */
1791 /* XXX: Tag 0 is used for drivers with legacy EH as some
1792 * drivers choke if any other tag is given. This breaks
1793 * ata_tag_internal() test for those drivers. Don't use new
1794 * EH stuff without converting to it.
1796 if (ap->ops->error_handler)
1797 tag = ATA_TAG_INTERNAL;
1798 else
1799 tag = 0;
1801 if (test_and_set_bit(tag, &ap->qc_allocated))
1802 BUG();
1803 qc = __ata_qc_from_tag(ap, tag);
1805 qc->tag = tag;
1806 qc->scsicmd = NULL;
1807 qc->ap = ap;
1808 qc->dev = dev;
1809 ata_qc_reinit(qc);
1811 preempted_tag = link->active_tag;
1812 preempted_sactive = link->sactive;
1813 preempted_qc_active = ap->qc_active;
1814 preempted_nr_active_links = ap->nr_active_links;
1815 link->active_tag = ATA_TAG_POISON;
1816 link->sactive = 0;
1817 ap->qc_active = 0;
1818 ap->nr_active_links = 0;
1820 /* prepare & issue qc */
1821 qc->tf = *tf;
1822 if (cdb)
1823 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1824 qc->flags |= ATA_QCFLAG_RESULT_TF;
1825 qc->dma_dir = dma_dir;
1826 if (dma_dir != DMA_NONE) {
1827 unsigned int i, buflen = 0;
1828 struct scatterlist *sg;
1830 for_each_sg(sgl, sg, n_elem, i)
1831 buflen += sg->length;
1833 ata_sg_init(qc, sgl, n_elem);
1834 qc->nbytes = buflen;
1837 qc->private_data = &wait;
1838 qc->complete_fn = ata_qc_complete_internal;
1840 ata_qc_issue(qc);
1842 spin_unlock_irqrestore(ap->lock, flags);
1844 if (!timeout) {
1845 if (ata_probe_timeout)
1846 timeout = ata_probe_timeout * 1000;
1847 else {
1848 timeout = ata_internal_cmd_timeout(dev, command);
1849 auto_timeout = 1;
1853 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1855 ata_port_flush_task(ap);
1857 if (!rc) {
1858 spin_lock_irqsave(ap->lock, flags);
1860 /* We're racing with irq here. If we lose, the
1861 * following test prevents us from completing the qc
1862 * twice. If we win, the port is frozen and will be
1863 * cleaned up by ->post_internal_cmd().
1865 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1866 qc->err_mask |= AC_ERR_TIMEOUT;
1868 if (ap->ops->error_handler)
1869 ata_port_freeze(ap);
1870 else
1871 ata_qc_complete(qc);
1873 if (ata_msg_warn(ap))
1874 ata_dev_printk(dev, KERN_WARNING,
1875 "qc timeout (cmd 0x%x)\n", command);
1878 spin_unlock_irqrestore(ap->lock, flags);
1881 /* do post_internal_cmd */
1882 if (ap->ops->post_internal_cmd)
1883 ap->ops->post_internal_cmd(qc);
1885 /* perform minimal error analysis */
1886 if (qc->flags & ATA_QCFLAG_FAILED) {
1887 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1888 qc->err_mask |= AC_ERR_DEV;
1890 if (!qc->err_mask)
1891 qc->err_mask |= AC_ERR_OTHER;
1893 if (qc->err_mask & ~AC_ERR_OTHER)
1894 qc->err_mask &= ~AC_ERR_OTHER;
1897 /* finish up */
1898 spin_lock_irqsave(ap->lock, flags);
1900 *tf = qc->result_tf;
1901 err_mask = qc->err_mask;
1903 ata_qc_free(qc);
1904 link->active_tag = preempted_tag;
1905 link->sactive = preempted_sactive;
1906 ap->qc_active = preempted_qc_active;
1907 ap->nr_active_links = preempted_nr_active_links;
1909 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1910 * Until those drivers are fixed, we detect the condition
1911 * here, fail the command with AC_ERR_SYSTEM and reenable the
1912 * port.
1914 * Note that this doesn't change any behavior as internal
1915 * command failure results in disabling the device in the
1916 * higher layer for LLDDs without new reset/EH callbacks.
1918 * Kill the following code as soon as those drivers are fixed.
1920 if (ap->flags & ATA_FLAG_DISABLED) {
1921 err_mask |= AC_ERR_SYSTEM;
1922 ata_port_probe(ap);
1925 spin_unlock_irqrestore(ap->lock, flags);
1927 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1928 ata_internal_cmd_timed_out(dev, command);
1930 return err_mask;
1934 * ata_exec_internal - execute libata internal command
1935 * @dev: Device to which the command is sent
1936 * @tf: Taskfile registers for the command and the result
1937 * @cdb: CDB for packet command
1938 * @dma_dir: Data tranfer direction of the command
1939 * @buf: Data buffer of the command
1940 * @buflen: Length of data buffer
1941 * @timeout: Timeout in msecs (0 for default)
1943 * Wrapper around ata_exec_internal_sg() which takes simple
1944 * buffer instead of sg list.
1946 * LOCKING:
1947 * None. Should be called with kernel context, might sleep.
1949 * RETURNS:
1950 * Zero on success, AC_ERR_* mask on failure
1952 unsigned ata_exec_internal(struct ata_device *dev,
1953 struct ata_taskfile *tf, const u8 *cdb,
1954 int dma_dir, void *buf, unsigned int buflen,
1955 unsigned long timeout)
1957 struct scatterlist *psg = NULL, sg;
1958 unsigned int n_elem = 0;
1960 if (dma_dir != DMA_NONE) {
1961 WARN_ON(!buf);
1962 sg_init_one(&sg, buf, buflen);
1963 psg = &sg;
1964 n_elem++;
1967 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1968 timeout);
1972 * ata_do_simple_cmd - execute simple internal command
1973 * @dev: Device to which the command is sent
1974 * @cmd: Opcode to execute
1976 * Execute a 'simple' command, that only consists of the opcode
1977 * 'cmd' itself, without filling any other registers
1979 * LOCKING:
1980 * Kernel thread context (may sleep).
1982 * RETURNS:
1983 * Zero on success, AC_ERR_* mask on failure
1985 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1987 struct ata_taskfile tf;
1989 ata_tf_init(dev, &tf);
1991 tf.command = cmd;
1992 tf.flags |= ATA_TFLAG_DEVICE;
1993 tf.protocol = ATA_PROT_NODATA;
1995 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1999 * ata_pio_need_iordy - check if iordy needed
2000 * @adev: ATA device
2002 * Check if the current speed of the device requires IORDY. Used
2003 * by various controllers for chip configuration.
2005 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
2007 /* Don't set IORDY if we're preparing for reset. IORDY may
2008 * lead to controller lock up on certain controllers if the
2009 * port is not occupied. See bko#11703 for details.
2011 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
2012 return 0;
2013 /* Controller doesn't support IORDY. Probably a pointless
2014 * check as the caller should know this.
2016 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
2017 return 0;
2018 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2019 if (ata_id_is_cfa(adev->id)
2020 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2021 return 0;
2022 /* PIO3 and higher it is mandatory */
2023 if (adev->pio_mode > XFER_PIO_2)
2024 return 1;
2025 /* We turn it on when possible */
2026 if (ata_id_has_iordy(adev->id))
2027 return 1;
2028 return 0;
2032 * ata_pio_mask_no_iordy - Return the non IORDY mask
2033 * @adev: ATA device
2035 * Compute the highest mode possible if we are not using iordy. Return
2036 * -1 if no iordy mode is available.
2038 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2040 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2041 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2042 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2043 /* Is the speed faster than the drive allows non IORDY ? */
2044 if (pio) {
2045 /* This is cycle times not frequency - watch the logic! */
2046 if (pio > 240) /* PIO2 is 240nS per cycle */
2047 return 3 << ATA_SHIFT_PIO;
2048 return 7 << ATA_SHIFT_PIO;
2051 return 3 << ATA_SHIFT_PIO;
2055 * ata_do_dev_read_id - default ID read method
2056 * @dev: device
2057 * @tf: proposed taskfile
2058 * @id: data buffer
2060 * Issue the identify taskfile and hand back the buffer containing
2061 * identify data. For some RAID controllers and for pre ATA devices
2062 * this function is wrapped or replaced by the driver
2064 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2065 struct ata_taskfile *tf, u16 *id)
2067 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2068 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2072 * ata_dev_read_id - Read ID data from the specified device
2073 * @dev: target device
2074 * @p_class: pointer to class of the target device (may be changed)
2075 * @flags: ATA_READID_* flags
2076 * @id: buffer to read IDENTIFY data into
2078 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2079 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2080 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2081 * for pre-ATA4 drives.
2083 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2084 * now we abort if we hit that case.
2086 * LOCKING:
2087 * Kernel thread context (may sleep)
2089 * RETURNS:
2090 * 0 on success, -errno otherwise.
2092 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2093 unsigned int flags, u16 *id)
2095 struct ata_port *ap = dev->link->ap;
2096 unsigned int class = *p_class;
2097 struct ata_taskfile tf;
2098 unsigned int err_mask = 0;
2099 const char *reason;
2100 bool is_semb = class == ATA_DEV_SEMB;
2101 int may_fallback = 1, tried_spinup = 0;
2102 int rc;
2104 if (ata_msg_ctl(ap))
2105 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2107 retry:
2108 ata_tf_init(dev, &tf);
2110 switch (class) {
2111 case ATA_DEV_SEMB:
2112 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
2113 case ATA_DEV_ATA:
2114 tf.command = ATA_CMD_ID_ATA;
2115 break;
2116 case ATA_DEV_ATAPI:
2117 tf.command = ATA_CMD_ID_ATAPI;
2118 break;
2119 default:
2120 rc = -ENODEV;
2121 reason = "unsupported class";
2122 goto err_out;
2125 tf.protocol = ATA_PROT_PIO;
2127 /* Some devices choke if TF registers contain garbage. Make
2128 * sure those are properly initialized.
2130 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2132 /* Device presence detection is unreliable on some
2133 * controllers. Always poll IDENTIFY if available.
2135 tf.flags |= ATA_TFLAG_POLLING;
2137 if (ap->ops->read_id)
2138 err_mask = ap->ops->read_id(dev, &tf, id);
2139 else
2140 err_mask = ata_do_dev_read_id(dev, &tf, id);
2142 if (err_mask) {
2143 if (err_mask & AC_ERR_NODEV_HINT) {
2144 ata_dev_printk(dev, KERN_DEBUG,
2145 "NODEV after polling detection\n");
2146 return -ENOENT;
2149 if (is_semb) {
2150 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2151 "device w/ SEMB sig, disabled\n");
2152 /* SEMB is not supported yet */
2153 *p_class = ATA_DEV_SEMB_UNSUP;
2154 return 0;
2157 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2158 /* Device or controller might have reported
2159 * the wrong device class. Give a shot at the
2160 * other IDENTIFY if the current one is
2161 * aborted by the device.
2163 if (may_fallback) {
2164 may_fallback = 0;
2166 if (class == ATA_DEV_ATA)
2167 class = ATA_DEV_ATAPI;
2168 else
2169 class = ATA_DEV_ATA;
2170 goto retry;
2173 /* Control reaches here iff the device aborted
2174 * both flavors of IDENTIFYs which happens
2175 * sometimes with phantom devices.
2177 ata_dev_printk(dev, KERN_DEBUG,
2178 "both IDENTIFYs aborted, assuming NODEV\n");
2179 return -ENOENT;
2182 rc = -EIO;
2183 reason = "I/O error";
2184 goto err_out;
2187 /* Falling back doesn't make sense if ID data was read
2188 * successfully at least once.
2190 may_fallback = 0;
2192 swap_buf_le16(id, ATA_ID_WORDS);
2194 /* sanity check */
2195 rc = -EINVAL;
2196 reason = "device reports invalid type";
2198 if (class == ATA_DEV_ATA) {
2199 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2200 goto err_out;
2201 } else {
2202 if (ata_id_is_ata(id))
2203 goto err_out;
2206 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2207 tried_spinup = 1;
2209 * Drive powered-up in standby mode, and requires a specific
2210 * SET_FEATURES spin-up subcommand before it will accept
2211 * anything other than the original IDENTIFY command.
2213 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2214 if (err_mask && id[2] != 0x738c) {
2215 rc = -EIO;
2216 reason = "SPINUP failed";
2217 goto err_out;
2220 * If the drive initially returned incomplete IDENTIFY info,
2221 * we now must reissue the IDENTIFY command.
2223 if (id[2] == 0x37c8)
2224 goto retry;
2227 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2229 * The exact sequence expected by certain pre-ATA4 drives is:
2230 * SRST RESET
2231 * IDENTIFY (optional in early ATA)
2232 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2233 * anything else..
2234 * Some drives were very specific about that exact sequence.
2236 * Note that ATA4 says lba is mandatory so the second check
2237 * should never trigger.
2239 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2240 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2241 if (err_mask) {
2242 rc = -EIO;
2243 reason = "INIT_DEV_PARAMS failed";
2244 goto err_out;
2247 /* current CHS translation info (id[53-58]) might be
2248 * changed. reread the identify device info.
2250 flags &= ~ATA_READID_POSTRESET;
2251 goto retry;
2255 *p_class = class;
2257 return 0;
2259 err_out:
2260 if (ata_msg_warn(ap))
2261 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2262 "(%s, err_mask=0x%x)\n", reason, err_mask);
2263 return rc;
2266 static int ata_do_link_spd_horkage(struct ata_device *dev)
2268 struct ata_link *plink = ata_dev_phys_link(dev);
2269 u32 target, target_limit;
2271 if (!sata_scr_valid(plink))
2272 return 0;
2274 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2275 target = 1;
2276 else
2277 return 0;
2279 target_limit = (1 << target) - 1;
2281 /* if already on stricter limit, no need to push further */
2282 if (plink->sata_spd_limit <= target_limit)
2283 return 0;
2285 plink->sata_spd_limit = target_limit;
2287 /* Request another EH round by returning -EAGAIN if link is
2288 * going faster than the target speed. Forward progress is
2289 * guaranteed by setting sata_spd_limit to target_limit above.
2291 if (plink->sata_spd > target) {
2292 ata_dev_printk(dev, KERN_INFO,
2293 "applying link speed limit horkage to %s\n",
2294 sata_spd_string(target));
2295 return -EAGAIN;
2297 return 0;
2300 static inline u8 ata_dev_knobble(struct ata_device *dev)
2302 struct ata_port *ap = dev->link->ap;
2304 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2305 return 0;
2307 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2310 static int ata_dev_config_ncq(struct ata_device *dev,
2311 char *desc, size_t desc_sz)
2313 struct ata_port *ap = dev->link->ap;
2314 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2315 unsigned int err_mask;
2316 char *aa_desc = "";
2318 if (!ata_id_has_ncq(dev->id)) {
2319 desc[0] = '\0';
2320 return 0;
2322 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2323 snprintf(desc, desc_sz, "NCQ (not used)");
2324 return 0;
2326 if (ap->flags & ATA_FLAG_NCQ) {
2327 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2328 dev->flags |= ATA_DFLAG_NCQ;
2331 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2332 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2333 ata_id_has_fpdma_aa(dev->id)) {
2334 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2335 SATA_FPDMA_AA);
2336 if (err_mask) {
2337 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2338 "(error_mask=0x%x)\n", err_mask);
2339 if (err_mask != AC_ERR_DEV) {
2340 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2341 return -EIO;
2343 } else
2344 aa_desc = ", AA";
2347 if (hdepth >= ddepth)
2348 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2349 else
2350 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2351 ddepth, aa_desc);
2352 return 0;
2356 * ata_dev_configure - Configure the specified ATA/ATAPI device
2357 * @dev: Target device to configure
2359 * Configure @dev according to @dev->id. Generic and low-level
2360 * driver specific fixups are also applied.
2362 * LOCKING:
2363 * Kernel thread context (may sleep)
2365 * RETURNS:
2366 * 0 on success, -errno otherwise
2368 int ata_dev_configure(struct ata_device *dev)
2370 struct ata_port *ap = dev->link->ap;
2371 struct ata_eh_context *ehc = &dev->link->eh_context;
2372 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2373 const u16 *id = dev->id;
2374 unsigned long xfer_mask;
2375 char revbuf[7]; /* XYZ-99\0 */
2376 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2377 char modelbuf[ATA_ID_PROD_LEN+1];
2378 int rc;
2380 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2381 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2382 __func__);
2383 return 0;
2386 if (ata_msg_probe(ap))
2387 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2389 /* set horkage */
2390 dev->horkage |= ata_dev_blacklisted(dev);
2391 ata_force_horkage(dev);
2393 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2394 ata_dev_printk(dev, KERN_INFO,
2395 "unsupported device, disabling\n");
2396 ata_dev_disable(dev);
2397 return 0;
2400 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2401 dev->class == ATA_DEV_ATAPI) {
2402 ata_dev_printk(dev, KERN_WARNING,
2403 "WARNING: ATAPI is %s, device ignored.\n",
2404 atapi_enabled ? "not supported with this driver"
2405 : "disabled");
2406 ata_dev_disable(dev);
2407 return 0;
2410 rc = ata_do_link_spd_horkage(dev);
2411 if (rc)
2412 return rc;
2414 /* let ACPI work its magic */
2415 rc = ata_acpi_on_devcfg(dev);
2416 if (rc)
2417 return rc;
2419 /* massage HPA, do it early as it might change IDENTIFY data */
2420 rc = ata_hpa_resize(dev);
2421 if (rc)
2422 return rc;
2424 /* print device capabilities */
2425 if (ata_msg_probe(ap))
2426 ata_dev_printk(dev, KERN_DEBUG,
2427 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2428 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2429 __func__,
2430 id[49], id[82], id[83], id[84],
2431 id[85], id[86], id[87], id[88]);
2433 /* initialize to-be-configured parameters */
2434 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2435 dev->max_sectors = 0;
2436 dev->cdb_len = 0;
2437 dev->n_sectors = 0;
2438 dev->cylinders = 0;
2439 dev->heads = 0;
2440 dev->sectors = 0;
2441 dev->multi_count = 0;
2444 * common ATA, ATAPI feature tests
2447 /* find max transfer mode; for printk only */
2448 xfer_mask = ata_id_xfermask(id);
2450 if (ata_msg_probe(ap))
2451 ata_dump_id(id);
2453 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2454 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2455 sizeof(fwrevbuf));
2457 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2458 sizeof(modelbuf));
2460 /* ATA-specific feature tests */
2461 if (dev->class == ATA_DEV_ATA) {
2462 if (ata_id_is_cfa(id)) {
2463 /* CPRM may make this media unusable */
2464 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2465 ata_dev_printk(dev, KERN_WARNING,
2466 "supports DRM functions and may "
2467 "not be fully accessable.\n");
2468 snprintf(revbuf, 7, "CFA");
2469 } else {
2470 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2471 /* Warn the user if the device has TPM extensions */
2472 if (ata_id_has_tpm(id))
2473 ata_dev_printk(dev, KERN_WARNING,
2474 "supports DRM functions and may "
2475 "not be fully accessable.\n");
2478 dev->n_sectors = ata_id_n_sectors(id);
2480 /* get current R/W Multiple count setting */
2481 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2482 unsigned int max = dev->id[47] & 0xff;
2483 unsigned int cnt = dev->id[59] & 0xff;
2484 /* only recognize/allow powers of two here */
2485 if (is_power_of_2(max) && is_power_of_2(cnt))
2486 if (cnt <= max)
2487 dev->multi_count = cnt;
2490 if (ata_id_has_lba(id)) {
2491 const char *lba_desc;
2492 char ncq_desc[24];
2494 lba_desc = "LBA";
2495 dev->flags |= ATA_DFLAG_LBA;
2496 if (ata_id_has_lba48(id)) {
2497 dev->flags |= ATA_DFLAG_LBA48;
2498 lba_desc = "LBA48";
2500 if (dev->n_sectors >= (1UL << 28) &&
2501 ata_id_has_flush_ext(id))
2502 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2505 /* config NCQ */
2506 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2507 if (rc)
2508 return rc;
2510 /* print device info to dmesg */
2511 if (ata_msg_drv(ap) && print_info) {
2512 ata_dev_printk(dev, KERN_INFO,
2513 "%s: %s, %s, max %s\n",
2514 revbuf, modelbuf, fwrevbuf,
2515 ata_mode_string(xfer_mask));
2516 ata_dev_printk(dev, KERN_INFO,
2517 "%Lu sectors, multi %u: %s %s\n",
2518 (unsigned long long)dev->n_sectors,
2519 dev->multi_count, lba_desc, ncq_desc);
2521 } else {
2522 /* CHS */
2524 /* Default translation */
2525 dev->cylinders = id[1];
2526 dev->heads = id[3];
2527 dev->sectors = id[6];
2529 if (ata_id_current_chs_valid(id)) {
2530 /* Current CHS translation is valid. */
2531 dev->cylinders = id[54];
2532 dev->heads = id[55];
2533 dev->sectors = id[56];
2536 /* print device info to dmesg */
2537 if (ata_msg_drv(ap) && print_info) {
2538 ata_dev_printk(dev, KERN_INFO,
2539 "%s: %s, %s, max %s\n",
2540 revbuf, modelbuf, fwrevbuf,
2541 ata_mode_string(xfer_mask));
2542 ata_dev_printk(dev, KERN_INFO,
2543 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2544 (unsigned long long)dev->n_sectors,
2545 dev->multi_count, dev->cylinders,
2546 dev->heads, dev->sectors);
2550 dev->cdb_len = 16;
2553 /* ATAPI-specific feature tests */
2554 else if (dev->class == ATA_DEV_ATAPI) {
2555 const char *cdb_intr_string = "";
2556 const char *atapi_an_string = "";
2557 const char *dma_dir_string = "";
2558 u32 sntf;
2560 rc = atapi_cdb_len(id);
2561 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2562 if (ata_msg_warn(ap))
2563 ata_dev_printk(dev, KERN_WARNING,
2564 "unsupported CDB len\n");
2565 rc = -EINVAL;
2566 goto err_out_nosup;
2568 dev->cdb_len = (unsigned int) rc;
2570 /* Enable ATAPI AN if both the host and device have
2571 * the support. If PMP is attached, SNTF is required
2572 * to enable ATAPI AN to discern between PHY status
2573 * changed notifications and ATAPI ANs.
2575 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2576 (!sata_pmp_attached(ap) ||
2577 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2578 unsigned int err_mask;
2580 /* issue SET feature command to turn this on */
2581 err_mask = ata_dev_set_feature(dev,
2582 SETFEATURES_SATA_ENABLE, SATA_AN);
2583 if (err_mask)
2584 ata_dev_printk(dev, KERN_ERR,
2585 "failed to enable ATAPI AN "
2586 "(err_mask=0x%x)\n", err_mask);
2587 else {
2588 dev->flags |= ATA_DFLAG_AN;
2589 atapi_an_string = ", ATAPI AN";
2593 if (ata_id_cdb_intr(dev->id)) {
2594 dev->flags |= ATA_DFLAG_CDB_INTR;
2595 cdb_intr_string = ", CDB intr";
2598 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2599 dev->flags |= ATA_DFLAG_DMADIR;
2600 dma_dir_string = ", DMADIR";
2603 /* print device info to dmesg */
2604 if (ata_msg_drv(ap) && print_info)
2605 ata_dev_printk(dev, KERN_INFO,
2606 "ATAPI: %s, %s, max %s%s%s%s\n",
2607 modelbuf, fwrevbuf,
2608 ata_mode_string(xfer_mask),
2609 cdb_intr_string, atapi_an_string,
2610 dma_dir_string);
2613 /* determine max_sectors */
2614 dev->max_sectors = ATA_MAX_SECTORS;
2615 if (dev->flags & ATA_DFLAG_LBA48)
2616 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2618 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2619 if (ata_id_has_hipm(dev->id))
2620 dev->flags |= ATA_DFLAG_HIPM;
2621 if (ata_id_has_dipm(dev->id))
2622 dev->flags |= ATA_DFLAG_DIPM;
2625 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2626 200 sectors */
2627 if (ata_dev_knobble(dev)) {
2628 if (ata_msg_drv(ap) && print_info)
2629 ata_dev_printk(dev, KERN_INFO,
2630 "applying bridge limits\n");
2631 dev->udma_mask &= ATA_UDMA5;
2632 dev->max_sectors = ATA_MAX_SECTORS;
2635 if ((dev->class == ATA_DEV_ATAPI) &&
2636 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2637 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2638 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2641 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2642 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2643 dev->max_sectors);
2645 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2646 dev->horkage |= ATA_HORKAGE_IPM;
2648 /* reset link pm_policy for this port to no pm */
2649 ap->pm_policy = MAX_PERFORMANCE;
2652 if (ap->ops->dev_config)
2653 ap->ops->dev_config(dev);
2655 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2656 /* Let the user know. We don't want to disallow opens for
2657 rescue purposes, or in case the vendor is just a blithering
2658 idiot. Do this after the dev_config call as some controllers
2659 with buggy firmware may want to avoid reporting false device
2660 bugs */
2662 if (print_info) {
2663 ata_dev_printk(dev, KERN_WARNING,
2664 "Drive reports diagnostics failure. This may indicate a drive\n");
2665 ata_dev_printk(dev, KERN_WARNING,
2666 "fault or invalid emulation. Contact drive vendor for information.\n");
2670 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2671 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2672 "firmware update to be fully functional.\n");
2673 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2674 "or visit http://ata.wiki.kernel.org.\n");
2677 return 0;
2679 err_out_nosup:
2680 if (ata_msg_probe(ap))
2681 ata_dev_printk(dev, KERN_DEBUG,
2682 "%s: EXIT, err\n", __func__);
2683 return rc;
2687 * ata_cable_40wire - return 40 wire cable type
2688 * @ap: port
2690 * Helper method for drivers which want to hardwire 40 wire cable
2691 * detection.
2694 int ata_cable_40wire(struct ata_port *ap)
2696 return ATA_CBL_PATA40;
2700 * ata_cable_80wire - return 80 wire cable type
2701 * @ap: port
2703 * Helper method for drivers which want to hardwire 80 wire cable
2704 * detection.
2707 int ata_cable_80wire(struct ata_port *ap)
2709 return ATA_CBL_PATA80;
2713 * ata_cable_unknown - return unknown PATA cable.
2714 * @ap: port
2716 * Helper method for drivers which have no PATA cable detection.
2719 int ata_cable_unknown(struct ata_port *ap)
2721 return ATA_CBL_PATA_UNK;
2725 * ata_cable_ignore - return ignored PATA cable.
2726 * @ap: port
2728 * Helper method for drivers which don't use cable type to limit
2729 * transfer mode.
2731 int ata_cable_ignore(struct ata_port *ap)
2733 return ATA_CBL_PATA_IGN;
2737 * ata_cable_sata - return SATA cable type
2738 * @ap: port
2740 * Helper method for drivers which have SATA cables
2743 int ata_cable_sata(struct ata_port *ap)
2745 return ATA_CBL_SATA;
2749 * ata_bus_probe - Reset and probe ATA bus
2750 * @ap: Bus to probe
2752 * Master ATA bus probing function. Initiates a hardware-dependent
2753 * bus reset, then attempts to identify any devices found on
2754 * the bus.
2756 * LOCKING:
2757 * PCI/etc. bus probe sem.
2759 * RETURNS:
2760 * Zero on success, negative errno otherwise.
2763 int ata_bus_probe(struct ata_port *ap)
2765 unsigned int classes[ATA_MAX_DEVICES];
2766 int tries[ATA_MAX_DEVICES];
2767 int rc;
2768 struct ata_device *dev;
2770 ata_port_probe(ap);
2772 ata_for_each_dev(dev, &ap->link, ALL)
2773 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2775 retry:
2776 ata_for_each_dev(dev, &ap->link, ALL) {
2777 /* If we issue an SRST then an ATA drive (not ATAPI)
2778 * may change configuration and be in PIO0 timing. If
2779 * we do a hard reset (or are coming from power on)
2780 * this is true for ATA or ATAPI. Until we've set a
2781 * suitable controller mode we should not touch the
2782 * bus as we may be talking too fast.
2784 dev->pio_mode = XFER_PIO_0;
2786 /* If the controller has a pio mode setup function
2787 * then use it to set the chipset to rights. Don't
2788 * touch the DMA setup as that will be dealt with when
2789 * configuring devices.
2791 if (ap->ops->set_piomode)
2792 ap->ops->set_piomode(ap, dev);
2795 /* reset and determine device classes */
2796 ap->ops->phy_reset(ap);
2798 ata_for_each_dev(dev, &ap->link, ALL) {
2799 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2800 dev->class != ATA_DEV_UNKNOWN)
2801 classes[dev->devno] = dev->class;
2802 else
2803 classes[dev->devno] = ATA_DEV_NONE;
2805 dev->class = ATA_DEV_UNKNOWN;
2808 ata_port_probe(ap);
2810 /* read IDENTIFY page and configure devices. We have to do the identify
2811 specific sequence bass-ackwards so that PDIAG- is released by
2812 the slave device */
2814 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2815 if (tries[dev->devno])
2816 dev->class = classes[dev->devno];
2818 if (!ata_dev_enabled(dev))
2819 continue;
2821 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2822 dev->id);
2823 if (rc)
2824 goto fail;
2827 /* Now ask for the cable type as PDIAG- should have been released */
2828 if (ap->ops->cable_detect)
2829 ap->cbl = ap->ops->cable_detect(ap);
2831 /* We may have SATA bridge glue hiding here irrespective of
2832 * the reported cable types and sensed types. When SATA
2833 * drives indicate we have a bridge, we don't know which end
2834 * of the link the bridge is which is a problem.
2836 ata_for_each_dev(dev, &ap->link, ENABLED)
2837 if (ata_id_is_sata(dev->id))
2838 ap->cbl = ATA_CBL_SATA;
2840 /* After the identify sequence we can now set up the devices. We do
2841 this in the normal order so that the user doesn't get confused */
2843 ata_for_each_dev(dev, &ap->link, ENABLED) {
2844 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2845 rc = ata_dev_configure(dev);
2846 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2847 if (rc)
2848 goto fail;
2851 /* configure transfer mode */
2852 rc = ata_set_mode(&ap->link, &dev);
2853 if (rc)
2854 goto fail;
2856 ata_for_each_dev(dev, &ap->link, ENABLED)
2857 return 0;
2859 /* no device present, disable port */
2860 ata_port_disable(ap);
2861 return -ENODEV;
2863 fail:
2864 tries[dev->devno]--;
2866 switch (rc) {
2867 case -EINVAL:
2868 /* eeek, something went very wrong, give up */
2869 tries[dev->devno] = 0;
2870 break;
2872 case -ENODEV:
2873 /* give it just one more chance */
2874 tries[dev->devno] = min(tries[dev->devno], 1);
2875 case -EIO:
2876 if (tries[dev->devno] == 1) {
2877 /* This is the last chance, better to slow
2878 * down than lose it.
2880 sata_down_spd_limit(&ap->link, 0);
2881 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2885 if (!tries[dev->devno])
2886 ata_dev_disable(dev);
2888 goto retry;
2892 * ata_port_probe - Mark port as enabled
2893 * @ap: Port for which we indicate enablement
2895 * Modify @ap data structure such that the system
2896 * thinks that the entire port is enabled.
2898 * LOCKING: host lock, or some other form of
2899 * serialization.
2902 void ata_port_probe(struct ata_port *ap)
2904 ap->flags &= ~ATA_FLAG_DISABLED;
2908 * sata_print_link_status - Print SATA link status
2909 * @link: SATA link to printk link status about
2911 * This function prints link speed and status of a SATA link.
2913 * LOCKING:
2914 * None.
2916 static void sata_print_link_status(struct ata_link *link)
2918 u32 sstatus, scontrol, tmp;
2920 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2921 return;
2922 sata_scr_read(link, SCR_CONTROL, &scontrol);
2924 if (ata_phys_link_online(link)) {
2925 tmp = (sstatus >> 4) & 0xf;
2926 ata_link_printk(link, KERN_INFO,
2927 "SATA link up %s (SStatus %X SControl %X)\n",
2928 sata_spd_string(tmp), sstatus, scontrol);
2929 } else {
2930 ata_link_printk(link, KERN_INFO,
2931 "SATA link down (SStatus %X SControl %X)\n",
2932 sstatus, scontrol);
2937 * ata_dev_pair - return other device on cable
2938 * @adev: device
2940 * Obtain the other device on the same cable, or if none is
2941 * present NULL is returned
2944 struct ata_device *ata_dev_pair(struct ata_device *adev)
2946 struct ata_link *link = adev->link;
2947 struct ata_device *pair = &link->device[1 - adev->devno];
2948 if (!ata_dev_enabled(pair))
2949 return NULL;
2950 return pair;
2954 * ata_port_disable - Disable port.
2955 * @ap: Port to be disabled.
2957 * Modify @ap data structure such that the system
2958 * thinks that the entire port is disabled, and should
2959 * never attempt to probe or communicate with devices
2960 * on this port.
2962 * LOCKING: host lock, or some other form of
2963 * serialization.
2966 void ata_port_disable(struct ata_port *ap)
2968 ap->link.device[0].class = ATA_DEV_NONE;
2969 ap->link.device[1].class = ATA_DEV_NONE;
2970 ap->flags |= ATA_FLAG_DISABLED;
2974 * sata_down_spd_limit - adjust SATA spd limit downward
2975 * @link: Link to adjust SATA spd limit for
2976 * @spd_limit: Additional limit
2978 * Adjust SATA spd limit of @link downward. Note that this
2979 * function only adjusts the limit. The change must be applied
2980 * using sata_set_spd().
2982 * If @spd_limit is non-zero, the speed is limited to equal to or
2983 * lower than @spd_limit if such speed is supported. If
2984 * @spd_limit is slower than any supported speed, only the lowest
2985 * supported speed is allowed.
2987 * LOCKING:
2988 * Inherited from caller.
2990 * RETURNS:
2991 * 0 on success, negative errno on failure
2993 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2995 u32 sstatus, spd, mask;
2996 int rc, bit;
2998 if (!sata_scr_valid(link))
2999 return -EOPNOTSUPP;
3001 /* If SCR can be read, use it to determine the current SPD.
3002 * If not, use cached value in link->sata_spd.
3004 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3005 if (rc == 0 && ata_sstatus_online(sstatus))
3006 spd = (sstatus >> 4) & 0xf;
3007 else
3008 spd = link->sata_spd;
3010 mask = link->sata_spd_limit;
3011 if (mask <= 1)
3012 return -EINVAL;
3014 /* unconditionally mask off the highest bit */
3015 bit = fls(mask) - 1;
3016 mask &= ~(1 << bit);
3018 /* Mask off all speeds higher than or equal to the current
3019 * one. Force 1.5Gbps if current SPD is not available.
3021 if (spd > 1)
3022 mask &= (1 << (spd - 1)) - 1;
3023 else
3024 mask &= 1;
3026 /* were we already at the bottom? */
3027 if (!mask)
3028 return -EINVAL;
3030 if (spd_limit) {
3031 if (mask & ((1 << spd_limit) - 1))
3032 mask &= (1 << spd_limit) - 1;
3033 else {
3034 bit = ffs(mask) - 1;
3035 mask = 1 << bit;
3039 link->sata_spd_limit = mask;
3041 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
3042 sata_spd_string(fls(mask)));
3044 return 0;
3047 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3049 struct ata_link *host_link = &link->ap->link;
3050 u32 limit, target, spd;
3052 limit = link->sata_spd_limit;
3054 /* Don't configure downstream link faster than upstream link.
3055 * It doesn't speed up anything and some PMPs choke on such
3056 * configuration.
3058 if (!ata_is_host_link(link) && host_link->sata_spd)
3059 limit &= (1 << host_link->sata_spd) - 1;
3061 if (limit == UINT_MAX)
3062 target = 0;
3063 else
3064 target = fls(limit);
3066 spd = (*scontrol >> 4) & 0xf;
3067 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3069 return spd != target;
3073 * sata_set_spd_needed - is SATA spd configuration needed
3074 * @link: Link in question
3076 * Test whether the spd limit in SControl matches
3077 * @link->sata_spd_limit. This function is used to determine
3078 * whether hardreset is necessary to apply SATA spd
3079 * configuration.
3081 * LOCKING:
3082 * Inherited from caller.
3084 * RETURNS:
3085 * 1 if SATA spd configuration is needed, 0 otherwise.
3087 static int sata_set_spd_needed(struct ata_link *link)
3089 u32 scontrol;
3091 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3092 return 1;
3094 return __sata_set_spd_needed(link, &scontrol);
3098 * sata_set_spd - set SATA spd according to spd limit
3099 * @link: Link to set SATA spd for
3101 * Set SATA spd of @link according to sata_spd_limit.
3103 * LOCKING:
3104 * Inherited from caller.
3106 * RETURNS:
3107 * 0 if spd doesn't need to be changed, 1 if spd has been
3108 * changed. Negative errno if SCR registers are inaccessible.
3110 int sata_set_spd(struct ata_link *link)
3112 u32 scontrol;
3113 int rc;
3115 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3116 return rc;
3118 if (!__sata_set_spd_needed(link, &scontrol))
3119 return 0;
3121 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3122 return rc;
3124 return 1;
3128 * This mode timing computation functionality is ported over from
3129 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3132 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3133 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3134 * for UDMA6, which is currently supported only by Maxtor drives.
3136 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3139 static const struct ata_timing ata_timing[] = {
3140 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3141 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3142 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3143 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3144 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3145 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3146 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3147 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3149 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3150 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3151 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3153 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3154 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3155 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3156 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3157 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3159 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3160 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3161 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3162 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3163 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3164 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3165 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3166 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3168 { 0xFF }
3171 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3172 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3174 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3176 q->setup = EZ(t->setup * 1000, T);
3177 q->act8b = EZ(t->act8b * 1000, T);
3178 q->rec8b = EZ(t->rec8b * 1000, T);
3179 q->cyc8b = EZ(t->cyc8b * 1000, T);
3180 q->active = EZ(t->active * 1000, T);
3181 q->recover = EZ(t->recover * 1000, T);
3182 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3183 q->cycle = EZ(t->cycle * 1000, T);
3184 q->udma = EZ(t->udma * 1000, UT);
3187 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3188 struct ata_timing *m, unsigned int what)
3190 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3191 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3192 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3193 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3194 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3195 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3196 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3197 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3198 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3201 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3203 const struct ata_timing *t = ata_timing;
3205 while (xfer_mode > t->mode)
3206 t++;
3208 if (xfer_mode == t->mode)
3209 return t;
3210 return NULL;
3213 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3214 struct ata_timing *t, int T, int UT)
3216 const u16 *id = adev->id;
3217 const struct ata_timing *s;
3218 struct ata_timing p;
3221 * Find the mode.
3224 if (!(s = ata_timing_find_mode(speed)))
3225 return -EINVAL;
3227 memcpy(t, s, sizeof(*s));
3230 * If the drive is an EIDE drive, it can tell us it needs extended
3231 * PIO/MW_DMA cycle timing.
3234 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3235 memset(&p, 0, sizeof(p));
3237 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3238 if (speed <= XFER_PIO_2)
3239 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3240 else if ((speed <= XFER_PIO_4) ||
3241 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3242 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3243 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3244 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3246 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3250 * Convert the timing to bus clock counts.
3253 ata_timing_quantize(t, t, T, UT);
3256 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3257 * S.M.A.R.T * and some other commands. We have to ensure that the
3258 * DMA cycle timing is slower/equal than the fastest PIO timing.
3261 if (speed > XFER_PIO_6) {
3262 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3263 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3267 * Lengthen active & recovery time so that cycle time is correct.
3270 if (t->act8b + t->rec8b < t->cyc8b) {
3271 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3272 t->rec8b = t->cyc8b - t->act8b;
3275 if (t->active + t->recover < t->cycle) {
3276 t->active += (t->cycle - (t->active + t->recover)) / 2;
3277 t->recover = t->cycle - t->active;
3280 /* In a few cases quantisation may produce enough errors to
3281 leave t->cycle too low for the sum of active and recovery
3282 if so we must correct this */
3283 if (t->active + t->recover > t->cycle)
3284 t->cycle = t->active + t->recover;
3286 return 0;
3290 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3291 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3292 * @cycle: cycle duration in ns
3294 * Return matching xfer mode for @cycle. The returned mode is of
3295 * the transfer type specified by @xfer_shift. If @cycle is too
3296 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3297 * than the fastest known mode, the fasted mode is returned.
3299 * LOCKING:
3300 * None.
3302 * RETURNS:
3303 * Matching xfer_mode, 0xff if no match found.
3305 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3307 u8 base_mode = 0xff, last_mode = 0xff;
3308 const struct ata_xfer_ent *ent;
3309 const struct ata_timing *t;
3311 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3312 if (ent->shift == xfer_shift)
3313 base_mode = ent->base;
3315 for (t = ata_timing_find_mode(base_mode);
3316 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3317 unsigned short this_cycle;
3319 switch (xfer_shift) {
3320 case ATA_SHIFT_PIO:
3321 case ATA_SHIFT_MWDMA:
3322 this_cycle = t->cycle;
3323 break;
3324 case ATA_SHIFT_UDMA:
3325 this_cycle = t->udma;
3326 break;
3327 default:
3328 return 0xff;
3331 if (cycle > this_cycle)
3332 break;
3334 last_mode = t->mode;
3337 return last_mode;
3341 * ata_down_xfermask_limit - adjust dev xfer masks downward
3342 * @dev: Device to adjust xfer masks
3343 * @sel: ATA_DNXFER_* selector
3345 * Adjust xfer masks of @dev downward. Note that this function
3346 * does not apply the change. Invoking ata_set_mode() afterwards
3347 * will apply the limit.
3349 * LOCKING:
3350 * Inherited from caller.
3352 * RETURNS:
3353 * 0 on success, negative errno on failure
3355 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3357 char buf[32];
3358 unsigned long orig_mask, xfer_mask;
3359 unsigned long pio_mask, mwdma_mask, udma_mask;
3360 int quiet, highbit;
3362 quiet = !!(sel & ATA_DNXFER_QUIET);
3363 sel &= ~ATA_DNXFER_QUIET;
3365 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3366 dev->mwdma_mask,
3367 dev->udma_mask);
3368 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3370 switch (sel) {
3371 case ATA_DNXFER_PIO:
3372 highbit = fls(pio_mask) - 1;
3373 pio_mask &= ~(1 << highbit);
3374 break;
3376 case ATA_DNXFER_DMA:
3377 if (udma_mask) {
3378 highbit = fls(udma_mask) - 1;
3379 udma_mask &= ~(1 << highbit);
3380 if (!udma_mask)
3381 return -ENOENT;
3382 } else if (mwdma_mask) {
3383 highbit = fls(mwdma_mask) - 1;
3384 mwdma_mask &= ~(1 << highbit);
3385 if (!mwdma_mask)
3386 return -ENOENT;
3388 break;
3390 case ATA_DNXFER_40C:
3391 udma_mask &= ATA_UDMA_MASK_40C;
3392 break;
3394 case ATA_DNXFER_FORCE_PIO0:
3395 pio_mask &= 1;
3396 case ATA_DNXFER_FORCE_PIO:
3397 mwdma_mask = 0;
3398 udma_mask = 0;
3399 break;
3401 default:
3402 BUG();
3405 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3407 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3408 return -ENOENT;
3410 if (!quiet) {
3411 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3412 snprintf(buf, sizeof(buf), "%s:%s",
3413 ata_mode_string(xfer_mask),
3414 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3415 else
3416 snprintf(buf, sizeof(buf), "%s",
3417 ata_mode_string(xfer_mask));
3419 ata_dev_printk(dev, KERN_WARNING,
3420 "limiting speed to %s\n", buf);
3423 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3424 &dev->udma_mask);
3426 return 0;
3429 static int ata_dev_set_mode(struct ata_device *dev)
3431 struct ata_port *ap = dev->link->ap;
3432 struct ata_eh_context *ehc = &dev->link->eh_context;
3433 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3434 const char *dev_err_whine = "";
3435 int ign_dev_err = 0;
3436 unsigned int err_mask = 0;
3437 int rc;
3439 dev->flags &= ~ATA_DFLAG_PIO;
3440 if (dev->xfer_shift == ATA_SHIFT_PIO)
3441 dev->flags |= ATA_DFLAG_PIO;
3443 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3444 dev_err_whine = " (SET_XFERMODE skipped)";
3445 else {
3446 if (nosetxfer)
3447 ata_dev_printk(dev, KERN_WARNING,
3448 "NOSETXFER but PATA detected - can't "
3449 "skip SETXFER, might malfunction\n");
3450 err_mask = ata_dev_set_xfermode(dev);
3453 if (err_mask & ~AC_ERR_DEV)
3454 goto fail;
3456 /* revalidate */
3457 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3458 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3459 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3460 if (rc)
3461 return rc;
3463 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3464 /* Old CFA may refuse this command, which is just fine */
3465 if (ata_id_is_cfa(dev->id))
3466 ign_dev_err = 1;
3467 /* Catch several broken garbage emulations plus some pre
3468 ATA devices */
3469 if (ata_id_major_version(dev->id) == 0 &&
3470 dev->pio_mode <= XFER_PIO_2)
3471 ign_dev_err = 1;
3472 /* Some very old devices and some bad newer ones fail
3473 any kind of SET_XFERMODE request but support PIO0-2
3474 timings and no IORDY */
3475 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3476 ign_dev_err = 1;
3478 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3479 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3480 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3481 dev->dma_mode == XFER_MW_DMA_0 &&
3482 (dev->id[63] >> 8) & 1)
3483 ign_dev_err = 1;
3485 /* if the device is actually configured correctly, ignore dev err */
3486 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3487 ign_dev_err = 1;
3489 if (err_mask & AC_ERR_DEV) {
3490 if (!ign_dev_err)
3491 goto fail;
3492 else
3493 dev_err_whine = " (device error ignored)";
3496 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3497 dev->xfer_shift, (int)dev->xfer_mode);
3499 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3500 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3501 dev_err_whine);
3503 return 0;
3505 fail:
3506 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3507 "(err_mask=0x%x)\n", err_mask);
3508 return -EIO;
3512 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3513 * @link: link on which timings will be programmed
3514 * @r_failed_dev: out parameter for failed device
3516 * Standard implementation of the function used to tune and set
3517 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3518 * ata_dev_set_mode() fails, pointer to the failing device is
3519 * returned in @r_failed_dev.
3521 * LOCKING:
3522 * PCI/etc. bus probe sem.
3524 * RETURNS:
3525 * 0 on success, negative errno otherwise
3528 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3530 struct ata_port *ap = link->ap;
3531 struct ata_device *dev;
3532 int rc = 0, used_dma = 0, found = 0;
3534 /* step 1: calculate xfer_mask */
3535 ata_for_each_dev(dev, link, ENABLED) {
3536 unsigned long pio_mask, dma_mask;
3537 unsigned int mode_mask;
3539 mode_mask = ATA_DMA_MASK_ATA;
3540 if (dev->class == ATA_DEV_ATAPI)
3541 mode_mask = ATA_DMA_MASK_ATAPI;
3542 else if (ata_id_is_cfa(dev->id))
3543 mode_mask = ATA_DMA_MASK_CFA;
3545 ata_dev_xfermask(dev);
3546 ata_force_xfermask(dev);
3548 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3549 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3551 if (libata_dma_mask & mode_mask)
3552 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3553 else
3554 dma_mask = 0;
3556 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3557 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3559 found = 1;
3560 if (ata_dma_enabled(dev))
3561 used_dma = 1;
3563 if (!found)
3564 goto out;
3566 /* step 2: always set host PIO timings */
3567 ata_for_each_dev(dev, link, ENABLED) {
3568 if (dev->pio_mode == 0xff) {
3569 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3570 rc = -EINVAL;
3571 goto out;
3574 dev->xfer_mode = dev->pio_mode;
3575 dev->xfer_shift = ATA_SHIFT_PIO;
3576 if (ap->ops->set_piomode)
3577 ap->ops->set_piomode(ap, dev);
3580 /* step 3: set host DMA timings */
3581 ata_for_each_dev(dev, link, ENABLED) {
3582 if (!ata_dma_enabled(dev))
3583 continue;
3585 dev->xfer_mode = dev->dma_mode;
3586 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3587 if (ap->ops->set_dmamode)
3588 ap->ops->set_dmamode(ap, dev);
3591 /* step 4: update devices' xfer mode */
3592 ata_for_each_dev(dev, link, ENABLED) {
3593 rc = ata_dev_set_mode(dev);
3594 if (rc)
3595 goto out;
3598 /* Record simplex status. If we selected DMA then the other
3599 * host channels are not permitted to do so.
3601 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3602 ap->host->simplex_claimed = ap;
3604 out:
3605 if (rc)
3606 *r_failed_dev = dev;
3607 return rc;
3611 * ata_wait_ready - wait for link to become ready
3612 * @link: link to be waited on
3613 * @deadline: deadline jiffies for the operation
3614 * @check_ready: callback to check link readiness
3616 * Wait for @link to become ready. @check_ready should return
3617 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3618 * link doesn't seem to be occupied, other errno for other error
3619 * conditions.
3621 * Transient -ENODEV conditions are allowed for
3622 * ATA_TMOUT_FF_WAIT.
3624 * LOCKING:
3625 * EH context.
3627 * RETURNS:
3628 * 0 if @linke is ready before @deadline; otherwise, -errno.
3630 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3631 int (*check_ready)(struct ata_link *link))
3633 unsigned long start = jiffies;
3634 unsigned long nodev_deadline;
3635 int warned = 0;
3637 /* choose which 0xff timeout to use, read comment in libata.h */
3638 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3639 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3640 else
3641 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3643 /* Slave readiness can't be tested separately from master. On
3644 * M/S emulation configuration, this function should be called
3645 * only on the master and it will handle both master and slave.
3647 WARN_ON(link == link->ap->slave_link);
3649 if (time_after(nodev_deadline, deadline))
3650 nodev_deadline = deadline;
3652 while (1) {
3653 unsigned long now = jiffies;
3654 int ready, tmp;
3656 ready = tmp = check_ready(link);
3657 if (ready > 0)
3658 return 0;
3661 * -ENODEV could be transient. Ignore -ENODEV if link
3662 * is online. Also, some SATA devices take a long
3663 * time to clear 0xff after reset. Wait for
3664 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3665 * offline.
3667 * Note that some PATA controllers (pata_ali) explode
3668 * if status register is read more than once when
3669 * there's no device attached.
3671 if (ready == -ENODEV) {
3672 if (ata_link_online(link))
3673 ready = 0;
3674 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3675 !ata_link_offline(link) &&
3676 time_before(now, nodev_deadline))
3677 ready = 0;
3680 if (ready)
3681 return ready;
3682 if (time_after(now, deadline))
3683 return -EBUSY;
3685 if (!warned && time_after(now, start + 5 * HZ) &&
3686 (deadline - now > 3 * HZ)) {
3687 ata_link_printk(link, KERN_WARNING,
3688 "link is slow to respond, please be patient "
3689 "(ready=%d)\n", tmp);
3690 warned = 1;
3693 msleep(50);
3698 * ata_wait_after_reset - wait for link to become ready after reset
3699 * @link: link to be waited on
3700 * @deadline: deadline jiffies for the operation
3701 * @check_ready: callback to check link readiness
3703 * Wait for @link to become ready after reset.
3705 * LOCKING:
3706 * EH context.
3708 * RETURNS:
3709 * 0 if @linke is ready before @deadline; otherwise, -errno.
3711 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3712 int (*check_ready)(struct ata_link *link))
3714 msleep(ATA_WAIT_AFTER_RESET);
3716 return ata_wait_ready(link, deadline, check_ready);
3720 * sata_link_debounce - debounce SATA phy status
3721 * @link: ATA link to debounce SATA phy status for
3722 * @params: timing parameters { interval, duratinon, timeout } in msec
3723 * @deadline: deadline jiffies for the operation
3725 * Make sure SStatus of @link reaches stable state, determined by
3726 * holding the same value where DET is not 1 for @duration polled
3727 * every @interval, before @timeout. Timeout constraints the
3728 * beginning of the stable state. Because DET gets stuck at 1 on
3729 * some controllers after hot unplugging, this functions waits
3730 * until timeout then returns 0 if DET is stable at 1.
3732 * @timeout is further limited by @deadline. The sooner of the
3733 * two is used.
3735 * LOCKING:
3736 * Kernel thread context (may sleep)
3738 * RETURNS:
3739 * 0 on success, -errno on failure.
3741 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3742 unsigned long deadline)
3744 unsigned long interval = params[0];
3745 unsigned long duration = params[1];
3746 unsigned long last_jiffies, t;
3747 u32 last, cur;
3748 int rc;
3750 t = ata_deadline(jiffies, params[2]);
3751 if (time_before(t, deadline))
3752 deadline = t;
3754 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3755 return rc;
3756 cur &= 0xf;
3758 last = cur;
3759 last_jiffies = jiffies;
3761 while (1) {
3762 msleep(interval);
3763 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3764 return rc;
3765 cur &= 0xf;
3767 /* DET stable? */
3768 if (cur == last) {
3769 if (cur == 1 && time_before(jiffies, deadline))
3770 continue;
3771 if (time_after(jiffies,
3772 ata_deadline(last_jiffies, duration)))
3773 return 0;
3774 continue;
3777 /* unstable, start over */
3778 last = cur;
3779 last_jiffies = jiffies;
3781 /* Check deadline. If debouncing failed, return
3782 * -EPIPE to tell upper layer to lower link speed.
3784 if (time_after(jiffies, deadline))
3785 return -EPIPE;
3790 * sata_link_resume - resume SATA link
3791 * @link: ATA link to resume SATA
3792 * @params: timing parameters { interval, duratinon, timeout } in msec
3793 * @deadline: deadline jiffies for the operation
3795 * Resume SATA phy @link and debounce it.
3797 * LOCKING:
3798 * Kernel thread context (may sleep)
3800 * RETURNS:
3801 * 0 on success, -errno on failure.
3803 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3804 unsigned long deadline)
3806 int tries = ATA_LINK_RESUME_TRIES;
3807 u32 scontrol, serror;
3808 int rc;
3810 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3811 return rc;
3814 * Writes to SControl sometimes get ignored under certain
3815 * controllers (ata_piix SIDPR). Make sure DET actually is
3816 * cleared.
3818 do {
3819 scontrol = (scontrol & 0x0f0) | 0x300;
3820 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3821 return rc;
3823 * Some PHYs react badly if SStatus is pounded
3824 * immediately after resuming. Delay 200ms before
3825 * debouncing.
3827 msleep(200);
3829 /* is SControl restored correctly? */
3830 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3831 return rc;
3832 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3834 if ((scontrol & 0xf0f) != 0x300) {
3835 ata_link_printk(link, KERN_ERR,
3836 "failed to resume link (SControl %X)\n",
3837 scontrol);
3838 return 0;
3841 if (tries < ATA_LINK_RESUME_TRIES)
3842 ata_link_printk(link, KERN_WARNING,
3843 "link resume succeeded after %d retries\n",
3844 ATA_LINK_RESUME_TRIES - tries);
3846 if ((rc = sata_link_debounce(link, params, deadline)))
3847 return rc;
3849 /* clear SError, some PHYs require this even for SRST to work */
3850 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3851 rc = sata_scr_write(link, SCR_ERROR, serror);
3853 return rc != -EINVAL ? rc : 0;
3857 * ata_std_prereset - prepare for reset
3858 * @link: ATA link to be reset
3859 * @deadline: deadline jiffies for the operation
3861 * @link is about to be reset. Initialize it. Failure from
3862 * prereset makes libata abort whole reset sequence and give up
3863 * that port, so prereset should be best-effort. It does its
3864 * best to prepare for reset sequence but if things go wrong, it
3865 * should just whine, not fail.
3867 * LOCKING:
3868 * Kernel thread context (may sleep)
3870 * RETURNS:
3871 * 0 on success, -errno otherwise.
3873 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3875 struct ata_port *ap = link->ap;
3876 struct ata_eh_context *ehc = &link->eh_context;
3877 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3878 int rc;
3880 /* if we're about to do hardreset, nothing more to do */
3881 if (ehc->i.action & ATA_EH_HARDRESET)
3882 return 0;
3884 /* if SATA, resume link */
3885 if (ap->flags & ATA_FLAG_SATA) {
3886 rc = sata_link_resume(link, timing, deadline);
3887 /* whine about phy resume failure but proceed */
3888 if (rc && rc != -EOPNOTSUPP)
3889 ata_link_printk(link, KERN_WARNING, "failed to resume "
3890 "link for reset (errno=%d)\n", rc);
3893 /* no point in trying softreset on offline link */
3894 if (ata_phys_link_offline(link))
3895 ehc->i.action &= ~ATA_EH_SOFTRESET;
3897 return 0;
3901 * sata_link_hardreset - reset link via SATA phy reset
3902 * @link: link to reset
3903 * @timing: timing parameters { interval, duratinon, timeout } in msec
3904 * @deadline: deadline jiffies for the operation
3905 * @online: optional out parameter indicating link onlineness
3906 * @check_ready: optional callback to check link readiness
3908 * SATA phy-reset @link using DET bits of SControl register.
3909 * After hardreset, link readiness is waited upon using
3910 * ata_wait_ready() if @check_ready is specified. LLDs are
3911 * allowed to not specify @check_ready and wait itself after this
3912 * function returns. Device classification is LLD's
3913 * responsibility.
3915 * *@online is set to one iff reset succeeded and @link is online
3916 * after reset.
3918 * LOCKING:
3919 * Kernel thread context (may sleep)
3921 * RETURNS:
3922 * 0 on success, -errno otherwise.
3924 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3925 unsigned long deadline,
3926 bool *online, int (*check_ready)(struct ata_link *))
3928 u32 scontrol;
3929 int rc;
3931 DPRINTK("ENTER\n");
3933 if (online)
3934 *online = false;
3936 if (sata_set_spd_needed(link)) {
3937 /* SATA spec says nothing about how to reconfigure
3938 * spd. To be on the safe side, turn off phy during
3939 * reconfiguration. This works for at least ICH7 AHCI
3940 * and Sil3124.
3942 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3943 goto out;
3945 scontrol = (scontrol & 0x0f0) | 0x304;
3947 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3948 goto out;
3950 sata_set_spd(link);
3953 /* issue phy wake/reset */
3954 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3955 goto out;
3957 scontrol = (scontrol & 0x0f0) | 0x301;
3959 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3960 goto out;
3962 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3963 * 10.4.2 says at least 1 ms.
3965 msleep(1);
3967 /* bring link back */
3968 rc = sata_link_resume(link, timing, deadline);
3969 if (rc)
3970 goto out;
3971 /* if link is offline nothing more to do */
3972 if (ata_phys_link_offline(link))
3973 goto out;
3975 /* Link is online. From this point, -ENODEV too is an error. */
3976 if (online)
3977 *online = true;
3979 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3980 /* If PMP is supported, we have to do follow-up SRST.
3981 * Some PMPs don't send D2H Reg FIS after hardreset if
3982 * the first port is empty. Wait only for
3983 * ATA_TMOUT_PMP_SRST_WAIT.
3985 if (check_ready) {
3986 unsigned long pmp_deadline;
3988 pmp_deadline = ata_deadline(jiffies,
3989 ATA_TMOUT_PMP_SRST_WAIT);
3990 if (time_after(pmp_deadline, deadline))
3991 pmp_deadline = deadline;
3992 ata_wait_ready(link, pmp_deadline, check_ready);
3994 rc = -EAGAIN;
3995 goto out;
3998 rc = 0;
3999 if (check_ready)
4000 rc = ata_wait_ready(link, deadline, check_ready);
4001 out:
4002 if (rc && rc != -EAGAIN) {
4003 /* online is set iff link is online && reset succeeded */
4004 if (online)
4005 *online = false;
4006 ata_link_printk(link, KERN_ERR,
4007 "COMRESET failed (errno=%d)\n", rc);
4009 DPRINTK("EXIT, rc=%d\n", rc);
4010 return rc;
4014 * sata_std_hardreset - COMRESET w/o waiting or classification
4015 * @link: link to reset
4016 * @class: resulting class of attached device
4017 * @deadline: deadline jiffies for the operation
4019 * Standard SATA COMRESET w/o waiting or classification.
4021 * LOCKING:
4022 * Kernel thread context (may sleep)
4024 * RETURNS:
4025 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4027 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4028 unsigned long deadline)
4030 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4031 bool online;
4032 int rc;
4034 /* do hardreset */
4035 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4036 return online ? -EAGAIN : rc;
4040 * ata_std_postreset - standard postreset callback
4041 * @link: the target ata_link
4042 * @classes: classes of attached devices
4044 * This function is invoked after a successful reset. Note that
4045 * the device might have been reset more than once using
4046 * different reset methods before postreset is invoked.
4048 * LOCKING:
4049 * Kernel thread context (may sleep)
4051 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4053 u32 serror;
4055 DPRINTK("ENTER\n");
4057 /* reset complete, clear SError */
4058 if (!sata_scr_read(link, SCR_ERROR, &serror))
4059 sata_scr_write(link, SCR_ERROR, serror);
4061 /* print link status */
4062 sata_print_link_status(link);
4064 DPRINTK("EXIT\n");
4068 * ata_dev_same_device - Determine whether new ID matches configured device
4069 * @dev: device to compare against
4070 * @new_class: class of the new device
4071 * @new_id: IDENTIFY page of the new device
4073 * Compare @new_class and @new_id against @dev and determine
4074 * whether @dev is the device indicated by @new_class and
4075 * @new_id.
4077 * LOCKING:
4078 * None.
4080 * RETURNS:
4081 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4083 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4084 const u16 *new_id)
4086 const u16 *old_id = dev->id;
4087 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4088 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4090 if (dev->class != new_class) {
4091 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4092 dev->class, new_class);
4093 return 0;
4096 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4097 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4098 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4099 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4101 if (strcmp(model[0], model[1])) {
4102 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4103 "'%s' != '%s'\n", model[0], model[1]);
4104 return 0;
4107 if (strcmp(serial[0], serial[1])) {
4108 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4109 "'%s' != '%s'\n", serial[0], serial[1]);
4110 return 0;
4113 return 1;
4117 * ata_dev_reread_id - Re-read IDENTIFY data
4118 * @dev: target ATA device
4119 * @readid_flags: read ID flags
4121 * Re-read IDENTIFY page and make sure @dev is still attached to
4122 * the port.
4124 * LOCKING:
4125 * Kernel thread context (may sleep)
4127 * RETURNS:
4128 * 0 on success, negative errno otherwise
4130 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4132 unsigned int class = dev->class;
4133 u16 *id = (void *)dev->link->ap->sector_buf;
4134 int rc;
4136 /* read ID data */
4137 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4138 if (rc)
4139 return rc;
4141 /* is the device still there? */
4142 if (!ata_dev_same_device(dev, class, id))
4143 return -ENODEV;
4145 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4146 return 0;
4150 * ata_dev_revalidate - Revalidate ATA device
4151 * @dev: device to revalidate
4152 * @new_class: new class code
4153 * @readid_flags: read ID flags
4155 * Re-read IDENTIFY page, make sure @dev is still attached to the
4156 * port and reconfigure it according to the new IDENTIFY page.
4158 * LOCKING:
4159 * Kernel thread context (may sleep)
4161 * RETURNS:
4162 * 0 on success, negative errno otherwise
4164 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4165 unsigned int readid_flags)
4167 u64 n_sectors = dev->n_sectors;
4168 u64 n_native_sectors = dev->n_native_sectors;
4169 int rc;
4171 if (!ata_dev_enabled(dev))
4172 return -ENODEV;
4174 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4175 if (ata_class_enabled(new_class) &&
4176 new_class != ATA_DEV_ATA &&
4177 new_class != ATA_DEV_ATAPI &&
4178 new_class != ATA_DEV_SEMB) {
4179 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4180 dev->class, new_class);
4181 rc = -ENODEV;
4182 goto fail;
4185 /* re-read ID */
4186 rc = ata_dev_reread_id(dev, readid_flags);
4187 if (rc)
4188 goto fail;
4190 /* configure device according to the new ID */
4191 rc = ata_dev_configure(dev);
4192 if (rc)
4193 goto fail;
4195 /* verify n_sectors hasn't changed */
4196 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4197 dev->n_sectors == n_sectors)
4198 return 0;
4200 /* n_sectors has changed */
4201 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
4202 (unsigned long long)n_sectors,
4203 (unsigned long long)dev->n_sectors);
4206 * Something could have caused HPA to be unlocked
4207 * involuntarily. If n_native_sectors hasn't changed and the
4208 * new size matches it, keep the device.
4210 if (dev->n_native_sectors == n_native_sectors &&
4211 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4212 ata_dev_printk(dev, KERN_WARNING,
4213 "new n_sectors matches native, probably "
4214 "late HPA unlock, continuing\n");
4215 /* keep using the old n_sectors */
4216 dev->n_sectors = n_sectors;
4217 return 0;
4221 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4222 * unlocking HPA in those cases.
4224 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4226 if (dev->n_native_sectors == n_native_sectors &&
4227 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4228 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4229 ata_dev_printk(dev, KERN_WARNING,
4230 "old n_sectors matches native, probably "
4231 "late HPA lock, will try to unlock HPA\n");
4232 /* try unlocking HPA */
4233 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4234 rc = -EIO;
4235 } else
4236 rc = -ENODEV;
4238 /* restore original n_[native_]sectors and fail */
4239 dev->n_native_sectors = n_native_sectors;
4240 dev->n_sectors = n_sectors;
4241 fail:
4242 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4243 return rc;
4246 struct ata_blacklist_entry {
4247 const char *model_num;
4248 const char *model_rev;
4249 unsigned long horkage;
4252 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4253 /* Devices with DMA related problems under Linux */
4254 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4255 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4256 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4257 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4258 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4259 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4260 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4261 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4262 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4263 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4264 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4265 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4266 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4267 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4268 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4269 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4270 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4271 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4272 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4273 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4274 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4275 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4276 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4277 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4278 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4279 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4280 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4281 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4282 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4283 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4284 /* Odd clown on sil3726/4726 PMPs */
4285 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4287 /* Weird ATAPI devices */
4288 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4289 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4291 /* Devices we expect to fail diagnostics */
4293 /* Devices where NCQ should be avoided */
4294 /* NCQ is slow */
4295 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4296 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4297 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4298 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4299 /* NCQ is broken */
4300 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4301 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4302 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4303 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4304 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4306 /* Seagate NCQ + FLUSH CACHE firmware bug */
4307 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
4308 ATA_HORKAGE_FIRMWARE_WARN },
4309 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
4310 ATA_HORKAGE_FIRMWARE_WARN },
4311 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4312 ATA_HORKAGE_FIRMWARE_WARN },
4313 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4314 ATA_HORKAGE_FIRMWARE_WARN },
4315 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4316 ATA_HORKAGE_FIRMWARE_WARN },
4318 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4319 ATA_HORKAGE_FIRMWARE_WARN },
4320 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4321 ATA_HORKAGE_FIRMWARE_WARN },
4322 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4323 ATA_HORKAGE_FIRMWARE_WARN },
4324 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4325 ATA_HORKAGE_FIRMWARE_WARN },
4326 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4327 ATA_HORKAGE_FIRMWARE_WARN },
4329 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4330 ATA_HORKAGE_FIRMWARE_WARN },
4331 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4332 ATA_HORKAGE_FIRMWARE_WARN },
4333 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4334 ATA_HORKAGE_FIRMWARE_WARN },
4335 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4336 ATA_HORKAGE_FIRMWARE_WARN },
4337 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4338 ATA_HORKAGE_FIRMWARE_WARN },
4340 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4341 ATA_HORKAGE_FIRMWARE_WARN },
4342 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4343 ATA_HORKAGE_FIRMWARE_WARN },
4344 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4345 ATA_HORKAGE_FIRMWARE_WARN },
4346 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4347 ATA_HORKAGE_FIRMWARE_WARN },
4348 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4349 ATA_HORKAGE_FIRMWARE_WARN },
4351 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4352 ATA_HORKAGE_FIRMWARE_WARN },
4353 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4354 ATA_HORKAGE_FIRMWARE_WARN },
4355 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4356 ATA_HORKAGE_FIRMWARE_WARN },
4357 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4358 ATA_HORKAGE_FIRMWARE_WARN },
4359 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4360 ATA_HORKAGE_FIRMWARE_WARN },
4362 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4363 ATA_HORKAGE_FIRMWARE_WARN },
4364 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4365 ATA_HORKAGE_FIRMWARE_WARN },
4366 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4367 ATA_HORKAGE_FIRMWARE_WARN },
4368 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4369 ATA_HORKAGE_FIRMWARE_WARN },
4370 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4371 ATA_HORKAGE_FIRMWARE_WARN },
4373 /* Blacklist entries taken from Silicon Image 3124/3132
4374 Windows driver .inf file - also several Linux problem reports */
4375 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4376 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4377 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4379 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4380 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4382 /* devices which puke on READ_NATIVE_MAX */
4383 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4384 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4385 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4386 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4388 /* this one allows HPA unlocking but fails IOs on the area */
4389 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4391 /* Devices which report 1 sector over size HPA */
4392 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4393 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4394 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4396 /* Devices which get the IVB wrong */
4397 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4398 /* Maybe we should just blacklist TSSTcorp... */
4399 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4400 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4401 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4402 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4403 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4404 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4406 /* Devices that do not need bridging limits applied */
4407 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4409 /* Devices which aren't very happy with higher link speeds */
4410 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4413 * Devices which choke on SETXFER. Applies only if both the
4414 * device and controller are SATA.
4416 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4418 /* End Marker */
4422 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4424 const char *p;
4425 int len;
4428 * check for trailing wildcard: *\0
4430 p = strchr(patt, wildchar);
4431 if (p && ((*(p + 1)) == 0))
4432 len = p - patt;
4433 else {
4434 len = strlen(name);
4435 if (!len) {
4436 if (!*patt)
4437 return 0;
4438 return -1;
4442 return strncmp(patt, name, len);
4445 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4447 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4448 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4449 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4451 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4452 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4454 while (ad->model_num) {
4455 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4456 if (ad->model_rev == NULL)
4457 return ad->horkage;
4458 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4459 return ad->horkage;
4461 ad++;
4463 return 0;
4466 static int ata_dma_blacklisted(const struct ata_device *dev)
4468 /* We don't support polling DMA.
4469 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4470 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4472 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4473 (dev->flags & ATA_DFLAG_CDB_INTR))
4474 return 1;
4475 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4479 * ata_is_40wire - check drive side detection
4480 * @dev: device
4482 * Perform drive side detection decoding, allowing for device vendors
4483 * who can't follow the documentation.
4486 static int ata_is_40wire(struct ata_device *dev)
4488 if (dev->horkage & ATA_HORKAGE_IVB)
4489 return ata_drive_40wire_relaxed(dev->id);
4490 return ata_drive_40wire(dev->id);
4494 * cable_is_40wire - 40/80/SATA decider
4495 * @ap: port to consider
4497 * This function encapsulates the policy for speed management
4498 * in one place. At the moment we don't cache the result but
4499 * there is a good case for setting ap->cbl to the result when
4500 * we are called with unknown cables (and figuring out if it
4501 * impacts hotplug at all).
4503 * Return 1 if the cable appears to be 40 wire.
4506 static int cable_is_40wire(struct ata_port *ap)
4508 struct ata_link *link;
4509 struct ata_device *dev;
4511 /* If the controller thinks we are 40 wire, we are. */
4512 if (ap->cbl == ATA_CBL_PATA40)
4513 return 1;
4515 /* If the controller thinks we are 80 wire, we are. */
4516 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4517 return 0;
4519 /* If the system is known to be 40 wire short cable (eg
4520 * laptop), then we allow 80 wire modes even if the drive
4521 * isn't sure.
4523 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4524 return 0;
4526 /* If the controller doesn't know, we scan.
4528 * Note: We look for all 40 wire detects at this point. Any
4529 * 80 wire detect is taken to be 80 wire cable because
4530 * - in many setups only the one drive (slave if present) will
4531 * give a valid detect
4532 * - if you have a non detect capable drive you don't want it
4533 * to colour the choice
4535 ata_for_each_link(link, ap, EDGE) {
4536 ata_for_each_dev(dev, link, ENABLED) {
4537 if (!ata_is_40wire(dev))
4538 return 0;
4541 return 1;
4545 * ata_dev_xfermask - Compute supported xfermask of the given device
4546 * @dev: Device to compute xfermask for
4548 * Compute supported xfermask of @dev and store it in
4549 * dev->*_mask. This function is responsible for applying all
4550 * known limits including host controller limits, device
4551 * blacklist, etc...
4553 * LOCKING:
4554 * None.
4556 static void ata_dev_xfermask(struct ata_device *dev)
4558 struct ata_link *link = dev->link;
4559 struct ata_port *ap = link->ap;
4560 struct ata_host *host = ap->host;
4561 unsigned long xfer_mask;
4563 /* controller modes available */
4564 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4565 ap->mwdma_mask, ap->udma_mask);
4567 /* drive modes available */
4568 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4569 dev->mwdma_mask, dev->udma_mask);
4570 xfer_mask &= ata_id_xfermask(dev->id);
4573 * CFA Advanced TrueIDE timings are not allowed on a shared
4574 * cable
4576 if (ata_dev_pair(dev)) {
4577 /* No PIO5 or PIO6 */
4578 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4579 /* No MWDMA3 or MWDMA 4 */
4580 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4583 if (ata_dma_blacklisted(dev)) {
4584 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4585 ata_dev_printk(dev, KERN_WARNING,
4586 "device is on DMA blacklist, disabling DMA\n");
4589 if ((host->flags & ATA_HOST_SIMPLEX) &&
4590 host->simplex_claimed && host->simplex_claimed != ap) {
4591 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4592 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4593 "other device, disabling DMA\n");
4596 if (ap->flags & ATA_FLAG_NO_IORDY)
4597 xfer_mask &= ata_pio_mask_no_iordy(dev);
4599 if (ap->ops->mode_filter)
4600 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4602 /* Apply cable rule here. Don't apply it early because when
4603 * we handle hot plug the cable type can itself change.
4604 * Check this last so that we know if the transfer rate was
4605 * solely limited by the cable.
4606 * Unknown or 80 wire cables reported host side are checked
4607 * drive side as well. Cases where we know a 40wire cable
4608 * is used safely for 80 are not checked here.
4610 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4611 /* UDMA/44 or higher would be available */
4612 if (cable_is_40wire(ap)) {
4613 ata_dev_printk(dev, KERN_WARNING,
4614 "limited to UDMA/33 due to 40-wire cable\n");
4615 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4618 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4619 &dev->mwdma_mask, &dev->udma_mask);
4623 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4624 * @dev: Device to which command will be sent
4626 * Issue SET FEATURES - XFER MODE command to device @dev
4627 * on port @ap.
4629 * LOCKING:
4630 * PCI/etc. bus probe sem.
4632 * RETURNS:
4633 * 0 on success, AC_ERR_* mask otherwise.
4636 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4638 struct ata_taskfile tf;
4639 unsigned int err_mask;
4641 /* set up set-features taskfile */
4642 DPRINTK("set features - xfer mode\n");
4644 /* Some controllers and ATAPI devices show flaky interrupt
4645 * behavior after setting xfer mode. Use polling instead.
4647 ata_tf_init(dev, &tf);
4648 tf.command = ATA_CMD_SET_FEATURES;
4649 tf.feature = SETFEATURES_XFER;
4650 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4651 tf.protocol = ATA_PROT_NODATA;
4652 /* If we are using IORDY we must send the mode setting command */
4653 if (ata_pio_need_iordy(dev))
4654 tf.nsect = dev->xfer_mode;
4655 /* If the device has IORDY and the controller does not - turn it off */
4656 else if (ata_id_has_iordy(dev->id))
4657 tf.nsect = 0x01;
4658 else /* In the ancient relic department - skip all of this */
4659 return 0;
4661 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4663 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4664 return err_mask;
4667 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4668 * @dev: Device to which command will be sent
4669 * @enable: Whether to enable or disable the feature
4670 * @feature: The sector count represents the feature to set
4672 * Issue SET FEATURES - SATA FEATURES command to device @dev
4673 * on port @ap with sector count
4675 * LOCKING:
4676 * PCI/etc. bus probe sem.
4678 * RETURNS:
4679 * 0 on success, AC_ERR_* mask otherwise.
4681 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4682 u8 feature)
4684 struct ata_taskfile tf;
4685 unsigned int err_mask;
4687 /* set up set-features taskfile */
4688 DPRINTK("set features - SATA features\n");
4690 ata_tf_init(dev, &tf);
4691 tf.command = ATA_CMD_SET_FEATURES;
4692 tf.feature = enable;
4693 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4694 tf.protocol = ATA_PROT_NODATA;
4695 tf.nsect = feature;
4697 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4699 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4700 return err_mask;
4704 * ata_dev_init_params - Issue INIT DEV PARAMS command
4705 * @dev: Device to which command will be sent
4706 * @heads: Number of heads (taskfile parameter)
4707 * @sectors: Number of sectors (taskfile parameter)
4709 * LOCKING:
4710 * Kernel thread context (may sleep)
4712 * RETURNS:
4713 * 0 on success, AC_ERR_* mask otherwise.
4715 static unsigned int ata_dev_init_params(struct ata_device *dev,
4716 u16 heads, u16 sectors)
4718 struct ata_taskfile tf;
4719 unsigned int err_mask;
4721 /* Number of sectors per track 1-255. Number of heads 1-16 */
4722 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4723 return AC_ERR_INVALID;
4725 /* set up init dev params taskfile */
4726 DPRINTK("init dev params \n");
4728 ata_tf_init(dev, &tf);
4729 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4730 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4731 tf.protocol = ATA_PROT_NODATA;
4732 tf.nsect = sectors;
4733 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4735 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4736 /* A clean abort indicates an original or just out of spec drive
4737 and we should continue as we issue the setup based on the
4738 drive reported working geometry */
4739 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4740 err_mask = 0;
4742 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4743 return err_mask;
4747 * ata_sg_clean - Unmap DMA memory associated with command
4748 * @qc: Command containing DMA memory to be released
4750 * Unmap all mapped DMA memory associated with this command.
4752 * LOCKING:
4753 * spin_lock_irqsave(host lock)
4755 void ata_sg_clean(struct ata_queued_cmd *qc)
4757 struct ata_port *ap = qc->ap;
4758 struct scatterlist *sg = qc->sg;
4759 int dir = qc->dma_dir;
4761 WARN_ON_ONCE(sg == NULL);
4763 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4765 if (qc->n_elem)
4766 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4768 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4769 qc->sg = NULL;
4773 * atapi_check_dma - Check whether ATAPI DMA can be supported
4774 * @qc: Metadata associated with taskfile to check
4776 * Allow low-level driver to filter ATA PACKET commands, returning
4777 * a status indicating whether or not it is OK to use DMA for the
4778 * supplied PACKET command.
4780 * LOCKING:
4781 * spin_lock_irqsave(host lock)
4783 * RETURNS: 0 when ATAPI DMA can be used
4784 * nonzero otherwise
4786 int atapi_check_dma(struct ata_queued_cmd *qc)
4788 struct ata_port *ap = qc->ap;
4790 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4791 * few ATAPI devices choke on such DMA requests.
4793 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4794 unlikely(qc->nbytes & 15))
4795 return 1;
4797 if (ap->ops->check_atapi_dma)
4798 return ap->ops->check_atapi_dma(qc);
4800 return 0;
4804 * ata_std_qc_defer - Check whether a qc needs to be deferred
4805 * @qc: ATA command in question
4807 * Non-NCQ commands cannot run with any other command, NCQ or
4808 * not. As upper layer only knows the queue depth, we are
4809 * responsible for maintaining exclusion. This function checks
4810 * whether a new command @qc can be issued.
4812 * LOCKING:
4813 * spin_lock_irqsave(host lock)
4815 * RETURNS:
4816 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4818 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4820 struct ata_link *link = qc->dev->link;
4822 if (qc->tf.protocol == ATA_PROT_NCQ) {
4823 if (!ata_tag_valid(link->active_tag))
4824 return 0;
4825 } else {
4826 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4827 return 0;
4830 return ATA_DEFER_LINK;
4833 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4836 * ata_sg_init - Associate command with scatter-gather table.
4837 * @qc: Command to be associated
4838 * @sg: Scatter-gather table.
4839 * @n_elem: Number of elements in s/g table.
4841 * Initialize the data-related elements of queued_cmd @qc
4842 * to point to a scatter-gather table @sg, containing @n_elem
4843 * elements.
4845 * LOCKING:
4846 * spin_lock_irqsave(host lock)
4848 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4849 unsigned int n_elem)
4851 qc->sg = sg;
4852 qc->n_elem = n_elem;
4853 qc->cursg = qc->sg;
4857 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4858 * @qc: Command with scatter-gather table to be mapped.
4860 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4862 * LOCKING:
4863 * spin_lock_irqsave(host lock)
4865 * RETURNS:
4866 * Zero on success, negative on error.
4869 static int ata_sg_setup(struct ata_queued_cmd *qc)
4871 struct ata_port *ap = qc->ap;
4872 unsigned int n_elem;
4874 VPRINTK("ENTER, ata%u\n", ap->print_id);
4876 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4877 if (n_elem < 1)
4878 return -1;
4880 DPRINTK("%d sg elements mapped\n", n_elem);
4881 qc->orig_n_elem = qc->n_elem;
4882 qc->n_elem = n_elem;
4883 qc->flags |= ATA_QCFLAG_DMAMAP;
4885 return 0;
4889 * swap_buf_le16 - swap halves of 16-bit words in place
4890 * @buf: Buffer to swap
4891 * @buf_words: Number of 16-bit words in buffer.
4893 * Swap halves of 16-bit words if needed to convert from
4894 * little-endian byte order to native cpu byte order, or
4895 * vice-versa.
4897 * LOCKING:
4898 * Inherited from caller.
4900 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4902 #ifdef __BIG_ENDIAN
4903 unsigned int i;
4905 for (i = 0; i < buf_words; i++)
4906 buf[i] = le16_to_cpu(buf[i]);
4907 #endif /* __BIG_ENDIAN */
4911 * ata_qc_new - Request an available ATA command, for queueing
4912 * @ap: target port
4914 * LOCKING:
4915 * None.
4918 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4920 struct ata_queued_cmd *qc = NULL;
4921 unsigned int i;
4923 /* no command while frozen */
4924 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4925 return NULL;
4927 /* the last tag is reserved for internal command. */
4928 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4929 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4930 qc = __ata_qc_from_tag(ap, i);
4931 break;
4934 if (qc)
4935 qc->tag = i;
4937 return qc;
4941 * ata_qc_new_init - Request an available ATA command, and initialize it
4942 * @dev: Device from whom we request an available command structure
4944 * LOCKING:
4945 * None.
4948 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4950 struct ata_port *ap = dev->link->ap;
4951 struct ata_queued_cmd *qc;
4953 qc = ata_qc_new(ap);
4954 if (qc) {
4955 qc->scsicmd = NULL;
4956 qc->ap = ap;
4957 qc->dev = dev;
4959 ata_qc_reinit(qc);
4962 return qc;
4966 * ata_qc_free - free unused ata_queued_cmd
4967 * @qc: Command to complete
4969 * Designed to free unused ata_queued_cmd object
4970 * in case something prevents using it.
4972 * LOCKING:
4973 * spin_lock_irqsave(host lock)
4975 void ata_qc_free(struct ata_queued_cmd *qc)
4977 struct ata_port *ap;
4978 unsigned int tag;
4980 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4981 ap = qc->ap;
4983 qc->flags = 0;
4984 tag = qc->tag;
4985 if (likely(ata_tag_valid(tag))) {
4986 qc->tag = ATA_TAG_POISON;
4987 clear_bit(tag, &ap->qc_allocated);
4991 void __ata_qc_complete(struct ata_queued_cmd *qc)
4993 struct ata_port *ap;
4994 struct ata_link *link;
4996 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4997 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4998 ap = qc->ap;
4999 link = qc->dev->link;
5001 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5002 ata_sg_clean(qc);
5004 /* command should be marked inactive atomically with qc completion */
5005 if (qc->tf.protocol == ATA_PROT_NCQ) {
5006 link->sactive &= ~(1 << qc->tag);
5007 if (!link->sactive)
5008 ap->nr_active_links--;
5009 } else {
5010 link->active_tag = ATA_TAG_POISON;
5011 ap->nr_active_links--;
5014 /* clear exclusive status */
5015 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5016 ap->excl_link == link))
5017 ap->excl_link = NULL;
5019 /* atapi: mark qc as inactive to prevent the interrupt handler
5020 * from completing the command twice later, before the error handler
5021 * is called. (when rc != 0 and atapi request sense is needed)
5023 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5024 ap->qc_active &= ~(1 << qc->tag);
5026 /* call completion callback */
5027 qc->complete_fn(qc);
5030 static void fill_result_tf(struct ata_queued_cmd *qc)
5032 struct ata_port *ap = qc->ap;
5034 qc->result_tf.flags = qc->tf.flags;
5035 ap->ops->qc_fill_rtf(qc);
5038 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5040 struct ata_device *dev = qc->dev;
5042 if (ata_tag_internal(qc->tag))
5043 return;
5045 if (ata_is_nodata(qc->tf.protocol))
5046 return;
5048 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5049 return;
5051 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5055 * ata_qc_complete - Complete an active ATA command
5056 * @qc: Command to complete
5058 * Indicate to the mid and upper layers that an ATA
5059 * command has completed, with either an ok or not-ok status.
5061 * LOCKING:
5062 * spin_lock_irqsave(host lock)
5064 void ata_qc_complete(struct ata_queued_cmd *qc)
5066 struct ata_port *ap = qc->ap;
5068 /* XXX: New EH and old EH use different mechanisms to
5069 * synchronize EH with regular execution path.
5071 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5072 * Normal execution path is responsible for not accessing a
5073 * failed qc. libata core enforces the rule by returning NULL
5074 * from ata_qc_from_tag() for failed qcs.
5076 * Old EH depends on ata_qc_complete() nullifying completion
5077 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5078 * not synchronize with interrupt handler. Only PIO task is
5079 * taken care of.
5081 if (ap->ops->error_handler) {
5082 struct ata_device *dev = qc->dev;
5083 struct ata_eh_info *ehi = &dev->link->eh_info;
5085 if (unlikely(qc->err_mask))
5086 qc->flags |= ATA_QCFLAG_FAILED;
5088 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5089 /* always fill result TF for failed qc */
5090 fill_result_tf(qc);
5092 if (!ata_tag_internal(qc->tag))
5093 ata_qc_schedule_eh(qc);
5094 else
5095 __ata_qc_complete(qc);
5096 return;
5099 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5101 /* read result TF if requested */
5102 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5103 fill_result_tf(qc);
5105 /* Some commands need post-processing after successful
5106 * completion.
5108 switch (qc->tf.command) {
5109 case ATA_CMD_SET_FEATURES:
5110 if (qc->tf.feature != SETFEATURES_WC_ON &&
5111 qc->tf.feature != SETFEATURES_WC_OFF)
5112 break;
5113 /* fall through */
5114 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5115 case ATA_CMD_SET_MULTI: /* multi_count changed */
5116 /* revalidate device */
5117 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5118 ata_port_schedule_eh(ap);
5119 break;
5121 case ATA_CMD_SLEEP:
5122 dev->flags |= ATA_DFLAG_SLEEPING;
5123 break;
5126 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5127 ata_verify_xfer(qc);
5129 __ata_qc_complete(qc);
5130 } else {
5131 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5132 return;
5134 /* read result TF if failed or requested */
5135 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5136 fill_result_tf(qc);
5138 __ata_qc_complete(qc);
5143 * ata_qc_complete_multiple - Complete multiple qcs successfully
5144 * @ap: port in question
5145 * @qc_active: new qc_active mask
5147 * Complete in-flight commands. This functions is meant to be
5148 * called from low-level driver's interrupt routine to complete
5149 * requests normally. ap->qc_active and @qc_active is compared
5150 * and commands are completed accordingly.
5152 * LOCKING:
5153 * spin_lock_irqsave(host lock)
5155 * RETURNS:
5156 * Number of completed commands on success, -errno otherwise.
5158 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5160 int nr_done = 0;
5161 u32 done_mask;
5163 done_mask = ap->qc_active ^ qc_active;
5165 if (unlikely(done_mask & qc_active)) {
5166 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5167 "(%08x->%08x)\n", ap->qc_active, qc_active);
5168 return -EINVAL;
5171 while (done_mask) {
5172 struct ata_queued_cmd *qc;
5173 unsigned int tag = __ffs(done_mask);
5175 qc = ata_qc_from_tag(ap, tag);
5176 if (qc) {
5177 ata_qc_complete(qc);
5178 nr_done++;
5180 done_mask &= ~(1 << tag);
5183 return nr_done;
5187 * ata_qc_issue - issue taskfile to device
5188 * @qc: command to issue to device
5190 * Prepare an ATA command to submission to device.
5191 * This includes mapping the data into a DMA-able
5192 * area, filling in the S/G table, and finally
5193 * writing the taskfile to hardware, starting the command.
5195 * LOCKING:
5196 * spin_lock_irqsave(host lock)
5198 void ata_qc_issue(struct ata_queued_cmd *qc)
5200 struct ata_port *ap = qc->ap;
5201 struct ata_link *link = qc->dev->link;
5202 u8 prot = qc->tf.protocol;
5204 /* Make sure only one non-NCQ command is outstanding. The
5205 * check is skipped for old EH because it reuses active qc to
5206 * request ATAPI sense.
5208 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5210 if (ata_is_ncq(prot)) {
5211 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5213 if (!link->sactive)
5214 ap->nr_active_links++;
5215 link->sactive |= 1 << qc->tag;
5216 } else {
5217 WARN_ON_ONCE(link->sactive);
5219 ap->nr_active_links++;
5220 link->active_tag = qc->tag;
5223 qc->flags |= ATA_QCFLAG_ACTIVE;
5224 ap->qc_active |= 1 << qc->tag;
5226 /* We guarantee to LLDs that they will have at least one
5227 * non-zero sg if the command is a data command.
5229 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5231 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5232 (ap->flags & ATA_FLAG_PIO_DMA)))
5233 if (ata_sg_setup(qc))
5234 goto sg_err;
5236 /* if device is sleeping, schedule reset and abort the link */
5237 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5238 link->eh_info.action |= ATA_EH_RESET;
5239 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5240 ata_link_abort(link);
5241 return;
5244 ap->ops->qc_prep(qc);
5246 qc->err_mask |= ap->ops->qc_issue(qc);
5247 if (unlikely(qc->err_mask))
5248 goto err;
5249 return;
5251 sg_err:
5252 qc->err_mask |= AC_ERR_SYSTEM;
5253 err:
5254 ata_qc_complete(qc);
5258 * sata_scr_valid - test whether SCRs are accessible
5259 * @link: ATA link to test SCR accessibility for
5261 * Test whether SCRs are accessible for @link.
5263 * LOCKING:
5264 * None.
5266 * RETURNS:
5267 * 1 if SCRs are accessible, 0 otherwise.
5269 int sata_scr_valid(struct ata_link *link)
5271 struct ata_port *ap = link->ap;
5273 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5277 * sata_scr_read - read SCR register of the specified port
5278 * @link: ATA link to read SCR for
5279 * @reg: SCR to read
5280 * @val: Place to store read value
5282 * Read SCR register @reg of @link into *@val. This function is
5283 * guaranteed to succeed if @link is ap->link, the cable type of
5284 * the port is SATA and the port implements ->scr_read.
5286 * LOCKING:
5287 * None if @link is ap->link. Kernel thread context otherwise.
5289 * RETURNS:
5290 * 0 on success, negative errno on failure.
5292 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5294 if (ata_is_host_link(link)) {
5295 if (sata_scr_valid(link))
5296 return link->ap->ops->scr_read(link, reg, val);
5297 return -EOPNOTSUPP;
5300 return sata_pmp_scr_read(link, reg, val);
5304 * sata_scr_write - write SCR register of the specified port
5305 * @link: ATA link to write SCR for
5306 * @reg: SCR to write
5307 * @val: value to write
5309 * Write @val to SCR register @reg of @link. This function is
5310 * guaranteed to succeed if @link is ap->link, the cable type of
5311 * the port is SATA and the port implements ->scr_read.
5313 * LOCKING:
5314 * None if @link is ap->link. Kernel thread context otherwise.
5316 * RETURNS:
5317 * 0 on success, negative errno on failure.
5319 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5321 if (ata_is_host_link(link)) {
5322 if (sata_scr_valid(link))
5323 return link->ap->ops->scr_write(link, reg, val);
5324 return -EOPNOTSUPP;
5327 return sata_pmp_scr_write(link, reg, val);
5331 * sata_scr_write_flush - write SCR register of the specified port and flush
5332 * @link: ATA link to write SCR for
5333 * @reg: SCR to write
5334 * @val: value to write
5336 * This function is identical to sata_scr_write() except that this
5337 * function performs flush after writing to the register.
5339 * LOCKING:
5340 * None if @link is ap->link. Kernel thread context otherwise.
5342 * RETURNS:
5343 * 0 on success, negative errno on failure.
5345 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5347 if (ata_is_host_link(link)) {
5348 int rc;
5350 if (sata_scr_valid(link)) {
5351 rc = link->ap->ops->scr_write(link, reg, val);
5352 if (rc == 0)
5353 rc = link->ap->ops->scr_read(link, reg, &val);
5354 return rc;
5356 return -EOPNOTSUPP;
5359 return sata_pmp_scr_write(link, reg, val);
5363 * ata_phys_link_online - test whether the given link is online
5364 * @link: ATA link to test
5366 * Test whether @link is online. Note that this function returns
5367 * 0 if online status of @link cannot be obtained, so
5368 * ata_link_online(link) != !ata_link_offline(link).
5370 * LOCKING:
5371 * None.
5373 * RETURNS:
5374 * True if the port online status is available and online.
5376 bool ata_phys_link_online(struct ata_link *link)
5378 u32 sstatus;
5380 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5381 ata_sstatus_online(sstatus))
5382 return true;
5383 return false;
5387 * ata_phys_link_offline - test whether the given link is offline
5388 * @link: ATA link to test
5390 * Test whether @link is offline. Note that this function
5391 * returns 0 if offline status of @link cannot be obtained, so
5392 * ata_link_online(link) != !ata_link_offline(link).
5394 * LOCKING:
5395 * None.
5397 * RETURNS:
5398 * True if the port offline status is available and offline.
5400 bool ata_phys_link_offline(struct ata_link *link)
5402 u32 sstatus;
5404 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5405 !ata_sstatus_online(sstatus))
5406 return true;
5407 return false;
5411 * ata_link_online - test whether the given link is online
5412 * @link: ATA link to test
5414 * Test whether @link is online. This is identical to
5415 * ata_phys_link_online() when there's no slave link. When
5416 * there's a slave link, this function should only be called on
5417 * the master link and will return true if any of M/S links is
5418 * online.
5420 * LOCKING:
5421 * None.
5423 * RETURNS:
5424 * True if the port online status is available and online.
5426 bool ata_link_online(struct ata_link *link)
5428 struct ata_link *slave = link->ap->slave_link;
5430 WARN_ON(link == slave); /* shouldn't be called on slave link */
5432 return ata_phys_link_online(link) ||
5433 (slave && ata_phys_link_online(slave));
5437 * ata_link_offline - test whether the given link is offline
5438 * @link: ATA link to test
5440 * Test whether @link is offline. This is identical to
5441 * ata_phys_link_offline() when there's no slave link. When
5442 * there's a slave link, this function should only be called on
5443 * the master link and will return true if both M/S links are
5444 * offline.
5446 * LOCKING:
5447 * None.
5449 * RETURNS:
5450 * True if the port offline status is available and offline.
5452 bool ata_link_offline(struct ata_link *link)
5454 struct ata_link *slave = link->ap->slave_link;
5456 WARN_ON(link == slave); /* shouldn't be called on slave link */
5458 return ata_phys_link_offline(link) &&
5459 (!slave || ata_phys_link_offline(slave));
5462 #ifdef CONFIG_PM
5463 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5464 unsigned int action, unsigned int ehi_flags,
5465 int wait)
5467 unsigned long flags;
5468 int i, rc;
5470 for (i = 0; i < host->n_ports; i++) {
5471 struct ata_port *ap = host->ports[i];
5472 struct ata_link *link;
5474 /* Previous resume operation might still be in
5475 * progress. Wait for PM_PENDING to clear.
5477 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5478 ata_port_wait_eh(ap);
5479 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5482 /* request PM ops to EH */
5483 spin_lock_irqsave(ap->lock, flags);
5485 ap->pm_mesg = mesg;
5486 if (wait) {
5487 rc = 0;
5488 ap->pm_result = &rc;
5491 ap->pflags |= ATA_PFLAG_PM_PENDING;
5492 ata_for_each_link(link, ap, HOST_FIRST) {
5493 link->eh_info.action |= action;
5494 link->eh_info.flags |= ehi_flags;
5497 ata_port_schedule_eh(ap);
5499 spin_unlock_irqrestore(ap->lock, flags);
5501 /* wait and check result */
5502 if (wait) {
5503 ata_port_wait_eh(ap);
5504 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5505 if (rc)
5506 return rc;
5510 return 0;
5514 * ata_host_suspend - suspend host
5515 * @host: host to suspend
5516 * @mesg: PM message
5518 * Suspend @host. Actual operation is performed by EH. This
5519 * function requests EH to perform PM operations and waits for EH
5520 * to finish.
5522 * LOCKING:
5523 * Kernel thread context (may sleep).
5525 * RETURNS:
5526 * 0 on success, -errno on failure.
5528 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5530 int rc;
5533 * disable link pm on all ports before requesting
5534 * any pm activity
5536 ata_lpm_enable(host);
5538 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5539 if (rc == 0)
5540 host->dev->power.power_state = mesg;
5541 return rc;
5545 * ata_host_resume - resume host
5546 * @host: host to resume
5548 * Resume @host. Actual operation is performed by EH. This
5549 * function requests EH to perform PM operations and returns.
5550 * Note that all resume operations are performed parallely.
5552 * LOCKING:
5553 * Kernel thread context (may sleep).
5555 void ata_host_resume(struct ata_host *host)
5557 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5558 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5559 host->dev->power.power_state = PMSG_ON;
5561 /* reenable link pm */
5562 ata_lpm_disable(host);
5564 #endif
5567 * ata_port_start - Set port up for dma.
5568 * @ap: Port to initialize
5570 * Called just after data structures for each port are
5571 * initialized. Allocates space for PRD table.
5573 * May be used as the port_start() entry in ata_port_operations.
5575 * LOCKING:
5576 * Inherited from caller.
5578 int ata_port_start(struct ata_port *ap)
5580 struct device *dev = ap->dev;
5582 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5583 GFP_KERNEL);
5584 if (!ap->prd)
5585 return -ENOMEM;
5587 return 0;
5591 * ata_dev_init - Initialize an ata_device structure
5592 * @dev: Device structure to initialize
5594 * Initialize @dev in preparation for probing.
5596 * LOCKING:
5597 * Inherited from caller.
5599 void ata_dev_init(struct ata_device *dev)
5601 struct ata_link *link = ata_dev_phys_link(dev);
5602 struct ata_port *ap = link->ap;
5603 unsigned long flags;
5605 /* SATA spd limit is bound to the attached device, reset together */
5606 link->sata_spd_limit = link->hw_sata_spd_limit;
5607 link->sata_spd = 0;
5609 /* High bits of dev->flags are used to record warm plug
5610 * requests which occur asynchronously. Synchronize using
5611 * host lock.
5613 spin_lock_irqsave(ap->lock, flags);
5614 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5615 dev->horkage = 0;
5616 spin_unlock_irqrestore(ap->lock, flags);
5618 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5619 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5620 dev->pio_mask = UINT_MAX;
5621 dev->mwdma_mask = UINT_MAX;
5622 dev->udma_mask = UINT_MAX;
5626 * ata_link_init - Initialize an ata_link structure
5627 * @ap: ATA port link is attached to
5628 * @link: Link structure to initialize
5629 * @pmp: Port multiplier port number
5631 * Initialize @link.
5633 * LOCKING:
5634 * Kernel thread context (may sleep)
5636 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5638 int i;
5640 /* clear everything except for devices */
5641 memset(link, 0, offsetof(struct ata_link, device[0]));
5643 link->ap = ap;
5644 link->pmp = pmp;
5645 link->active_tag = ATA_TAG_POISON;
5646 link->hw_sata_spd_limit = UINT_MAX;
5648 /* can't use iterator, ap isn't initialized yet */
5649 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5650 struct ata_device *dev = &link->device[i];
5652 dev->link = link;
5653 dev->devno = dev - link->device;
5654 #ifdef CONFIG_ATA_ACPI
5655 dev->gtf_filter = ata_acpi_gtf_filter;
5656 #endif
5657 ata_dev_init(dev);
5662 * sata_link_init_spd - Initialize link->sata_spd_limit
5663 * @link: Link to configure sata_spd_limit for
5665 * Initialize @link->[hw_]sata_spd_limit to the currently
5666 * configured value.
5668 * LOCKING:
5669 * Kernel thread context (may sleep).
5671 * RETURNS:
5672 * 0 on success, -errno on failure.
5674 int sata_link_init_spd(struct ata_link *link)
5676 u8 spd;
5677 int rc;
5679 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5680 if (rc)
5681 return rc;
5683 spd = (link->saved_scontrol >> 4) & 0xf;
5684 if (spd)
5685 link->hw_sata_spd_limit &= (1 << spd) - 1;
5687 ata_force_link_limits(link);
5689 link->sata_spd_limit = link->hw_sata_spd_limit;
5691 return 0;
5695 * ata_port_alloc - allocate and initialize basic ATA port resources
5696 * @host: ATA host this allocated port belongs to
5698 * Allocate and initialize basic ATA port resources.
5700 * RETURNS:
5701 * Allocate ATA port on success, NULL on failure.
5703 * LOCKING:
5704 * Inherited from calling layer (may sleep).
5706 struct ata_port *ata_port_alloc(struct ata_host *host)
5708 struct ata_port *ap;
5710 DPRINTK("ENTER\n");
5712 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5713 if (!ap)
5714 return NULL;
5716 ap->pflags |= ATA_PFLAG_INITIALIZING;
5717 ap->lock = &host->lock;
5718 ap->flags = ATA_FLAG_DISABLED;
5719 ap->print_id = -1;
5720 ap->ctl = ATA_DEVCTL_OBS;
5721 ap->host = host;
5722 ap->dev = host->dev;
5723 ap->last_ctl = 0xFF;
5725 #if defined(ATA_VERBOSE_DEBUG)
5726 /* turn on all debugging levels */
5727 ap->msg_enable = 0x00FF;
5728 #elif defined(ATA_DEBUG)
5729 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5730 #else
5731 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5732 #endif
5734 #ifdef CONFIG_ATA_SFF
5735 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5736 #else
5737 INIT_DELAYED_WORK(&ap->port_task, NULL);
5738 #endif
5739 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5740 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5741 INIT_LIST_HEAD(&ap->eh_done_q);
5742 init_waitqueue_head(&ap->eh_wait_q);
5743 init_completion(&ap->park_req_pending);
5744 init_timer_deferrable(&ap->fastdrain_timer);
5745 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5746 ap->fastdrain_timer.data = (unsigned long)ap;
5748 ap->cbl = ATA_CBL_NONE;
5750 ata_link_init(ap, &ap->link, 0);
5752 #ifdef ATA_IRQ_TRAP
5753 ap->stats.unhandled_irq = 1;
5754 ap->stats.idle_irq = 1;
5755 #endif
5756 return ap;
5759 static void ata_host_release(struct device *gendev, void *res)
5761 struct ata_host *host = dev_get_drvdata(gendev);
5762 int i;
5764 for (i = 0; i < host->n_ports; i++) {
5765 struct ata_port *ap = host->ports[i];
5767 if (!ap)
5768 continue;
5770 if (ap->scsi_host)
5771 scsi_host_put(ap->scsi_host);
5773 kfree(ap->pmp_link);
5774 kfree(ap->slave_link);
5775 kfree(ap);
5776 host->ports[i] = NULL;
5779 dev_set_drvdata(gendev, NULL);
5783 * ata_host_alloc - allocate and init basic ATA host resources
5784 * @dev: generic device this host is associated with
5785 * @max_ports: maximum number of ATA ports associated with this host
5787 * Allocate and initialize basic ATA host resources. LLD calls
5788 * this function to allocate a host, initializes it fully and
5789 * attaches it using ata_host_register().
5791 * @max_ports ports are allocated and host->n_ports is
5792 * initialized to @max_ports. The caller is allowed to decrease
5793 * host->n_ports before calling ata_host_register(). The unused
5794 * ports will be automatically freed on registration.
5796 * RETURNS:
5797 * Allocate ATA host on success, NULL on failure.
5799 * LOCKING:
5800 * Inherited from calling layer (may sleep).
5802 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5804 struct ata_host *host;
5805 size_t sz;
5806 int i;
5808 DPRINTK("ENTER\n");
5810 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5811 return NULL;
5813 /* alloc a container for our list of ATA ports (buses) */
5814 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5815 /* alloc a container for our list of ATA ports (buses) */
5816 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5817 if (!host)
5818 goto err_out;
5820 devres_add(dev, host);
5821 dev_set_drvdata(dev, host);
5823 spin_lock_init(&host->lock);
5824 host->dev = dev;
5825 host->n_ports = max_ports;
5827 /* allocate ports bound to this host */
5828 for (i = 0; i < max_ports; i++) {
5829 struct ata_port *ap;
5831 ap = ata_port_alloc(host);
5832 if (!ap)
5833 goto err_out;
5835 ap->port_no = i;
5836 host->ports[i] = ap;
5839 devres_remove_group(dev, NULL);
5840 return host;
5842 err_out:
5843 devres_release_group(dev, NULL);
5844 return NULL;
5848 * ata_host_alloc_pinfo - alloc host and init with port_info array
5849 * @dev: generic device this host is associated with
5850 * @ppi: array of ATA port_info to initialize host with
5851 * @n_ports: number of ATA ports attached to this host
5853 * Allocate ATA host and initialize with info from @ppi. If NULL
5854 * terminated, @ppi may contain fewer entries than @n_ports. The
5855 * last entry will be used for the remaining ports.
5857 * RETURNS:
5858 * Allocate ATA host on success, NULL on failure.
5860 * LOCKING:
5861 * Inherited from calling layer (may sleep).
5863 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5864 const struct ata_port_info * const * ppi,
5865 int n_ports)
5867 const struct ata_port_info *pi;
5868 struct ata_host *host;
5869 int i, j;
5871 host = ata_host_alloc(dev, n_ports);
5872 if (!host)
5873 return NULL;
5875 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5876 struct ata_port *ap = host->ports[i];
5878 if (ppi[j])
5879 pi = ppi[j++];
5881 ap->pio_mask = pi->pio_mask;
5882 ap->mwdma_mask = pi->mwdma_mask;
5883 ap->udma_mask = pi->udma_mask;
5884 ap->flags |= pi->flags;
5885 ap->link.flags |= pi->link_flags;
5886 ap->ops = pi->port_ops;
5888 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5889 host->ops = pi->port_ops;
5892 return host;
5896 * ata_slave_link_init - initialize slave link
5897 * @ap: port to initialize slave link for
5899 * Create and initialize slave link for @ap. This enables slave
5900 * link handling on the port.
5902 * In libata, a port contains links and a link contains devices.
5903 * There is single host link but if a PMP is attached to it,
5904 * there can be multiple fan-out links. On SATA, there's usually
5905 * a single device connected to a link but PATA and SATA
5906 * controllers emulating TF based interface can have two - master
5907 * and slave.
5909 * However, there are a few controllers which don't fit into this
5910 * abstraction too well - SATA controllers which emulate TF
5911 * interface with both master and slave devices but also have
5912 * separate SCR register sets for each device. These controllers
5913 * need separate links for physical link handling
5914 * (e.g. onlineness, link speed) but should be treated like a
5915 * traditional M/S controller for everything else (e.g. command
5916 * issue, softreset).
5918 * slave_link is libata's way of handling this class of
5919 * controllers without impacting core layer too much. For
5920 * anything other than physical link handling, the default host
5921 * link is used for both master and slave. For physical link
5922 * handling, separate @ap->slave_link is used. All dirty details
5923 * are implemented inside libata core layer. From LLD's POV, the
5924 * only difference is that prereset, hardreset and postreset are
5925 * called once more for the slave link, so the reset sequence
5926 * looks like the following.
5928 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5929 * softreset(M) -> postreset(M) -> postreset(S)
5931 * Note that softreset is called only for the master. Softreset
5932 * resets both M/S by definition, so SRST on master should handle
5933 * both (the standard method will work just fine).
5935 * LOCKING:
5936 * Should be called before host is registered.
5938 * RETURNS:
5939 * 0 on success, -errno on failure.
5941 int ata_slave_link_init(struct ata_port *ap)
5943 struct ata_link *link;
5945 WARN_ON(ap->slave_link);
5946 WARN_ON(ap->flags & ATA_FLAG_PMP);
5948 link = kzalloc(sizeof(*link), GFP_KERNEL);
5949 if (!link)
5950 return -ENOMEM;
5952 ata_link_init(ap, link, 1);
5953 ap->slave_link = link;
5954 return 0;
5957 static void ata_host_stop(struct device *gendev, void *res)
5959 struct ata_host *host = dev_get_drvdata(gendev);
5960 int i;
5962 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5964 for (i = 0; i < host->n_ports; i++) {
5965 struct ata_port *ap = host->ports[i];
5967 if (ap->ops->port_stop)
5968 ap->ops->port_stop(ap);
5971 if (host->ops->host_stop)
5972 host->ops->host_stop(host);
5976 * ata_finalize_port_ops - finalize ata_port_operations
5977 * @ops: ata_port_operations to finalize
5979 * An ata_port_operations can inherit from another ops and that
5980 * ops can again inherit from another. This can go on as many
5981 * times as necessary as long as there is no loop in the
5982 * inheritance chain.
5984 * Ops tables are finalized when the host is started. NULL or
5985 * unspecified entries are inherited from the closet ancestor
5986 * which has the method and the entry is populated with it.
5987 * After finalization, the ops table directly points to all the
5988 * methods and ->inherits is no longer necessary and cleared.
5990 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5992 * LOCKING:
5993 * None.
5995 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5997 static DEFINE_SPINLOCK(lock);
5998 const struct ata_port_operations *cur;
5999 void **begin = (void **)ops;
6000 void **end = (void **)&ops->inherits;
6001 void **pp;
6003 if (!ops || !ops->inherits)
6004 return;
6006 spin_lock(&lock);
6008 for (cur = ops->inherits; cur; cur = cur->inherits) {
6009 void **inherit = (void **)cur;
6011 for (pp = begin; pp < end; pp++, inherit++)
6012 if (!*pp)
6013 *pp = *inherit;
6016 for (pp = begin; pp < end; pp++)
6017 if (IS_ERR(*pp))
6018 *pp = NULL;
6020 ops->inherits = NULL;
6022 spin_unlock(&lock);
6026 * ata_host_start - start and freeze ports of an ATA host
6027 * @host: ATA host to start ports for
6029 * Start and then freeze ports of @host. Started status is
6030 * recorded in host->flags, so this function can be called
6031 * multiple times. Ports are guaranteed to get started only
6032 * once. If host->ops isn't initialized yet, its set to the
6033 * first non-dummy port ops.
6035 * LOCKING:
6036 * Inherited from calling layer (may sleep).
6038 * RETURNS:
6039 * 0 if all ports are started successfully, -errno otherwise.
6041 int ata_host_start(struct ata_host *host)
6043 int have_stop = 0;
6044 void *start_dr = NULL;
6045 int i, rc;
6047 if (host->flags & ATA_HOST_STARTED)
6048 return 0;
6050 ata_finalize_port_ops(host->ops);
6052 for (i = 0; i < host->n_ports; i++) {
6053 struct ata_port *ap = host->ports[i];
6055 ata_finalize_port_ops(ap->ops);
6057 if (!host->ops && !ata_port_is_dummy(ap))
6058 host->ops = ap->ops;
6060 if (ap->ops->port_stop)
6061 have_stop = 1;
6064 if (host->ops->host_stop)
6065 have_stop = 1;
6067 if (have_stop) {
6068 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6069 if (!start_dr)
6070 return -ENOMEM;
6073 for (i = 0; i < host->n_ports; i++) {
6074 struct ata_port *ap = host->ports[i];
6076 if (ap->ops->port_start) {
6077 rc = ap->ops->port_start(ap);
6078 if (rc) {
6079 if (rc != -ENODEV)
6080 dev_printk(KERN_ERR, host->dev,
6081 "failed to start port %d "
6082 "(errno=%d)\n", i, rc);
6083 goto err_out;
6086 ata_eh_freeze_port(ap);
6089 if (start_dr)
6090 devres_add(host->dev, start_dr);
6091 host->flags |= ATA_HOST_STARTED;
6092 return 0;
6094 err_out:
6095 while (--i >= 0) {
6096 struct ata_port *ap = host->ports[i];
6098 if (ap->ops->port_stop)
6099 ap->ops->port_stop(ap);
6101 devres_free(start_dr);
6102 return rc;
6106 * ata_sas_host_init - Initialize a host struct
6107 * @host: host to initialize
6108 * @dev: device host is attached to
6109 * @flags: host flags
6110 * @ops: port_ops
6112 * LOCKING:
6113 * PCI/etc. bus probe sem.
6116 /* KILLME - the only user left is ipr */
6117 void ata_host_init(struct ata_host *host, struct device *dev,
6118 unsigned long flags, struct ata_port_operations *ops)
6120 spin_lock_init(&host->lock);
6121 host->dev = dev;
6122 host->flags = flags;
6123 host->ops = ops;
6127 static void async_port_probe(void *data, async_cookie_t cookie)
6129 int rc;
6130 struct ata_port *ap = data;
6133 * If we're not allowed to scan this host in parallel,
6134 * we need to wait until all previous scans have completed
6135 * before going further.
6136 * Jeff Garzik says this is only within a controller, so we
6137 * don't need to wait for port 0, only for later ports.
6139 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6140 async_synchronize_cookie(cookie);
6142 /* probe */
6143 if (ap->ops->error_handler) {
6144 struct ata_eh_info *ehi = &ap->link.eh_info;
6145 unsigned long flags;
6147 ata_port_probe(ap);
6149 /* kick EH for boot probing */
6150 spin_lock_irqsave(ap->lock, flags);
6152 ehi->probe_mask |= ATA_ALL_DEVICES;
6153 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6154 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6156 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6157 ap->pflags |= ATA_PFLAG_LOADING;
6158 ata_port_schedule_eh(ap);
6160 spin_unlock_irqrestore(ap->lock, flags);
6162 /* wait for EH to finish */
6163 ata_port_wait_eh(ap);
6164 } else {
6165 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6166 rc = ata_bus_probe(ap);
6167 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6169 if (rc) {
6170 /* FIXME: do something useful here?
6171 * Current libata behavior will
6172 * tear down everything when
6173 * the module is removed
6174 * or the h/w is unplugged.
6179 /* in order to keep device order, we need to synchronize at this point */
6180 async_synchronize_cookie(cookie);
6182 ata_scsi_scan_host(ap, 1);
6186 * ata_host_register - register initialized ATA host
6187 * @host: ATA host to register
6188 * @sht: template for SCSI host
6190 * Register initialized ATA host. @host is allocated using
6191 * ata_host_alloc() and fully initialized by LLD. This function
6192 * starts ports, registers @host with ATA and SCSI layers and
6193 * probe registered devices.
6195 * LOCKING:
6196 * Inherited from calling layer (may sleep).
6198 * RETURNS:
6199 * 0 on success, -errno otherwise.
6201 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6203 int i, rc;
6205 /* host must have been started */
6206 if (!(host->flags & ATA_HOST_STARTED)) {
6207 dev_printk(KERN_ERR, host->dev,
6208 "BUG: trying to register unstarted host\n");
6209 WARN_ON(1);
6210 return -EINVAL;
6213 /* Blow away unused ports. This happens when LLD can't
6214 * determine the exact number of ports to allocate at
6215 * allocation time.
6217 for (i = host->n_ports; host->ports[i]; i++)
6218 kfree(host->ports[i]);
6220 /* give ports names and add SCSI hosts */
6221 for (i = 0; i < host->n_ports; i++)
6222 host->ports[i]->print_id = ata_print_id++;
6224 rc = ata_scsi_add_hosts(host, sht);
6225 if (rc)
6226 return rc;
6228 /* associate with ACPI nodes */
6229 ata_acpi_associate(host);
6231 /* set cable, sata_spd_limit and report */
6232 for (i = 0; i < host->n_ports; i++) {
6233 struct ata_port *ap = host->ports[i];
6234 unsigned long xfer_mask;
6236 /* set SATA cable type if still unset */
6237 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6238 ap->cbl = ATA_CBL_SATA;
6240 /* init sata_spd_limit to the current value */
6241 sata_link_init_spd(&ap->link);
6242 if (ap->slave_link)
6243 sata_link_init_spd(ap->slave_link);
6245 /* print per-port info to dmesg */
6246 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6247 ap->udma_mask);
6249 if (!ata_port_is_dummy(ap)) {
6250 ata_port_printk(ap, KERN_INFO,
6251 "%cATA max %s %s\n",
6252 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6253 ata_mode_string(xfer_mask),
6254 ap->link.eh_info.desc);
6255 ata_ehi_clear_desc(&ap->link.eh_info);
6256 } else
6257 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6260 /* perform each probe asynchronously */
6261 for (i = 0; i < host->n_ports; i++) {
6262 struct ata_port *ap = host->ports[i];
6263 async_schedule(async_port_probe, ap);
6266 return 0;
6270 * ata_host_activate - start host, request IRQ and register it
6271 * @host: target ATA host
6272 * @irq: IRQ to request
6273 * @irq_handler: irq_handler used when requesting IRQ
6274 * @irq_flags: irq_flags used when requesting IRQ
6275 * @sht: scsi_host_template to use when registering the host
6277 * After allocating an ATA host and initializing it, most libata
6278 * LLDs perform three steps to activate the host - start host,
6279 * request IRQ and register it. This helper takes necessasry
6280 * arguments and performs the three steps in one go.
6282 * An invalid IRQ skips the IRQ registration and expects the host to
6283 * have set polling mode on the port. In this case, @irq_handler
6284 * should be NULL.
6286 * LOCKING:
6287 * Inherited from calling layer (may sleep).
6289 * RETURNS:
6290 * 0 on success, -errno otherwise.
6292 int ata_host_activate(struct ata_host *host, int irq,
6293 irq_handler_t irq_handler, unsigned long irq_flags,
6294 struct scsi_host_template *sht)
6296 int i, rc;
6298 rc = ata_host_start(host);
6299 if (rc)
6300 return rc;
6302 /* Special case for polling mode */
6303 if (!irq) {
6304 WARN_ON(irq_handler);
6305 return ata_host_register(host, sht);
6308 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6309 dev_driver_string(host->dev), host);
6310 if (rc)
6311 return rc;
6313 for (i = 0; i < host->n_ports; i++)
6314 ata_port_desc(host->ports[i], "irq %d", irq);
6316 rc = ata_host_register(host, sht);
6317 /* if failed, just free the IRQ and leave ports alone */
6318 if (rc)
6319 devm_free_irq(host->dev, irq, host);
6321 return rc;
6325 * ata_port_detach - Detach ATA port in prepration of device removal
6326 * @ap: ATA port to be detached
6328 * Detach all ATA devices and the associated SCSI devices of @ap;
6329 * then, remove the associated SCSI host. @ap is guaranteed to
6330 * be quiescent on return from this function.
6332 * LOCKING:
6333 * Kernel thread context (may sleep).
6335 static void ata_port_detach(struct ata_port *ap)
6337 unsigned long flags;
6339 if (!ap->ops->error_handler)
6340 goto skip_eh;
6342 /* tell EH we're leaving & flush EH */
6343 spin_lock_irqsave(ap->lock, flags);
6344 ap->pflags |= ATA_PFLAG_UNLOADING;
6345 ata_port_schedule_eh(ap);
6346 spin_unlock_irqrestore(ap->lock, flags);
6348 /* wait till EH commits suicide */
6349 ata_port_wait_eh(ap);
6351 /* it better be dead now */
6352 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6354 cancel_rearming_delayed_work(&ap->hotplug_task);
6356 skip_eh:
6357 /* remove the associated SCSI host */
6358 scsi_remove_host(ap->scsi_host);
6362 * ata_host_detach - Detach all ports of an ATA host
6363 * @host: Host to detach
6365 * Detach all ports of @host.
6367 * LOCKING:
6368 * Kernel thread context (may sleep).
6370 void ata_host_detach(struct ata_host *host)
6372 int i;
6374 for (i = 0; i < host->n_ports; i++)
6375 ata_port_detach(host->ports[i]);
6377 /* the host is dead now, dissociate ACPI */
6378 ata_acpi_dissociate(host);
6381 #ifdef CONFIG_PCI
6384 * ata_pci_remove_one - PCI layer callback for device removal
6385 * @pdev: PCI device that was removed
6387 * PCI layer indicates to libata via this hook that hot-unplug or
6388 * module unload event has occurred. Detach all ports. Resource
6389 * release is handled via devres.
6391 * LOCKING:
6392 * Inherited from PCI layer (may sleep).
6394 void ata_pci_remove_one(struct pci_dev *pdev)
6396 struct device *dev = &pdev->dev;
6397 struct ata_host *host = dev_get_drvdata(dev);
6399 ata_host_detach(host);
6402 /* move to PCI subsystem */
6403 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6405 unsigned long tmp = 0;
6407 switch (bits->width) {
6408 case 1: {
6409 u8 tmp8 = 0;
6410 pci_read_config_byte(pdev, bits->reg, &tmp8);
6411 tmp = tmp8;
6412 break;
6414 case 2: {
6415 u16 tmp16 = 0;
6416 pci_read_config_word(pdev, bits->reg, &tmp16);
6417 tmp = tmp16;
6418 break;
6420 case 4: {
6421 u32 tmp32 = 0;
6422 pci_read_config_dword(pdev, bits->reg, &tmp32);
6423 tmp = tmp32;
6424 break;
6427 default:
6428 return -EINVAL;
6431 tmp &= bits->mask;
6433 return (tmp == bits->val) ? 1 : 0;
6436 #ifdef CONFIG_PM
6437 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6439 pci_save_state(pdev);
6440 pci_disable_device(pdev);
6442 if (mesg.event & PM_EVENT_SLEEP)
6443 pci_set_power_state(pdev, PCI_D3hot);
6446 int ata_pci_device_do_resume(struct pci_dev *pdev)
6448 int rc;
6450 pci_set_power_state(pdev, PCI_D0);
6451 pci_restore_state(pdev);
6453 rc = pcim_enable_device(pdev);
6454 if (rc) {
6455 dev_printk(KERN_ERR, &pdev->dev,
6456 "failed to enable device after resume (%d)\n", rc);
6457 return rc;
6460 pci_set_master(pdev);
6461 return 0;
6464 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6466 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6467 int rc = 0;
6469 rc = ata_host_suspend(host, mesg);
6470 if (rc)
6471 return rc;
6473 ata_pci_device_do_suspend(pdev, mesg);
6475 return 0;
6478 int ata_pci_device_resume(struct pci_dev *pdev)
6480 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6481 int rc;
6483 rc = ata_pci_device_do_resume(pdev);
6484 if (rc == 0)
6485 ata_host_resume(host);
6486 return rc;
6488 #endif /* CONFIG_PM */
6490 #endif /* CONFIG_PCI */
6492 static int __init ata_parse_force_one(char **cur,
6493 struct ata_force_ent *force_ent,
6494 const char **reason)
6496 /* FIXME: Currently, there's no way to tag init const data and
6497 * using __initdata causes build failure on some versions of
6498 * gcc. Once __initdataconst is implemented, add const to the
6499 * following structure.
6501 static struct ata_force_param force_tbl[] __initdata = {
6502 { "40c", .cbl = ATA_CBL_PATA40 },
6503 { "80c", .cbl = ATA_CBL_PATA80 },
6504 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6505 { "unk", .cbl = ATA_CBL_PATA_UNK },
6506 { "ign", .cbl = ATA_CBL_PATA_IGN },
6507 { "sata", .cbl = ATA_CBL_SATA },
6508 { "1.5Gbps", .spd_limit = 1 },
6509 { "3.0Gbps", .spd_limit = 2 },
6510 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6511 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6512 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6513 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6514 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6515 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6516 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6517 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6518 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6519 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6520 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6521 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6522 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6523 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6524 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6525 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6526 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6527 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6528 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6529 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6530 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6531 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6532 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6533 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6534 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6535 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6536 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6537 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6538 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6539 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6540 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6541 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6542 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6543 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6544 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6545 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6546 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6547 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6548 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6550 char *start = *cur, *p = *cur;
6551 char *id, *val, *endp;
6552 const struct ata_force_param *match_fp = NULL;
6553 int nr_matches = 0, i;
6555 /* find where this param ends and update *cur */
6556 while (*p != '\0' && *p != ',')
6557 p++;
6559 if (*p == '\0')
6560 *cur = p;
6561 else
6562 *cur = p + 1;
6564 *p = '\0';
6566 /* parse */
6567 p = strchr(start, ':');
6568 if (!p) {
6569 val = strstrip(start);
6570 goto parse_val;
6572 *p = '\0';
6574 id = strstrip(start);
6575 val = strstrip(p + 1);
6577 /* parse id */
6578 p = strchr(id, '.');
6579 if (p) {
6580 *p++ = '\0';
6581 force_ent->device = simple_strtoul(p, &endp, 10);
6582 if (p == endp || *endp != '\0') {
6583 *reason = "invalid device";
6584 return -EINVAL;
6588 force_ent->port = simple_strtoul(id, &endp, 10);
6589 if (p == endp || *endp != '\0') {
6590 *reason = "invalid port/link";
6591 return -EINVAL;
6594 parse_val:
6595 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6596 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6597 const struct ata_force_param *fp = &force_tbl[i];
6599 if (strncasecmp(val, fp->name, strlen(val)))
6600 continue;
6602 nr_matches++;
6603 match_fp = fp;
6605 if (strcasecmp(val, fp->name) == 0) {
6606 nr_matches = 1;
6607 break;
6611 if (!nr_matches) {
6612 *reason = "unknown value";
6613 return -EINVAL;
6615 if (nr_matches > 1) {
6616 *reason = "ambigious value";
6617 return -EINVAL;
6620 force_ent->param = *match_fp;
6622 return 0;
6625 static void __init ata_parse_force_param(void)
6627 int idx = 0, size = 1;
6628 int last_port = -1, last_device = -1;
6629 char *p, *cur, *next;
6631 /* calculate maximum number of params and allocate force_tbl */
6632 for (p = ata_force_param_buf; *p; p++)
6633 if (*p == ',')
6634 size++;
6636 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6637 if (!ata_force_tbl) {
6638 printk(KERN_WARNING "ata: failed to extend force table, "
6639 "libata.force ignored\n");
6640 return;
6643 /* parse and populate the table */
6644 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6645 const char *reason = "";
6646 struct ata_force_ent te = { .port = -1, .device = -1 };
6648 next = cur;
6649 if (ata_parse_force_one(&next, &te, &reason)) {
6650 printk(KERN_WARNING "ata: failed to parse force "
6651 "parameter \"%s\" (%s)\n",
6652 cur, reason);
6653 continue;
6656 if (te.port == -1) {
6657 te.port = last_port;
6658 te.device = last_device;
6661 ata_force_tbl[idx++] = te;
6663 last_port = te.port;
6664 last_device = te.device;
6667 ata_force_tbl_size = idx;
6670 static int __init ata_init(void)
6672 ata_parse_force_param();
6675 * FIXME: In UP case, there is only one workqueue thread and if you
6676 * have more than one PIO device, latency is bloody awful, with
6677 * occasional multi-second "hiccups" as one PIO device waits for
6678 * another. It's an ugly wart that users DO occasionally complain
6679 * about; luckily most users have at most one PIO polled device.
6681 ata_wq = create_workqueue("ata");
6682 if (!ata_wq)
6683 goto free_force_tbl;
6685 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6686 if (!ata_aux_wq)
6687 goto free_wq;
6689 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6690 return 0;
6692 free_wq:
6693 destroy_workqueue(ata_wq);
6694 free_force_tbl:
6695 kfree(ata_force_tbl);
6696 return -ENOMEM;
6699 static void __exit ata_exit(void)
6701 kfree(ata_force_tbl);
6702 destroy_workqueue(ata_wq);
6703 destroy_workqueue(ata_aux_wq);
6706 subsys_initcall(ata_init);
6707 module_exit(ata_exit);
6709 static unsigned long ratelimit_time;
6710 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6712 int ata_ratelimit(void)
6714 int rc;
6715 unsigned long flags;
6717 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6719 if (time_after(jiffies, ratelimit_time)) {
6720 rc = 1;
6721 ratelimit_time = jiffies + (HZ/5);
6722 } else
6723 rc = 0;
6725 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6727 return rc;
6731 * ata_wait_register - wait until register value changes
6732 * @reg: IO-mapped register
6733 * @mask: Mask to apply to read register value
6734 * @val: Wait condition
6735 * @interval: polling interval in milliseconds
6736 * @timeout: timeout in milliseconds
6738 * Waiting for some bits of register to change is a common
6739 * operation for ATA controllers. This function reads 32bit LE
6740 * IO-mapped register @reg and tests for the following condition.
6742 * (*@reg & mask) != val
6744 * If the condition is met, it returns; otherwise, the process is
6745 * repeated after @interval_msec until timeout.
6747 * LOCKING:
6748 * Kernel thread context (may sleep)
6750 * RETURNS:
6751 * The final register value.
6753 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6754 unsigned long interval, unsigned long timeout)
6756 unsigned long deadline;
6757 u32 tmp;
6759 tmp = ioread32(reg);
6761 /* Calculate timeout _after_ the first read to make sure
6762 * preceding writes reach the controller before starting to
6763 * eat away the timeout.
6765 deadline = ata_deadline(jiffies, timeout);
6767 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6768 msleep(interval);
6769 tmp = ioread32(reg);
6772 return tmp;
6776 * Dummy port_ops
6778 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6780 return AC_ERR_SYSTEM;
6783 static void ata_dummy_error_handler(struct ata_port *ap)
6785 /* truly dummy */
6788 struct ata_port_operations ata_dummy_port_ops = {
6789 .qc_prep = ata_noop_qc_prep,
6790 .qc_issue = ata_dummy_qc_issue,
6791 .error_handler = ata_dummy_error_handler,
6794 const struct ata_port_info ata_dummy_port_info = {
6795 .port_ops = &ata_dummy_port_ops,
6799 * libata is essentially a library of internal helper functions for
6800 * low-level ATA host controller drivers. As such, the API/ABI is
6801 * likely to change as new drivers are added and updated.
6802 * Do not depend on ABI/API stability.
6804 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6805 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6806 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6807 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6808 EXPORT_SYMBOL_GPL(sata_port_ops);
6809 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6810 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6811 EXPORT_SYMBOL_GPL(ata_link_next);
6812 EXPORT_SYMBOL_GPL(ata_dev_next);
6813 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6814 EXPORT_SYMBOL_GPL(ata_host_init);
6815 EXPORT_SYMBOL_GPL(ata_host_alloc);
6816 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6817 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6818 EXPORT_SYMBOL_GPL(ata_host_start);
6819 EXPORT_SYMBOL_GPL(ata_host_register);
6820 EXPORT_SYMBOL_GPL(ata_host_activate);
6821 EXPORT_SYMBOL_GPL(ata_host_detach);
6822 EXPORT_SYMBOL_GPL(ata_sg_init);
6823 EXPORT_SYMBOL_GPL(ata_qc_complete);
6824 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6825 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6826 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6827 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6828 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6829 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6830 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6831 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6832 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6833 EXPORT_SYMBOL_GPL(ata_mode_string);
6834 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6835 EXPORT_SYMBOL_GPL(ata_port_start);
6836 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6837 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6838 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6839 EXPORT_SYMBOL_GPL(ata_port_probe);
6840 EXPORT_SYMBOL_GPL(ata_dev_disable);
6841 EXPORT_SYMBOL_GPL(sata_set_spd);
6842 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6843 EXPORT_SYMBOL_GPL(sata_link_debounce);
6844 EXPORT_SYMBOL_GPL(sata_link_resume);
6845 EXPORT_SYMBOL_GPL(ata_std_prereset);
6846 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6847 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6848 EXPORT_SYMBOL_GPL(ata_std_postreset);
6849 EXPORT_SYMBOL_GPL(ata_dev_classify);
6850 EXPORT_SYMBOL_GPL(ata_dev_pair);
6851 EXPORT_SYMBOL_GPL(ata_port_disable);
6852 EXPORT_SYMBOL_GPL(ata_ratelimit);
6853 EXPORT_SYMBOL_GPL(ata_wait_register);
6854 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6855 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6856 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6857 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6858 EXPORT_SYMBOL_GPL(sata_scr_valid);
6859 EXPORT_SYMBOL_GPL(sata_scr_read);
6860 EXPORT_SYMBOL_GPL(sata_scr_write);
6861 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6862 EXPORT_SYMBOL_GPL(ata_link_online);
6863 EXPORT_SYMBOL_GPL(ata_link_offline);
6864 #ifdef CONFIG_PM
6865 EXPORT_SYMBOL_GPL(ata_host_suspend);
6866 EXPORT_SYMBOL_GPL(ata_host_resume);
6867 #endif /* CONFIG_PM */
6868 EXPORT_SYMBOL_GPL(ata_id_string);
6869 EXPORT_SYMBOL_GPL(ata_id_c_string);
6870 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6871 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6873 EXPORT_SYMBOL_GPL(ata_pio_queue_task);
6874 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6875 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6876 EXPORT_SYMBOL_GPL(ata_timing_compute);
6877 EXPORT_SYMBOL_GPL(ata_timing_merge);
6878 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6880 #ifdef CONFIG_PCI
6881 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6882 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6883 #ifdef CONFIG_PM
6884 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6885 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6886 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6887 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6888 #endif /* CONFIG_PM */
6889 #endif /* CONFIG_PCI */
6891 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6892 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6893 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6894 EXPORT_SYMBOL_GPL(ata_port_desc);
6895 #ifdef CONFIG_PCI
6896 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6897 #endif /* CONFIG_PCI */
6898 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6899 EXPORT_SYMBOL_GPL(ata_link_abort);
6900 EXPORT_SYMBOL_GPL(ata_port_abort);
6901 EXPORT_SYMBOL_GPL(ata_port_freeze);
6902 EXPORT_SYMBOL_GPL(sata_async_notification);
6903 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6904 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6905 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6906 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6907 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6908 EXPORT_SYMBOL_GPL(ata_do_eh);
6909 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6911 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6912 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6913 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6914 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6915 EXPORT_SYMBOL_GPL(ata_cable_sata);