2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/oom.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 #include <linux/stop_machine.h>
41 #include <linux/sort.h>
42 #include <linux/pfn.h>
43 #include <linux/backing-dev.h>
44 #include <linux/fault-inject.h>
45 #include <linux/page-isolation.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
52 * Array of node states.
54 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
55 [N_POSSIBLE
] = NODE_MASK_ALL
,
56 [N_ONLINE
] = { { [0] = 1UL } },
58 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
60 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
62 [N_CPU
] = { { [0] = 1UL } },
65 EXPORT_SYMBOL(node_states
);
67 unsigned long totalram_pages __read_mostly
;
68 unsigned long totalreserve_pages __read_mostly
;
70 int percpu_pagelist_fraction
;
72 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
73 int pageblock_order __read_mostly
;
76 static void __free_pages_ok(struct page
*page
, unsigned int order
);
79 * results with 256, 32 in the lowmem_reserve sysctl:
80 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
81 * 1G machine -> (16M dma, 784M normal, 224M high)
82 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
83 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
86 * TBD: should special case ZONE_DMA32 machines here - in those we normally
87 * don't need any ZONE_NORMAL reservation
89 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
90 #ifdef CONFIG_ZONE_DMA
93 #ifdef CONFIG_ZONE_DMA32
102 EXPORT_SYMBOL(totalram_pages
);
104 static char * const zone_names
[MAX_NR_ZONES
] = {
105 #ifdef CONFIG_ZONE_DMA
108 #ifdef CONFIG_ZONE_DMA32
112 #ifdef CONFIG_HIGHMEM
118 int min_free_kbytes
= 1024;
120 unsigned long __meminitdata nr_kernel_pages
;
121 unsigned long __meminitdata nr_all_pages
;
122 static unsigned long __meminitdata dma_reserve
;
124 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
126 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
127 * ranges of memory (RAM) that may be registered with add_active_range().
128 * Ranges passed to add_active_range() will be merged if possible
129 * so the number of times add_active_range() can be called is
130 * related to the number of nodes and the number of holes
132 #ifdef CONFIG_MAX_ACTIVE_REGIONS
133 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
134 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
136 #if MAX_NUMNODES >= 32
137 /* If there can be many nodes, allow up to 50 holes per node */
138 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
140 /* By default, allow up to 256 distinct regions */
141 #define MAX_ACTIVE_REGIONS 256
145 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
146 static int __meminitdata nr_nodemap_entries
;
147 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
148 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
149 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
150 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
151 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
152 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
153 unsigned long __initdata required_kernelcore
;
154 static unsigned long __initdata required_movablecore
;
155 unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
159 EXPORT_SYMBOL(movable_zone
);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
164 EXPORT_SYMBOL(nr_node_ids
);
167 int page_group_by_mobility_disabled __read_mostly
;
169 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
171 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
172 PB_migrate
, PB_migrate_end
);
175 #ifdef CONFIG_DEBUG_VM
176 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
180 unsigned long pfn
= page_to_pfn(page
);
183 seq
= zone_span_seqbegin(zone
);
184 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
186 else if (pfn
< zone
->zone_start_pfn
)
188 } while (zone_span_seqretry(zone
, seq
));
193 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
195 if (!pfn_valid_within(page_to_pfn(page
)))
197 if (zone
!= page_zone(page
))
203 * Temporary debugging check for pages not lying within a given zone.
205 static int bad_range(struct zone
*zone
, struct page
*page
)
207 if (page_outside_zone_boundaries(zone
, page
))
209 if (!page_is_consistent(zone
, page
))
215 static inline int bad_range(struct zone
*zone
, struct page
*page
)
221 static void bad_page(struct page
*page
)
223 printk(KERN_EMERG
"Bad page state in process '%s'\n"
224 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
225 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
226 KERN_EMERG
"Backtrace:\n",
227 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
228 (unsigned long)page
->flags
, page
->mapping
,
229 page_mapcount(page
), page_count(page
));
231 page
->flags
&= ~(1 << PG_lru
|
241 set_page_count(page
, 0);
242 reset_page_mapcount(page
);
243 page
->mapping
= NULL
;
244 add_taint(TAINT_BAD_PAGE
);
248 * Higher-order pages are called "compound pages". They are structured thusly:
250 * The first PAGE_SIZE page is called the "head page".
252 * The remaining PAGE_SIZE pages are called "tail pages".
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
262 static void free_compound_page(struct page
*page
)
264 __free_pages_ok(page
, compound_order(page
));
267 static void prep_compound_page(struct page
*page
, unsigned long order
)
270 int nr_pages
= 1 << order
;
272 set_compound_page_dtor(page
, free_compound_page
);
273 set_compound_order(page
, order
);
275 for (i
= 1; i
< nr_pages
; i
++) {
276 struct page
*p
= page
+ i
;
279 p
->first_page
= page
;
283 static void destroy_compound_page(struct page
*page
, unsigned long order
)
286 int nr_pages
= 1 << order
;
288 if (unlikely(compound_order(page
) != order
))
291 if (unlikely(!PageHead(page
)))
293 __ClearPageHead(page
);
294 for (i
= 1; i
< nr_pages
; i
++) {
295 struct page
*p
= page
+ i
;
297 if (unlikely(!PageTail(p
) |
298 (p
->first_page
!= page
)))
304 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
308 VM_BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
310 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
311 * and __GFP_HIGHMEM from hard or soft interrupt context.
313 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
314 for (i
= 0; i
< (1 << order
); i
++)
315 clear_highpage(page
+ i
);
318 static inline void set_page_order(struct page
*page
, int order
)
320 set_page_private(page
, order
);
321 __SetPageBuddy(page
);
324 static inline void rmv_page_order(struct page
*page
)
326 __ClearPageBuddy(page
);
327 set_page_private(page
, 0);
331 * Locate the struct page for both the matching buddy in our
332 * pair (buddy1) and the combined O(n+1) page they form (page).
334 * 1) Any buddy B1 will have an order O twin B2 which satisfies
335 * the following equation:
337 * For example, if the starting buddy (buddy2) is #8 its order
339 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
341 * 2) Any buddy B will have an order O+1 parent P which
342 * satisfies the following equation:
345 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
347 static inline struct page
*
348 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
350 unsigned long buddy_idx
= page_idx
^ (1 << order
);
352 return page
+ (buddy_idx
- page_idx
);
355 static inline unsigned long
356 __find_combined_index(unsigned long page_idx
, unsigned int order
)
358 return (page_idx
& ~(1 << order
));
362 * This function checks whether a page is free && is the buddy
363 * we can do coalesce a page and its buddy if
364 * (a) the buddy is not in a hole &&
365 * (b) the buddy is in the buddy system &&
366 * (c) a page and its buddy have the same order &&
367 * (d) a page and its buddy are in the same zone.
369 * For recording whether a page is in the buddy system, we use PG_buddy.
370 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
372 * For recording page's order, we use page_private(page).
374 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
377 if (!pfn_valid_within(page_to_pfn(buddy
)))
380 if (page_zone_id(page
) != page_zone_id(buddy
))
383 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
384 BUG_ON(page_count(buddy
) != 0);
391 * Freeing function for a buddy system allocator.
393 * The concept of a buddy system is to maintain direct-mapped table
394 * (containing bit values) for memory blocks of various "orders".
395 * The bottom level table contains the map for the smallest allocatable
396 * units of memory (here, pages), and each level above it describes
397 * pairs of units from the levels below, hence, "buddies".
398 * At a high level, all that happens here is marking the table entry
399 * at the bottom level available, and propagating the changes upward
400 * as necessary, plus some accounting needed to play nicely with other
401 * parts of the VM system.
402 * At each level, we keep a list of pages, which are heads of continuous
403 * free pages of length of (1 << order) and marked with PG_buddy. Page's
404 * order is recorded in page_private(page) field.
405 * So when we are allocating or freeing one, we can derive the state of the
406 * other. That is, if we allocate a small block, and both were
407 * free, the remainder of the region must be split into blocks.
408 * If a block is freed, and its buddy is also free, then this
409 * triggers coalescing into a block of larger size.
414 static inline void __free_one_page(struct page
*page
,
415 struct zone
*zone
, unsigned int order
)
417 unsigned long page_idx
;
418 int order_size
= 1 << order
;
419 int migratetype
= get_pageblock_migratetype(page
);
421 if (unlikely(PageCompound(page
)))
422 destroy_compound_page(page
, order
);
424 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
426 VM_BUG_ON(page_idx
& (order_size
- 1));
427 VM_BUG_ON(bad_range(zone
, page
));
429 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
430 while (order
< MAX_ORDER
-1) {
431 unsigned long combined_idx
;
434 buddy
= __page_find_buddy(page
, page_idx
, order
);
435 if (!page_is_buddy(page
, buddy
, order
))
436 break; /* Move the buddy up one level. */
438 list_del(&buddy
->lru
);
439 zone
->free_area
[order
].nr_free
--;
440 rmv_page_order(buddy
);
441 combined_idx
= __find_combined_index(page_idx
, order
);
442 page
= page
+ (combined_idx
- page_idx
);
443 page_idx
= combined_idx
;
446 set_page_order(page
, order
);
448 &zone
->free_area
[order
].free_list
[migratetype
]);
449 zone
->free_area
[order
].nr_free
++;
452 static inline int free_pages_check(struct page
*page
)
454 if (unlikely(page_mapcount(page
) |
455 (page
->mapping
!= NULL
) |
456 (page_count(page
) != 0) |
469 __ClearPageDirty(page
);
471 * For now, we report if PG_reserved was found set, but do not
472 * clear it, and do not free the page. But we shall soon need
473 * to do more, for when the ZERO_PAGE count wraps negative.
475 return PageReserved(page
);
479 * Frees a list of pages.
480 * Assumes all pages on list are in same zone, and of same order.
481 * count is the number of pages to free.
483 * If the zone was previously in an "all pages pinned" state then look to
484 * see if this freeing clears that state.
486 * And clear the zone's pages_scanned counter, to hold off the "all pages are
487 * pinned" detection logic.
489 static void free_pages_bulk(struct zone
*zone
, int count
,
490 struct list_head
*list
, int order
)
492 spin_lock(&zone
->lock
);
493 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
494 zone
->pages_scanned
= 0;
498 VM_BUG_ON(list_empty(list
));
499 page
= list_entry(list
->prev
, struct page
, lru
);
500 /* have to delete it as __free_one_page list manipulates */
501 list_del(&page
->lru
);
502 __free_one_page(page
, zone
, order
);
504 spin_unlock(&zone
->lock
);
507 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
509 spin_lock(&zone
->lock
);
510 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
511 zone
->pages_scanned
= 0;
512 __free_one_page(page
, zone
, order
);
513 spin_unlock(&zone
->lock
);
516 static void __free_pages_ok(struct page
*page
, unsigned int order
)
522 for (i
= 0 ; i
< (1 << order
) ; ++i
)
523 reserved
+= free_pages_check(page
+ i
);
527 if (!PageHighMem(page
))
528 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
529 arch_free_page(page
, order
);
530 kernel_map_pages(page
, 1 << order
, 0);
532 local_irq_save(flags
);
533 __count_vm_events(PGFREE
, 1 << order
);
534 free_one_page(page_zone(page
), page
, order
);
535 local_irq_restore(flags
);
539 * permit the bootmem allocator to evade page validation on high-order frees
541 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
544 __ClearPageReserved(page
);
545 set_page_count(page
, 0);
546 set_page_refcounted(page
);
552 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
553 struct page
*p
= &page
[loop
];
555 if (loop
+ 1 < BITS_PER_LONG
)
557 __ClearPageReserved(p
);
558 set_page_count(p
, 0);
561 set_page_refcounted(page
);
562 __free_pages(page
, order
);
568 * The order of subdivision here is critical for the IO subsystem.
569 * Please do not alter this order without good reasons and regression
570 * testing. Specifically, as large blocks of memory are subdivided,
571 * the order in which smaller blocks are delivered depends on the order
572 * they're subdivided in this function. This is the primary factor
573 * influencing the order in which pages are delivered to the IO
574 * subsystem according to empirical testing, and this is also justified
575 * by considering the behavior of a buddy system containing a single
576 * large block of memory acted on by a series of small allocations.
577 * This behavior is a critical factor in sglist merging's success.
581 static inline void expand(struct zone
*zone
, struct page
*page
,
582 int low
, int high
, struct free_area
*area
,
585 unsigned long size
= 1 << high
;
591 VM_BUG_ON(bad_range(zone
, &page
[size
]));
592 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
594 set_page_order(&page
[size
], high
);
599 * This page is about to be returned from the page allocator
601 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
603 if (unlikely(page_mapcount(page
) |
604 (page
->mapping
!= NULL
) |
605 (page_count(page
) != 0) |
620 * For now, we report if PG_reserved was found set, but do not
621 * clear it, and do not allocate the page: as a safety net.
623 if (PageReserved(page
))
626 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
| 1 << PG_readahead
|
627 1 << PG_referenced
| 1 << PG_arch_1
|
628 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
629 set_page_private(page
, 0);
630 set_page_refcounted(page
);
632 arch_alloc_page(page
, order
);
633 kernel_map_pages(page
, 1 << order
, 1);
635 if (gfp_flags
& __GFP_ZERO
)
636 prep_zero_page(page
, order
, gfp_flags
);
638 if (order
&& (gfp_flags
& __GFP_COMP
))
639 prep_compound_page(page
, order
);
645 * Go through the free lists for the given migratetype and remove
646 * the smallest available page from the freelists
648 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
651 unsigned int current_order
;
652 struct free_area
* area
;
655 /* Find a page of the appropriate size in the preferred list */
656 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
657 area
= &(zone
->free_area
[current_order
]);
658 if (list_empty(&area
->free_list
[migratetype
]))
661 page
= list_entry(area
->free_list
[migratetype
].next
,
663 list_del(&page
->lru
);
664 rmv_page_order(page
);
666 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
667 expand(zone
, page
, order
, current_order
, area
, migratetype
);
676 * This array describes the order lists are fallen back to when
677 * the free lists for the desirable migrate type are depleted
679 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
680 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
681 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
682 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
683 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
687 * Move the free pages in a range to the free lists of the requested type.
688 * Note that start_page and end_pages are not aligned on a pageblock
689 * boundary. If alignment is required, use move_freepages_block()
691 int move_freepages(struct zone
*zone
,
692 struct page
*start_page
, struct page
*end_page
,
699 #ifndef CONFIG_HOLES_IN_ZONE
701 * page_zone is not safe to call in this context when
702 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
703 * anyway as we check zone boundaries in move_freepages_block().
704 * Remove at a later date when no bug reports exist related to
705 * grouping pages by mobility
707 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
710 for (page
= start_page
; page
<= end_page
;) {
711 if (!pfn_valid_within(page_to_pfn(page
))) {
716 if (!PageBuddy(page
)) {
721 order
= page_order(page
);
722 list_del(&page
->lru
);
724 &zone
->free_area
[order
].free_list
[migratetype
]);
726 pages_moved
+= 1 << order
;
732 int move_freepages_block(struct zone
*zone
, struct page
*page
, int migratetype
)
734 unsigned long start_pfn
, end_pfn
;
735 struct page
*start_page
, *end_page
;
737 start_pfn
= page_to_pfn(page
);
738 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
739 start_page
= pfn_to_page(start_pfn
);
740 end_page
= start_page
+ pageblock_nr_pages
- 1;
741 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
743 /* Do not cross zone boundaries */
744 if (start_pfn
< zone
->zone_start_pfn
)
746 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
749 return move_freepages(zone
, start_page
, end_page
, migratetype
);
752 /* Return the page with the lowest PFN in the list */
753 static struct page
*min_page(struct list_head
*list
)
755 unsigned long min_pfn
= -1UL;
756 struct page
*min_page
= NULL
, *page
;;
758 list_for_each_entry(page
, list
, lru
) {
759 unsigned long pfn
= page_to_pfn(page
);
769 /* Remove an element from the buddy allocator from the fallback list */
770 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
771 int start_migratetype
)
773 struct free_area
* area
;
778 /* Find the largest possible block of pages in the other list */
779 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
781 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
782 migratetype
= fallbacks
[start_migratetype
][i
];
784 /* MIGRATE_RESERVE handled later if necessary */
785 if (migratetype
== MIGRATE_RESERVE
)
788 area
= &(zone
->free_area
[current_order
]);
789 if (list_empty(&area
->free_list
[migratetype
]))
792 /* Bias kernel allocations towards low pfns */
793 page
= list_entry(area
->free_list
[migratetype
].next
,
795 if (unlikely(start_migratetype
!= MIGRATE_MOVABLE
))
796 page
= min_page(&area
->free_list
[migratetype
]);
800 * If breaking a large block of pages, move all free
801 * pages to the preferred allocation list. If falling
802 * back for a reclaimable kernel allocation, be more
803 * agressive about taking ownership of free pages
805 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
806 start_migratetype
== MIGRATE_RECLAIMABLE
) {
808 pages
= move_freepages_block(zone
, page
,
811 /* Claim the whole block if over half of it is free */
812 if (pages
>= (1 << (pageblock_order
-1)))
813 set_pageblock_migratetype(page
,
816 migratetype
= start_migratetype
;
819 /* Remove the page from the freelists */
820 list_del(&page
->lru
);
821 rmv_page_order(page
);
822 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
825 if (current_order
== pageblock_order
)
826 set_pageblock_migratetype(page
,
829 expand(zone
, page
, order
, current_order
, area
, migratetype
);
834 /* Use MIGRATE_RESERVE rather than fail an allocation */
835 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
839 * Do the hard work of removing an element from the buddy allocator.
840 * Call me with the zone->lock already held.
842 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
847 page
= __rmqueue_smallest(zone
, order
, migratetype
);
850 page
= __rmqueue_fallback(zone
, order
, migratetype
);
856 * Obtain a specified number of elements from the buddy allocator, all under
857 * a single hold of the lock, for efficiency. Add them to the supplied list.
858 * Returns the number of new pages which were placed at *list.
860 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
861 unsigned long count
, struct list_head
*list
,
866 spin_lock(&zone
->lock
);
867 for (i
= 0; i
< count
; ++i
) {
868 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
869 if (unlikely(page
== NULL
))
871 list_add(&page
->lru
, list
);
872 set_page_private(page
, migratetype
);
874 spin_unlock(&zone
->lock
);
880 * Called from the vmstat counter updater to drain pagesets of this
881 * currently executing processor on remote nodes after they have
884 * Note that this function must be called with the thread pinned to
885 * a single processor.
887 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
892 local_irq_save(flags
);
893 if (pcp
->count
>= pcp
->batch
)
894 to_drain
= pcp
->batch
;
896 to_drain
= pcp
->count
;
897 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
898 pcp
->count
-= to_drain
;
899 local_irq_restore(flags
);
903 static void __drain_pages(unsigned int cpu
)
909 for_each_zone(zone
) {
910 struct per_cpu_pageset
*pset
;
912 if (!populated_zone(zone
))
915 pset
= zone_pcp(zone
, cpu
);
916 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
917 struct per_cpu_pages
*pcp
;
920 local_irq_save(flags
);
921 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
923 local_irq_restore(flags
);
928 #ifdef CONFIG_HIBERNATION
930 void mark_free_pages(struct zone
*zone
)
932 unsigned long pfn
, max_zone_pfn
;
935 struct list_head
*curr
;
937 if (!zone
->spanned_pages
)
940 spin_lock_irqsave(&zone
->lock
, flags
);
942 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
943 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
944 if (pfn_valid(pfn
)) {
945 struct page
*page
= pfn_to_page(pfn
);
947 if (!swsusp_page_is_forbidden(page
))
948 swsusp_unset_page_free(page
);
951 for_each_migratetype_order(order
, t
) {
952 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
955 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
956 for (i
= 0; i
< (1UL << order
); i
++)
957 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
960 spin_unlock_irqrestore(&zone
->lock
, flags
);
962 #endif /* CONFIG_PM */
965 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
967 void drain_local_pages(void)
971 local_irq_save(flags
);
972 __drain_pages(smp_processor_id());
973 local_irq_restore(flags
);
976 void smp_drain_local_pages(void *arg
)
982 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
984 void drain_all_local_pages(void)
988 local_irq_save(flags
);
989 __drain_pages(smp_processor_id());
990 local_irq_restore(flags
);
992 smp_call_function(smp_drain_local_pages
, NULL
, 0, 1);
996 * Free a 0-order page
998 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
1000 struct zone
*zone
= page_zone(page
);
1001 struct per_cpu_pages
*pcp
;
1002 unsigned long flags
;
1005 page
->mapping
= NULL
;
1006 if (free_pages_check(page
))
1009 if (!PageHighMem(page
))
1010 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1011 arch_free_page(page
, 0);
1012 kernel_map_pages(page
, 1, 0);
1014 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
1015 local_irq_save(flags
);
1016 __count_vm_event(PGFREE
);
1017 list_add(&page
->lru
, &pcp
->list
);
1018 set_page_private(page
, get_pageblock_migratetype(page
));
1020 if (pcp
->count
>= pcp
->high
) {
1021 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
1022 pcp
->count
-= pcp
->batch
;
1024 local_irq_restore(flags
);
1028 void fastcall
free_hot_page(struct page
*page
)
1030 free_hot_cold_page(page
, 0);
1033 void fastcall
free_cold_page(struct page
*page
)
1035 free_hot_cold_page(page
, 1);
1039 * split_page takes a non-compound higher-order page, and splits it into
1040 * n (1<<order) sub-pages: page[0..n]
1041 * Each sub-page must be freed individually.
1043 * Note: this is probably too low level an operation for use in drivers.
1044 * Please consult with lkml before using this in your driver.
1046 void split_page(struct page
*page
, unsigned int order
)
1050 VM_BUG_ON(PageCompound(page
));
1051 VM_BUG_ON(!page_count(page
));
1052 for (i
= 1; i
< (1 << order
); i
++)
1053 set_page_refcounted(page
+ i
);
1057 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1058 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1061 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
1062 struct zone
*zone
, int order
, gfp_t gfp_flags
)
1064 unsigned long flags
;
1066 int cold
= !!(gfp_flags
& __GFP_COLD
);
1068 int migratetype
= allocflags_to_migratetype(gfp_flags
);
1072 if (likely(order
== 0)) {
1073 struct per_cpu_pages
*pcp
;
1075 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
1076 local_irq_save(flags
);
1078 pcp
->count
= rmqueue_bulk(zone
, 0,
1079 pcp
->batch
, &pcp
->list
, migratetype
);
1080 if (unlikely(!pcp
->count
))
1084 /* Find a page of the appropriate migrate type */
1085 list_for_each_entry(page
, &pcp
->list
, lru
)
1086 if (page_private(page
) == migratetype
)
1089 /* Allocate more to the pcp list if necessary */
1090 if (unlikely(&page
->lru
== &pcp
->list
)) {
1091 pcp
->count
+= rmqueue_bulk(zone
, 0,
1092 pcp
->batch
, &pcp
->list
, migratetype
);
1093 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1096 list_del(&page
->lru
);
1099 spin_lock_irqsave(&zone
->lock
, flags
);
1100 page
= __rmqueue(zone
, order
, migratetype
);
1101 spin_unlock(&zone
->lock
);
1106 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1107 zone_statistics(zonelist
, zone
);
1108 local_irq_restore(flags
);
1111 VM_BUG_ON(bad_range(zone
, page
));
1112 if (prep_new_page(page
, order
, gfp_flags
))
1117 local_irq_restore(flags
);
1122 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1123 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1124 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1125 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1126 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1127 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1128 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1130 #ifdef CONFIG_FAIL_PAGE_ALLOC
1132 static struct fail_page_alloc_attr
{
1133 struct fault_attr attr
;
1135 u32 ignore_gfp_highmem
;
1136 u32 ignore_gfp_wait
;
1139 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1141 struct dentry
*ignore_gfp_highmem_file
;
1142 struct dentry
*ignore_gfp_wait_file
;
1143 struct dentry
*min_order_file
;
1145 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1147 } fail_page_alloc
= {
1148 .attr
= FAULT_ATTR_INITIALIZER
,
1149 .ignore_gfp_wait
= 1,
1150 .ignore_gfp_highmem
= 1,
1154 static int __init
setup_fail_page_alloc(char *str
)
1156 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1158 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1160 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1162 if (order
< fail_page_alloc
.min_order
)
1164 if (gfp_mask
& __GFP_NOFAIL
)
1166 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1168 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1171 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1174 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1176 static int __init
fail_page_alloc_debugfs(void)
1178 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1182 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1186 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1188 fail_page_alloc
.ignore_gfp_wait_file
=
1189 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1190 &fail_page_alloc
.ignore_gfp_wait
);
1192 fail_page_alloc
.ignore_gfp_highmem_file
=
1193 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1194 &fail_page_alloc
.ignore_gfp_highmem
);
1195 fail_page_alloc
.min_order_file
=
1196 debugfs_create_u32("min-order", mode
, dir
,
1197 &fail_page_alloc
.min_order
);
1199 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1200 !fail_page_alloc
.ignore_gfp_highmem_file
||
1201 !fail_page_alloc
.min_order_file
) {
1203 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1204 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1205 debugfs_remove(fail_page_alloc
.min_order_file
);
1206 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1212 late_initcall(fail_page_alloc_debugfs
);
1214 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1216 #else /* CONFIG_FAIL_PAGE_ALLOC */
1218 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1223 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1226 * Return 1 if free pages are above 'mark'. This takes into account the order
1227 * of the allocation.
1229 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1230 int classzone_idx
, int alloc_flags
)
1232 /* free_pages my go negative - that's OK */
1234 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1237 if (alloc_flags
& ALLOC_HIGH
)
1239 if (alloc_flags
& ALLOC_HARDER
)
1242 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1244 for (o
= 0; o
< order
; o
++) {
1245 /* At the next order, this order's pages become unavailable */
1246 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1248 /* Require fewer higher order pages to be free */
1251 if (free_pages
<= min
)
1259 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1260 * skip over zones that are not allowed by the cpuset, or that have
1261 * been recently (in last second) found to be nearly full. See further
1262 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1263 * that have to skip over alot of full or unallowed zones.
1265 * If the zonelist cache is present in the passed in zonelist, then
1266 * returns a pointer to the allowed node mask (either the current
1267 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1269 * If the zonelist cache is not available for this zonelist, does
1270 * nothing and returns NULL.
1272 * If the fullzones BITMAP in the zonelist cache is stale (more than
1273 * a second since last zap'd) then we zap it out (clear its bits.)
1275 * We hold off even calling zlc_setup, until after we've checked the
1276 * first zone in the zonelist, on the theory that most allocations will
1277 * be satisfied from that first zone, so best to examine that zone as
1278 * quickly as we can.
1280 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1282 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1283 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1285 zlc
= zonelist
->zlcache_ptr
;
1289 if (jiffies
- zlc
->last_full_zap
> 1 * HZ
) {
1290 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1291 zlc
->last_full_zap
= jiffies
;
1294 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1295 &cpuset_current_mems_allowed
:
1296 &node_states
[N_HIGH_MEMORY
];
1297 return allowednodes
;
1301 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1302 * if it is worth looking at further for free memory:
1303 * 1) Check that the zone isn't thought to be full (doesn't have its
1304 * bit set in the zonelist_cache fullzones BITMAP).
1305 * 2) Check that the zones node (obtained from the zonelist_cache
1306 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1307 * Return true (non-zero) if zone is worth looking at further, or
1308 * else return false (zero) if it is not.
1310 * This check -ignores- the distinction between various watermarks,
1311 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1312 * found to be full for any variation of these watermarks, it will
1313 * be considered full for up to one second by all requests, unless
1314 * we are so low on memory on all allowed nodes that we are forced
1315 * into the second scan of the zonelist.
1317 * In the second scan we ignore this zonelist cache and exactly
1318 * apply the watermarks to all zones, even it is slower to do so.
1319 * We are low on memory in the second scan, and should leave no stone
1320 * unturned looking for a free page.
1322 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1323 nodemask_t
*allowednodes
)
1325 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1326 int i
; /* index of *z in zonelist zones */
1327 int n
; /* node that zone *z is on */
1329 zlc
= zonelist
->zlcache_ptr
;
1333 i
= z
- zonelist
->zones
;
1336 /* This zone is worth trying if it is allowed but not full */
1337 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1341 * Given 'z' scanning a zonelist, set the corresponding bit in
1342 * zlc->fullzones, so that subsequent attempts to allocate a page
1343 * from that zone don't waste time re-examining it.
1345 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1347 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1348 int i
; /* index of *z in zonelist zones */
1350 zlc
= zonelist
->zlcache_ptr
;
1354 i
= z
- zonelist
->zones
;
1356 set_bit(i
, zlc
->fullzones
);
1359 #else /* CONFIG_NUMA */
1361 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1366 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1367 nodemask_t
*allowednodes
)
1372 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1375 #endif /* CONFIG_NUMA */
1378 * get_page_from_freelist goes through the zonelist trying to allocate
1381 static struct page
*
1382 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
1383 struct zonelist
*zonelist
, int alloc_flags
)
1386 struct page
*page
= NULL
;
1387 int classzone_idx
= zone_idx(zonelist
->zones
[0]);
1389 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1390 int zlc_active
= 0; /* set if using zonelist_cache */
1391 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1392 enum zone_type highest_zoneidx
= -1; /* Gets set for policy zonelists */
1396 * Scan zonelist, looking for a zone with enough free.
1397 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1399 z
= zonelist
->zones
;
1403 * In NUMA, this could be a policy zonelist which contains
1404 * zones that may not be allowed by the current gfp_mask.
1405 * Check the zone is allowed by the current flags
1407 if (unlikely(alloc_should_filter_zonelist(zonelist
))) {
1408 if (highest_zoneidx
== -1)
1409 highest_zoneidx
= gfp_zone(gfp_mask
);
1410 if (zone_idx(*z
) > highest_zoneidx
)
1414 if (NUMA_BUILD
&& zlc_active
&&
1415 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1418 if ((alloc_flags
& ALLOC_CPUSET
) &&
1419 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1422 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1424 if (alloc_flags
& ALLOC_WMARK_MIN
)
1425 mark
= zone
->pages_min
;
1426 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1427 mark
= zone
->pages_low
;
1429 mark
= zone
->pages_high
;
1430 if (!zone_watermark_ok(zone
, order
, mark
,
1431 classzone_idx
, alloc_flags
)) {
1432 if (!zone_reclaim_mode
||
1433 !zone_reclaim(zone
, gfp_mask
, order
))
1434 goto this_zone_full
;
1438 page
= buffered_rmqueue(zonelist
, zone
, order
, gfp_mask
);
1443 zlc_mark_zone_full(zonelist
, z
);
1445 if (NUMA_BUILD
&& !did_zlc_setup
) {
1446 /* we do zlc_setup after the first zone is tried */
1447 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1451 } while (*(++z
) != NULL
);
1453 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1454 /* Disable zlc cache for second zonelist scan */
1462 * This is the 'heart' of the zoned buddy allocator.
1464 struct page
* fastcall
1465 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
1466 struct zonelist
*zonelist
)
1468 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1471 struct reclaim_state reclaim_state
;
1472 struct task_struct
*p
= current
;
1475 int did_some_progress
;
1477 might_sleep_if(wait
);
1479 if (should_fail_alloc_page(gfp_mask
, order
))
1483 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
1485 if (unlikely(*z
== NULL
)) {
1487 * Happens if we have an empty zonelist as a result of
1488 * GFP_THISNODE being used on a memoryless node
1493 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1494 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1499 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1500 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1501 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1502 * using a larger set of nodes after it has established that the
1503 * allowed per node queues are empty and that nodes are
1506 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1509 for (z
= zonelist
->zones
; *z
; z
++)
1510 wakeup_kswapd(*z
, order
);
1513 * OK, we're below the kswapd watermark and have kicked background
1514 * reclaim. Now things get more complex, so set up alloc_flags according
1515 * to how we want to proceed.
1517 * The caller may dip into page reserves a bit more if the caller
1518 * cannot run direct reclaim, or if the caller has realtime scheduling
1519 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1520 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1522 alloc_flags
= ALLOC_WMARK_MIN
;
1523 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1524 alloc_flags
|= ALLOC_HARDER
;
1525 if (gfp_mask
& __GFP_HIGH
)
1526 alloc_flags
|= ALLOC_HIGH
;
1528 alloc_flags
|= ALLOC_CPUSET
;
1531 * Go through the zonelist again. Let __GFP_HIGH and allocations
1532 * coming from realtime tasks go deeper into reserves.
1534 * This is the last chance, in general, before the goto nopage.
1535 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1536 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1538 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
1542 /* This allocation should allow future memory freeing. */
1545 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1546 && !in_interrupt()) {
1547 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1549 /* go through the zonelist yet again, ignoring mins */
1550 page
= get_page_from_freelist(gfp_mask
, order
,
1551 zonelist
, ALLOC_NO_WATERMARKS
);
1554 if (gfp_mask
& __GFP_NOFAIL
) {
1555 congestion_wait(WRITE
, HZ
/50);
1562 /* Atomic allocations - we can't balance anything */
1568 /* We now go into synchronous reclaim */
1569 cpuset_memory_pressure_bump();
1570 p
->flags
|= PF_MEMALLOC
;
1571 reclaim_state
.reclaimed_slab
= 0;
1572 p
->reclaim_state
= &reclaim_state
;
1574 did_some_progress
= try_to_free_pages(zonelist
->zones
, order
, gfp_mask
);
1576 p
->reclaim_state
= NULL
;
1577 p
->flags
&= ~PF_MEMALLOC
;
1582 drain_all_local_pages();
1584 if (likely(did_some_progress
)) {
1585 page
= get_page_from_freelist(gfp_mask
, order
,
1586 zonelist
, alloc_flags
);
1589 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1590 if (!try_set_zone_oom(zonelist
)) {
1591 schedule_timeout_uninterruptible(1);
1596 * Go through the zonelist yet one more time, keep
1597 * very high watermark here, this is only to catch
1598 * a parallel oom killing, we must fail if we're still
1599 * under heavy pressure.
1601 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1602 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1604 clear_zonelist_oom(zonelist
);
1608 /* The OOM killer will not help higher order allocs so fail */
1609 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
1610 clear_zonelist_oom(zonelist
);
1614 out_of_memory(zonelist
, gfp_mask
, order
);
1615 clear_zonelist_oom(zonelist
);
1620 * Don't let big-order allocations loop unless the caller explicitly
1621 * requests that. Wait for some write requests to complete then retry.
1623 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1624 * <= 3, but that may not be true in other implementations.
1627 if (!(gfp_mask
& __GFP_NORETRY
)) {
1628 if ((order
<= PAGE_ALLOC_COSTLY_ORDER
) ||
1629 (gfp_mask
& __GFP_REPEAT
))
1631 if (gfp_mask
& __GFP_NOFAIL
)
1635 congestion_wait(WRITE
, HZ
/50);
1640 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1641 printk(KERN_WARNING
"%s: page allocation failure."
1642 " order:%d, mode:0x%x\n",
1643 p
->comm
, order
, gfp_mask
);
1651 EXPORT_SYMBOL(__alloc_pages
);
1654 * Common helper functions.
1656 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1659 page
= alloc_pages(gfp_mask
, order
);
1662 return (unsigned long) page_address(page
);
1665 EXPORT_SYMBOL(__get_free_pages
);
1667 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1672 * get_zeroed_page() returns a 32-bit address, which cannot represent
1675 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1677 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1679 return (unsigned long) page_address(page
);
1683 EXPORT_SYMBOL(get_zeroed_page
);
1685 void __pagevec_free(struct pagevec
*pvec
)
1687 int i
= pagevec_count(pvec
);
1690 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1693 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1695 if (put_page_testzero(page
)) {
1697 free_hot_page(page
);
1699 __free_pages_ok(page
, order
);
1703 EXPORT_SYMBOL(__free_pages
);
1705 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1708 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1709 __free_pages(virt_to_page((void *)addr
), order
);
1713 EXPORT_SYMBOL(free_pages
);
1715 static unsigned int nr_free_zone_pages(int offset
)
1717 /* Just pick one node, since fallback list is circular */
1718 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1719 unsigned int sum
= 0;
1721 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1722 struct zone
**zonep
= zonelist
->zones
;
1725 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1726 unsigned long size
= zone
->present_pages
;
1727 unsigned long high
= zone
->pages_high
;
1736 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1738 unsigned int nr_free_buffer_pages(void)
1740 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1742 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1745 * Amount of free RAM allocatable within all zones
1747 unsigned int nr_free_pagecache_pages(void)
1749 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1752 static inline void show_node(struct zone
*zone
)
1755 printk("Node %d ", zone_to_nid(zone
));
1758 void si_meminfo(struct sysinfo
*val
)
1760 val
->totalram
= totalram_pages
;
1762 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1763 val
->bufferram
= nr_blockdev_pages();
1764 val
->totalhigh
= totalhigh_pages
;
1765 val
->freehigh
= nr_free_highpages();
1766 val
->mem_unit
= PAGE_SIZE
;
1769 EXPORT_SYMBOL(si_meminfo
);
1772 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1774 pg_data_t
*pgdat
= NODE_DATA(nid
);
1776 val
->totalram
= pgdat
->node_present_pages
;
1777 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1778 #ifdef CONFIG_HIGHMEM
1779 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1780 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1786 val
->mem_unit
= PAGE_SIZE
;
1790 #define K(x) ((x) << (PAGE_SHIFT-10))
1793 * Show free area list (used inside shift_scroll-lock stuff)
1794 * We also calculate the percentage fragmentation. We do this by counting the
1795 * memory on each free list with the exception of the first item on the list.
1797 void show_free_areas(void)
1802 for_each_zone(zone
) {
1803 if (!populated_zone(zone
))
1807 printk("%s per-cpu:\n", zone
->name
);
1809 for_each_online_cpu(cpu
) {
1810 struct per_cpu_pageset
*pageset
;
1812 pageset
= zone_pcp(zone
, cpu
);
1814 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1815 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1816 cpu
, pageset
->pcp
[0].high
,
1817 pageset
->pcp
[0].batch
, pageset
->pcp
[0].count
,
1818 pageset
->pcp
[1].high
, pageset
->pcp
[1].batch
,
1819 pageset
->pcp
[1].count
);
1823 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1824 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1825 global_page_state(NR_ACTIVE
),
1826 global_page_state(NR_INACTIVE
),
1827 global_page_state(NR_FILE_DIRTY
),
1828 global_page_state(NR_WRITEBACK
),
1829 global_page_state(NR_UNSTABLE_NFS
),
1830 global_page_state(NR_FREE_PAGES
),
1831 global_page_state(NR_SLAB_RECLAIMABLE
) +
1832 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1833 global_page_state(NR_FILE_MAPPED
),
1834 global_page_state(NR_PAGETABLE
),
1835 global_page_state(NR_BOUNCE
));
1837 for_each_zone(zone
) {
1840 if (!populated_zone(zone
))
1852 " pages_scanned:%lu"
1853 " all_unreclaimable? %s"
1856 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1859 K(zone
->pages_high
),
1860 K(zone_page_state(zone
, NR_ACTIVE
)),
1861 K(zone_page_state(zone
, NR_INACTIVE
)),
1862 K(zone
->present_pages
),
1863 zone
->pages_scanned
,
1864 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
1866 printk("lowmem_reserve[]:");
1867 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1868 printk(" %lu", zone
->lowmem_reserve
[i
]);
1872 for_each_zone(zone
) {
1873 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1875 if (!populated_zone(zone
))
1879 printk("%s: ", zone
->name
);
1881 spin_lock_irqsave(&zone
->lock
, flags
);
1882 for (order
= 0; order
< MAX_ORDER
; order
++) {
1883 nr
[order
] = zone
->free_area
[order
].nr_free
;
1884 total
+= nr
[order
] << order
;
1886 spin_unlock_irqrestore(&zone
->lock
, flags
);
1887 for (order
= 0; order
< MAX_ORDER
; order
++)
1888 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1889 printk("= %lukB\n", K(total
));
1892 show_swap_cache_info();
1896 * Builds allocation fallback zone lists.
1898 * Add all populated zones of a node to the zonelist.
1900 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
1901 int nr_zones
, enum zone_type zone_type
)
1905 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1910 zone
= pgdat
->node_zones
+ zone_type
;
1911 if (populated_zone(zone
)) {
1912 zonelist
->zones
[nr_zones
++] = zone
;
1913 check_highest_zone(zone_type
);
1916 } while (zone_type
);
1923 * 0 = automatic detection of better ordering.
1924 * 1 = order by ([node] distance, -zonetype)
1925 * 2 = order by (-zonetype, [node] distance)
1927 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1928 * the same zonelist. So only NUMA can configure this param.
1930 #define ZONELIST_ORDER_DEFAULT 0
1931 #define ZONELIST_ORDER_NODE 1
1932 #define ZONELIST_ORDER_ZONE 2
1934 /* zonelist order in the kernel.
1935 * set_zonelist_order() will set this to NODE or ZONE.
1937 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1938 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
1942 /* The value user specified ....changed by config */
1943 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1944 /* string for sysctl */
1945 #define NUMA_ZONELIST_ORDER_LEN 16
1946 char numa_zonelist_order
[16] = "default";
1949 * interface for configure zonelist ordering.
1950 * command line option "numa_zonelist_order"
1951 * = "[dD]efault - default, automatic configuration.
1952 * = "[nN]ode - order by node locality, then by zone within node
1953 * = "[zZ]one - order by zone, then by locality within zone
1956 static int __parse_numa_zonelist_order(char *s
)
1958 if (*s
== 'd' || *s
== 'D') {
1959 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1960 } else if (*s
== 'n' || *s
== 'N') {
1961 user_zonelist_order
= ZONELIST_ORDER_NODE
;
1962 } else if (*s
== 'z' || *s
== 'Z') {
1963 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
1966 "Ignoring invalid numa_zonelist_order value: "
1973 static __init
int setup_numa_zonelist_order(char *s
)
1976 return __parse_numa_zonelist_order(s
);
1979 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
1982 * sysctl handler for numa_zonelist_order
1984 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
1985 struct file
*file
, void __user
*buffer
, size_t *length
,
1988 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
1992 strncpy(saved_string
, (char*)table
->data
,
1993 NUMA_ZONELIST_ORDER_LEN
);
1994 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
1998 int oldval
= user_zonelist_order
;
1999 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2001 * bogus value. restore saved string
2003 strncpy((char*)table
->data
, saved_string
,
2004 NUMA_ZONELIST_ORDER_LEN
);
2005 user_zonelist_order
= oldval
;
2006 } else if (oldval
!= user_zonelist_order
)
2007 build_all_zonelists();
2013 #define MAX_NODE_LOAD (num_online_nodes())
2014 static int node_load
[MAX_NUMNODES
];
2017 * find_next_best_node - find the next node that should appear in a given node's fallback list
2018 * @node: node whose fallback list we're appending
2019 * @used_node_mask: nodemask_t of already used nodes
2021 * We use a number of factors to determine which is the next node that should
2022 * appear on a given node's fallback list. The node should not have appeared
2023 * already in @node's fallback list, and it should be the next closest node
2024 * according to the distance array (which contains arbitrary distance values
2025 * from each node to each node in the system), and should also prefer nodes
2026 * with no CPUs, since presumably they'll have very little allocation pressure
2027 * on them otherwise.
2028 * It returns -1 if no node is found.
2030 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2033 int min_val
= INT_MAX
;
2036 /* Use the local node if we haven't already */
2037 if (!node_isset(node
, *used_node_mask
)) {
2038 node_set(node
, *used_node_mask
);
2042 for_each_node_state(n
, N_HIGH_MEMORY
) {
2045 /* Don't want a node to appear more than once */
2046 if (node_isset(n
, *used_node_mask
))
2049 /* Use the distance array to find the distance */
2050 val
= node_distance(node
, n
);
2052 /* Penalize nodes under us ("prefer the next node") */
2055 /* Give preference to headless and unused nodes */
2056 tmp
= node_to_cpumask(n
);
2057 if (!cpus_empty(tmp
))
2058 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2060 /* Slight preference for less loaded node */
2061 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2062 val
+= node_load
[n
];
2064 if (val
< min_val
) {
2071 node_set(best_node
, *used_node_mask
);
2078 * Build zonelists ordered by node and zones within node.
2079 * This results in maximum locality--normal zone overflows into local
2080 * DMA zone, if any--but risks exhausting DMA zone.
2082 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2086 struct zonelist
*zonelist
;
2088 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2089 zonelist
= pgdat
->node_zonelists
+ i
;
2090 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++)
2092 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2093 zonelist
->zones
[j
] = NULL
;
2098 * Build gfp_thisnode zonelists
2100 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2104 struct zonelist
*zonelist
;
2106 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2107 zonelist
= pgdat
->node_zonelists
+ MAX_NR_ZONES
+ i
;
2108 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
2109 zonelist
->zones
[j
] = NULL
;
2114 * Build zonelists ordered by zone and nodes within zones.
2115 * This results in conserving DMA zone[s] until all Normal memory is
2116 * exhausted, but results in overflowing to remote node while memory
2117 * may still exist in local DMA zone.
2119 static int node_order
[MAX_NUMNODES
];
2121 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2125 int zone_type
; /* needs to be signed */
2127 struct zonelist
*zonelist
;
2129 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2130 zonelist
= pgdat
->node_zonelists
+ i
;
2132 for (zone_type
= i
; zone_type
>= 0; zone_type
--) {
2133 for (j
= 0; j
< nr_nodes
; j
++) {
2134 node
= node_order
[j
];
2135 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2136 if (populated_zone(z
)) {
2137 zonelist
->zones
[pos
++] = z
;
2138 check_highest_zone(zone_type
);
2142 zonelist
->zones
[pos
] = NULL
;
2146 static int default_zonelist_order(void)
2149 unsigned long low_kmem_size
,total_size
;
2153 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2154 * If they are really small and used heavily, the system can fall
2155 * into OOM very easily.
2156 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2158 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2161 for_each_online_node(nid
) {
2162 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2163 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2164 if (populated_zone(z
)) {
2165 if (zone_type
< ZONE_NORMAL
)
2166 low_kmem_size
+= z
->present_pages
;
2167 total_size
+= z
->present_pages
;
2171 if (!low_kmem_size
|| /* there are no DMA area. */
2172 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2173 return ZONELIST_ORDER_NODE
;
2175 * look into each node's config.
2176 * If there is a node whose DMA/DMA32 memory is very big area on
2177 * local memory, NODE_ORDER may be suitable.
2179 average_size
= total_size
/
2180 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2181 for_each_online_node(nid
) {
2184 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2185 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2186 if (populated_zone(z
)) {
2187 if (zone_type
< ZONE_NORMAL
)
2188 low_kmem_size
+= z
->present_pages
;
2189 total_size
+= z
->present_pages
;
2192 if (low_kmem_size
&&
2193 total_size
> average_size
&& /* ignore small node */
2194 low_kmem_size
> total_size
* 70/100)
2195 return ZONELIST_ORDER_NODE
;
2197 return ZONELIST_ORDER_ZONE
;
2200 static void set_zonelist_order(void)
2202 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2203 current_zonelist_order
= default_zonelist_order();
2205 current_zonelist_order
= user_zonelist_order
;
2208 static void build_zonelists(pg_data_t
*pgdat
)
2212 nodemask_t used_mask
;
2213 int local_node
, prev_node
;
2214 struct zonelist
*zonelist
;
2215 int order
= current_zonelist_order
;
2217 /* initialize zonelists */
2218 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2219 zonelist
= pgdat
->node_zonelists
+ i
;
2220 zonelist
->zones
[0] = NULL
;
2223 /* NUMA-aware ordering of nodes */
2224 local_node
= pgdat
->node_id
;
2225 load
= num_online_nodes();
2226 prev_node
= local_node
;
2227 nodes_clear(used_mask
);
2229 memset(node_load
, 0, sizeof(node_load
));
2230 memset(node_order
, 0, sizeof(node_order
));
2233 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2234 int distance
= node_distance(local_node
, node
);
2237 * If another node is sufficiently far away then it is better
2238 * to reclaim pages in a zone before going off node.
2240 if (distance
> RECLAIM_DISTANCE
)
2241 zone_reclaim_mode
= 1;
2244 * We don't want to pressure a particular node.
2245 * So adding penalty to the first node in same
2246 * distance group to make it round-robin.
2248 if (distance
!= node_distance(local_node
, prev_node
))
2249 node_load
[node
] = load
;
2253 if (order
== ZONELIST_ORDER_NODE
)
2254 build_zonelists_in_node_order(pgdat
, node
);
2256 node_order
[j
++] = node
; /* remember order */
2259 if (order
== ZONELIST_ORDER_ZONE
) {
2260 /* calculate node order -- i.e., DMA last! */
2261 build_zonelists_in_zone_order(pgdat
, j
);
2264 build_thisnode_zonelists(pgdat
);
2267 /* Construct the zonelist performance cache - see further mmzone.h */
2268 static void build_zonelist_cache(pg_data_t
*pgdat
)
2272 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2273 struct zonelist
*zonelist
;
2274 struct zonelist_cache
*zlc
;
2277 zonelist
= pgdat
->node_zonelists
+ i
;
2278 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2279 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2280 for (z
= zonelist
->zones
; *z
; z
++)
2281 zlc
->z_to_n
[z
- zonelist
->zones
] = zone_to_nid(*z
);
2286 #else /* CONFIG_NUMA */
2288 static void set_zonelist_order(void)
2290 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2293 static void build_zonelists(pg_data_t
*pgdat
)
2295 int node
, local_node
;
2298 local_node
= pgdat
->node_id
;
2299 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2300 struct zonelist
*zonelist
;
2302 zonelist
= pgdat
->node_zonelists
+ i
;
2304 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
2306 * Now we build the zonelist so that it contains the zones
2307 * of all the other nodes.
2308 * We don't want to pressure a particular node, so when
2309 * building the zones for node N, we make sure that the
2310 * zones coming right after the local ones are those from
2311 * node N+1 (modulo N)
2313 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2314 if (!node_online(node
))
2316 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2318 for (node
= 0; node
< local_node
; node
++) {
2319 if (!node_online(node
))
2321 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2324 zonelist
->zones
[j
] = NULL
;
2328 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2329 static void build_zonelist_cache(pg_data_t
*pgdat
)
2333 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2334 pgdat
->node_zonelists
[i
].zlcache_ptr
= NULL
;
2337 #endif /* CONFIG_NUMA */
2339 /* return values int ....just for stop_machine_run() */
2340 static int __build_all_zonelists(void *dummy
)
2344 for_each_online_node(nid
) {
2345 pg_data_t
*pgdat
= NODE_DATA(nid
);
2347 build_zonelists(pgdat
);
2348 build_zonelist_cache(pgdat
);
2353 void build_all_zonelists(void)
2355 set_zonelist_order();
2357 if (system_state
== SYSTEM_BOOTING
) {
2358 __build_all_zonelists(NULL
);
2359 cpuset_init_current_mems_allowed();
2361 /* we have to stop all cpus to guaranntee there is no user
2363 stop_machine_run(__build_all_zonelists
, NULL
, NR_CPUS
);
2364 /* cpuset refresh routine should be here */
2366 vm_total_pages
= nr_free_pagecache_pages();
2368 * Disable grouping by mobility if the number of pages in the
2369 * system is too low to allow the mechanism to work. It would be
2370 * more accurate, but expensive to check per-zone. This check is
2371 * made on memory-hotadd so a system can start with mobility
2372 * disabled and enable it later
2374 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2375 page_group_by_mobility_disabled
= 1;
2377 page_group_by_mobility_disabled
= 0;
2379 printk("Built %i zonelists in %s order, mobility grouping %s. "
2380 "Total pages: %ld\n",
2382 zonelist_order_name
[current_zonelist_order
],
2383 page_group_by_mobility_disabled
? "off" : "on",
2386 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2391 * Helper functions to size the waitqueue hash table.
2392 * Essentially these want to choose hash table sizes sufficiently
2393 * large so that collisions trying to wait on pages are rare.
2394 * But in fact, the number of active page waitqueues on typical
2395 * systems is ridiculously low, less than 200. So this is even
2396 * conservative, even though it seems large.
2398 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2399 * waitqueues, i.e. the size of the waitq table given the number of pages.
2401 #define PAGES_PER_WAITQUEUE 256
2403 #ifndef CONFIG_MEMORY_HOTPLUG
2404 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2406 unsigned long size
= 1;
2408 pages
/= PAGES_PER_WAITQUEUE
;
2410 while (size
< pages
)
2414 * Once we have dozens or even hundreds of threads sleeping
2415 * on IO we've got bigger problems than wait queue collision.
2416 * Limit the size of the wait table to a reasonable size.
2418 size
= min(size
, 4096UL);
2420 return max(size
, 4UL);
2424 * A zone's size might be changed by hot-add, so it is not possible to determine
2425 * a suitable size for its wait_table. So we use the maximum size now.
2427 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2429 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2430 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2431 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2433 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2434 * or more by the traditional way. (See above). It equals:
2436 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2437 * ia64(16K page size) : = ( 8G + 4M)byte.
2438 * powerpc (64K page size) : = (32G +16M)byte.
2440 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2447 * This is an integer logarithm so that shifts can be used later
2448 * to extract the more random high bits from the multiplicative
2449 * hash function before the remainder is taken.
2451 static inline unsigned long wait_table_bits(unsigned long size
)
2456 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2459 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2460 * of blocks reserved is based on zone->pages_min. The memory within the
2461 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2462 * higher will lead to a bigger reserve which will get freed as contiguous
2463 * blocks as reclaim kicks in
2465 static void setup_zone_migrate_reserve(struct zone
*zone
)
2467 unsigned long start_pfn
, pfn
, end_pfn
;
2469 unsigned long reserve
, block_migratetype
;
2471 /* Get the start pfn, end pfn and the number of blocks to reserve */
2472 start_pfn
= zone
->zone_start_pfn
;
2473 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2474 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2477 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2478 if (!pfn_valid(pfn
))
2480 page
= pfn_to_page(pfn
);
2482 /* Blocks with reserved pages will never free, skip them. */
2483 if (PageReserved(page
))
2486 block_migratetype
= get_pageblock_migratetype(page
);
2488 /* If this block is reserved, account for it */
2489 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2494 /* Suitable for reserving if this block is movable */
2495 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2496 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2497 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2503 * If the reserve is met and this is a previous reserved block,
2506 if (block_migratetype
== MIGRATE_RESERVE
) {
2507 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2508 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2514 * Initially all pages are reserved - free ones are freed
2515 * up by free_all_bootmem() once the early boot process is
2516 * done. Non-atomic initialization, single-pass.
2518 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2519 unsigned long start_pfn
, enum memmap_context context
)
2522 unsigned long end_pfn
= start_pfn
+ size
;
2525 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2527 * There can be holes in boot-time mem_map[]s
2528 * handed to this function. They do not
2529 * exist on hotplugged memory.
2531 if (context
== MEMMAP_EARLY
) {
2532 if (!early_pfn_valid(pfn
))
2534 if (!early_pfn_in_nid(pfn
, nid
))
2537 page
= pfn_to_page(pfn
);
2538 set_page_links(page
, zone
, nid
, pfn
);
2539 init_page_count(page
);
2540 reset_page_mapcount(page
);
2541 SetPageReserved(page
);
2544 * Mark the block movable so that blocks are reserved for
2545 * movable at startup. This will force kernel allocations
2546 * to reserve their blocks rather than leaking throughout
2547 * the address space during boot when many long-lived
2548 * kernel allocations are made. Later some blocks near
2549 * the start are marked MIGRATE_RESERVE by
2550 * setup_zone_migrate_reserve()
2552 if ((pfn
& (pageblock_nr_pages
-1)))
2553 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2555 INIT_LIST_HEAD(&page
->lru
);
2556 #ifdef WANT_PAGE_VIRTUAL
2557 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2558 if (!is_highmem_idx(zone
))
2559 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2564 static void __meminit
zone_init_free_lists(struct pglist_data
*pgdat
,
2565 struct zone
*zone
, unsigned long size
)
2568 for_each_migratetype_order(order
, t
) {
2569 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2570 zone
->free_area
[order
].nr_free
= 0;
2574 #ifndef __HAVE_ARCH_MEMMAP_INIT
2575 #define memmap_init(size, nid, zone, start_pfn) \
2576 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2579 static int __devinit
zone_batchsize(struct zone
*zone
)
2584 * The per-cpu-pages pools are set to around 1000th of the
2585 * size of the zone. But no more than 1/2 of a meg.
2587 * OK, so we don't know how big the cache is. So guess.
2589 batch
= zone
->present_pages
/ 1024;
2590 if (batch
* PAGE_SIZE
> 512 * 1024)
2591 batch
= (512 * 1024) / PAGE_SIZE
;
2592 batch
/= 4; /* We effectively *= 4 below */
2597 * Clamp the batch to a 2^n - 1 value. Having a power
2598 * of 2 value was found to be more likely to have
2599 * suboptimal cache aliasing properties in some cases.
2601 * For example if 2 tasks are alternately allocating
2602 * batches of pages, one task can end up with a lot
2603 * of pages of one half of the possible page colors
2604 * and the other with pages of the other colors.
2606 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2611 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2613 struct per_cpu_pages
*pcp
;
2615 memset(p
, 0, sizeof(*p
));
2617 pcp
= &p
->pcp
[0]; /* hot */
2619 pcp
->high
= 6 * batch
;
2620 pcp
->batch
= max(1UL, 1 * batch
);
2621 INIT_LIST_HEAD(&pcp
->list
);
2623 pcp
= &p
->pcp
[1]; /* cold*/
2625 pcp
->high
= 2 * batch
;
2626 pcp
->batch
= max(1UL, batch
/2);
2627 INIT_LIST_HEAD(&pcp
->list
);
2631 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2632 * to the value high for the pageset p.
2635 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2638 struct per_cpu_pages
*pcp
;
2640 pcp
= &p
->pcp
[0]; /* hot list */
2642 pcp
->batch
= max(1UL, high
/4);
2643 if ((high
/4) > (PAGE_SHIFT
* 8))
2644 pcp
->batch
= PAGE_SHIFT
* 8;
2650 * Boot pageset table. One per cpu which is going to be used for all
2651 * zones and all nodes. The parameters will be set in such a way
2652 * that an item put on a list will immediately be handed over to
2653 * the buddy list. This is safe since pageset manipulation is done
2654 * with interrupts disabled.
2656 * Some NUMA counter updates may also be caught by the boot pagesets.
2658 * The boot_pagesets must be kept even after bootup is complete for
2659 * unused processors and/or zones. They do play a role for bootstrapping
2660 * hotplugged processors.
2662 * zoneinfo_show() and maybe other functions do
2663 * not check if the processor is online before following the pageset pointer.
2664 * Other parts of the kernel may not check if the zone is available.
2666 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2669 * Dynamically allocate memory for the
2670 * per cpu pageset array in struct zone.
2672 static int __cpuinit
process_zones(int cpu
)
2674 struct zone
*zone
, *dzone
;
2675 int node
= cpu_to_node(cpu
);
2677 node_set_state(node
, N_CPU
); /* this node has a cpu */
2679 for_each_zone(zone
) {
2681 if (!populated_zone(zone
))
2684 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2686 if (!zone_pcp(zone
, cpu
))
2689 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2691 if (percpu_pagelist_fraction
)
2692 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2693 (zone
->present_pages
/ percpu_pagelist_fraction
));
2698 for_each_zone(dzone
) {
2699 if (!populated_zone(dzone
))
2703 kfree(zone_pcp(dzone
, cpu
));
2704 zone_pcp(dzone
, cpu
) = NULL
;
2709 static inline void free_zone_pagesets(int cpu
)
2713 for_each_zone(zone
) {
2714 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2716 /* Free per_cpu_pageset if it is slab allocated */
2717 if (pset
!= &boot_pageset
[cpu
])
2719 zone_pcp(zone
, cpu
) = NULL
;
2723 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2724 unsigned long action
,
2727 int cpu
= (long)hcpu
;
2728 int ret
= NOTIFY_OK
;
2731 case CPU_UP_PREPARE
:
2732 case CPU_UP_PREPARE_FROZEN
:
2733 if (process_zones(cpu
))
2736 case CPU_UP_CANCELED
:
2737 case CPU_UP_CANCELED_FROZEN
:
2739 case CPU_DEAD_FROZEN
:
2740 free_zone_pagesets(cpu
);
2748 static struct notifier_block __cpuinitdata pageset_notifier
=
2749 { &pageset_cpuup_callback
, NULL
, 0 };
2751 void __init
setup_per_cpu_pageset(void)
2755 /* Initialize per_cpu_pageset for cpu 0.
2756 * A cpuup callback will do this for every cpu
2757 * as it comes online
2759 err
= process_zones(smp_processor_id());
2761 register_cpu_notifier(&pageset_notifier
);
2766 static noinline __init_refok
2767 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2770 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2774 * The per-page waitqueue mechanism uses hashed waitqueues
2777 zone
->wait_table_hash_nr_entries
=
2778 wait_table_hash_nr_entries(zone_size_pages
);
2779 zone
->wait_table_bits
=
2780 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2781 alloc_size
= zone
->wait_table_hash_nr_entries
2782 * sizeof(wait_queue_head_t
);
2784 if (system_state
== SYSTEM_BOOTING
) {
2785 zone
->wait_table
= (wait_queue_head_t
*)
2786 alloc_bootmem_node(pgdat
, alloc_size
);
2789 * This case means that a zone whose size was 0 gets new memory
2790 * via memory hot-add.
2791 * But it may be the case that a new node was hot-added. In
2792 * this case vmalloc() will not be able to use this new node's
2793 * memory - this wait_table must be initialized to use this new
2794 * node itself as well.
2795 * To use this new node's memory, further consideration will be
2798 zone
->wait_table
= vmalloc(alloc_size
);
2800 if (!zone
->wait_table
)
2803 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2804 init_waitqueue_head(zone
->wait_table
+ i
);
2809 static __meminit
void zone_pcp_init(struct zone
*zone
)
2812 unsigned long batch
= zone_batchsize(zone
);
2814 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2816 /* Early boot. Slab allocator not functional yet */
2817 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2818 setup_pageset(&boot_pageset
[cpu
],0);
2820 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2823 if (zone
->present_pages
)
2824 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2825 zone
->name
, zone
->present_pages
, batch
);
2828 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2829 unsigned long zone_start_pfn
,
2831 enum memmap_context context
)
2833 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2835 ret
= zone_wait_table_init(zone
, size
);
2838 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2840 zone
->zone_start_pfn
= zone_start_pfn
;
2842 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2844 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2849 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2851 * Basic iterator support. Return the first range of PFNs for a node
2852 * Note: nid == MAX_NUMNODES returns first region regardless of node
2854 static int __meminit
first_active_region_index_in_nid(int nid
)
2858 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2859 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2866 * Basic iterator support. Return the next active range of PFNs for a node
2867 * Note: nid == MAX_NUMNODES returns next region regardles of node
2869 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2871 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2872 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2878 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2880 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2881 * Architectures may implement their own version but if add_active_range()
2882 * was used and there are no special requirements, this is a convenient
2885 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2889 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2890 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2891 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2893 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2894 return early_node_map
[i
].nid
;
2899 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2901 /* Basic iterator support to walk early_node_map[] */
2902 #define for_each_active_range_index_in_nid(i, nid) \
2903 for (i = first_active_region_index_in_nid(nid); i != -1; \
2904 i = next_active_region_index_in_nid(i, nid))
2907 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2908 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2909 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2911 * If an architecture guarantees that all ranges registered with
2912 * add_active_ranges() contain no holes and may be freed, this
2913 * this function may be used instead of calling free_bootmem() manually.
2915 void __init
free_bootmem_with_active_regions(int nid
,
2916 unsigned long max_low_pfn
)
2920 for_each_active_range_index_in_nid(i
, nid
) {
2921 unsigned long size_pages
= 0;
2922 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2924 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2927 if (end_pfn
> max_low_pfn
)
2928 end_pfn
= max_low_pfn
;
2930 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2931 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2932 PFN_PHYS(early_node_map
[i
].start_pfn
),
2933 size_pages
<< PAGE_SHIFT
);
2938 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2939 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2941 * If an architecture guarantees that all ranges registered with
2942 * add_active_ranges() contain no holes and may be freed, this
2943 * function may be used instead of calling memory_present() manually.
2945 void __init
sparse_memory_present_with_active_regions(int nid
)
2949 for_each_active_range_index_in_nid(i
, nid
)
2950 memory_present(early_node_map
[i
].nid
,
2951 early_node_map
[i
].start_pfn
,
2952 early_node_map
[i
].end_pfn
);
2956 * push_node_boundaries - Push node boundaries to at least the requested boundary
2957 * @nid: The nid of the node to push the boundary for
2958 * @start_pfn: The start pfn of the node
2959 * @end_pfn: The end pfn of the node
2961 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2962 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2963 * be hotplugged even though no physical memory exists. This function allows
2964 * an arch to push out the node boundaries so mem_map is allocated that can
2967 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2968 void __init
push_node_boundaries(unsigned int nid
,
2969 unsigned long start_pfn
, unsigned long end_pfn
)
2971 printk(KERN_DEBUG
"Entering push_node_boundaries(%u, %lu, %lu)\n",
2972 nid
, start_pfn
, end_pfn
);
2974 /* Initialise the boundary for this node if necessary */
2975 if (node_boundary_end_pfn
[nid
] == 0)
2976 node_boundary_start_pfn
[nid
] = -1UL;
2978 /* Update the boundaries */
2979 if (node_boundary_start_pfn
[nid
] > start_pfn
)
2980 node_boundary_start_pfn
[nid
] = start_pfn
;
2981 if (node_boundary_end_pfn
[nid
] < end_pfn
)
2982 node_boundary_end_pfn
[nid
] = end_pfn
;
2985 /* If necessary, push the node boundary out for reserve hotadd */
2986 static void __meminit
account_node_boundary(unsigned int nid
,
2987 unsigned long *start_pfn
, unsigned long *end_pfn
)
2989 printk(KERN_DEBUG
"Entering account_node_boundary(%u, %lu, %lu)\n",
2990 nid
, *start_pfn
, *end_pfn
);
2992 /* Return if boundary information has not been provided */
2993 if (node_boundary_end_pfn
[nid
] == 0)
2996 /* Check the boundaries and update if necessary */
2997 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
2998 *start_pfn
= node_boundary_start_pfn
[nid
];
2999 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
3000 *end_pfn
= node_boundary_end_pfn
[nid
];
3003 void __init
push_node_boundaries(unsigned int nid
,
3004 unsigned long start_pfn
, unsigned long end_pfn
) {}
3006 static void __meminit
account_node_boundary(unsigned int nid
,
3007 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
3012 * get_pfn_range_for_nid - Return the start and end page frames for a node
3013 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3014 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3015 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3017 * It returns the start and end page frame of a node based on information
3018 * provided by an arch calling add_active_range(). If called for a node
3019 * with no available memory, a warning is printed and the start and end
3022 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3023 unsigned long *start_pfn
, unsigned long *end_pfn
)
3029 for_each_active_range_index_in_nid(i
, nid
) {
3030 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3031 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3034 if (*start_pfn
== -1UL)
3037 /* Push the node boundaries out if requested */
3038 account_node_boundary(nid
, start_pfn
, end_pfn
);
3042 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3043 * assumption is made that zones within a node are ordered in monotonic
3044 * increasing memory addresses so that the "highest" populated zone is used
3046 void __init
find_usable_zone_for_movable(void)
3049 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3050 if (zone_index
== ZONE_MOVABLE
)
3053 if (arch_zone_highest_possible_pfn
[zone_index
] >
3054 arch_zone_lowest_possible_pfn
[zone_index
])
3058 VM_BUG_ON(zone_index
== -1);
3059 movable_zone
= zone_index
;
3063 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3064 * because it is sized independant of architecture. Unlike the other zones,
3065 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3066 * in each node depending on the size of each node and how evenly kernelcore
3067 * is distributed. This helper function adjusts the zone ranges
3068 * provided by the architecture for a given node by using the end of the
3069 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3070 * zones within a node are in order of monotonic increases memory addresses
3072 void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3073 unsigned long zone_type
,
3074 unsigned long node_start_pfn
,
3075 unsigned long node_end_pfn
,
3076 unsigned long *zone_start_pfn
,
3077 unsigned long *zone_end_pfn
)
3079 /* Only adjust if ZONE_MOVABLE is on this node */
3080 if (zone_movable_pfn
[nid
]) {
3081 /* Size ZONE_MOVABLE */
3082 if (zone_type
== ZONE_MOVABLE
) {
3083 *zone_start_pfn
= zone_movable_pfn
[nid
];
3084 *zone_end_pfn
= min(node_end_pfn
,
3085 arch_zone_highest_possible_pfn
[movable_zone
]);
3087 /* Adjust for ZONE_MOVABLE starting within this range */
3088 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3089 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3090 *zone_end_pfn
= zone_movable_pfn
[nid
];
3092 /* Check if this whole range is within ZONE_MOVABLE */
3093 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3094 *zone_start_pfn
= *zone_end_pfn
;
3099 * Return the number of pages a zone spans in a node, including holes
3100 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3102 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3103 unsigned long zone_type
,
3104 unsigned long *ignored
)
3106 unsigned long node_start_pfn
, node_end_pfn
;
3107 unsigned long zone_start_pfn
, zone_end_pfn
;
3109 /* Get the start and end of the node and zone */
3110 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3111 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3112 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3113 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3114 node_start_pfn
, node_end_pfn
,
3115 &zone_start_pfn
, &zone_end_pfn
);
3117 /* Check that this node has pages within the zone's required range */
3118 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3121 /* Move the zone boundaries inside the node if necessary */
3122 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3123 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3125 /* Return the spanned pages */
3126 return zone_end_pfn
- zone_start_pfn
;
3130 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3131 * then all holes in the requested range will be accounted for.
3133 unsigned long __meminit
__absent_pages_in_range(int nid
,
3134 unsigned long range_start_pfn
,
3135 unsigned long range_end_pfn
)
3138 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3139 unsigned long start_pfn
;
3141 /* Find the end_pfn of the first active range of pfns in the node */
3142 i
= first_active_region_index_in_nid(nid
);
3146 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3148 /* Account for ranges before physical memory on this node */
3149 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3150 hole_pages
= prev_end_pfn
- range_start_pfn
;
3152 /* Find all holes for the zone within the node */
3153 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3155 /* No need to continue if prev_end_pfn is outside the zone */
3156 if (prev_end_pfn
>= range_end_pfn
)
3159 /* Make sure the end of the zone is not within the hole */
3160 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3161 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3163 /* Update the hole size cound and move on */
3164 if (start_pfn
> range_start_pfn
) {
3165 BUG_ON(prev_end_pfn
> start_pfn
);
3166 hole_pages
+= start_pfn
- prev_end_pfn
;
3168 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3171 /* Account for ranges past physical memory on this node */
3172 if (range_end_pfn
> prev_end_pfn
)
3173 hole_pages
+= range_end_pfn
-
3174 max(range_start_pfn
, prev_end_pfn
);
3180 * absent_pages_in_range - Return number of page frames in holes within a range
3181 * @start_pfn: The start PFN to start searching for holes
3182 * @end_pfn: The end PFN to stop searching for holes
3184 * It returns the number of pages frames in memory holes within a range.
3186 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3187 unsigned long end_pfn
)
3189 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3192 /* Return the number of page frames in holes in a zone on a node */
3193 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3194 unsigned long zone_type
,
3195 unsigned long *ignored
)
3197 unsigned long node_start_pfn
, node_end_pfn
;
3198 unsigned long zone_start_pfn
, zone_end_pfn
;
3200 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3201 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3203 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3206 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3207 node_start_pfn
, node_end_pfn
,
3208 &zone_start_pfn
, &zone_end_pfn
);
3209 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3213 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3214 unsigned long zone_type
,
3215 unsigned long *zones_size
)
3217 return zones_size
[zone_type
];
3220 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3221 unsigned long zone_type
,
3222 unsigned long *zholes_size
)
3227 return zholes_size
[zone_type
];
3232 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3233 unsigned long *zones_size
, unsigned long *zholes_size
)
3235 unsigned long realtotalpages
, totalpages
= 0;
3238 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3239 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3241 pgdat
->node_spanned_pages
= totalpages
;
3243 realtotalpages
= totalpages
;
3244 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3246 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3248 pgdat
->node_present_pages
= realtotalpages
;
3249 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3253 #ifndef CONFIG_SPARSEMEM
3255 * Calculate the size of the zone->blockflags rounded to an unsigned long
3256 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3257 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3258 * round what is now in bits to nearest long in bits, then return it in
3261 static unsigned long __init
usemap_size(unsigned long zonesize
)
3263 unsigned long usemapsize
;
3265 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3266 usemapsize
= usemapsize
>> pageblock_order
;
3267 usemapsize
*= NR_PAGEBLOCK_BITS
;
3268 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3270 return usemapsize
/ 8;
3273 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3274 struct zone
*zone
, unsigned long zonesize
)
3276 unsigned long usemapsize
= usemap_size(zonesize
);
3277 zone
->pageblock_flags
= NULL
;
3279 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3280 memset(zone
->pageblock_flags
, 0, usemapsize
);
3284 static void inline setup_usemap(struct pglist_data
*pgdat
,
3285 struct zone
*zone
, unsigned long zonesize
) {}
3286 #endif /* CONFIG_SPARSEMEM */
3288 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3289 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3290 static inline void __init
set_pageblock_order(unsigned int order
)
3292 /* Check that pageblock_nr_pages has not already been setup */
3293 if (pageblock_order
)
3297 * Assume the largest contiguous order of interest is a huge page.
3298 * This value may be variable depending on boot parameters on IA64
3300 pageblock_order
= order
;
3302 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3304 /* Defined this way to avoid accidently referencing HUGETLB_PAGE_ORDER */
3305 #define set_pageblock_order(x) do {} while (0)
3307 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3310 * Set up the zone data structures:
3311 * - mark all pages reserved
3312 * - mark all memory queues empty
3313 * - clear the memory bitmaps
3315 static void __meminit
free_area_init_core(struct pglist_data
*pgdat
,
3316 unsigned long *zones_size
, unsigned long *zholes_size
)
3319 int nid
= pgdat
->node_id
;
3320 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3323 pgdat_resize_init(pgdat
);
3324 pgdat
->nr_zones
= 0;
3325 init_waitqueue_head(&pgdat
->kswapd_wait
);
3326 pgdat
->kswapd_max_order
= 0;
3328 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3329 struct zone
*zone
= pgdat
->node_zones
+ j
;
3330 unsigned long size
, realsize
, memmap_pages
;
3332 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3333 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3337 * Adjust realsize so that it accounts for how much memory
3338 * is used by this zone for memmap. This affects the watermark
3339 * and per-cpu initialisations
3341 memmap_pages
= (size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3342 if (realsize
>= memmap_pages
) {
3343 realsize
-= memmap_pages
;
3345 " %s zone: %lu pages used for memmap\n",
3346 zone_names
[j
], memmap_pages
);
3349 " %s zone: %lu pages exceeds realsize %lu\n",
3350 zone_names
[j
], memmap_pages
, realsize
);
3352 /* Account for reserved pages */
3353 if (j
== 0 && realsize
> dma_reserve
) {
3354 realsize
-= dma_reserve
;
3355 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3356 zone_names
[0], dma_reserve
);
3359 if (!is_highmem_idx(j
))
3360 nr_kernel_pages
+= realsize
;
3361 nr_all_pages
+= realsize
;
3363 zone
->spanned_pages
= size
;
3364 zone
->present_pages
= realsize
;
3367 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3369 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3371 zone
->name
= zone_names
[j
];
3372 spin_lock_init(&zone
->lock
);
3373 spin_lock_init(&zone
->lru_lock
);
3374 zone_seqlock_init(zone
);
3375 zone
->zone_pgdat
= pgdat
;
3377 zone
->prev_priority
= DEF_PRIORITY
;
3379 zone_pcp_init(zone
);
3380 INIT_LIST_HEAD(&zone
->active_list
);
3381 INIT_LIST_HEAD(&zone
->inactive_list
);
3382 zone
->nr_scan_active
= 0;
3383 zone
->nr_scan_inactive
= 0;
3384 zap_zone_vm_stats(zone
);
3389 set_pageblock_order(HUGETLB_PAGE_ORDER
);
3390 setup_usemap(pgdat
, zone
, size
);
3391 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3392 size
, MEMMAP_EARLY
);
3394 zone_start_pfn
+= size
;
3398 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3400 /* Skip empty nodes */
3401 if (!pgdat
->node_spanned_pages
)
3404 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3405 /* ia64 gets its own node_mem_map, before this, without bootmem */
3406 if (!pgdat
->node_mem_map
) {
3407 unsigned long size
, start
, end
;
3411 * The zone's endpoints aren't required to be MAX_ORDER
3412 * aligned but the node_mem_map endpoints must be in order
3413 * for the buddy allocator to function correctly.
3415 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3416 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3417 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3418 size
= (end
- start
) * sizeof(struct page
);
3419 map
= alloc_remap(pgdat
->node_id
, size
);
3421 map
= alloc_bootmem_node(pgdat
, size
);
3422 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3424 #ifndef CONFIG_NEED_MULTIPLE_NODES
3426 * With no DISCONTIG, the global mem_map is just set as node 0's
3428 if (pgdat
== NODE_DATA(0)) {
3429 mem_map
= NODE_DATA(0)->node_mem_map
;
3430 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3431 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3432 mem_map
-= pgdat
->node_start_pfn
;
3433 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3436 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3439 void __meminit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
3440 unsigned long *zones_size
, unsigned long node_start_pfn
,
3441 unsigned long *zholes_size
)
3443 pgdat
->node_id
= nid
;
3444 pgdat
->node_start_pfn
= node_start_pfn
;
3445 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3447 alloc_node_mem_map(pgdat
);
3449 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3452 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3454 #if MAX_NUMNODES > 1
3456 * Figure out the number of possible node ids.
3458 static void __init
setup_nr_node_ids(void)
3461 unsigned int highest
= 0;
3463 for_each_node_mask(node
, node_possible_map
)
3465 nr_node_ids
= highest
+ 1;
3468 static inline void setup_nr_node_ids(void)
3474 * add_active_range - Register a range of PFNs backed by physical memory
3475 * @nid: The node ID the range resides on
3476 * @start_pfn: The start PFN of the available physical memory
3477 * @end_pfn: The end PFN of the available physical memory
3479 * These ranges are stored in an early_node_map[] and later used by
3480 * free_area_init_nodes() to calculate zone sizes and holes. If the
3481 * range spans a memory hole, it is up to the architecture to ensure
3482 * the memory is not freed by the bootmem allocator. If possible
3483 * the range being registered will be merged with existing ranges.
3485 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3486 unsigned long end_pfn
)
3490 printk(KERN_DEBUG
"Entering add_active_range(%d, %lu, %lu) "
3491 "%d entries of %d used\n",
3492 nid
, start_pfn
, end_pfn
,
3493 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3495 /* Merge with existing active regions if possible */
3496 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3497 if (early_node_map
[i
].nid
!= nid
)
3500 /* Skip if an existing region covers this new one */
3501 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3502 end_pfn
<= early_node_map
[i
].end_pfn
)
3505 /* Merge forward if suitable */
3506 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3507 end_pfn
> early_node_map
[i
].end_pfn
) {
3508 early_node_map
[i
].end_pfn
= end_pfn
;
3512 /* Merge backward if suitable */
3513 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3514 end_pfn
>= early_node_map
[i
].start_pfn
) {
3515 early_node_map
[i
].start_pfn
= start_pfn
;
3520 /* Check that early_node_map is large enough */
3521 if (i
>= MAX_ACTIVE_REGIONS
) {
3522 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3523 MAX_ACTIVE_REGIONS
);
3527 early_node_map
[i
].nid
= nid
;
3528 early_node_map
[i
].start_pfn
= start_pfn
;
3529 early_node_map
[i
].end_pfn
= end_pfn
;
3530 nr_nodemap_entries
= i
+ 1;
3534 * shrink_active_range - Shrink an existing registered range of PFNs
3535 * @nid: The node id the range is on that should be shrunk
3536 * @old_end_pfn: The old end PFN of the range
3537 * @new_end_pfn: The new PFN of the range
3539 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3540 * The map is kept at the end physical page range that has already been
3541 * registered with add_active_range(). This function allows an arch to shrink
3542 * an existing registered range.
3544 void __init
shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
3545 unsigned long new_end_pfn
)
3549 /* Find the old active region end and shrink */
3550 for_each_active_range_index_in_nid(i
, nid
)
3551 if (early_node_map
[i
].end_pfn
== old_end_pfn
) {
3552 early_node_map
[i
].end_pfn
= new_end_pfn
;
3558 * remove_all_active_ranges - Remove all currently registered regions
3560 * During discovery, it may be found that a table like SRAT is invalid
3561 * and an alternative discovery method must be used. This function removes
3562 * all currently registered regions.
3564 void __init
remove_all_active_ranges(void)
3566 memset(early_node_map
, 0, sizeof(early_node_map
));
3567 nr_nodemap_entries
= 0;
3568 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3569 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3570 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3571 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3574 /* Compare two active node_active_regions */
3575 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3577 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3578 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3580 /* Done this way to avoid overflows */
3581 if (arange
->start_pfn
> brange
->start_pfn
)
3583 if (arange
->start_pfn
< brange
->start_pfn
)
3589 /* sort the node_map by start_pfn */
3590 static void __init
sort_node_map(void)
3592 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3593 sizeof(struct node_active_region
),
3594 cmp_node_active_region
, NULL
);
3597 /* Find the lowest pfn for a node */
3598 unsigned long __init
find_min_pfn_for_node(unsigned long nid
)
3601 unsigned long min_pfn
= ULONG_MAX
;
3603 /* Assuming a sorted map, the first range found has the starting pfn */
3604 for_each_active_range_index_in_nid(i
, nid
)
3605 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3607 if (min_pfn
== ULONG_MAX
) {
3609 "Could not find start_pfn for node %lu\n", nid
);
3617 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3619 * It returns the minimum PFN based on information provided via
3620 * add_active_range().
3622 unsigned long __init
find_min_pfn_with_active_regions(void)
3624 return find_min_pfn_for_node(MAX_NUMNODES
);
3628 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3630 * It returns the maximum PFN based on information provided via
3631 * add_active_range().
3633 unsigned long __init
find_max_pfn_with_active_regions(void)
3636 unsigned long max_pfn
= 0;
3638 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3639 max_pfn
= max(max_pfn
, early_node_map
[i
].end_pfn
);
3645 * early_calculate_totalpages()
3646 * Sum pages in active regions for movable zone.
3647 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3649 static unsigned long __init
early_calculate_totalpages(void)
3652 unsigned long totalpages
= 0;
3654 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3655 unsigned long pages
= early_node_map
[i
].end_pfn
-
3656 early_node_map
[i
].start_pfn
;
3657 totalpages
+= pages
;
3659 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
3665 * Find the PFN the Movable zone begins in each node. Kernel memory
3666 * is spread evenly between nodes as long as the nodes have enough
3667 * memory. When they don't, some nodes will have more kernelcore than
3670 void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3673 unsigned long usable_startpfn
;
3674 unsigned long kernelcore_node
, kernelcore_remaining
;
3675 unsigned long totalpages
= early_calculate_totalpages();
3676 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
3679 * If movablecore was specified, calculate what size of
3680 * kernelcore that corresponds so that memory usable for
3681 * any allocation type is evenly spread. If both kernelcore
3682 * and movablecore are specified, then the value of kernelcore
3683 * will be used for required_kernelcore if it's greater than
3684 * what movablecore would have allowed.
3686 if (required_movablecore
) {
3687 unsigned long corepages
;
3690 * Round-up so that ZONE_MOVABLE is at least as large as what
3691 * was requested by the user
3693 required_movablecore
=
3694 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3695 corepages
= totalpages
- required_movablecore
;
3697 required_kernelcore
= max(required_kernelcore
, corepages
);
3700 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3701 if (!required_kernelcore
)
3704 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3705 find_usable_zone_for_movable();
3706 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3709 /* Spread kernelcore memory as evenly as possible throughout nodes */
3710 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3711 for_each_node_state(nid
, N_HIGH_MEMORY
) {
3713 * Recalculate kernelcore_node if the division per node
3714 * now exceeds what is necessary to satisfy the requested
3715 * amount of memory for the kernel
3717 if (required_kernelcore
< kernelcore_node
)
3718 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3721 * As the map is walked, we track how much memory is usable
3722 * by the kernel using kernelcore_remaining. When it is
3723 * 0, the rest of the node is usable by ZONE_MOVABLE
3725 kernelcore_remaining
= kernelcore_node
;
3727 /* Go through each range of PFNs within this node */
3728 for_each_active_range_index_in_nid(i
, nid
) {
3729 unsigned long start_pfn
, end_pfn
;
3730 unsigned long size_pages
;
3732 start_pfn
= max(early_node_map
[i
].start_pfn
,
3733 zone_movable_pfn
[nid
]);
3734 end_pfn
= early_node_map
[i
].end_pfn
;
3735 if (start_pfn
>= end_pfn
)
3738 /* Account for what is only usable for kernelcore */
3739 if (start_pfn
< usable_startpfn
) {
3740 unsigned long kernel_pages
;
3741 kernel_pages
= min(end_pfn
, usable_startpfn
)
3744 kernelcore_remaining
-= min(kernel_pages
,
3745 kernelcore_remaining
);
3746 required_kernelcore
-= min(kernel_pages
,
3747 required_kernelcore
);
3749 /* Continue if range is now fully accounted */
3750 if (end_pfn
<= usable_startpfn
) {
3753 * Push zone_movable_pfn to the end so
3754 * that if we have to rebalance
3755 * kernelcore across nodes, we will
3756 * not double account here
3758 zone_movable_pfn
[nid
] = end_pfn
;
3761 start_pfn
= usable_startpfn
;
3765 * The usable PFN range for ZONE_MOVABLE is from
3766 * start_pfn->end_pfn. Calculate size_pages as the
3767 * number of pages used as kernelcore
3769 size_pages
= end_pfn
- start_pfn
;
3770 if (size_pages
> kernelcore_remaining
)
3771 size_pages
= kernelcore_remaining
;
3772 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
3775 * Some kernelcore has been met, update counts and
3776 * break if the kernelcore for this node has been
3779 required_kernelcore
-= min(required_kernelcore
,
3781 kernelcore_remaining
-= size_pages
;
3782 if (!kernelcore_remaining
)
3788 * If there is still required_kernelcore, we do another pass with one
3789 * less node in the count. This will push zone_movable_pfn[nid] further
3790 * along on the nodes that still have memory until kernelcore is
3794 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
3797 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3798 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
3799 zone_movable_pfn
[nid
] =
3800 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
3803 /* Any regular memory on that node ? */
3804 static void check_for_regular_memory(pg_data_t
*pgdat
)
3806 #ifdef CONFIG_HIGHMEM
3807 enum zone_type zone_type
;
3809 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
3810 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
3811 if (zone
->present_pages
)
3812 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
3818 * free_area_init_nodes - Initialise all pg_data_t and zone data
3819 * @max_zone_pfn: an array of max PFNs for each zone
3821 * This will call free_area_init_node() for each active node in the system.
3822 * Using the page ranges provided by add_active_range(), the size of each
3823 * zone in each node and their holes is calculated. If the maximum PFN
3824 * between two adjacent zones match, it is assumed that the zone is empty.
3825 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3826 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3827 * starts where the previous one ended. For example, ZONE_DMA32 starts
3828 * at arch_max_dma_pfn.
3830 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
3835 /* Sort early_node_map as initialisation assumes it is sorted */
3838 /* Record where the zone boundaries are */
3839 memset(arch_zone_lowest_possible_pfn
, 0,
3840 sizeof(arch_zone_lowest_possible_pfn
));
3841 memset(arch_zone_highest_possible_pfn
, 0,
3842 sizeof(arch_zone_highest_possible_pfn
));
3843 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
3844 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
3845 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
3846 if (i
== ZONE_MOVABLE
)
3848 arch_zone_lowest_possible_pfn
[i
] =
3849 arch_zone_highest_possible_pfn
[i
-1];
3850 arch_zone_highest_possible_pfn
[i
] =
3851 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
3853 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
3854 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
3856 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3857 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
3858 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
3860 /* Print out the zone ranges */
3861 printk("Zone PFN ranges:\n");
3862 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3863 if (i
== ZONE_MOVABLE
)
3865 printk(" %-8s %8lu -> %8lu\n",
3867 arch_zone_lowest_possible_pfn
[i
],
3868 arch_zone_highest_possible_pfn
[i
]);
3871 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3872 printk("Movable zone start PFN for each node\n");
3873 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
3874 if (zone_movable_pfn
[i
])
3875 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
3878 /* Print out the early_node_map[] */
3879 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
3880 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3881 printk(" %3d: %8lu -> %8lu\n", early_node_map
[i
].nid
,
3882 early_node_map
[i
].start_pfn
,
3883 early_node_map
[i
].end_pfn
);
3885 /* Initialise every node */
3886 setup_nr_node_ids();
3887 for_each_online_node(nid
) {
3888 pg_data_t
*pgdat
= NODE_DATA(nid
);
3889 free_area_init_node(nid
, pgdat
, NULL
,
3890 find_min_pfn_for_node(nid
), NULL
);
3892 /* Any memory on that node */
3893 if (pgdat
->node_present_pages
)
3894 node_set_state(nid
, N_HIGH_MEMORY
);
3895 check_for_regular_memory(pgdat
);
3899 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
3901 unsigned long long coremem
;
3905 coremem
= memparse(p
, &p
);
3906 *core
= coremem
>> PAGE_SHIFT
;
3908 /* Paranoid check that UL is enough for the coremem value */
3909 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
3915 * kernelcore=size sets the amount of memory for use for allocations that
3916 * cannot be reclaimed or migrated.
3918 static int __init
cmdline_parse_kernelcore(char *p
)
3920 return cmdline_parse_core(p
, &required_kernelcore
);
3924 * movablecore=size sets the amount of memory for use for allocations that
3925 * can be reclaimed or migrated.
3927 static int __init
cmdline_parse_movablecore(char *p
)
3929 return cmdline_parse_core(p
, &required_movablecore
);
3932 early_param("kernelcore", cmdline_parse_kernelcore
);
3933 early_param("movablecore", cmdline_parse_movablecore
);
3935 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3938 * set_dma_reserve - set the specified number of pages reserved in the first zone
3939 * @new_dma_reserve: The number of pages to mark reserved
3941 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3942 * In the DMA zone, a significant percentage may be consumed by kernel image
3943 * and other unfreeable allocations which can skew the watermarks badly. This
3944 * function may optionally be used to account for unfreeable pages in the
3945 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3946 * smaller per-cpu batchsize.
3948 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
3950 dma_reserve
= new_dma_reserve
;
3953 #ifndef CONFIG_NEED_MULTIPLE_NODES
3954 static bootmem_data_t contig_bootmem_data
;
3955 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
3957 EXPORT_SYMBOL(contig_page_data
);
3960 void __init
free_area_init(unsigned long *zones_size
)
3962 free_area_init_node(0, NODE_DATA(0), zones_size
,
3963 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
3966 static int page_alloc_cpu_notify(struct notifier_block
*self
,
3967 unsigned long action
, void *hcpu
)
3969 int cpu
= (unsigned long)hcpu
;
3971 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
3972 local_irq_disable();
3974 vm_events_fold_cpu(cpu
);
3976 refresh_cpu_vm_stats(cpu
);
3981 void __init
page_alloc_init(void)
3983 hotcpu_notifier(page_alloc_cpu_notify
, 0);
3987 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3988 * or min_free_kbytes changes.
3990 static void calculate_totalreserve_pages(void)
3992 struct pglist_data
*pgdat
;
3993 unsigned long reserve_pages
= 0;
3994 enum zone_type i
, j
;
3996 for_each_online_pgdat(pgdat
) {
3997 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3998 struct zone
*zone
= pgdat
->node_zones
+ i
;
3999 unsigned long max
= 0;
4001 /* Find valid and maximum lowmem_reserve in the zone */
4002 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4003 if (zone
->lowmem_reserve
[j
] > max
)
4004 max
= zone
->lowmem_reserve
[j
];
4007 /* we treat pages_high as reserved pages. */
4008 max
+= zone
->pages_high
;
4010 if (max
> zone
->present_pages
)
4011 max
= zone
->present_pages
;
4012 reserve_pages
+= max
;
4015 totalreserve_pages
= reserve_pages
;
4019 * setup_per_zone_lowmem_reserve - called whenever
4020 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4021 * has a correct pages reserved value, so an adequate number of
4022 * pages are left in the zone after a successful __alloc_pages().
4024 static void setup_per_zone_lowmem_reserve(void)
4026 struct pglist_data
*pgdat
;
4027 enum zone_type j
, idx
;
4029 for_each_online_pgdat(pgdat
) {
4030 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4031 struct zone
*zone
= pgdat
->node_zones
+ j
;
4032 unsigned long present_pages
= zone
->present_pages
;
4034 zone
->lowmem_reserve
[j
] = 0;
4038 struct zone
*lower_zone
;
4042 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4043 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4045 lower_zone
= pgdat
->node_zones
+ idx
;
4046 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4047 sysctl_lowmem_reserve_ratio
[idx
];
4048 present_pages
+= lower_zone
->present_pages
;
4053 /* update totalreserve_pages */
4054 calculate_totalreserve_pages();
4058 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4060 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4061 * with respect to min_free_kbytes.
4063 void setup_per_zone_pages_min(void)
4065 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4066 unsigned long lowmem_pages
= 0;
4068 unsigned long flags
;
4070 /* Calculate total number of !ZONE_HIGHMEM pages */
4071 for_each_zone(zone
) {
4072 if (!is_highmem(zone
))
4073 lowmem_pages
+= zone
->present_pages
;
4076 for_each_zone(zone
) {
4079 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4080 tmp
= (u64
)pages_min
* zone
->present_pages
;
4081 do_div(tmp
, lowmem_pages
);
4082 if (is_highmem(zone
)) {
4084 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4085 * need highmem pages, so cap pages_min to a small
4088 * The (pages_high-pages_low) and (pages_low-pages_min)
4089 * deltas controls asynch page reclaim, and so should
4090 * not be capped for highmem.
4094 min_pages
= zone
->present_pages
/ 1024;
4095 if (min_pages
< SWAP_CLUSTER_MAX
)
4096 min_pages
= SWAP_CLUSTER_MAX
;
4097 if (min_pages
> 128)
4099 zone
->pages_min
= min_pages
;
4102 * If it's a lowmem zone, reserve a number of pages
4103 * proportionate to the zone's size.
4105 zone
->pages_min
= tmp
;
4108 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4109 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4110 setup_zone_migrate_reserve(zone
);
4111 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4114 /* update totalreserve_pages */
4115 calculate_totalreserve_pages();
4119 * Initialise min_free_kbytes.
4121 * For small machines we want it small (128k min). For large machines
4122 * we want it large (64MB max). But it is not linear, because network
4123 * bandwidth does not increase linearly with machine size. We use
4125 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4126 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4142 static int __init
init_per_zone_pages_min(void)
4144 unsigned long lowmem_kbytes
;
4146 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4148 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4149 if (min_free_kbytes
< 128)
4150 min_free_kbytes
= 128;
4151 if (min_free_kbytes
> 65536)
4152 min_free_kbytes
= 65536;
4153 setup_per_zone_pages_min();
4154 setup_per_zone_lowmem_reserve();
4157 module_init(init_per_zone_pages_min
)
4160 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4161 * that we can call two helper functions whenever min_free_kbytes
4164 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4165 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4167 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4169 setup_per_zone_pages_min();
4174 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4175 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4180 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4185 zone
->min_unmapped_pages
= (zone
->present_pages
*
4186 sysctl_min_unmapped_ratio
) / 100;
4190 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4191 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4196 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4201 zone
->min_slab_pages
= (zone
->present_pages
*
4202 sysctl_min_slab_ratio
) / 100;
4208 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4209 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4210 * whenever sysctl_lowmem_reserve_ratio changes.
4212 * The reserve ratio obviously has absolutely no relation with the
4213 * pages_min watermarks. The lowmem reserve ratio can only make sense
4214 * if in function of the boot time zone sizes.
4216 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4217 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4219 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4220 setup_per_zone_lowmem_reserve();
4225 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4226 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4227 * can have before it gets flushed back to buddy allocator.
4230 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4231 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4237 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4238 if (!write
|| (ret
== -EINVAL
))
4240 for_each_zone(zone
) {
4241 for_each_online_cpu(cpu
) {
4243 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4244 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4250 int hashdist
= HASHDIST_DEFAULT
;
4253 static int __init
set_hashdist(char *str
)
4257 hashdist
= simple_strtoul(str
, &str
, 0);
4260 __setup("hashdist=", set_hashdist
);
4264 * allocate a large system hash table from bootmem
4265 * - it is assumed that the hash table must contain an exact power-of-2
4266 * quantity of entries
4267 * - limit is the number of hash buckets, not the total allocation size
4269 void *__init
alloc_large_system_hash(const char *tablename
,
4270 unsigned long bucketsize
,
4271 unsigned long numentries
,
4274 unsigned int *_hash_shift
,
4275 unsigned int *_hash_mask
,
4276 unsigned long limit
)
4278 unsigned long long max
= limit
;
4279 unsigned long log2qty
, size
;
4282 /* allow the kernel cmdline to have a say */
4284 /* round applicable memory size up to nearest megabyte */
4285 numentries
= nr_kernel_pages
;
4286 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4287 numentries
>>= 20 - PAGE_SHIFT
;
4288 numentries
<<= 20 - PAGE_SHIFT
;
4290 /* limit to 1 bucket per 2^scale bytes of low memory */
4291 if (scale
> PAGE_SHIFT
)
4292 numentries
>>= (scale
- PAGE_SHIFT
);
4294 numentries
<<= (PAGE_SHIFT
- scale
);
4296 /* Make sure we've got at least a 0-order allocation.. */
4297 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4298 numentries
= PAGE_SIZE
/ bucketsize
;
4300 numentries
= roundup_pow_of_two(numentries
);
4302 /* limit allocation size to 1/16 total memory by default */
4304 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4305 do_div(max
, bucketsize
);
4308 if (numentries
> max
)
4311 log2qty
= ilog2(numentries
);
4314 size
= bucketsize
<< log2qty
;
4315 if (flags
& HASH_EARLY
)
4316 table
= alloc_bootmem(size
);
4318 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4320 unsigned long order
;
4321 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
4323 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
4325 * If bucketsize is not a power-of-two, we may free
4326 * some pages at the end of hash table.
4329 unsigned long alloc_end
= (unsigned long)table
+
4330 (PAGE_SIZE
<< order
);
4331 unsigned long used
= (unsigned long)table
+
4333 split_page(virt_to_page(table
), order
);
4334 while (used
< alloc_end
) {
4340 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4343 panic("Failed to allocate %s hash table\n", tablename
);
4345 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4348 ilog2(size
) - PAGE_SHIFT
,
4352 *_hash_shift
= log2qty
;
4354 *_hash_mask
= (1 << log2qty
) - 1;
4359 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4360 struct page
*pfn_to_page(unsigned long pfn
)
4362 return __pfn_to_page(pfn
);
4364 unsigned long page_to_pfn(struct page
*page
)
4366 return __page_to_pfn(page
);
4368 EXPORT_SYMBOL(pfn_to_page
);
4369 EXPORT_SYMBOL(page_to_pfn
);
4370 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4372 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4373 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4376 #ifdef CONFIG_SPARSEMEM
4377 return __pfn_to_section(pfn
)->pageblock_flags
;
4379 return zone
->pageblock_flags
;
4380 #endif /* CONFIG_SPARSEMEM */
4383 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4385 #ifdef CONFIG_SPARSEMEM
4386 pfn
&= (PAGES_PER_SECTION
-1);
4387 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4389 pfn
= pfn
- zone
->zone_start_pfn
;
4390 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4391 #endif /* CONFIG_SPARSEMEM */
4395 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4396 * @page: The page within the block of interest
4397 * @start_bitidx: The first bit of interest to retrieve
4398 * @end_bitidx: The last bit of interest
4399 * returns pageblock_bits flags
4401 unsigned long get_pageblock_flags_group(struct page
*page
,
4402 int start_bitidx
, int end_bitidx
)
4405 unsigned long *bitmap
;
4406 unsigned long pfn
, bitidx
;
4407 unsigned long flags
= 0;
4408 unsigned long value
= 1;
4410 zone
= page_zone(page
);
4411 pfn
= page_to_pfn(page
);
4412 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4413 bitidx
= pfn_to_bitidx(zone
, pfn
);
4415 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4416 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4423 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4424 * @page: The page within the block of interest
4425 * @start_bitidx: The first bit of interest
4426 * @end_bitidx: The last bit of interest
4427 * @flags: The flags to set
4429 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4430 int start_bitidx
, int end_bitidx
)
4433 unsigned long *bitmap
;
4434 unsigned long pfn
, bitidx
;
4435 unsigned long value
= 1;
4437 zone
= page_zone(page
);
4438 pfn
= page_to_pfn(page
);
4439 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4440 bitidx
= pfn_to_bitidx(zone
, pfn
);
4442 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4444 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4446 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4450 * This is designed as sub function...plz see page_isolation.c also.
4451 * set/clear page block's type to be ISOLATE.
4452 * page allocater never alloc memory from ISOLATE block.
4455 int set_migratetype_isolate(struct page
*page
)
4458 unsigned long flags
;
4461 zone
= page_zone(page
);
4462 spin_lock_irqsave(&zone
->lock
, flags
);
4464 * In future, more migrate types will be able to be isolation target.
4466 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4468 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4469 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4472 spin_unlock_irqrestore(&zone
->lock
, flags
);
4474 drain_all_local_pages();
4478 void unset_migratetype_isolate(struct page
*page
)
4481 unsigned long flags
;
4482 zone
= page_zone(page
);
4483 spin_lock_irqsave(&zone
->lock
, flags
);
4484 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4486 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4487 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4489 spin_unlock_irqrestore(&zone
->lock
, flags
);
4492 #ifdef CONFIG_MEMORY_HOTREMOVE
4494 * All pages in the range must be isolated before calling this.
4497 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4503 unsigned long flags
;
4504 /* find the first valid pfn */
4505 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4510 zone
= page_zone(pfn_to_page(pfn
));
4511 spin_lock_irqsave(&zone
->lock
, flags
);
4513 while (pfn
< end_pfn
) {
4514 if (!pfn_valid(pfn
)) {
4518 page
= pfn_to_page(pfn
);
4519 BUG_ON(page_count(page
));
4520 BUG_ON(!PageBuddy(page
));
4521 order
= page_order(page
);
4522 #ifdef CONFIG_DEBUG_VM
4523 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4524 pfn
, 1 << order
, end_pfn
);
4526 list_del(&page
->lru
);
4527 rmv_page_order(page
);
4528 zone
->free_area
[order
].nr_free
--;
4529 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4531 for (i
= 0; i
< (1 << order
); i
++)
4532 SetPageReserved((page
+i
));
4533 pfn
+= (1 << order
);
4535 spin_unlock_irqrestore(&zone
->lock
, flags
);