ALSA: usb-audio - Avoid flood of frame-active debug messages
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / dev.c
blob5a13edfc9f73411f688920b51400489eb3e89ee2
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/if_tunnel.h>
137 #include <linux/if_pppox.h>
138 #include <linux/ppp_defs.h>
139 #include <linux/net_tstamp.h>
141 #include "net-sysfs.h"
143 /* Instead of increasing this, you should create a hash table. */
144 #define MAX_GRO_SKBS 8
146 /* This should be increased if a protocol with a bigger head is added. */
147 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150 * The list of packet types we will receive (as opposed to discard)
151 * and the routines to invoke.
153 * Why 16. Because with 16 the only overlap we get on a hash of the
154 * low nibble of the protocol value is RARP/SNAP/X.25.
156 * NOTE: That is no longer true with the addition of VLAN tags. Not
157 * sure which should go first, but I bet it won't make much
158 * difference if we are running VLANs. The good news is that
159 * this protocol won't be in the list unless compiled in, so
160 * the average user (w/out VLANs) will not be adversely affected.
161 * --BLG
163 * 0800 IP
164 * 8100 802.1Q VLAN
165 * 0001 802.3
166 * 0002 AX.25
167 * 0004 802.2
168 * 8035 RARP
169 * 0005 SNAP
170 * 0805 X.25
171 * 0806 ARP
172 * 8137 IPX
173 * 0009 Localtalk
174 * 86DD IPv6
177 #define PTYPE_HASH_SIZE (16)
178 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
180 static DEFINE_SPINLOCK(ptype_lock);
181 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
182 static struct list_head ptype_all __read_mostly; /* Taps */
185 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
186 * semaphore.
188 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
190 * Writers must hold the rtnl semaphore while they loop through the
191 * dev_base_head list, and hold dev_base_lock for writing when they do the
192 * actual updates. This allows pure readers to access the list even
193 * while a writer is preparing to update it.
195 * To put it another way, dev_base_lock is held for writing only to
196 * protect against pure readers; the rtnl semaphore provides the
197 * protection against other writers.
199 * See, for example usages, register_netdevice() and
200 * unregister_netdevice(), which must be called with the rtnl
201 * semaphore held.
203 DEFINE_RWLOCK(dev_base_lock);
204 EXPORT_SYMBOL(dev_base_lock);
206 static inline void dev_base_seq_inc(struct net *net)
208 while (++net->dev_base_seq == 0);
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
214 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
217 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
222 static inline void rps_lock(struct softnet_data *sd)
224 #ifdef CONFIG_RPS
225 spin_lock(&sd->input_pkt_queue.lock);
226 #endif
229 static inline void rps_unlock(struct softnet_data *sd)
231 #ifdef CONFIG_RPS
232 spin_unlock(&sd->input_pkt_queue.lock);
233 #endif
236 /* Device list insertion */
237 static int list_netdevice(struct net_device *dev)
239 struct net *net = dev_net(dev);
241 ASSERT_RTNL();
243 write_lock_bh(&dev_base_lock);
244 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
245 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
246 hlist_add_head_rcu(&dev->index_hlist,
247 dev_index_hash(net, dev->ifindex));
248 write_unlock_bh(&dev_base_lock);
250 dev_base_seq_inc(net);
252 return 0;
255 /* Device list removal
256 * caller must respect a RCU grace period before freeing/reusing dev
258 static void unlist_netdevice(struct net_device *dev)
260 ASSERT_RTNL();
262 /* Unlink dev from the device chain */
263 write_lock_bh(&dev_base_lock);
264 list_del_rcu(&dev->dev_list);
265 hlist_del_rcu(&dev->name_hlist);
266 hlist_del_rcu(&dev->index_hlist);
267 write_unlock_bh(&dev_base_lock);
269 dev_base_seq_inc(dev_net(dev));
273 * Our notifier list
276 static RAW_NOTIFIER_HEAD(netdev_chain);
279 * Device drivers call our routines to queue packets here. We empty the
280 * queue in the local softnet handler.
283 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
284 EXPORT_PER_CPU_SYMBOL(softnet_data);
286 #ifdef CONFIG_LOCKDEP
288 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
289 * according to dev->type
291 static const unsigned short netdev_lock_type[] =
292 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
293 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
294 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
295 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
296 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
297 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
298 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
299 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
300 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
301 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
302 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
303 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
304 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
305 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
306 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
307 ARPHRD_VOID, ARPHRD_NONE};
309 static const char *const netdev_lock_name[] =
310 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
311 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
312 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
313 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
314 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
315 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
316 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
317 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
318 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
319 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
320 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
321 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
322 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
323 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
324 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
325 "_xmit_VOID", "_xmit_NONE"};
327 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
328 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
330 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
332 int i;
334 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
335 if (netdev_lock_type[i] == dev_type)
336 return i;
337 /* the last key is used by default */
338 return ARRAY_SIZE(netdev_lock_type) - 1;
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 unsigned short dev_type)
344 int i;
346 i = netdev_lock_pos(dev_type);
347 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
348 netdev_lock_name[i]);
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
353 int i;
355 i = netdev_lock_pos(dev->type);
356 lockdep_set_class_and_name(&dev->addr_list_lock,
357 &netdev_addr_lock_key[i],
358 netdev_lock_name[i]);
360 #else
361 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
362 unsigned short dev_type)
365 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
368 #endif
370 /*******************************************************************************
372 Protocol management and registration routines
374 *******************************************************************************/
377 * Add a protocol ID to the list. Now that the input handler is
378 * smarter we can dispense with all the messy stuff that used to be
379 * here.
381 * BEWARE!!! Protocol handlers, mangling input packets,
382 * MUST BE last in hash buckets and checking protocol handlers
383 * MUST start from promiscuous ptype_all chain in net_bh.
384 * It is true now, do not change it.
385 * Explanation follows: if protocol handler, mangling packet, will
386 * be the first on list, it is not able to sense, that packet
387 * is cloned and should be copied-on-write, so that it will
388 * change it and subsequent readers will get broken packet.
389 * --ANK (980803)
392 static inline struct list_head *ptype_head(const struct packet_type *pt)
394 if (pt->type == htons(ETH_P_ALL))
395 return &ptype_all;
396 else
397 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
401 * dev_add_pack - add packet handler
402 * @pt: packet type declaration
404 * Add a protocol handler to the networking stack. The passed &packet_type
405 * is linked into kernel lists and may not be freed until it has been
406 * removed from the kernel lists.
408 * This call does not sleep therefore it can not
409 * guarantee all CPU's that are in middle of receiving packets
410 * will see the new packet type (until the next received packet).
413 void dev_add_pack(struct packet_type *pt)
415 struct list_head *head = ptype_head(pt);
417 spin_lock(&ptype_lock);
418 list_add_rcu(&pt->list, head);
419 spin_unlock(&ptype_lock);
421 EXPORT_SYMBOL(dev_add_pack);
424 * __dev_remove_pack - remove packet handler
425 * @pt: packet type declaration
427 * Remove a protocol handler that was previously added to the kernel
428 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
429 * from the kernel lists and can be freed or reused once this function
430 * returns.
432 * The packet type might still be in use by receivers
433 * and must not be freed until after all the CPU's have gone
434 * through a quiescent state.
436 void __dev_remove_pack(struct packet_type *pt)
438 struct list_head *head = ptype_head(pt);
439 struct packet_type *pt1;
441 spin_lock(&ptype_lock);
443 list_for_each_entry(pt1, head, list) {
444 if (pt == pt1) {
445 list_del_rcu(&pt->list);
446 goto out;
450 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
451 out:
452 spin_unlock(&ptype_lock);
454 EXPORT_SYMBOL(__dev_remove_pack);
457 * dev_remove_pack - remove packet handler
458 * @pt: packet type declaration
460 * Remove a protocol handler that was previously added to the kernel
461 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
462 * from the kernel lists and can be freed or reused once this function
463 * returns.
465 * This call sleeps to guarantee that no CPU is looking at the packet
466 * type after return.
468 void dev_remove_pack(struct packet_type *pt)
470 __dev_remove_pack(pt);
472 synchronize_net();
474 EXPORT_SYMBOL(dev_remove_pack);
476 /******************************************************************************
478 Device Boot-time Settings Routines
480 *******************************************************************************/
482 /* Boot time configuration table */
483 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
486 * netdev_boot_setup_add - add new setup entry
487 * @name: name of the device
488 * @map: configured settings for the device
490 * Adds new setup entry to the dev_boot_setup list. The function
491 * returns 0 on error and 1 on success. This is a generic routine to
492 * all netdevices.
494 static int netdev_boot_setup_add(char *name, struct ifmap *map)
496 struct netdev_boot_setup *s;
497 int i;
499 s = dev_boot_setup;
500 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
501 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
502 memset(s[i].name, 0, sizeof(s[i].name));
503 strlcpy(s[i].name, name, IFNAMSIZ);
504 memcpy(&s[i].map, map, sizeof(s[i].map));
505 break;
509 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
513 * netdev_boot_setup_check - check boot time settings
514 * @dev: the netdevice
516 * Check boot time settings for the device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found, 1 if they are.
521 int netdev_boot_setup_check(struct net_device *dev)
523 struct netdev_boot_setup *s = dev_boot_setup;
524 int i;
526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
527 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
528 !strcmp(dev->name, s[i].name)) {
529 dev->irq = s[i].map.irq;
530 dev->base_addr = s[i].map.base_addr;
531 dev->mem_start = s[i].map.mem_start;
532 dev->mem_end = s[i].map.mem_end;
533 return 1;
536 return 0;
538 EXPORT_SYMBOL(netdev_boot_setup_check);
542 * netdev_boot_base - get address from boot time settings
543 * @prefix: prefix for network device
544 * @unit: id for network device
546 * Check boot time settings for the base address of device.
547 * The found settings are set for the device to be used
548 * later in the device probing.
549 * Returns 0 if no settings found.
551 unsigned long netdev_boot_base(const char *prefix, int unit)
553 const struct netdev_boot_setup *s = dev_boot_setup;
554 char name[IFNAMSIZ];
555 int i;
557 sprintf(name, "%s%d", prefix, unit);
560 * If device already registered then return base of 1
561 * to indicate not to probe for this interface
563 if (__dev_get_by_name(&init_net, name))
564 return 1;
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
567 if (!strcmp(name, s[i].name))
568 return s[i].map.base_addr;
569 return 0;
573 * Saves at boot time configured settings for any netdevice.
575 int __init netdev_boot_setup(char *str)
577 int ints[5];
578 struct ifmap map;
580 str = get_options(str, ARRAY_SIZE(ints), ints);
581 if (!str || !*str)
582 return 0;
584 /* Save settings */
585 memset(&map, 0, sizeof(map));
586 if (ints[0] > 0)
587 map.irq = ints[1];
588 if (ints[0] > 1)
589 map.base_addr = ints[2];
590 if (ints[0] > 2)
591 map.mem_start = ints[3];
592 if (ints[0] > 3)
593 map.mem_end = ints[4];
595 /* Add new entry to the list */
596 return netdev_boot_setup_add(str, &map);
599 __setup("netdev=", netdev_boot_setup);
601 /*******************************************************************************
603 Device Interface Subroutines
605 *******************************************************************************/
608 * __dev_get_by_name - find a device by its name
609 * @net: the applicable net namespace
610 * @name: name to find
612 * Find an interface by name. Must be called under RTNL semaphore
613 * or @dev_base_lock. If the name is found a pointer to the device
614 * is returned. If the name is not found then %NULL is returned. The
615 * reference counters are not incremented so the caller must be
616 * careful with locks.
619 struct net_device *__dev_get_by_name(struct net *net, const char *name)
621 struct hlist_node *p;
622 struct net_device *dev;
623 struct hlist_head *head = dev_name_hash(net, name);
625 hlist_for_each_entry(dev, p, head, name_hlist)
626 if (!strncmp(dev->name, name, IFNAMSIZ))
627 return dev;
629 return NULL;
631 EXPORT_SYMBOL(__dev_get_by_name);
634 * dev_get_by_name_rcu - find a device by its name
635 * @net: the applicable net namespace
636 * @name: name to find
638 * Find an interface by name.
639 * If the name is found a pointer to the device is returned.
640 * If the name is not found then %NULL is returned.
641 * The reference counters are not incremented so the caller must be
642 * careful with locks. The caller must hold RCU lock.
645 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
647 struct hlist_node *p;
648 struct net_device *dev;
649 struct hlist_head *head = dev_name_hash(net, name);
651 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
652 if (!strncmp(dev->name, name, IFNAMSIZ))
653 return dev;
655 return NULL;
657 EXPORT_SYMBOL(dev_get_by_name_rcu);
660 * dev_get_by_name - find a device by its name
661 * @net: the applicable net namespace
662 * @name: name to find
664 * Find an interface by name. This can be called from any
665 * context and does its own locking. The returned handle has
666 * the usage count incremented and the caller must use dev_put() to
667 * release it when it is no longer needed. %NULL is returned if no
668 * matching device is found.
671 struct net_device *dev_get_by_name(struct net *net, const char *name)
673 struct net_device *dev;
675 rcu_read_lock();
676 dev = dev_get_by_name_rcu(net, name);
677 if (dev)
678 dev_hold(dev);
679 rcu_read_unlock();
680 return dev;
682 EXPORT_SYMBOL(dev_get_by_name);
685 * __dev_get_by_index - find a device by its ifindex
686 * @net: the applicable net namespace
687 * @ifindex: index of device
689 * Search for an interface by index. Returns %NULL if the device
690 * is not found or a pointer to the device. The device has not
691 * had its reference counter increased so the caller must be careful
692 * about locking. The caller must hold either the RTNL semaphore
693 * or @dev_base_lock.
696 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
698 struct hlist_node *p;
699 struct net_device *dev;
700 struct hlist_head *head = dev_index_hash(net, ifindex);
702 hlist_for_each_entry(dev, p, head, index_hlist)
703 if (dev->ifindex == ifindex)
704 return dev;
706 return NULL;
708 EXPORT_SYMBOL(__dev_get_by_index);
711 * dev_get_by_index_rcu - find a device by its ifindex
712 * @net: the applicable net namespace
713 * @ifindex: index of device
715 * Search for an interface by index. Returns %NULL if the device
716 * is not found or a pointer to the device. The device has not
717 * had its reference counter increased so the caller must be careful
718 * about locking. The caller must hold RCU lock.
721 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
723 struct hlist_node *p;
724 struct net_device *dev;
725 struct hlist_head *head = dev_index_hash(net, ifindex);
727 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
728 if (dev->ifindex == ifindex)
729 return dev;
731 return NULL;
733 EXPORT_SYMBOL(dev_get_by_index_rcu);
737 * dev_get_by_index - find a device by its ifindex
738 * @net: the applicable net namespace
739 * @ifindex: index of device
741 * Search for an interface by index. Returns NULL if the device
742 * is not found or a pointer to the device. The device returned has
743 * had a reference added and the pointer is safe until the user calls
744 * dev_put to indicate they have finished with it.
747 struct net_device *dev_get_by_index(struct net *net, int ifindex)
749 struct net_device *dev;
751 rcu_read_lock();
752 dev = dev_get_by_index_rcu(net, ifindex);
753 if (dev)
754 dev_hold(dev);
755 rcu_read_unlock();
756 return dev;
758 EXPORT_SYMBOL(dev_get_by_index);
761 * dev_getbyhwaddr_rcu - find a device by its hardware address
762 * @net: the applicable net namespace
763 * @type: media type of device
764 * @ha: hardware address
766 * Search for an interface by MAC address. Returns NULL if the device
767 * is not found or a pointer to the device.
768 * The caller must hold RCU or RTNL.
769 * The returned device has not had its ref count increased
770 * and the caller must therefore be careful about locking
774 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
775 const char *ha)
777 struct net_device *dev;
779 for_each_netdev_rcu(net, dev)
780 if (dev->type == type &&
781 !memcmp(dev->dev_addr, ha, dev->addr_len))
782 return dev;
784 return NULL;
786 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
788 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 struct net_device *dev;
792 ASSERT_RTNL();
793 for_each_netdev(net, dev)
794 if (dev->type == type)
795 return dev;
797 return NULL;
799 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
801 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
803 struct net_device *dev, *ret = NULL;
805 rcu_read_lock();
806 for_each_netdev_rcu(net, dev)
807 if (dev->type == type) {
808 dev_hold(dev);
809 ret = dev;
810 break;
812 rcu_read_unlock();
813 return ret;
815 EXPORT_SYMBOL(dev_getfirstbyhwtype);
818 * dev_get_by_flags_rcu - find any device with given flags
819 * @net: the applicable net namespace
820 * @if_flags: IFF_* values
821 * @mask: bitmask of bits in if_flags to check
823 * Search for any interface with the given flags. Returns NULL if a device
824 * is not found or a pointer to the device. Must be called inside
825 * rcu_read_lock(), and result refcount is unchanged.
828 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
829 unsigned short mask)
831 struct net_device *dev, *ret;
833 ret = NULL;
834 for_each_netdev_rcu(net, dev) {
835 if (((dev->flags ^ if_flags) & mask) == 0) {
836 ret = dev;
837 break;
840 return ret;
842 EXPORT_SYMBOL(dev_get_by_flags_rcu);
845 * dev_valid_name - check if name is okay for network device
846 * @name: name string
848 * Network device names need to be valid file names to
849 * to allow sysfs to work. We also disallow any kind of
850 * whitespace.
852 int dev_valid_name(const char *name)
854 if (*name == '\0')
855 return 0;
856 if (strlen(name) >= IFNAMSIZ)
857 return 0;
858 if (!strcmp(name, ".") || !strcmp(name, ".."))
859 return 0;
861 while (*name) {
862 if (*name == '/' || isspace(*name))
863 return 0;
864 name++;
866 return 1;
868 EXPORT_SYMBOL(dev_valid_name);
871 * __dev_alloc_name - allocate a name for a device
872 * @net: network namespace to allocate the device name in
873 * @name: name format string
874 * @buf: scratch buffer and result name string
876 * Passed a format string - eg "lt%d" it will try and find a suitable
877 * id. It scans list of devices to build up a free map, then chooses
878 * the first empty slot. The caller must hold the dev_base or rtnl lock
879 * while allocating the name and adding the device in order to avoid
880 * duplicates.
881 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
882 * Returns the number of the unit assigned or a negative errno code.
885 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
887 int i = 0;
888 const char *p;
889 const int max_netdevices = 8*PAGE_SIZE;
890 unsigned long *inuse;
891 struct net_device *d;
893 p = strnchr(name, IFNAMSIZ-1, '%');
894 if (p) {
896 * Verify the string as this thing may have come from
897 * the user. There must be either one "%d" and no other "%"
898 * characters.
900 if (p[1] != 'd' || strchr(p + 2, '%'))
901 return -EINVAL;
903 /* Use one page as a bit array of possible slots */
904 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
905 if (!inuse)
906 return -ENOMEM;
908 for_each_netdev(net, d) {
909 if (!sscanf(d->name, name, &i))
910 continue;
911 if (i < 0 || i >= max_netdevices)
912 continue;
914 /* avoid cases where sscanf is not exact inverse of printf */
915 snprintf(buf, IFNAMSIZ, name, i);
916 if (!strncmp(buf, d->name, IFNAMSIZ))
917 set_bit(i, inuse);
920 i = find_first_zero_bit(inuse, max_netdevices);
921 free_page((unsigned long) inuse);
924 if (buf != name)
925 snprintf(buf, IFNAMSIZ, name, i);
926 if (!__dev_get_by_name(net, buf))
927 return i;
929 /* It is possible to run out of possible slots
930 * when the name is long and there isn't enough space left
931 * for the digits, or if all bits are used.
933 return -ENFILE;
937 * dev_alloc_name - allocate a name for a device
938 * @dev: device
939 * @name: name format string
941 * Passed a format string - eg "lt%d" it will try and find a suitable
942 * id. It scans list of devices to build up a free map, then chooses
943 * the first empty slot. The caller must hold the dev_base or rtnl lock
944 * while allocating the name and adding the device in order to avoid
945 * duplicates.
946 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
947 * Returns the number of the unit assigned or a negative errno code.
950 int dev_alloc_name(struct net_device *dev, const char *name)
952 char buf[IFNAMSIZ];
953 struct net *net;
954 int ret;
956 BUG_ON(!dev_net(dev));
957 net = dev_net(dev);
958 ret = __dev_alloc_name(net, name, buf);
959 if (ret >= 0)
960 strlcpy(dev->name, buf, IFNAMSIZ);
961 return ret;
963 EXPORT_SYMBOL(dev_alloc_name);
965 static int dev_get_valid_name(struct net_device *dev, const char *name)
967 struct net *net;
969 BUG_ON(!dev_net(dev));
970 net = dev_net(dev);
972 if (!dev_valid_name(name))
973 return -EINVAL;
975 if (strchr(name, '%'))
976 return dev_alloc_name(dev, name);
977 else if (__dev_get_by_name(net, name))
978 return -EEXIST;
979 else if (dev->name != name)
980 strlcpy(dev->name, name, IFNAMSIZ);
982 return 0;
986 * dev_change_name - change name of a device
987 * @dev: device
988 * @newname: name (or format string) must be at least IFNAMSIZ
990 * Change name of a device, can pass format strings "eth%d".
991 * for wildcarding.
993 int dev_change_name(struct net_device *dev, const char *newname)
995 char oldname[IFNAMSIZ];
996 int err = 0;
997 int ret;
998 struct net *net;
1000 ASSERT_RTNL();
1001 BUG_ON(!dev_net(dev));
1003 net = dev_net(dev);
1004 if (dev->flags & IFF_UP)
1005 return -EBUSY;
1007 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1008 return 0;
1010 memcpy(oldname, dev->name, IFNAMSIZ);
1012 err = dev_get_valid_name(dev, newname);
1013 if (err < 0)
1014 return err;
1016 rollback:
1017 ret = device_rename(&dev->dev, dev->name);
1018 if (ret) {
1019 memcpy(dev->name, oldname, IFNAMSIZ);
1020 return ret;
1023 write_lock_bh(&dev_base_lock);
1024 hlist_del_rcu(&dev->name_hlist);
1025 write_unlock_bh(&dev_base_lock);
1027 synchronize_rcu();
1029 write_lock_bh(&dev_base_lock);
1030 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1031 write_unlock_bh(&dev_base_lock);
1033 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1034 ret = notifier_to_errno(ret);
1036 if (ret) {
1037 /* err >= 0 after dev_alloc_name() or stores the first errno */
1038 if (err >= 0) {
1039 err = ret;
1040 memcpy(dev->name, oldname, IFNAMSIZ);
1041 goto rollback;
1042 } else {
1043 printk(KERN_ERR
1044 "%s: name change rollback failed: %d.\n",
1045 dev->name, ret);
1049 return err;
1053 * dev_set_alias - change ifalias of a device
1054 * @dev: device
1055 * @alias: name up to IFALIASZ
1056 * @len: limit of bytes to copy from info
1058 * Set ifalias for a device,
1060 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1062 ASSERT_RTNL();
1064 if (len >= IFALIASZ)
1065 return -EINVAL;
1067 if (!len) {
1068 if (dev->ifalias) {
1069 kfree(dev->ifalias);
1070 dev->ifalias = NULL;
1072 return 0;
1075 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1076 if (!dev->ifalias)
1077 return -ENOMEM;
1079 strlcpy(dev->ifalias, alias, len+1);
1080 return len;
1085 * netdev_features_change - device changes features
1086 * @dev: device to cause notification
1088 * Called to indicate a device has changed features.
1090 void netdev_features_change(struct net_device *dev)
1092 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1094 EXPORT_SYMBOL(netdev_features_change);
1097 * netdev_state_change - device changes state
1098 * @dev: device to cause notification
1100 * Called to indicate a device has changed state. This function calls
1101 * the notifier chains for netdev_chain and sends a NEWLINK message
1102 * to the routing socket.
1104 void netdev_state_change(struct net_device *dev)
1106 if (dev->flags & IFF_UP) {
1107 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1108 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1111 EXPORT_SYMBOL(netdev_state_change);
1113 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1115 return call_netdevice_notifiers(event, dev);
1117 EXPORT_SYMBOL(netdev_bonding_change);
1120 * dev_load - load a network module
1121 * @net: the applicable net namespace
1122 * @name: name of interface
1124 * If a network interface is not present and the process has suitable
1125 * privileges this function loads the module. If module loading is not
1126 * available in this kernel then it becomes a nop.
1129 void dev_load(struct net *net, const char *name)
1131 struct net_device *dev;
1132 int no_module;
1134 rcu_read_lock();
1135 dev = dev_get_by_name_rcu(net, name);
1136 rcu_read_unlock();
1138 no_module = !dev;
1139 if (no_module && capable(CAP_NET_ADMIN))
1140 no_module = request_module("netdev-%s", name);
1141 if (no_module && capable(CAP_SYS_MODULE)) {
1142 if (!request_module("%s", name))
1143 pr_err("Loading kernel module for a network device "
1144 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1145 "instead\n", name);
1148 EXPORT_SYMBOL(dev_load);
1150 static int __dev_open(struct net_device *dev)
1152 const struct net_device_ops *ops = dev->netdev_ops;
1153 int ret;
1155 ASSERT_RTNL();
1157 if (!netif_device_present(dev))
1158 return -ENODEV;
1160 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1161 ret = notifier_to_errno(ret);
1162 if (ret)
1163 return ret;
1165 set_bit(__LINK_STATE_START, &dev->state);
1167 if (ops->ndo_validate_addr)
1168 ret = ops->ndo_validate_addr(dev);
1170 if (!ret && ops->ndo_open)
1171 ret = ops->ndo_open(dev);
1173 if (ret)
1174 clear_bit(__LINK_STATE_START, &dev->state);
1175 else {
1176 dev->flags |= IFF_UP;
1177 net_dmaengine_get();
1178 dev_set_rx_mode(dev);
1179 dev_activate(dev);
1182 return ret;
1186 * dev_open - prepare an interface for use.
1187 * @dev: device to open
1189 * Takes a device from down to up state. The device's private open
1190 * function is invoked and then the multicast lists are loaded. Finally
1191 * the device is moved into the up state and a %NETDEV_UP message is
1192 * sent to the netdev notifier chain.
1194 * Calling this function on an active interface is a nop. On a failure
1195 * a negative errno code is returned.
1197 int dev_open(struct net_device *dev)
1199 int ret;
1201 if (dev->flags & IFF_UP)
1202 return 0;
1204 ret = __dev_open(dev);
1205 if (ret < 0)
1206 return ret;
1208 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1209 call_netdevice_notifiers(NETDEV_UP, dev);
1211 return ret;
1213 EXPORT_SYMBOL(dev_open);
1215 static int __dev_close_many(struct list_head *head)
1217 struct net_device *dev;
1219 ASSERT_RTNL();
1220 might_sleep();
1222 list_for_each_entry(dev, head, unreg_list) {
1223 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1225 clear_bit(__LINK_STATE_START, &dev->state);
1227 /* Synchronize to scheduled poll. We cannot touch poll list, it
1228 * can be even on different cpu. So just clear netif_running().
1230 * dev->stop() will invoke napi_disable() on all of it's
1231 * napi_struct instances on this device.
1233 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1236 dev_deactivate_many(head);
1238 list_for_each_entry(dev, head, unreg_list) {
1239 const struct net_device_ops *ops = dev->netdev_ops;
1242 * Call the device specific close. This cannot fail.
1243 * Only if device is UP
1245 * We allow it to be called even after a DETACH hot-plug
1246 * event.
1248 if (ops->ndo_stop)
1249 ops->ndo_stop(dev);
1251 dev->flags &= ~IFF_UP;
1252 net_dmaengine_put();
1255 return 0;
1258 static int __dev_close(struct net_device *dev)
1260 int retval;
1261 LIST_HEAD(single);
1263 list_add(&dev->unreg_list, &single);
1264 retval = __dev_close_many(&single);
1265 list_del(&single);
1266 return retval;
1269 static int dev_close_many(struct list_head *head)
1271 struct net_device *dev, *tmp;
1272 LIST_HEAD(tmp_list);
1274 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1275 if (!(dev->flags & IFF_UP))
1276 list_move(&dev->unreg_list, &tmp_list);
1278 __dev_close_many(head);
1280 list_for_each_entry(dev, head, unreg_list) {
1281 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1282 call_netdevice_notifiers(NETDEV_DOWN, dev);
1285 /* rollback_registered_many needs the complete original list */
1286 list_splice(&tmp_list, head);
1287 return 0;
1291 * dev_close - shutdown an interface.
1292 * @dev: device to shutdown
1294 * This function moves an active device into down state. A
1295 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1296 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1297 * chain.
1299 int dev_close(struct net_device *dev)
1301 if (dev->flags & IFF_UP) {
1302 LIST_HEAD(single);
1304 list_add(&dev->unreg_list, &single);
1305 dev_close_many(&single);
1306 list_del(&single);
1308 return 0;
1310 EXPORT_SYMBOL(dev_close);
1314 * dev_disable_lro - disable Large Receive Offload on a device
1315 * @dev: device
1317 * Disable Large Receive Offload (LRO) on a net device. Must be
1318 * called under RTNL. This is needed if received packets may be
1319 * forwarded to another interface.
1321 void dev_disable_lro(struct net_device *dev)
1323 u32 flags;
1326 * If we're trying to disable lro on a vlan device
1327 * use the underlying physical device instead
1329 if (is_vlan_dev(dev))
1330 dev = vlan_dev_real_dev(dev);
1332 if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1333 flags = dev->ethtool_ops->get_flags(dev);
1334 else
1335 flags = ethtool_op_get_flags(dev);
1337 if (!(flags & ETH_FLAG_LRO))
1338 return;
1340 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1341 if (unlikely(dev->features & NETIF_F_LRO))
1342 netdev_WARN(dev, "failed to disable LRO!\n");
1344 EXPORT_SYMBOL(dev_disable_lro);
1347 static int dev_boot_phase = 1;
1350 * register_netdevice_notifier - register a network notifier block
1351 * @nb: notifier
1353 * Register a notifier to be called when network device events occur.
1354 * The notifier passed is linked into the kernel structures and must
1355 * not be reused until it has been unregistered. A negative errno code
1356 * is returned on a failure.
1358 * When registered all registration and up events are replayed
1359 * to the new notifier to allow device to have a race free
1360 * view of the network device list.
1363 int register_netdevice_notifier(struct notifier_block *nb)
1365 struct net_device *dev;
1366 struct net_device *last;
1367 struct net *net;
1368 int err;
1370 rtnl_lock();
1371 err = raw_notifier_chain_register(&netdev_chain, nb);
1372 if (err)
1373 goto unlock;
1374 if (dev_boot_phase)
1375 goto unlock;
1376 for_each_net(net) {
1377 for_each_netdev(net, dev) {
1378 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1379 err = notifier_to_errno(err);
1380 if (err)
1381 goto rollback;
1383 if (!(dev->flags & IFF_UP))
1384 continue;
1386 nb->notifier_call(nb, NETDEV_UP, dev);
1390 unlock:
1391 rtnl_unlock();
1392 return err;
1394 rollback:
1395 last = dev;
1396 for_each_net(net) {
1397 for_each_netdev(net, dev) {
1398 if (dev == last)
1399 goto outroll;
1401 if (dev->flags & IFF_UP) {
1402 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1403 nb->notifier_call(nb, NETDEV_DOWN, dev);
1405 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1406 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1410 outroll:
1411 raw_notifier_chain_unregister(&netdev_chain, nb);
1412 goto unlock;
1414 EXPORT_SYMBOL(register_netdevice_notifier);
1417 * unregister_netdevice_notifier - unregister a network notifier block
1418 * @nb: notifier
1420 * Unregister a notifier previously registered by
1421 * register_netdevice_notifier(). The notifier is unlinked into the
1422 * kernel structures and may then be reused. A negative errno code
1423 * is returned on a failure.
1426 int unregister_netdevice_notifier(struct notifier_block *nb)
1428 int err;
1430 rtnl_lock();
1431 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1432 rtnl_unlock();
1433 return err;
1435 EXPORT_SYMBOL(unregister_netdevice_notifier);
1438 * call_netdevice_notifiers - call all network notifier blocks
1439 * @val: value passed unmodified to notifier function
1440 * @dev: net_device pointer passed unmodified to notifier function
1442 * Call all network notifier blocks. Parameters and return value
1443 * are as for raw_notifier_call_chain().
1446 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1448 ASSERT_RTNL();
1449 return raw_notifier_call_chain(&netdev_chain, val, dev);
1451 EXPORT_SYMBOL(call_netdevice_notifiers);
1453 /* When > 0 there are consumers of rx skb time stamps */
1454 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1456 void net_enable_timestamp(void)
1458 atomic_inc(&netstamp_needed);
1460 EXPORT_SYMBOL(net_enable_timestamp);
1462 void net_disable_timestamp(void)
1464 atomic_dec(&netstamp_needed);
1466 EXPORT_SYMBOL(net_disable_timestamp);
1468 static inline void net_timestamp_set(struct sk_buff *skb)
1470 if (atomic_read(&netstamp_needed))
1471 __net_timestamp(skb);
1472 else
1473 skb->tstamp.tv64 = 0;
1476 static inline void net_timestamp_check(struct sk_buff *skb)
1478 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1479 __net_timestamp(skb);
1482 static int net_hwtstamp_validate(struct ifreq *ifr)
1484 struct hwtstamp_config cfg;
1485 enum hwtstamp_tx_types tx_type;
1486 enum hwtstamp_rx_filters rx_filter;
1487 int tx_type_valid = 0;
1488 int rx_filter_valid = 0;
1490 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1491 return -EFAULT;
1493 if (cfg.flags) /* reserved for future extensions */
1494 return -EINVAL;
1496 tx_type = cfg.tx_type;
1497 rx_filter = cfg.rx_filter;
1499 switch (tx_type) {
1500 case HWTSTAMP_TX_OFF:
1501 case HWTSTAMP_TX_ON:
1502 case HWTSTAMP_TX_ONESTEP_SYNC:
1503 tx_type_valid = 1;
1504 break;
1507 switch (rx_filter) {
1508 case HWTSTAMP_FILTER_NONE:
1509 case HWTSTAMP_FILTER_ALL:
1510 case HWTSTAMP_FILTER_SOME:
1511 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1512 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1513 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1514 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1515 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1516 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1517 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1518 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1519 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1520 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1521 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1522 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1523 rx_filter_valid = 1;
1524 break;
1527 if (!tx_type_valid || !rx_filter_valid)
1528 return -ERANGE;
1530 return 0;
1533 static inline bool is_skb_forwardable(struct net_device *dev,
1534 struct sk_buff *skb)
1536 unsigned int len;
1538 if (!(dev->flags & IFF_UP))
1539 return false;
1541 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1542 if (skb->len <= len)
1543 return true;
1545 /* if TSO is enabled, we don't care about the length as the packet
1546 * could be forwarded without being segmented before
1548 if (skb_is_gso(skb))
1549 return true;
1551 return false;
1555 * dev_forward_skb - loopback an skb to another netif
1557 * @dev: destination network device
1558 * @skb: buffer to forward
1560 * return values:
1561 * NET_RX_SUCCESS (no congestion)
1562 * NET_RX_DROP (packet was dropped, but freed)
1564 * dev_forward_skb can be used for injecting an skb from the
1565 * start_xmit function of one device into the receive queue
1566 * of another device.
1568 * The receiving device may be in another namespace, so
1569 * we have to clear all information in the skb that could
1570 * impact namespace isolation.
1572 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1574 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1575 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1576 atomic_long_inc(&dev->rx_dropped);
1577 kfree_skb(skb);
1578 return NET_RX_DROP;
1582 skb_orphan(skb);
1583 nf_reset(skb);
1585 if (unlikely(!is_skb_forwardable(dev, skb))) {
1586 atomic_long_inc(&dev->rx_dropped);
1587 kfree_skb(skb);
1588 return NET_RX_DROP;
1590 skb_set_dev(skb, dev);
1591 skb->tstamp.tv64 = 0;
1592 skb->pkt_type = PACKET_HOST;
1593 skb->protocol = eth_type_trans(skb, dev);
1594 return netif_rx(skb);
1596 EXPORT_SYMBOL_GPL(dev_forward_skb);
1598 static inline int deliver_skb(struct sk_buff *skb,
1599 struct packet_type *pt_prev,
1600 struct net_device *orig_dev)
1602 atomic_inc(&skb->users);
1603 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1607 * Support routine. Sends outgoing frames to any network
1608 * taps currently in use.
1611 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1613 struct packet_type *ptype;
1614 struct sk_buff *skb2 = NULL;
1615 struct packet_type *pt_prev = NULL;
1617 rcu_read_lock();
1618 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1619 /* Never send packets back to the socket
1620 * they originated from - MvS (miquels@drinkel.ow.org)
1622 if ((ptype->dev == dev || !ptype->dev) &&
1623 (ptype->af_packet_priv == NULL ||
1624 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1625 if (pt_prev) {
1626 deliver_skb(skb2, pt_prev, skb->dev);
1627 pt_prev = ptype;
1628 continue;
1631 skb2 = skb_clone(skb, GFP_ATOMIC);
1632 if (!skb2)
1633 break;
1635 net_timestamp_set(skb2);
1637 /* skb->nh should be correctly
1638 set by sender, so that the second statement is
1639 just protection against buggy protocols.
1641 skb_reset_mac_header(skb2);
1643 if (skb_network_header(skb2) < skb2->data ||
1644 skb2->network_header > skb2->tail) {
1645 if (net_ratelimit())
1646 printk(KERN_CRIT "protocol %04x is "
1647 "buggy, dev %s\n",
1648 ntohs(skb2->protocol),
1649 dev->name);
1650 skb_reset_network_header(skb2);
1653 skb2->transport_header = skb2->network_header;
1654 skb2->pkt_type = PACKET_OUTGOING;
1655 pt_prev = ptype;
1658 if (pt_prev)
1659 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1660 rcu_read_unlock();
1663 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1664 * @dev: Network device
1665 * @txq: number of queues available
1667 * If real_num_tx_queues is changed the tc mappings may no longer be
1668 * valid. To resolve this verify the tc mapping remains valid and if
1669 * not NULL the mapping. With no priorities mapping to this
1670 * offset/count pair it will no longer be used. In the worst case TC0
1671 * is invalid nothing can be done so disable priority mappings. If is
1672 * expected that drivers will fix this mapping if they can before
1673 * calling netif_set_real_num_tx_queues.
1675 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1677 int i;
1678 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1680 /* If TC0 is invalidated disable TC mapping */
1681 if (tc->offset + tc->count > txq) {
1682 pr_warning("Number of in use tx queues changed "
1683 "invalidating tc mappings. Priority "
1684 "traffic classification disabled!\n");
1685 dev->num_tc = 0;
1686 return;
1689 /* Invalidated prio to tc mappings set to TC0 */
1690 for (i = 1; i < TC_BITMASK + 1; i++) {
1691 int q = netdev_get_prio_tc_map(dev, i);
1693 tc = &dev->tc_to_txq[q];
1694 if (tc->offset + tc->count > txq) {
1695 pr_warning("Number of in use tx queues "
1696 "changed. Priority %i to tc "
1697 "mapping %i is no longer valid "
1698 "setting map to 0\n",
1699 i, q);
1700 netdev_set_prio_tc_map(dev, i, 0);
1706 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1707 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1709 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1711 int rc;
1713 if (txq < 1 || txq > dev->num_tx_queues)
1714 return -EINVAL;
1716 if (dev->reg_state == NETREG_REGISTERED ||
1717 dev->reg_state == NETREG_UNREGISTERING) {
1718 ASSERT_RTNL();
1720 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1721 txq);
1722 if (rc)
1723 return rc;
1725 if (dev->num_tc)
1726 netif_setup_tc(dev, txq);
1728 if (txq < dev->real_num_tx_queues)
1729 qdisc_reset_all_tx_gt(dev, txq);
1732 dev->real_num_tx_queues = txq;
1733 return 0;
1735 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1737 #ifdef CONFIG_RPS
1739 * netif_set_real_num_rx_queues - set actual number of RX queues used
1740 * @dev: Network device
1741 * @rxq: Actual number of RX queues
1743 * This must be called either with the rtnl_lock held or before
1744 * registration of the net device. Returns 0 on success, or a
1745 * negative error code. If called before registration, it always
1746 * succeeds.
1748 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1750 int rc;
1752 if (rxq < 1 || rxq > dev->num_rx_queues)
1753 return -EINVAL;
1755 if (dev->reg_state == NETREG_REGISTERED) {
1756 ASSERT_RTNL();
1758 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1759 rxq);
1760 if (rc)
1761 return rc;
1764 dev->real_num_rx_queues = rxq;
1765 return 0;
1767 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1768 #endif
1770 static inline void __netif_reschedule(struct Qdisc *q)
1772 struct softnet_data *sd;
1773 unsigned long flags;
1775 local_irq_save(flags);
1776 sd = &__get_cpu_var(softnet_data);
1777 q->next_sched = NULL;
1778 *sd->output_queue_tailp = q;
1779 sd->output_queue_tailp = &q->next_sched;
1780 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1781 local_irq_restore(flags);
1784 void __netif_schedule(struct Qdisc *q)
1786 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1787 __netif_reschedule(q);
1789 EXPORT_SYMBOL(__netif_schedule);
1791 void dev_kfree_skb_irq(struct sk_buff *skb)
1793 if (atomic_dec_and_test(&skb->users)) {
1794 struct softnet_data *sd;
1795 unsigned long flags;
1797 local_irq_save(flags);
1798 sd = &__get_cpu_var(softnet_data);
1799 skb->next = sd->completion_queue;
1800 sd->completion_queue = skb;
1801 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1802 local_irq_restore(flags);
1805 EXPORT_SYMBOL(dev_kfree_skb_irq);
1807 void dev_kfree_skb_any(struct sk_buff *skb)
1809 if (in_irq() || irqs_disabled())
1810 dev_kfree_skb_irq(skb);
1811 else
1812 dev_kfree_skb(skb);
1814 EXPORT_SYMBOL(dev_kfree_skb_any);
1818 * netif_device_detach - mark device as removed
1819 * @dev: network device
1821 * Mark device as removed from system and therefore no longer available.
1823 void netif_device_detach(struct net_device *dev)
1825 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1826 netif_running(dev)) {
1827 netif_tx_stop_all_queues(dev);
1830 EXPORT_SYMBOL(netif_device_detach);
1833 * netif_device_attach - mark device as attached
1834 * @dev: network device
1836 * Mark device as attached from system and restart if needed.
1838 void netif_device_attach(struct net_device *dev)
1840 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1841 netif_running(dev)) {
1842 netif_tx_wake_all_queues(dev);
1843 __netdev_watchdog_up(dev);
1846 EXPORT_SYMBOL(netif_device_attach);
1849 * skb_dev_set -- assign a new device to a buffer
1850 * @skb: buffer for the new device
1851 * @dev: network device
1853 * If an skb is owned by a device already, we have to reset
1854 * all data private to the namespace a device belongs to
1855 * before assigning it a new device.
1857 #ifdef CONFIG_NET_NS
1858 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1860 skb_dst_drop(skb);
1861 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1862 secpath_reset(skb);
1863 nf_reset(skb);
1864 skb_init_secmark(skb);
1865 skb->mark = 0;
1866 skb->priority = 0;
1867 skb->nf_trace = 0;
1868 skb->ipvs_property = 0;
1869 #ifdef CONFIG_NET_SCHED
1870 skb->tc_index = 0;
1871 #endif
1873 skb->dev = dev;
1875 EXPORT_SYMBOL(skb_set_dev);
1876 #endif /* CONFIG_NET_NS */
1879 * Invalidate hardware checksum when packet is to be mangled, and
1880 * complete checksum manually on outgoing path.
1882 int skb_checksum_help(struct sk_buff *skb)
1884 __wsum csum;
1885 int ret = 0, offset;
1887 if (skb->ip_summed == CHECKSUM_COMPLETE)
1888 goto out_set_summed;
1890 if (unlikely(skb_shinfo(skb)->gso_size)) {
1891 /* Let GSO fix up the checksum. */
1892 goto out_set_summed;
1895 offset = skb_checksum_start_offset(skb);
1896 BUG_ON(offset >= skb_headlen(skb));
1897 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1899 offset += skb->csum_offset;
1900 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1902 if (skb_cloned(skb) &&
1903 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1904 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1905 if (ret)
1906 goto out;
1909 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1910 out_set_summed:
1911 skb->ip_summed = CHECKSUM_NONE;
1912 out:
1913 return ret;
1915 EXPORT_SYMBOL(skb_checksum_help);
1918 * skb_gso_segment - Perform segmentation on skb.
1919 * @skb: buffer to segment
1920 * @features: features for the output path (see dev->features)
1922 * This function segments the given skb and returns a list of segments.
1924 * It may return NULL if the skb requires no segmentation. This is
1925 * only possible when GSO is used for verifying header integrity.
1927 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1929 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1930 struct packet_type *ptype;
1931 __be16 type = skb->protocol;
1932 int vlan_depth = ETH_HLEN;
1933 int err;
1935 while (type == htons(ETH_P_8021Q)) {
1936 struct vlan_hdr *vh;
1938 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1939 return ERR_PTR(-EINVAL);
1941 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1942 type = vh->h_vlan_encapsulated_proto;
1943 vlan_depth += VLAN_HLEN;
1946 skb_reset_mac_header(skb);
1947 skb->mac_len = skb->network_header - skb->mac_header;
1948 __skb_pull(skb, skb->mac_len);
1950 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1951 struct net_device *dev = skb->dev;
1952 struct ethtool_drvinfo info = {};
1954 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1955 dev->ethtool_ops->get_drvinfo(dev, &info);
1957 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1958 info.driver, dev ? dev->features : 0L,
1959 skb->sk ? skb->sk->sk_route_caps : 0L,
1960 skb->len, skb->data_len, skb->ip_summed);
1962 if (skb_header_cloned(skb) &&
1963 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1964 return ERR_PTR(err);
1967 rcu_read_lock();
1968 list_for_each_entry_rcu(ptype,
1969 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1970 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1971 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1972 err = ptype->gso_send_check(skb);
1973 segs = ERR_PTR(err);
1974 if (err || skb_gso_ok(skb, features))
1975 break;
1976 __skb_push(skb, (skb->data -
1977 skb_network_header(skb)));
1979 segs = ptype->gso_segment(skb, features);
1980 break;
1983 rcu_read_unlock();
1985 __skb_push(skb, skb->data - skb_mac_header(skb));
1987 return segs;
1989 EXPORT_SYMBOL(skb_gso_segment);
1991 /* Take action when hardware reception checksum errors are detected. */
1992 #ifdef CONFIG_BUG
1993 void netdev_rx_csum_fault(struct net_device *dev)
1995 if (net_ratelimit()) {
1996 printk(KERN_ERR "%s: hw csum failure.\n",
1997 dev ? dev->name : "<unknown>");
1998 dump_stack();
2001 EXPORT_SYMBOL(netdev_rx_csum_fault);
2002 #endif
2004 /* Actually, we should eliminate this check as soon as we know, that:
2005 * 1. IOMMU is present and allows to map all the memory.
2006 * 2. No high memory really exists on this machine.
2009 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2011 #ifdef CONFIG_HIGHMEM
2012 int i;
2013 if (!(dev->features & NETIF_F_HIGHDMA)) {
2014 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2015 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2016 if (PageHighMem(skb_frag_page(frag)))
2017 return 1;
2021 if (PCI_DMA_BUS_IS_PHYS) {
2022 struct device *pdev = dev->dev.parent;
2024 if (!pdev)
2025 return 0;
2026 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2027 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2028 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2029 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2030 return 1;
2033 #endif
2034 return 0;
2037 struct dev_gso_cb {
2038 void (*destructor)(struct sk_buff *skb);
2041 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2043 static void dev_gso_skb_destructor(struct sk_buff *skb)
2045 struct dev_gso_cb *cb;
2047 do {
2048 struct sk_buff *nskb = skb->next;
2050 skb->next = nskb->next;
2051 nskb->next = NULL;
2052 kfree_skb(nskb);
2053 } while (skb->next);
2055 cb = DEV_GSO_CB(skb);
2056 if (cb->destructor)
2057 cb->destructor(skb);
2061 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2062 * @skb: buffer to segment
2063 * @features: device features as applicable to this skb
2065 * This function segments the given skb and stores the list of segments
2066 * in skb->next.
2068 static int dev_gso_segment(struct sk_buff *skb, int features)
2070 struct sk_buff *segs;
2072 segs = skb_gso_segment(skb, features);
2074 /* Verifying header integrity only. */
2075 if (!segs)
2076 return 0;
2078 if (IS_ERR(segs))
2079 return PTR_ERR(segs);
2081 skb->next = segs;
2082 DEV_GSO_CB(skb)->destructor = skb->destructor;
2083 skb->destructor = dev_gso_skb_destructor;
2085 return 0;
2089 * Try to orphan skb early, right before transmission by the device.
2090 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2091 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2093 static inline void skb_orphan_try(struct sk_buff *skb)
2095 struct sock *sk = skb->sk;
2097 if (sk && !skb_shinfo(skb)->tx_flags) {
2098 /* skb_tx_hash() wont be able to get sk.
2099 * We copy sk_hash into skb->rxhash
2101 if (!skb->rxhash)
2102 skb->rxhash = sk->sk_hash;
2103 skb_orphan(skb);
2107 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2109 return ((features & NETIF_F_GEN_CSUM) ||
2110 ((features & NETIF_F_V4_CSUM) &&
2111 protocol == htons(ETH_P_IP)) ||
2112 ((features & NETIF_F_V6_CSUM) &&
2113 protocol == htons(ETH_P_IPV6)) ||
2114 ((features & NETIF_F_FCOE_CRC) &&
2115 protocol == htons(ETH_P_FCOE)));
2118 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2120 if (!can_checksum_protocol(features, protocol)) {
2121 features &= ~NETIF_F_ALL_CSUM;
2122 features &= ~NETIF_F_SG;
2123 } else if (illegal_highdma(skb->dev, skb)) {
2124 features &= ~NETIF_F_SG;
2127 return features;
2130 u32 netif_skb_features(struct sk_buff *skb)
2132 __be16 protocol = skb->protocol;
2133 u32 features = skb->dev->features;
2135 if (protocol == htons(ETH_P_8021Q)) {
2136 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2137 protocol = veh->h_vlan_encapsulated_proto;
2138 } else if (!vlan_tx_tag_present(skb)) {
2139 return harmonize_features(skb, protocol, features);
2142 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2144 if (protocol != htons(ETH_P_8021Q)) {
2145 return harmonize_features(skb, protocol, features);
2146 } else {
2147 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2148 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2149 return harmonize_features(skb, protocol, features);
2152 EXPORT_SYMBOL(netif_skb_features);
2155 * Returns true if either:
2156 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2157 * 2. skb is fragmented and the device does not support SG, or if
2158 * at least one of fragments is in highmem and device does not
2159 * support DMA from it.
2161 static inline int skb_needs_linearize(struct sk_buff *skb,
2162 int features)
2164 return skb_is_nonlinear(skb) &&
2165 ((skb_has_frag_list(skb) &&
2166 !(features & NETIF_F_FRAGLIST)) ||
2167 (skb_shinfo(skb)->nr_frags &&
2168 !(features & NETIF_F_SG)));
2171 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2172 struct netdev_queue *txq)
2174 const struct net_device_ops *ops = dev->netdev_ops;
2175 int rc = NETDEV_TX_OK;
2176 unsigned int skb_len;
2178 if (likely(!skb->next)) {
2179 u32 features;
2182 * If device doesn't need skb->dst, release it right now while
2183 * its hot in this cpu cache
2185 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2186 skb_dst_drop(skb);
2188 if (!list_empty(&ptype_all))
2189 dev_queue_xmit_nit(skb, dev);
2191 skb_orphan_try(skb);
2193 features = netif_skb_features(skb);
2195 if (vlan_tx_tag_present(skb) &&
2196 !(features & NETIF_F_HW_VLAN_TX)) {
2197 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2198 if (unlikely(!skb))
2199 goto out;
2201 skb->vlan_tci = 0;
2204 if (netif_needs_gso(skb, features)) {
2205 if (unlikely(dev_gso_segment(skb, features)))
2206 goto out_kfree_skb;
2207 if (skb->next)
2208 goto gso;
2209 } else {
2210 if (skb_needs_linearize(skb, features) &&
2211 __skb_linearize(skb))
2212 goto out_kfree_skb;
2214 /* If packet is not checksummed and device does not
2215 * support checksumming for this protocol, complete
2216 * checksumming here.
2218 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2219 skb_set_transport_header(skb,
2220 skb_checksum_start_offset(skb));
2221 if (!(features & NETIF_F_ALL_CSUM) &&
2222 skb_checksum_help(skb))
2223 goto out_kfree_skb;
2227 skb_len = skb->len;
2228 rc = ops->ndo_start_xmit(skb, dev);
2229 trace_net_dev_xmit(skb, rc, dev, skb_len);
2230 if (rc == NETDEV_TX_OK)
2231 txq_trans_update(txq);
2232 return rc;
2235 gso:
2236 do {
2237 struct sk_buff *nskb = skb->next;
2239 skb->next = nskb->next;
2240 nskb->next = NULL;
2243 * If device doesn't need nskb->dst, release it right now while
2244 * its hot in this cpu cache
2246 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2247 skb_dst_drop(nskb);
2249 skb_len = nskb->len;
2250 rc = ops->ndo_start_xmit(nskb, dev);
2251 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2252 if (unlikely(rc != NETDEV_TX_OK)) {
2253 if (rc & ~NETDEV_TX_MASK)
2254 goto out_kfree_gso_skb;
2255 nskb->next = skb->next;
2256 skb->next = nskb;
2257 return rc;
2259 txq_trans_update(txq);
2260 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2261 return NETDEV_TX_BUSY;
2262 } while (skb->next);
2264 out_kfree_gso_skb:
2265 if (likely(skb->next == NULL))
2266 skb->destructor = DEV_GSO_CB(skb)->destructor;
2267 out_kfree_skb:
2268 kfree_skb(skb);
2269 out:
2270 return rc;
2273 static u32 hashrnd __read_mostly;
2276 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2277 * to be used as a distribution range.
2279 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2280 unsigned int num_tx_queues)
2282 u32 hash;
2283 u16 qoffset = 0;
2284 u16 qcount = num_tx_queues;
2286 if (skb_rx_queue_recorded(skb)) {
2287 hash = skb_get_rx_queue(skb);
2288 while (unlikely(hash >= num_tx_queues))
2289 hash -= num_tx_queues;
2290 return hash;
2293 if (dev->num_tc) {
2294 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2295 qoffset = dev->tc_to_txq[tc].offset;
2296 qcount = dev->tc_to_txq[tc].count;
2299 if (skb->sk && skb->sk->sk_hash)
2300 hash = skb->sk->sk_hash;
2301 else
2302 hash = (__force u16) skb->protocol ^ skb->rxhash;
2303 hash = jhash_1word(hash, hashrnd);
2305 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2307 EXPORT_SYMBOL(__skb_tx_hash);
2309 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2311 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2312 if (net_ratelimit()) {
2313 pr_warning("%s selects TX queue %d, but "
2314 "real number of TX queues is %d\n",
2315 dev->name, queue_index, dev->real_num_tx_queues);
2317 return 0;
2319 return queue_index;
2322 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2324 #ifdef CONFIG_XPS
2325 struct xps_dev_maps *dev_maps;
2326 struct xps_map *map;
2327 int queue_index = -1;
2329 rcu_read_lock();
2330 dev_maps = rcu_dereference(dev->xps_maps);
2331 if (dev_maps) {
2332 map = rcu_dereference(
2333 dev_maps->cpu_map[raw_smp_processor_id()]);
2334 if (map) {
2335 if (map->len == 1)
2336 queue_index = map->queues[0];
2337 else {
2338 u32 hash;
2339 if (skb->sk && skb->sk->sk_hash)
2340 hash = skb->sk->sk_hash;
2341 else
2342 hash = (__force u16) skb->protocol ^
2343 skb->rxhash;
2344 hash = jhash_1word(hash, hashrnd);
2345 queue_index = map->queues[
2346 ((u64)hash * map->len) >> 32];
2348 if (unlikely(queue_index >= dev->real_num_tx_queues))
2349 queue_index = -1;
2352 rcu_read_unlock();
2354 return queue_index;
2355 #else
2356 return -1;
2357 #endif
2360 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2361 struct sk_buff *skb)
2363 int queue_index;
2364 const struct net_device_ops *ops = dev->netdev_ops;
2366 if (dev->real_num_tx_queues == 1)
2367 queue_index = 0;
2368 else if (ops->ndo_select_queue) {
2369 queue_index = ops->ndo_select_queue(dev, skb);
2370 queue_index = dev_cap_txqueue(dev, queue_index);
2371 } else {
2372 struct sock *sk = skb->sk;
2373 queue_index = sk_tx_queue_get(sk);
2375 if (queue_index < 0 || skb->ooo_okay ||
2376 queue_index >= dev->real_num_tx_queues) {
2377 int old_index = queue_index;
2379 queue_index = get_xps_queue(dev, skb);
2380 if (queue_index < 0)
2381 queue_index = skb_tx_hash(dev, skb);
2383 if (queue_index != old_index && sk) {
2384 struct dst_entry *dst =
2385 rcu_dereference_check(sk->sk_dst_cache, 1);
2387 if (dst && skb_dst(skb) == dst)
2388 sk_tx_queue_set(sk, queue_index);
2393 skb_set_queue_mapping(skb, queue_index);
2394 return netdev_get_tx_queue(dev, queue_index);
2397 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2398 struct net_device *dev,
2399 struct netdev_queue *txq)
2401 spinlock_t *root_lock = qdisc_lock(q);
2402 bool contended;
2403 int rc;
2405 qdisc_skb_cb(skb)->pkt_len = skb->len;
2406 qdisc_calculate_pkt_len(skb, q);
2408 * Heuristic to force contended enqueues to serialize on a
2409 * separate lock before trying to get qdisc main lock.
2410 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2411 * and dequeue packets faster.
2413 contended = qdisc_is_running(q);
2414 if (unlikely(contended))
2415 spin_lock(&q->busylock);
2417 spin_lock(root_lock);
2418 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2419 kfree_skb(skb);
2420 rc = NET_XMIT_DROP;
2421 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2422 qdisc_run_begin(q)) {
2424 * This is a work-conserving queue; there are no old skbs
2425 * waiting to be sent out; and the qdisc is not running -
2426 * xmit the skb directly.
2428 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2429 skb_dst_force(skb);
2431 qdisc_bstats_update(q, skb);
2433 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2434 if (unlikely(contended)) {
2435 spin_unlock(&q->busylock);
2436 contended = false;
2438 __qdisc_run(q);
2439 } else
2440 qdisc_run_end(q);
2442 rc = NET_XMIT_SUCCESS;
2443 } else {
2444 skb_dst_force(skb);
2445 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2446 if (qdisc_run_begin(q)) {
2447 if (unlikely(contended)) {
2448 spin_unlock(&q->busylock);
2449 contended = false;
2451 __qdisc_run(q);
2454 spin_unlock(root_lock);
2455 if (unlikely(contended))
2456 spin_unlock(&q->busylock);
2457 return rc;
2460 static DEFINE_PER_CPU(int, xmit_recursion);
2461 #define RECURSION_LIMIT 10
2464 * dev_queue_xmit - transmit a buffer
2465 * @skb: buffer to transmit
2467 * Queue a buffer for transmission to a network device. The caller must
2468 * have set the device and priority and built the buffer before calling
2469 * this function. The function can be called from an interrupt.
2471 * A negative errno code is returned on a failure. A success does not
2472 * guarantee the frame will be transmitted as it may be dropped due
2473 * to congestion or traffic shaping.
2475 * -----------------------------------------------------------------------------------
2476 * I notice this method can also return errors from the queue disciplines,
2477 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2478 * be positive.
2480 * Regardless of the return value, the skb is consumed, so it is currently
2481 * difficult to retry a send to this method. (You can bump the ref count
2482 * before sending to hold a reference for retry if you are careful.)
2484 * When calling this method, interrupts MUST be enabled. This is because
2485 * the BH enable code must have IRQs enabled so that it will not deadlock.
2486 * --BLG
2488 int dev_queue_xmit(struct sk_buff *skb)
2490 struct net_device *dev = skb->dev;
2491 struct netdev_queue *txq;
2492 struct Qdisc *q;
2493 int rc = -ENOMEM;
2495 /* Disable soft irqs for various locks below. Also
2496 * stops preemption for RCU.
2498 rcu_read_lock_bh();
2500 txq = dev_pick_tx(dev, skb);
2501 q = rcu_dereference_bh(txq->qdisc);
2503 #ifdef CONFIG_NET_CLS_ACT
2504 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2505 #endif
2506 trace_net_dev_queue(skb);
2507 if (q->enqueue) {
2508 rc = __dev_xmit_skb(skb, q, dev, txq);
2509 goto out;
2512 /* The device has no queue. Common case for software devices:
2513 loopback, all the sorts of tunnels...
2515 Really, it is unlikely that netif_tx_lock protection is necessary
2516 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2517 counters.)
2518 However, it is possible, that they rely on protection
2519 made by us here.
2521 Check this and shot the lock. It is not prone from deadlocks.
2522 Either shot noqueue qdisc, it is even simpler 8)
2524 if (dev->flags & IFF_UP) {
2525 int cpu = smp_processor_id(); /* ok because BHs are off */
2527 if (txq->xmit_lock_owner != cpu) {
2529 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2530 goto recursion_alert;
2532 HARD_TX_LOCK(dev, txq, cpu);
2534 if (!netif_tx_queue_stopped(txq)) {
2535 __this_cpu_inc(xmit_recursion);
2536 rc = dev_hard_start_xmit(skb, dev, txq);
2537 __this_cpu_dec(xmit_recursion);
2538 if (dev_xmit_complete(rc)) {
2539 HARD_TX_UNLOCK(dev, txq);
2540 goto out;
2543 HARD_TX_UNLOCK(dev, txq);
2544 if (net_ratelimit())
2545 printk(KERN_CRIT "Virtual device %s asks to "
2546 "queue packet!\n", dev->name);
2547 } else {
2548 /* Recursion is detected! It is possible,
2549 * unfortunately
2551 recursion_alert:
2552 if (net_ratelimit())
2553 printk(KERN_CRIT "Dead loop on virtual device "
2554 "%s, fix it urgently!\n", dev->name);
2558 rc = -ENETDOWN;
2559 rcu_read_unlock_bh();
2561 kfree_skb(skb);
2562 return rc;
2563 out:
2564 rcu_read_unlock_bh();
2565 return rc;
2567 EXPORT_SYMBOL(dev_queue_xmit);
2570 /*=======================================================================
2571 Receiver routines
2572 =======================================================================*/
2574 int netdev_max_backlog __read_mostly = 1000;
2575 int netdev_tstamp_prequeue __read_mostly = 1;
2576 int netdev_budget __read_mostly = 300;
2577 int weight_p __read_mostly = 64; /* old backlog weight */
2579 /* Called with irq disabled */
2580 static inline void ____napi_schedule(struct softnet_data *sd,
2581 struct napi_struct *napi)
2583 list_add_tail(&napi->poll_list, &sd->poll_list);
2584 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2588 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2589 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2590 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2591 * if hash is a canonical 4-tuple hash over transport ports.
2593 void __skb_get_rxhash(struct sk_buff *skb)
2595 int nhoff, hash = 0, poff;
2596 const struct ipv6hdr *ip6;
2597 const struct iphdr *ip;
2598 const struct vlan_hdr *vlan;
2599 u8 ip_proto;
2600 u32 addr1, addr2;
2601 u16 proto;
2602 union {
2603 u32 v32;
2604 u16 v16[2];
2605 } ports;
2607 nhoff = skb_network_offset(skb);
2608 proto = skb->protocol;
2610 again:
2611 switch (proto) {
2612 case __constant_htons(ETH_P_IP):
2614 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2615 goto done;
2617 ip = (const struct iphdr *) (skb->data + nhoff);
2618 if (ip_is_fragment(ip))
2619 ip_proto = 0;
2620 else
2621 ip_proto = ip->protocol;
2622 addr1 = (__force u32) ip->saddr;
2623 addr2 = (__force u32) ip->daddr;
2624 nhoff += ip->ihl * 4;
2625 break;
2626 case __constant_htons(ETH_P_IPV6):
2627 ipv6:
2628 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2629 goto done;
2631 ip6 = (const struct ipv6hdr *) (skb->data + nhoff);
2632 ip_proto = ip6->nexthdr;
2633 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2634 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2635 nhoff += 40;
2636 break;
2637 case __constant_htons(ETH_P_8021Q):
2638 if (!pskb_may_pull(skb, sizeof(*vlan) + nhoff))
2639 goto done;
2640 vlan = (const struct vlan_hdr *) (skb->data + nhoff);
2641 proto = vlan->h_vlan_encapsulated_proto;
2642 nhoff += sizeof(*vlan);
2643 goto again;
2644 case __constant_htons(ETH_P_PPP_SES):
2645 if (!pskb_may_pull(skb, PPPOE_SES_HLEN + nhoff))
2646 goto done;
2647 proto = *((__be16 *) (skb->data + nhoff +
2648 sizeof(struct pppoe_hdr)));
2649 nhoff += PPPOE_SES_HLEN;
2650 switch (proto) {
2651 case __constant_htons(PPP_IP):
2652 goto ip;
2653 case __constant_htons(PPP_IPV6):
2654 goto ipv6;
2655 default:
2656 goto done;
2658 default:
2659 goto done;
2662 switch (ip_proto) {
2663 case IPPROTO_GRE:
2664 if (pskb_may_pull(skb, nhoff + 16)) {
2665 u8 *h = skb->data + nhoff;
2666 __be16 flags = *(__be16 *)h;
2669 * Only look inside GRE if version zero and no
2670 * routing
2672 if (!(flags & (GRE_VERSION|GRE_ROUTING))) {
2673 proto = *(__be16 *)(h + 2);
2674 nhoff += 4;
2675 if (flags & GRE_CSUM)
2676 nhoff += 4;
2677 if (flags & GRE_KEY)
2678 nhoff += 4;
2679 if (flags & GRE_SEQ)
2680 nhoff += 4;
2681 goto again;
2684 break;
2685 case IPPROTO_IPIP:
2686 goto again;
2687 default:
2688 break;
2691 ports.v32 = 0;
2692 poff = proto_ports_offset(ip_proto);
2693 if (poff >= 0) {
2694 nhoff += poff;
2695 if (pskb_may_pull(skb, nhoff + 4)) {
2696 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2697 if (ports.v16[1] < ports.v16[0])
2698 swap(ports.v16[0], ports.v16[1]);
2699 skb->l4_rxhash = 1;
2703 /* get a consistent hash (same value on both flow directions) */
2704 if (addr2 < addr1)
2705 swap(addr1, addr2);
2707 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2708 if (!hash)
2709 hash = 1;
2711 done:
2712 skb->rxhash = hash;
2714 EXPORT_SYMBOL(__skb_get_rxhash);
2716 #ifdef CONFIG_RPS
2718 /* One global table that all flow-based protocols share. */
2719 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2720 EXPORT_SYMBOL(rps_sock_flow_table);
2722 static struct rps_dev_flow *
2723 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2724 struct rps_dev_flow *rflow, u16 next_cpu)
2726 if (next_cpu != RPS_NO_CPU) {
2727 #ifdef CONFIG_RFS_ACCEL
2728 struct netdev_rx_queue *rxqueue;
2729 struct rps_dev_flow_table *flow_table;
2730 struct rps_dev_flow *old_rflow;
2731 u32 flow_id;
2732 u16 rxq_index;
2733 int rc;
2735 /* Should we steer this flow to a different hardware queue? */
2736 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2737 !(dev->features & NETIF_F_NTUPLE))
2738 goto out;
2739 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2740 if (rxq_index == skb_get_rx_queue(skb))
2741 goto out;
2743 rxqueue = dev->_rx + rxq_index;
2744 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2745 if (!flow_table)
2746 goto out;
2747 flow_id = skb->rxhash & flow_table->mask;
2748 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2749 rxq_index, flow_id);
2750 if (rc < 0)
2751 goto out;
2752 old_rflow = rflow;
2753 rflow = &flow_table->flows[flow_id];
2754 rflow->filter = rc;
2755 if (old_rflow->filter == rflow->filter)
2756 old_rflow->filter = RPS_NO_FILTER;
2757 out:
2758 #endif
2759 rflow->last_qtail =
2760 per_cpu(softnet_data, next_cpu).input_queue_head;
2763 rflow->cpu = next_cpu;
2764 return rflow;
2768 * get_rps_cpu is called from netif_receive_skb and returns the target
2769 * CPU from the RPS map of the receiving queue for a given skb.
2770 * rcu_read_lock must be held on entry.
2772 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2773 struct rps_dev_flow **rflowp)
2775 struct netdev_rx_queue *rxqueue;
2776 struct rps_map *map;
2777 struct rps_dev_flow_table *flow_table;
2778 struct rps_sock_flow_table *sock_flow_table;
2779 int cpu = -1;
2780 u16 tcpu;
2782 if (skb_rx_queue_recorded(skb)) {
2783 u16 index = skb_get_rx_queue(skb);
2784 if (unlikely(index >= dev->real_num_rx_queues)) {
2785 WARN_ONCE(dev->real_num_rx_queues > 1,
2786 "%s received packet on queue %u, but number "
2787 "of RX queues is %u\n",
2788 dev->name, index, dev->real_num_rx_queues);
2789 goto done;
2791 rxqueue = dev->_rx + index;
2792 } else
2793 rxqueue = dev->_rx;
2795 map = rcu_dereference(rxqueue->rps_map);
2796 if (map) {
2797 if (map->len == 1 &&
2798 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2799 tcpu = map->cpus[0];
2800 if (cpu_online(tcpu))
2801 cpu = tcpu;
2802 goto done;
2804 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2805 goto done;
2808 skb_reset_network_header(skb);
2809 if (!skb_get_rxhash(skb))
2810 goto done;
2812 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2813 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2814 if (flow_table && sock_flow_table) {
2815 u16 next_cpu;
2816 struct rps_dev_flow *rflow;
2818 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2819 tcpu = rflow->cpu;
2821 next_cpu = sock_flow_table->ents[skb->rxhash &
2822 sock_flow_table->mask];
2825 * If the desired CPU (where last recvmsg was done) is
2826 * different from current CPU (one in the rx-queue flow
2827 * table entry), switch if one of the following holds:
2828 * - Current CPU is unset (equal to RPS_NO_CPU).
2829 * - Current CPU is offline.
2830 * - The current CPU's queue tail has advanced beyond the
2831 * last packet that was enqueued using this table entry.
2832 * This guarantees that all previous packets for the flow
2833 * have been dequeued, thus preserving in order delivery.
2835 if (unlikely(tcpu != next_cpu) &&
2836 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2837 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2838 rflow->last_qtail)) >= 0))
2839 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2841 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2842 *rflowp = rflow;
2843 cpu = tcpu;
2844 goto done;
2848 if (map) {
2849 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2851 if (cpu_online(tcpu)) {
2852 cpu = tcpu;
2853 goto done;
2857 done:
2858 return cpu;
2861 #ifdef CONFIG_RFS_ACCEL
2864 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2865 * @dev: Device on which the filter was set
2866 * @rxq_index: RX queue index
2867 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2868 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2870 * Drivers that implement ndo_rx_flow_steer() should periodically call
2871 * this function for each installed filter and remove the filters for
2872 * which it returns %true.
2874 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2875 u32 flow_id, u16 filter_id)
2877 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2878 struct rps_dev_flow_table *flow_table;
2879 struct rps_dev_flow *rflow;
2880 bool expire = true;
2881 int cpu;
2883 rcu_read_lock();
2884 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2885 if (flow_table && flow_id <= flow_table->mask) {
2886 rflow = &flow_table->flows[flow_id];
2887 cpu = ACCESS_ONCE(rflow->cpu);
2888 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2889 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2890 rflow->last_qtail) <
2891 (int)(10 * flow_table->mask)))
2892 expire = false;
2894 rcu_read_unlock();
2895 return expire;
2897 EXPORT_SYMBOL(rps_may_expire_flow);
2899 #endif /* CONFIG_RFS_ACCEL */
2901 /* Called from hardirq (IPI) context */
2902 static void rps_trigger_softirq(void *data)
2904 struct softnet_data *sd = data;
2906 ____napi_schedule(sd, &sd->backlog);
2907 sd->received_rps++;
2910 #endif /* CONFIG_RPS */
2913 * Check if this softnet_data structure is another cpu one
2914 * If yes, queue it to our IPI list and return 1
2915 * If no, return 0
2917 static int rps_ipi_queued(struct softnet_data *sd)
2919 #ifdef CONFIG_RPS
2920 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2922 if (sd != mysd) {
2923 sd->rps_ipi_next = mysd->rps_ipi_list;
2924 mysd->rps_ipi_list = sd;
2926 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2927 return 1;
2929 #endif /* CONFIG_RPS */
2930 return 0;
2934 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2935 * queue (may be a remote CPU queue).
2937 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2938 unsigned int *qtail)
2940 struct softnet_data *sd;
2941 unsigned long flags;
2943 sd = &per_cpu(softnet_data, cpu);
2945 local_irq_save(flags);
2947 rps_lock(sd);
2948 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2949 if (skb_queue_len(&sd->input_pkt_queue)) {
2950 enqueue:
2951 __skb_queue_tail(&sd->input_pkt_queue, skb);
2952 input_queue_tail_incr_save(sd, qtail);
2953 rps_unlock(sd);
2954 local_irq_restore(flags);
2955 return NET_RX_SUCCESS;
2958 /* Schedule NAPI for backlog device
2959 * We can use non atomic operation since we own the queue lock
2961 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2962 if (!rps_ipi_queued(sd))
2963 ____napi_schedule(sd, &sd->backlog);
2965 goto enqueue;
2968 sd->dropped++;
2969 rps_unlock(sd);
2971 local_irq_restore(flags);
2973 atomic_long_inc(&skb->dev->rx_dropped);
2974 kfree_skb(skb);
2975 return NET_RX_DROP;
2979 * netif_rx - post buffer to the network code
2980 * @skb: buffer to post
2982 * This function receives a packet from a device driver and queues it for
2983 * the upper (protocol) levels to process. It always succeeds. The buffer
2984 * may be dropped during processing for congestion control or by the
2985 * protocol layers.
2987 * return values:
2988 * NET_RX_SUCCESS (no congestion)
2989 * NET_RX_DROP (packet was dropped)
2993 int netif_rx(struct sk_buff *skb)
2995 int ret;
2997 /* if netpoll wants it, pretend we never saw it */
2998 if (netpoll_rx(skb))
2999 return NET_RX_DROP;
3001 if (netdev_tstamp_prequeue)
3002 net_timestamp_check(skb);
3004 trace_netif_rx(skb);
3005 #ifdef CONFIG_RPS
3007 struct rps_dev_flow voidflow, *rflow = &voidflow;
3008 int cpu;
3010 preempt_disable();
3011 rcu_read_lock();
3013 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3014 if (cpu < 0)
3015 cpu = smp_processor_id();
3017 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3019 rcu_read_unlock();
3020 preempt_enable();
3022 #else
3024 unsigned int qtail;
3025 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3026 put_cpu();
3028 #endif
3029 return ret;
3031 EXPORT_SYMBOL(netif_rx);
3033 int netif_rx_ni(struct sk_buff *skb)
3035 int err;
3037 preempt_disable();
3038 err = netif_rx(skb);
3039 if (local_softirq_pending())
3040 do_softirq();
3041 preempt_enable();
3043 return err;
3045 EXPORT_SYMBOL(netif_rx_ni);
3047 static void net_tx_action(struct softirq_action *h)
3049 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3051 if (sd->completion_queue) {
3052 struct sk_buff *clist;
3054 local_irq_disable();
3055 clist = sd->completion_queue;
3056 sd->completion_queue = NULL;
3057 local_irq_enable();
3059 while (clist) {
3060 struct sk_buff *skb = clist;
3061 clist = clist->next;
3063 WARN_ON(atomic_read(&skb->users));
3064 trace_kfree_skb(skb, net_tx_action);
3065 __kfree_skb(skb);
3069 if (sd->output_queue) {
3070 struct Qdisc *head;
3072 local_irq_disable();
3073 head = sd->output_queue;
3074 sd->output_queue = NULL;
3075 sd->output_queue_tailp = &sd->output_queue;
3076 local_irq_enable();
3078 while (head) {
3079 struct Qdisc *q = head;
3080 spinlock_t *root_lock;
3082 head = head->next_sched;
3084 root_lock = qdisc_lock(q);
3085 if (spin_trylock(root_lock)) {
3086 smp_mb__before_clear_bit();
3087 clear_bit(__QDISC_STATE_SCHED,
3088 &q->state);
3089 qdisc_run(q);
3090 spin_unlock(root_lock);
3091 } else {
3092 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3093 &q->state)) {
3094 __netif_reschedule(q);
3095 } else {
3096 smp_mb__before_clear_bit();
3097 clear_bit(__QDISC_STATE_SCHED,
3098 &q->state);
3105 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3106 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3107 /* This hook is defined here for ATM LANE */
3108 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3109 unsigned char *addr) __read_mostly;
3110 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3111 #endif
3113 #ifdef CONFIG_NET_CLS_ACT
3114 /* TODO: Maybe we should just force sch_ingress to be compiled in
3115 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3116 * a compare and 2 stores extra right now if we dont have it on
3117 * but have CONFIG_NET_CLS_ACT
3118 * NOTE: This doesn't stop any functionality; if you dont have
3119 * the ingress scheduler, you just can't add policies on ingress.
3122 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3124 struct net_device *dev = skb->dev;
3125 u32 ttl = G_TC_RTTL(skb->tc_verd);
3126 int result = TC_ACT_OK;
3127 struct Qdisc *q;
3129 if (unlikely(MAX_RED_LOOP < ttl++)) {
3130 if (net_ratelimit())
3131 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3132 skb->skb_iif, dev->ifindex);
3133 return TC_ACT_SHOT;
3136 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3137 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3139 q = rxq->qdisc;
3140 if (q != &noop_qdisc) {
3141 spin_lock(qdisc_lock(q));
3142 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3143 result = qdisc_enqueue_root(skb, q);
3144 spin_unlock(qdisc_lock(q));
3147 return result;
3150 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3151 struct packet_type **pt_prev,
3152 int *ret, struct net_device *orig_dev)
3154 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3156 if (!rxq || rxq->qdisc == &noop_qdisc)
3157 goto out;
3159 if (*pt_prev) {
3160 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3161 *pt_prev = NULL;
3164 switch (ing_filter(skb, rxq)) {
3165 case TC_ACT_SHOT:
3166 case TC_ACT_STOLEN:
3167 kfree_skb(skb);
3168 return NULL;
3171 out:
3172 skb->tc_verd = 0;
3173 return skb;
3175 #endif
3178 * netdev_rx_handler_register - register receive handler
3179 * @dev: device to register a handler for
3180 * @rx_handler: receive handler to register
3181 * @rx_handler_data: data pointer that is used by rx handler
3183 * Register a receive hander for a device. This handler will then be
3184 * called from __netif_receive_skb. A negative errno code is returned
3185 * on a failure.
3187 * The caller must hold the rtnl_mutex.
3189 * For a general description of rx_handler, see enum rx_handler_result.
3191 int netdev_rx_handler_register(struct net_device *dev,
3192 rx_handler_func_t *rx_handler,
3193 void *rx_handler_data)
3195 ASSERT_RTNL();
3197 if (dev->rx_handler)
3198 return -EBUSY;
3200 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3201 rcu_assign_pointer(dev->rx_handler, rx_handler);
3203 return 0;
3205 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3208 * netdev_rx_handler_unregister - unregister receive handler
3209 * @dev: device to unregister a handler from
3211 * Unregister a receive hander from a device.
3213 * The caller must hold the rtnl_mutex.
3215 void netdev_rx_handler_unregister(struct net_device *dev)
3218 ASSERT_RTNL();
3219 RCU_INIT_POINTER(dev->rx_handler, NULL);
3220 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3222 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3224 static int __netif_receive_skb(struct sk_buff *skb)
3226 struct packet_type *ptype, *pt_prev;
3227 rx_handler_func_t *rx_handler;
3228 struct net_device *orig_dev;
3229 struct net_device *null_or_dev;
3230 bool deliver_exact = false;
3231 int ret = NET_RX_DROP;
3232 __be16 type;
3234 if (!netdev_tstamp_prequeue)
3235 net_timestamp_check(skb);
3237 trace_netif_receive_skb(skb);
3239 /* if we've gotten here through NAPI, check netpoll */
3240 if (netpoll_receive_skb(skb))
3241 return NET_RX_DROP;
3243 if (!skb->skb_iif)
3244 skb->skb_iif = skb->dev->ifindex;
3245 orig_dev = skb->dev;
3247 skb_reset_network_header(skb);
3248 skb_reset_transport_header(skb);
3249 skb_reset_mac_len(skb);
3251 pt_prev = NULL;
3253 rcu_read_lock();
3255 another_round:
3257 __this_cpu_inc(softnet_data.processed);
3259 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3260 skb = vlan_untag(skb);
3261 if (unlikely(!skb))
3262 goto out;
3265 #ifdef CONFIG_NET_CLS_ACT
3266 if (skb->tc_verd & TC_NCLS) {
3267 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3268 goto ncls;
3270 #endif
3272 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3273 if (!ptype->dev || ptype->dev == skb->dev) {
3274 if (pt_prev)
3275 ret = deliver_skb(skb, pt_prev, orig_dev);
3276 pt_prev = ptype;
3280 #ifdef CONFIG_NET_CLS_ACT
3281 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3282 if (!skb)
3283 goto out;
3284 ncls:
3285 #endif
3287 rx_handler = rcu_dereference(skb->dev->rx_handler);
3288 if (vlan_tx_tag_present(skb)) {
3289 if (pt_prev) {
3290 ret = deliver_skb(skb, pt_prev, orig_dev);
3291 pt_prev = NULL;
3293 if (vlan_do_receive(&skb, !rx_handler))
3294 goto another_round;
3295 else if (unlikely(!skb))
3296 goto out;
3299 if (rx_handler) {
3300 if (pt_prev) {
3301 ret = deliver_skb(skb, pt_prev, orig_dev);
3302 pt_prev = NULL;
3304 switch (rx_handler(&skb)) {
3305 case RX_HANDLER_CONSUMED:
3306 goto out;
3307 case RX_HANDLER_ANOTHER:
3308 goto another_round;
3309 case RX_HANDLER_EXACT:
3310 deliver_exact = true;
3311 case RX_HANDLER_PASS:
3312 break;
3313 default:
3314 BUG();
3318 /* deliver only exact match when indicated */
3319 null_or_dev = deliver_exact ? skb->dev : NULL;
3321 type = skb->protocol;
3322 list_for_each_entry_rcu(ptype,
3323 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3324 if (ptype->type == type &&
3325 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3326 ptype->dev == orig_dev)) {
3327 if (pt_prev)
3328 ret = deliver_skb(skb, pt_prev, orig_dev);
3329 pt_prev = ptype;
3333 if (pt_prev) {
3334 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3335 } else {
3336 atomic_long_inc(&skb->dev->rx_dropped);
3337 kfree_skb(skb);
3338 /* Jamal, now you will not able to escape explaining
3339 * me how you were going to use this. :-)
3341 ret = NET_RX_DROP;
3344 out:
3345 rcu_read_unlock();
3346 return ret;
3350 * netif_receive_skb - process receive buffer from network
3351 * @skb: buffer to process
3353 * netif_receive_skb() is the main receive data processing function.
3354 * It always succeeds. The buffer may be dropped during processing
3355 * for congestion control or by the protocol layers.
3357 * This function may only be called from softirq context and interrupts
3358 * should be enabled.
3360 * Return values (usually ignored):
3361 * NET_RX_SUCCESS: no congestion
3362 * NET_RX_DROP: packet was dropped
3364 int netif_receive_skb(struct sk_buff *skb)
3366 if (netdev_tstamp_prequeue)
3367 net_timestamp_check(skb);
3369 if (skb_defer_rx_timestamp(skb))
3370 return NET_RX_SUCCESS;
3372 #ifdef CONFIG_RPS
3374 struct rps_dev_flow voidflow, *rflow = &voidflow;
3375 int cpu, ret;
3377 rcu_read_lock();
3379 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3381 if (cpu >= 0) {
3382 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3383 rcu_read_unlock();
3384 } else {
3385 rcu_read_unlock();
3386 ret = __netif_receive_skb(skb);
3389 return ret;
3391 #else
3392 return __netif_receive_skb(skb);
3393 #endif
3395 EXPORT_SYMBOL(netif_receive_skb);
3397 /* Network device is going away, flush any packets still pending
3398 * Called with irqs disabled.
3400 static void flush_backlog(void *arg)
3402 struct net_device *dev = arg;
3403 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3404 struct sk_buff *skb, *tmp;
3406 rps_lock(sd);
3407 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3408 if (skb->dev == dev) {
3409 __skb_unlink(skb, &sd->input_pkt_queue);
3410 kfree_skb(skb);
3411 input_queue_head_incr(sd);
3414 rps_unlock(sd);
3416 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3417 if (skb->dev == dev) {
3418 __skb_unlink(skb, &sd->process_queue);
3419 kfree_skb(skb);
3420 input_queue_head_incr(sd);
3425 static int napi_gro_complete(struct sk_buff *skb)
3427 struct packet_type *ptype;
3428 __be16 type = skb->protocol;
3429 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3430 int err = -ENOENT;
3432 if (NAPI_GRO_CB(skb)->count == 1) {
3433 skb_shinfo(skb)->gso_size = 0;
3434 goto out;
3437 rcu_read_lock();
3438 list_for_each_entry_rcu(ptype, head, list) {
3439 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3440 continue;
3442 err = ptype->gro_complete(skb);
3443 break;
3445 rcu_read_unlock();
3447 if (err) {
3448 WARN_ON(&ptype->list == head);
3449 kfree_skb(skb);
3450 return NET_RX_SUCCESS;
3453 out:
3454 return netif_receive_skb(skb);
3457 inline void napi_gro_flush(struct napi_struct *napi)
3459 struct sk_buff *skb, *next;
3461 for (skb = napi->gro_list; skb; skb = next) {
3462 next = skb->next;
3463 skb->next = NULL;
3464 napi_gro_complete(skb);
3467 napi->gro_count = 0;
3468 napi->gro_list = NULL;
3470 EXPORT_SYMBOL(napi_gro_flush);
3472 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3474 struct sk_buff **pp = NULL;
3475 struct packet_type *ptype;
3476 __be16 type = skb->protocol;
3477 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3478 int same_flow;
3479 int mac_len;
3480 enum gro_result ret;
3482 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3483 goto normal;
3485 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3486 goto normal;
3488 rcu_read_lock();
3489 list_for_each_entry_rcu(ptype, head, list) {
3490 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3491 continue;
3493 skb_set_network_header(skb, skb_gro_offset(skb));
3494 mac_len = skb->network_header - skb->mac_header;
3495 skb->mac_len = mac_len;
3496 NAPI_GRO_CB(skb)->same_flow = 0;
3497 NAPI_GRO_CB(skb)->flush = 0;
3498 NAPI_GRO_CB(skb)->free = 0;
3500 pp = ptype->gro_receive(&napi->gro_list, skb);
3501 break;
3503 rcu_read_unlock();
3505 if (&ptype->list == head)
3506 goto normal;
3508 same_flow = NAPI_GRO_CB(skb)->same_flow;
3509 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3511 if (pp) {
3512 struct sk_buff *nskb = *pp;
3514 *pp = nskb->next;
3515 nskb->next = NULL;
3516 napi_gro_complete(nskb);
3517 napi->gro_count--;
3520 if (same_flow)
3521 goto ok;
3523 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3524 goto normal;
3526 napi->gro_count++;
3527 NAPI_GRO_CB(skb)->count = 1;
3528 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3529 skb->next = napi->gro_list;
3530 napi->gro_list = skb;
3531 ret = GRO_HELD;
3533 pull:
3534 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3535 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3537 BUG_ON(skb->end - skb->tail < grow);
3539 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3541 skb->tail += grow;
3542 skb->data_len -= grow;
3544 skb_shinfo(skb)->frags[0].page_offset += grow;
3545 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3547 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3548 skb_frag_unref(skb, 0);
3549 memmove(skb_shinfo(skb)->frags,
3550 skb_shinfo(skb)->frags + 1,
3551 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3556 return ret;
3558 normal:
3559 ret = GRO_NORMAL;
3560 goto pull;
3562 EXPORT_SYMBOL(dev_gro_receive);
3564 static inline gro_result_t
3565 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3567 struct sk_buff *p;
3569 for (p = napi->gro_list; p; p = p->next) {
3570 unsigned long diffs;
3572 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3573 diffs |= p->vlan_tci ^ skb->vlan_tci;
3574 diffs |= compare_ether_header(skb_mac_header(p),
3575 skb_gro_mac_header(skb));
3576 NAPI_GRO_CB(p)->same_flow = !diffs;
3577 NAPI_GRO_CB(p)->flush = 0;
3580 return dev_gro_receive(napi, skb);
3583 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3585 switch (ret) {
3586 case GRO_NORMAL:
3587 if (netif_receive_skb(skb))
3588 ret = GRO_DROP;
3589 break;
3591 case GRO_DROP:
3592 case GRO_MERGED_FREE:
3593 kfree_skb(skb);
3594 break;
3596 case GRO_HELD:
3597 case GRO_MERGED:
3598 break;
3601 return ret;
3603 EXPORT_SYMBOL(napi_skb_finish);
3605 void skb_gro_reset_offset(struct sk_buff *skb)
3607 NAPI_GRO_CB(skb)->data_offset = 0;
3608 NAPI_GRO_CB(skb)->frag0 = NULL;
3609 NAPI_GRO_CB(skb)->frag0_len = 0;
3611 if (skb->mac_header == skb->tail &&
3612 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3613 NAPI_GRO_CB(skb)->frag0 =
3614 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3615 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3618 EXPORT_SYMBOL(skb_gro_reset_offset);
3620 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3622 skb_gro_reset_offset(skb);
3624 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3626 EXPORT_SYMBOL(napi_gro_receive);
3628 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3630 __skb_pull(skb, skb_headlen(skb));
3631 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3632 skb->vlan_tci = 0;
3633 skb->dev = napi->dev;
3634 skb->skb_iif = 0;
3636 napi->skb = skb;
3639 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3641 struct sk_buff *skb = napi->skb;
3643 if (!skb) {
3644 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3645 if (skb)
3646 napi->skb = skb;
3648 return skb;
3650 EXPORT_SYMBOL(napi_get_frags);
3652 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3653 gro_result_t ret)
3655 switch (ret) {
3656 case GRO_NORMAL:
3657 case GRO_HELD:
3658 skb->protocol = eth_type_trans(skb, skb->dev);
3660 if (ret == GRO_HELD)
3661 skb_gro_pull(skb, -ETH_HLEN);
3662 else if (netif_receive_skb(skb))
3663 ret = GRO_DROP;
3664 break;
3666 case GRO_DROP:
3667 case GRO_MERGED_FREE:
3668 napi_reuse_skb(napi, skb);
3669 break;
3671 case GRO_MERGED:
3672 break;
3675 return ret;
3677 EXPORT_SYMBOL(napi_frags_finish);
3679 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3681 struct sk_buff *skb = napi->skb;
3682 struct ethhdr *eth;
3683 unsigned int hlen;
3684 unsigned int off;
3686 napi->skb = NULL;
3688 skb_reset_mac_header(skb);
3689 skb_gro_reset_offset(skb);
3691 off = skb_gro_offset(skb);
3692 hlen = off + sizeof(*eth);
3693 eth = skb_gro_header_fast(skb, off);
3694 if (skb_gro_header_hard(skb, hlen)) {
3695 eth = skb_gro_header_slow(skb, hlen, off);
3696 if (unlikely(!eth)) {
3697 napi_reuse_skb(napi, skb);
3698 skb = NULL;
3699 goto out;
3703 skb_gro_pull(skb, sizeof(*eth));
3706 * This works because the only protocols we care about don't require
3707 * special handling. We'll fix it up properly at the end.
3709 skb->protocol = eth->h_proto;
3711 out:
3712 return skb;
3714 EXPORT_SYMBOL(napi_frags_skb);
3716 gro_result_t napi_gro_frags(struct napi_struct *napi)
3718 struct sk_buff *skb = napi_frags_skb(napi);
3720 if (!skb)
3721 return GRO_DROP;
3723 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3725 EXPORT_SYMBOL(napi_gro_frags);
3728 * net_rps_action sends any pending IPI's for rps.
3729 * Note: called with local irq disabled, but exits with local irq enabled.
3731 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3733 #ifdef CONFIG_RPS
3734 struct softnet_data *remsd = sd->rps_ipi_list;
3736 if (remsd) {
3737 sd->rps_ipi_list = NULL;
3739 local_irq_enable();
3741 /* Send pending IPI's to kick RPS processing on remote cpus. */
3742 while (remsd) {
3743 struct softnet_data *next = remsd->rps_ipi_next;
3745 if (cpu_online(remsd->cpu))
3746 __smp_call_function_single(remsd->cpu,
3747 &remsd->csd, 0);
3748 remsd = next;
3750 } else
3751 #endif
3752 local_irq_enable();
3755 static int process_backlog(struct napi_struct *napi, int quota)
3757 int work = 0;
3758 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3760 #ifdef CONFIG_RPS
3761 /* Check if we have pending ipi, its better to send them now,
3762 * not waiting net_rx_action() end.
3764 if (sd->rps_ipi_list) {
3765 local_irq_disable();
3766 net_rps_action_and_irq_enable(sd);
3768 #endif
3769 napi->weight = weight_p;
3770 local_irq_disable();
3771 while (work < quota) {
3772 struct sk_buff *skb;
3773 unsigned int qlen;
3775 while ((skb = __skb_dequeue(&sd->process_queue))) {
3776 local_irq_enable();
3777 __netif_receive_skb(skb);
3778 local_irq_disable();
3779 input_queue_head_incr(sd);
3780 if (++work >= quota) {
3781 local_irq_enable();
3782 return work;
3786 rps_lock(sd);
3787 qlen = skb_queue_len(&sd->input_pkt_queue);
3788 if (qlen)
3789 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3790 &sd->process_queue);
3792 if (qlen < quota - work) {
3794 * Inline a custom version of __napi_complete().
3795 * only current cpu owns and manipulates this napi,
3796 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3797 * we can use a plain write instead of clear_bit(),
3798 * and we dont need an smp_mb() memory barrier.
3800 list_del(&napi->poll_list);
3801 napi->state = 0;
3803 quota = work + qlen;
3805 rps_unlock(sd);
3807 local_irq_enable();
3809 return work;
3813 * __napi_schedule - schedule for receive
3814 * @n: entry to schedule
3816 * The entry's receive function will be scheduled to run
3818 void __napi_schedule(struct napi_struct *n)
3820 unsigned long flags;
3822 local_irq_save(flags);
3823 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3824 local_irq_restore(flags);
3826 EXPORT_SYMBOL(__napi_schedule);
3828 void __napi_complete(struct napi_struct *n)
3830 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3831 BUG_ON(n->gro_list);
3833 list_del(&n->poll_list);
3834 smp_mb__before_clear_bit();
3835 clear_bit(NAPI_STATE_SCHED, &n->state);
3837 EXPORT_SYMBOL(__napi_complete);
3839 void napi_complete(struct napi_struct *n)
3841 unsigned long flags;
3844 * don't let napi dequeue from the cpu poll list
3845 * just in case its running on a different cpu
3847 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3848 return;
3850 napi_gro_flush(n);
3851 local_irq_save(flags);
3852 __napi_complete(n);
3853 local_irq_restore(flags);
3855 EXPORT_SYMBOL(napi_complete);
3857 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3858 int (*poll)(struct napi_struct *, int), int weight)
3860 INIT_LIST_HEAD(&napi->poll_list);
3861 napi->gro_count = 0;
3862 napi->gro_list = NULL;
3863 napi->skb = NULL;
3864 napi->poll = poll;
3865 napi->weight = weight;
3866 list_add(&napi->dev_list, &dev->napi_list);
3867 napi->dev = dev;
3868 #ifdef CONFIG_NETPOLL
3869 spin_lock_init(&napi->poll_lock);
3870 napi->poll_owner = -1;
3871 #endif
3872 set_bit(NAPI_STATE_SCHED, &napi->state);
3874 EXPORT_SYMBOL(netif_napi_add);
3876 void netif_napi_del(struct napi_struct *napi)
3878 struct sk_buff *skb, *next;
3880 list_del_init(&napi->dev_list);
3881 napi_free_frags(napi);
3883 for (skb = napi->gro_list; skb; skb = next) {
3884 next = skb->next;
3885 skb->next = NULL;
3886 kfree_skb(skb);
3889 napi->gro_list = NULL;
3890 napi->gro_count = 0;
3892 EXPORT_SYMBOL(netif_napi_del);
3894 static void net_rx_action(struct softirq_action *h)
3896 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3897 unsigned long time_limit = jiffies + 2;
3898 int budget = netdev_budget;
3899 void *have;
3901 local_irq_disable();
3903 while (!list_empty(&sd->poll_list)) {
3904 struct napi_struct *n;
3905 int work, weight;
3907 /* If softirq window is exhuasted then punt.
3908 * Allow this to run for 2 jiffies since which will allow
3909 * an average latency of 1.5/HZ.
3911 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3912 goto softnet_break;
3914 local_irq_enable();
3916 /* Even though interrupts have been re-enabled, this
3917 * access is safe because interrupts can only add new
3918 * entries to the tail of this list, and only ->poll()
3919 * calls can remove this head entry from the list.
3921 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3923 have = netpoll_poll_lock(n);
3925 weight = n->weight;
3927 /* This NAPI_STATE_SCHED test is for avoiding a race
3928 * with netpoll's poll_napi(). Only the entity which
3929 * obtains the lock and sees NAPI_STATE_SCHED set will
3930 * actually make the ->poll() call. Therefore we avoid
3931 * accidentally calling ->poll() when NAPI is not scheduled.
3933 work = 0;
3934 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3935 work = n->poll(n, weight);
3936 trace_napi_poll(n);
3939 WARN_ON_ONCE(work > weight);
3941 budget -= work;
3943 local_irq_disable();
3945 /* Drivers must not modify the NAPI state if they
3946 * consume the entire weight. In such cases this code
3947 * still "owns" the NAPI instance and therefore can
3948 * move the instance around on the list at-will.
3950 if (unlikely(work == weight)) {
3951 if (unlikely(napi_disable_pending(n))) {
3952 local_irq_enable();
3953 napi_complete(n);
3954 local_irq_disable();
3955 } else
3956 list_move_tail(&n->poll_list, &sd->poll_list);
3959 netpoll_poll_unlock(have);
3961 out:
3962 net_rps_action_and_irq_enable(sd);
3964 #ifdef CONFIG_NET_DMA
3966 * There may not be any more sk_buffs coming right now, so push
3967 * any pending DMA copies to hardware
3969 dma_issue_pending_all();
3970 #endif
3972 return;
3974 softnet_break:
3975 sd->time_squeeze++;
3976 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3977 goto out;
3980 static gifconf_func_t *gifconf_list[NPROTO];
3983 * register_gifconf - register a SIOCGIF handler
3984 * @family: Address family
3985 * @gifconf: Function handler
3987 * Register protocol dependent address dumping routines. The handler
3988 * that is passed must not be freed or reused until it has been replaced
3989 * by another handler.
3991 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3993 if (family >= NPROTO)
3994 return -EINVAL;
3995 gifconf_list[family] = gifconf;
3996 return 0;
3998 EXPORT_SYMBOL(register_gifconf);
4002 * Map an interface index to its name (SIOCGIFNAME)
4006 * We need this ioctl for efficient implementation of the
4007 * if_indextoname() function required by the IPv6 API. Without
4008 * it, we would have to search all the interfaces to find a
4009 * match. --pb
4012 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4014 struct net_device *dev;
4015 struct ifreq ifr;
4018 * Fetch the caller's info block.
4021 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4022 return -EFAULT;
4024 rcu_read_lock();
4025 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4026 if (!dev) {
4027 rcu_read_unlock();
4028 return -ENODEV;
4031 strcpy(ifr.ifr_name, dev->name);
4032 rcu_read_unlock();
4034 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4035 return -EFAULT;
4036 return 0;
4040 * Perform a SIOCGIFCONF call. This structure will change
4041 * size eventually, and there is nothing I can do about it.
4042 * Thus we will need a 'compatibility mode'.
4045 static int dev_ifconf(struct net *net, char __user *arg)
4047 struct ifconf ifc;
4048 struct net_device *dev;
4049 char __user *pos;
4050 int len;
4051 int total;
4052 int i;
4055 * Fetch the caller's info block.
4058 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4059 return -EFAULT;
4061 pos = ifc.ifc_buf;
4062 len = ifc.ifc_len;
4065 * Loop over the interfaces, and write an info block for each.
4068 total = 0;
4069 for_each_netdev(net, dev) {
4070 for (i = 0; i < NPROTO; i++) {
4071 if (gifconf_list[i]) {
4072 int done;
4073 if (!pos)
4074 done = gifconf_list[i](dev, NULL, 0);
4075 else
4076 done = gifconf_list[i](dev, pos + total,
4077 len - total);
4078 if (done < 0)
4079 return -EFAULT;
4080 total += done;
4086 * All done. Write the updated control block back to the caller.
4088 ifc.ifc_len = total;
4091 * Both BSD and Solaris return 0 here, so we do too.
4093 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4096 #ifdef CONFIG_PROC_FS
4098 #define BUCKET_SPACE (32 - NETDEV_HASHBITS)
4100 struct dev_iter_state {
4101 struct seq_net_private p;
4102 unsigned int pos; /* bucket << BUCKET_SPACE + offset */
4105 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4106 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4107 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4109 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq)
4111 struct dev_iter_state *state = seq->private;
4112 struct net *net = seq_file_net(seq);
4113 struct net_device *dev;
4114 struct hlist_node *p;
4115 struct hlist_head *h;
4116 unsigned int count, bucket, offset;
4118 bucket = get_bucket(state->pos);
4119 offset = get_offset(state->pos);
4120 h = &net->dev_name_head[bucket];
4121 count = 0;
4122 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4123 if (count++ == offset) {
4124 state->pos = set_bucket_offset(bucket, count);
4125 return dev;
4129 return NULL;
4132 static inline struct net_device *dev_from_new_bucket(struct seq_file *seq)
4134 struct dev_iter_state *state = seq->private;
4135 struct net_device *dev;
4136 unsigned int bucket;
4138 bucket = get_bucket(state->pos);
4139 do {
4140 dev = dev_from_same_bucket(seq);
4141 if (dev)
4142 return dev;
4144 bucket++;
4145 state->pos = set_bucket_offset(bucket, 0);
4146 } while (bucket < NETDEV_HASHENTRIES);
4148 return NULL;
4152 * This is invoked by the /proc filesystem handler to display a device
4153 * in detail.
4155 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4156 __acquires(RCU)
4158 struct dev_iter_state *state = seq->private;
4160 rcu_read_lock();
4161 if (!*pos)
4162 return SEQ_START_TOKEN;
4164 /* check for end of the hash */
4165 if (state->pos == 0 && *pos > 1)
4166 return NULL;
4168 return dev_from_new_bucket(seq);
4171 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4173 struct net_device *dev;
4175 ++*pos;
4177 if (v == SEQ_START_TOKEN)
4178 return dev_from_new_bucket(seq);
4180 dev = dev_from_same_bucket(seq);
4181 if (dev)
4182 return dev;
4184 return dev_from_new_bucket(seq);
4187 void dev_seq_stop(struct seq_file *seq, void *v)
4188 __releases(RCU)
4190 rcu_read_unlock();
4193 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4195 struct rtnl_link_stats64 temp;
4196 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4198 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4199 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4200 dev->name, stats->rx_bytes, stats->rx_packets,
4201 stats->rx_errors,
4202 stats->rx_dropped + stats->rx_missed_errors,
4203 stats->rx_fifo_errors,
4204 stats->rx_length_errors + stats->rx_over_errors +
4205 stats->rx_crc_errors + stats->rx_frame_errors,
4206 stats->rx_compressed, stats->multicast,
4207 stats->tx_bytes, stats->tx_packets,
4208 stats->tx_errors, stats->tx_dropped,
4209 stats->tx_fifo_errors, stats->collisions,
4210 stats->tx_carrier_errors +
4211 stats->tx_aborted_errors +
4212 stats->tx_window_errors +
4213 stats->tx_heartbeat_errors,
4214 stats->tx_compressed);
4218 * Called from the PROCfs module. This now uses the new arbitrary sized
4219 * /proc/net interface to create /proc/net/dev
4221 static int dev_seq_show(struct seq_file *seq, void *v)
4223 if (v == SEQ_START_TOKEN)
4224 seq_puts(seq, "Inter-| Receive "
4225 " | Transmit\n"
4226 " face |bytes packets errs drop fifo frame "
4227 "compressed multicast|bytes packets errs "
4228 "drop fifo colls carrier compressed\n");
4229 else
4230 dev_seq_printf_stats(seq, v);
4231 return 0;
4234 static struct softnet_data *softnet_get_online(loff_t *pos)
4236 struct softnet_data *sd = NULL;
4238 while (*pos < nr_cpu_ids)
4239 if (cpu_online(*pos)) {
4240 sd = &per_cpu(softnet_data, *pos);
4241 break;
4242 } else
4243 ++*pos;
4244 return sd;
4247 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4249 return softnet_get_online(pos);
4252 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4254 ++*pos;
4255 return softnet_get_online(pos);
4258 static void softnet_seq_stop(struct seq_file *seq, void *v)
4262 static int softnet_seq_show(struct seq_file *seq, void *v)
4264 struct softnet_data *sd = v;
4266 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4267 sd->processed, sd->dropped, sd->time_squeeze, 0,
4268 0, 0, 0, 0, /* was fastroute */
4269 sd->cpu_collision, sd->received_rps);
4270 return 0;
4273 static const struct seq_operations dev_seq_ops = {
4274 .start = dev_seq_start,
4275 .next = dev_seq_next,
4276 .stop = dev_seq_stop,
4277 .show = dev_seq_show,
4280 static int dev_seq_open(struct inode *inode, struct file *file)
4282 return seq_open_net(inode, file, &dev_seq_ops,
4283 sizeof(struct dev_iter_state));
4286 int dev_seq_open_ops(struct inode *inode, struct file *file,
4287 const struct seq_operations *ops)
4289 return seq_open_net(inode, file, ops, sizeof(struct dev_iter_state));
4292 static const struct file_operations dev_seq_fops = {
4293 .owner = THIS_MODULE,
4294 .open = dev_seq_open,
4295 .read = seq_read,
4296 .llseek = seq_lseek,
4297 .release = seq_release_net,
4300 static const struct seq_operations softnet_seq_ops = {
4301 .start = softnet_seq_start,
4302 .next = softnet_seq_next,
4303 .stop = softnet_seq_stop,
4304 .show = softnet_seq_show,
4307 static int softnet_seq_open(struct inode *inode, struct file *file)
4309 return seq_open(file, &softnet_seq_ops);
4312 static const struct file_operations softnet_seq_fops = {
4313 .owner = THIS_MODULE,
4314 .open = softnet_seq_open,
4315 .read = seq_read,
4316 .llseek = seq_lseek,
4317 .release = seq_release,
4320 static void *ptype_get_idx(loff_t pos)
4322 struct packet_type *pt = NULL;
4323 loff_t i = 0;
4324 int t;
4326 list_for_each_entry_rcu(pt, &ptype_all, list) {
4327 if (i == pos)
4328 return pt;
4329 ++i;
4332 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4333 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4334 if (i == pos)
4335 return pt;
4336 ++i;
4339 return NULL;
4342 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4343 __acquires(RCU)
4345 rcu_read_lock();
4346 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4349 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4351 struct packet_type *pt;
4352 struct list_head *nxt;
4353 int hash;
4355 ++*pos;
4356 if (v == SEQ_START_TOKEN)
4357 return ptype_get_idx(0);
4359 pt = v;
4360 nxt = pt->list.next;
4361 if (pt->type == htons(ETH_P_ALL)) {
4362 if (nxt != &ptype_all)
4363 goto found;
4364 hash = 0;
4365 nxt = ptype_base[0].next;
4366 } else
4367 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4369 while (nxt == &ptype_base[hash]) {
4370 if (++hash >= PTYPE_HASH_SIZE)
4371 return NULL;
4372 nxt = ptype_base[hash].next;
4374 found:
4375 return list_entry(nxt, struct packet_type, list);
4378 static void ptype_seq_stop(struct seq_file *seq, void *v)
4379 __releases(RCU)
4381 rcu_read_unlock();
4384 static int ptype_seq_show(struct seq_file *seq, void *v)
4386 struct packet_type *pt = v;
4388 if (v == SEQ_START_TOKEN)
4389 seq_puts(seq, "Type Device Function\n");
4390 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4391 if (pt->type == htons(ETH_P_ALL))
4392 seq_puts(seq, "ALL ");
4393 else
4394 seq_printf(seq, "%04x", ntohs(pt->type));
4396 seq_printf(seq, " %-8s %pF\n",
4397 pt->dev ? pt->dev->name : "", pt->func);
4400 return 0;
4403 static const struct seq_operations ptype_seq_ops = {
4404 .start = ptype_seq_start,
4405 .next = ptype_seq_next,
4406 .stop = ptype_seq_stop,
4407 .show = ptype_seq_show,
4410 static int ptype_seq_open(struct inode *inode, struct file *file)
4412 return seq_open_net(inode, file, &ptype_seq_ops,
4413 sizeof(struct seq_net_private));
4416 static const struct file_operations ptype_seq_fops = {
4417 .owner = THIS_MODULE,
4418 .open = ptype_seq_open,
4419 .read = seq_read,
4420 .llseek = seq_lseek,
4421 .release = seq_release_net,
4425 static int __net_init dev_proc_net_init(struct net *net)
4427 int rc = -ENOMEM;
4429 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4430 goto out;
4431 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4432 goto out_dev;
4433 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4434 goto out_softnet;
4436 if (wext_proc_init(net))
4437 goto out_ptype;
4438 rc = 0;
4439 out:
4440 return rc;
4441 out_ptype:
4442 proc_net_remove(net, "ptype");
4443 out_softnet:
4444 proc_net_remove(net, "softnet_stat");
4445 out_dev:
4446 proc_net_remove(net, "dev");
4447 goto out;
4450 static void __net_exit dev_proc_net_exit(struct net *net)
4452 wext_proc_exit(net);
4454 proc_net_remove(net, "ptype");
4455 proc_net_remove(net, "softnet_stat");
4456 proc_net_remove(net, "dev");
4459 static struct pernet_operations __net_initdata dev_proc_ops = {
4460 .init = dev_proc_net_init,
4461 .exit = dev_proc_net_exit,
4464 static int __init dev_proc_init(void)
4466 return register_pernet_subsys(&dev_proc_ops);
4468 #else
4469 #define dev_proc_init() 0
4470 #endif /* CONFIG_PROC_FS */
4474 * netdev_set_master - set up master pointer
4475 * @slave: slave device
4476 * @master: new master device
4478 * Changes the master device of the slave. Pass %NULL to break the
4479 * bonding. The caller must hold the RTNL semaphore. On a failure
4480 * a negative errno code is returned. On success the reference counts
4481 * are adjusted and the function returns zero.
4483 int netdev_set_master(struct net_device *slave, struct net_device *master)
4485 struct net_device *old = slave->master;
4487 ASSERT_RTNL();
4489 if (master) {
4490 if (old)
4491 return -EBUSY;
4492 dev_hold(master);
4495 slave->master = master;
4497 if (old)
4498 dev_put(old);
4499 return 0;
4501 EXPORT_SYMBOL(netdev_set_master);
4504 * netdev_set_bond_master - set up bonding master/slave pair
4505 * @slave: slave device
4506 * @master: new master device
4508 * Changes the master device of the slave. Pass %NULL to break the
4509 * bonding. The caller must hold the RTNL semaphore. On a failure
4510 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4511 * to the routing socket and the function returns zero.
4513 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4515 int err;
4517 ASSERT_RTNL();
4519 err = netdev_set_master(slave, master);
4520 if (err)
4521 return err;
4522 if (master)
4523 slave->flags |= IFF_SLAVE;
4524 else
4525 slave->flags &= ~IFF_SLAVE;
4527 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4528 return 0;
4530 EXPORT_SYMBOL(netdev_set_bond_master);
4532 static void dev_change_rx_flags(struct net_device *dev, int flags)
4534 const struct net_device_ops *ops = dev->netdev_ops;
4536 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4537 ops->ndo_change_rx_flags(dev, flags);
4540 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4542 unsigned short old_flags = dev->flags;
4543 uid_t uid;
4544 gid_t gid;
4546 ASSERT_RTNL();
4548 dev->flags |= IFF_PROMISC;
4549 dev->promiscuity += inc;
4550 if (dev->promiscuity == 0) {
4552 * Avoid overflow.
4553 * If inc causes overflow, untouch promisc and return error.
4555 if (inc < 0)
4556 dev->flags &= ~IFF_PROMISC;
4557 else {
4558 dev->promiscuity -= inc;
4559 printk(KERN_WARNING "%s: promiscuity touches roof, "
4560 "set promiscuity failed, promiscuity feature "
4561 "of device might be broken.\n", dev->name);
4562 return -EOVERFLOW;
4565 if (dev->flags != old_flags) {
4566 printk(KERN_INFO "device %s %s promiscuous mode\n",
4567 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4568 "left");
4569 if (audit_enabled) {
4570 current_uid_gid(&uid, &gid);
4571 audit_log(current->audit_context, GFP_ATOMIC,
4572 AUDIT_ANOM_PROMISCUOUS,
4573 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4574 dev->name, (dev->flags & IFF_PROMISC),
4575 (old_flags & IFF_PROMISC),
4576 audit_get_loginuid(current),
4577 uid, gid,
4578 audit_get_sessionid(current));
4581 dev_change_rx_flags(dev, IFF_PROMISC);
4583 return 0;
4587 * dev_set_promiscuity - update promiscuity count on a device
4588 * @dev: device
4589 * @inc: modifier
4591 * Add or remove promiscuity from a device. While the count in the device
4592 * remains above zero the interface remains promiscuous. Once it hits zero
4593 * the device reverts back to normal filtering operation. A negative inc
4594 * value is used to drop promiscuity on the device.
4595 * Return 0 if successful or a negative errno code on error.
4597 int dev_set_promiscuity(struct net_device *dev, int inc)
4599 unsigned short old_flags = dev->flags;
4600 int err;
4602 err = __dev_set_promiscuity(dev, inc);
4603 if (err < 0)
4604 return err;
4605 if (dev->flags != old_flags)
4606 dev_set_rx_mode(dev);
4607 return err;
4609 EXPORT_SYMBOL(dev_set_promiscuity);
4612 * dev_set_allmulti - update allmulti count on a device
4613 * @dev: device
4614 * @inc: modifier
4616 * Add or remove reception of all multicast frames to a device. While the
4617 * count in the device remains above zero the interface remains listening
4618 * to all interfaces. Once it hits zero the device reverts back to normal
4619 * filtering operation. A negative @inc value is used to drop the counter
4620 * when releasing a resource needing all multicasts.
4621 * Return 0 if successful or a negative errno code on error.
4624 int dev_set_allmulti(struct net_device *dev, int inc)
4626 unsigned short old_flags = dev->flags;
4628 ASSERT_RTNL();
4630 dev->flags |= IFF_ALLMULTI;
4631 dev->allmulti += inc;
4632 if (dev->allmulti == 0) {
4634 * Avoid overflow.
4635 * If inc causes overflow, untouch allmulti and return error.
4637 if (inc < 0)
4638 dev->flags &= ~IFF_ALLMULTI;
4639 else {
4640 dev->allmulti -= inc;
4641 printk(KERN_WARNING "%s: allmulti touches roof, "
4642 "set allmulti failed, allmulti feature of "
4643 "device might be broken.\n", dev->name);
4644 return -EOVERFLOW;
4647 if (dev->flags ^ old_flags) {
4648 dev_change_rx_flags(dev, IFF_ALLMULTI);
4649 dev_set_rx_mode(dev);
4651 return 0;
4653 EXPORT_SYMBOL(dev_set_allmulti);
4656 * Upload unicast and multicast address lists to device and
4657 * configure RX filtering. When the device doesn't support unicast
4658 * filtering it is put in promiscuous mode while unicast addresses
4659 * are present.
4661 void __dev_set_rx_mode(struct net_device *dev)
4663 const struct net_device_ops *ops = dev->netdev_ops;
4665 /* dev_open will call this function so the list will stay sane. */
4666 if (!(dev->flags&IFF_UP))
4667 return;
4669 if (!netif_device_present(dev))
4670 return;
4672 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4673 /* Unicast addresses changes may only happen under the rtnl,
4674 * therefore calling __dev_set_promiscuity here is safe.
4676 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4677 __dev_set_promiscuity(dev, 1);
4678 dev->uc_promisc = true;
4679 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4680 __dev_set_promiscuity(dev, -1);
4681 dev->uc_promisc = false;
4685 if (ops->ndo_set_rx_mode)
4686 ops->ndo_set_rx_mode(dev);
4689 void dev_set_rx_mode(struct net_device *dev)
4691 netif_addr_lock_bh(dev);
4692 __dev_set_rx_mode(dev);
4693 netif_addr_unlock_bh(dev);
4697 * dev_get_flags - get flags reported to userspace
4698 * @dev: device
4700 * Get the combination of flag bits exported through APIs to userspace.
4702 unsigned dev_get_flags(const struct net_device *dev)
4704 unsigned flags;
4706 flags = (dev->flags & ~(IFF_PROMISC |
4707 IFF_ALLMULTI |
4708 IFF_RUNNING |
4709 IFF_LOWER_UP |
4710 IFF_DORMANT)) |
4711 (dev->gflags & (IFF_PROMISC |
4712 IFF_ALLMULTI));
4714 if (netif_running(dev)) {
4715 if (netif_oper_up(dev))
4716 flags |= IFF_RUNNING;
4717 if (netif_carrier_ok(dev))
4718 flags |= IFF_LOWER_UP;
4719 if (netif_dormant(dev))
4720 flags |= IFF_DORMANT;
4723 return flags;
4725 EXPORT_SYMBOL(dev_get_flags);
4727 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4729 int old_flags = dev->flags;
4730 int ret;
4732 ASSERT_RTNL();
4735 * Set the flags on our device.
4738 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4739 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4740 IFF_AUTOMEDIA)) |
4741 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4742 IFF_ALLMULTI));
4745 * Load in the correct multicast list now the flags have changed.
4748 if ((old_flags ^ flags) & IFF_MULTICAST)
4749 dev_change_rx_flags(dev, IFF_MULTICAST);
4751 dev_set_rx_mode(dev);
4754 * Have we downed the interface. We handle IFF_UP ourselves
4755 * according to user attempts to set it, rather than blindly
4756 * setting it.
4759 ret = 0;
4760 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4761 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4763 if (!ret)
4764 dev_set_rx_mode(dev);
4767 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4768 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4770 dev->gflags ^= IFF_PROMISC;
4771 dev_set_promiscuity(dev, inc);
4774 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4775 is important. Some (broken) drivers set IFF_PROMISC, when
4776 IFF_ALLMULTI is requested not asking us and not reporting.
4778 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4779 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4781 dev->gflags ^= IFF_ALLMULTI;
4782 dev_set_allmulti(dev, inc);
4785 return ret;
4788 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4790 unsigned int changes = dev->flags ^ old_flags;
4792 if (changes & IFF_UP) {
4793 if (dev->flags & IFF_UP)
4794 call_netdevice_notifiers(NETDEV_UP, dev);
4795 else
4796 call_netdevice_notifiers(NETDEV_DOWN, dev);
4799 if (dev->flags & IFF_UP &&
4800 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4801 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4805 * dev_change_flags - change device settings
4806 * @dev: device
4807 * @flags: device state flags
4809 * Change settings on device based state flags. The flags are
4810 * in the userspace exported format.
4812 int dev_change_flags(struct net_device *dev, unsigned flags)
4814 int ret, changes;
4815 int old_flags = dev->flags;
4817 ret = __dev_change_flags(dev, flags);
4818 if (ret < 0)
4819 return ret;
4821 changes = old_flags ^ dev->flags;
4822 if (changes)
4823 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4825 __dev_notify_flags(dev, old_flags);
4826 return ret;
4828 EXPORT_SYMBOL(dev_change_flags);
4831 * dev_set_mtu - Change maximum transfer unit
4832 * @dev: device
4833 * @new_mtu: new transfer unit
4835 * Change the maximum transfer size of the network device.
4837 int dev_set_mtu(struct net_device *dev, int new_mtu)
4839 const struct net_device_ops *ops = dev->netdev_ops;
4840 int err;
4842 if (new_mtu == dev->mtu)
4843 return 0;
4845 /* MTU must be positive. */
4846 if (new_mtu < 0)
4847 return -EINVAL;
4849 if (!netif_device_present(dev))
4850 return -ENODEV;
4852 err = 0;
4853 if (ops->ndo_change_mtu)
4854 err = ops->ndo_change_mtu(dev, new_mtu);
4855 else
4856 dev->mtu = new_mtu;
4858 if (!err && dev->flags & IFF_UP)
4859 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4860 return err;
4862 EXPORT_SYMBOL(dev_set_mtu);
4865 * dev_set_group - Change group this device belongs to
4866 * @dev: device
4867 * @new_group: group this device should belong to
4869 void dev_set_group(struct net_device *dev, int new_group)
4871 dev->group = new_group;
4873 EXPORT_SYMBOL(dev_set_group);
4876 * dev_set_mac_address - Change Media Access Control Address
4877 * @dev: device
4878 * @sa: new address
4880 * Change the hardware (MAC) address of the device
4882 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4884 const struct net_device_ops *ops = dev->netdev_ops;
4885 int err;
4887 if (!ops->ndo_set_mac_address)
4888 return -EOPNOTSUPP;
4889 if (sa->sa_family != dev->type)
4890 return -EINVAL;
4891 if (!netif_device_present(dev))
4892 return -ENODEV;
4893 err = ops->ndo_set_mac_address(dev, sa);
4894 if (!err)
4895 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4896 return err;
4898 EXPORT_SYMBOL(dev_set_mac_address);
4901 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4903 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4905 int err;
4906 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4908 if (!dev)
4909 return -ENODEV;
4911 switch (cmd) {
4912 case SIOCGIFFLAGS: /* Get interface flags */
4913 ifr->ifr_flags = (short) dev_get_flags(dev);
4914 return 0;
4916 case SIOCGIFMETRIC: /* Get the metric on the interface
4917 (currently unused) */
4918 ifr->ifr_metric = 0;
4919 return 0;
4921 case SIOCGIFMTU: /* Get the MTU of a device */
4922 ifr->ifr_mtu = dev->mtu;
4923 return 0;
4925 case SIOCGIFHWADDR:
4926 if (!dev->addr_len)
4927 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4928 else
4929 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4930 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4931 ifr->ifr_hwaddr.sa_family = dev->type;
4932 return 0;
4934 case SIOCGIFSLAVE:
4935 err = -EINVAL;
4936 break;
4938 case SIOCGIFMAP:
4939 ifr->ifr_map.mem_start = dev->mem_start;
4940 ifr->ifr_map.mem_end = dev->mem_end;
4941 ifr->ifr_map.base_addr = dev->base_addr;
4942 ifr->ifr_map.irq = dev->irq;
4943 ifr->ifr_map.dma = dev->dma;
4944 ifr->ifr_map.port = dev->if_port;
4945 return 0;
4947 case SIOCGIFINDEX:
4948 ifr->ifr_ifindex = dev->ifindex;
4949 return 0;
4951 case SIOCGIFTXQLEN:
4952 ifr->ifr_qlen = dev->tx_queue_len;
4953 return 0;
4955 default:
4956 /* dev_ioctl() should ensure this case
4957 * is never reached
4959 WARN_ON(1);
4960 err = -ENOTTY;
4961 break;
4964 return err;
4968 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4970 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4972 int err;
4973 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4974 const struct net_device_ops *ops;
4976 if (!dev)
4977 return -ENODEV;
4979 ops = dev->netdev_ops;
4981 switch (cmd) {
4982 case SIOCSIFFLAGS: /* Set interface flags */
4983 return dev_change_flags(dev, ifr->ifr_flags);
4985 case SIOCSIFMETRIC: /* Set the metric on the interface
4986 (currently unused) */
4987 return -EOPNOTSUPP;
4989 case SIOCSIFMTU: /* Set the MTU of a device */
4990 return dev_set_mtu(dev, ifr->ifr_mtu);
4992 case SIOCSIFHWADDR:
4993 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4995 case SIOCSIFHWBROADCAST:
4996 if (ifr->ifr_hwaddr.sa_family != dev->type)
4997 return -EINVAL;
4998 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4999 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5000 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5001 return 0;
5003 case SIOCSIFMAP:
5004 if (ops->ndo_set_config) {
5005 if (!netif_device_present(dev))
5006 return -ENODEV;
5007 return ops->ndo_set_config(dev, &ifr->ifr_map);
5009 return -EOPNOTSUPP;
5011 case SIOCADDMULTI:
5012 if (!ops->ndo_set_rx_mode ||
5013 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5014 return -EINVAL;
5015 if (!netif_device_present(dev))
5016 return -ENODEV;
5017 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5019 case SIOCDELMULTI:
5020 if (!ops->ndo_set_rx_mode ||
5021 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5022 return -EINVAL;
5023 if (!netif_device_present(dev))
5024 return -ENODEV;
5025 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5027 case SIOCSIFTXQLEN:
5028 if (ifr->ifr_qlen < 0)
5029 return -EINVAL;
5030 dev->tx_queue_len = ifr->ifr_qlen;
5031 return 0;
5033 case SIOCSIFNAME:
5034 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5035 return dev_change_name(dev, ifr->ifr_newname);
5037 case SIOCSHWTSTAMP:
5038 err = net_hwtstamp_validate(ifr);
5039 if (err)
5040 return err;
5041 /* fall through */
5044 * Unknown or private ioctl
5046 default:
5047 if ((cmd >= SIOCDEVPRIVATE &&
5048 cmd <= SIOCDEVPRIVATE + 15) ||
5049 cmd == SIOCBONDENSLAVE ||
5050 cmd == SIOCBONDRELEASE ||
5051 cmd == SIOCBONDSETHWADDR ||
5052 cmd == SIOCBONDSLAVEINFOQUERY ||
5053 cmd == SIOCBONDINFOQUERY ||
5054 cmd == SIOCBONDCHANGEACTIVE ||
5055 cmd == SIOCGMIIPHY ||
5056 cmd == SIOCGMIIREG ||
5057 cmd == SIOCSMIIREG ||
5058 cmd == SIOCBRADDIF ||
5059 cmd == SIOCBRDELIF ||
5060 cmd == SIOCSHWTSTAMP ||
5061 cmd == SIOCWANDEV) {
5062 err = -EOPNOTSUPP;
5063 if (ops->ndo_do_ioctl) {
5064 if (netif_device_present(dev))
5065 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5066 else
5067 err = -ENODEV;
5069 } else
5070 err = -EINVAL;
5073 return err;
5077 * This function handles all "interface"-type I/O control requests. The actual
5078 * 'doing' part of this is dev_ifsioc above.
5082 * dev_ioctl - network device ioctl
5083 * @net: the applicable net namespace
5084 * @cmd: command to issue
5085 * @arg: pointer to a struct ifreq in user space
5087 * Issue ioctl functions to devices. This is normally called by the
5088 * user space syscall interfaces but can sometimes be useful for
5089 * other purposes. The return value is the return from the syscall if
5090 * positive or a negative errno code on error.
5093 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5095 struct ifreq ifr;
5096 int ret;
5097 char *colon;
5099 /* One special case: SIOCGIFCONF takes ifconf argument
5100 and requires shared lock, because it sleeps writing
5101 to user space.
5104 if (cmd == SIOCGIFCONF) {
5105 rtnl_lock();
5106 ret = dev_ifconf(net, (char __user *) arg);
5107 rtnl_unlock();
5108 return ret;
5110 if (cmd == SIOCGIFNAME)
5111 return dev_ifname(net, (struct ifreq __user *)arg);
5113 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5114 return -EFAULT;
5116 ifr.ifr_name[IFNAMSIZ-1] = 0;
5118 colon = strchr(ifr.ifr_name, ':');
5119 if (colon)
5120 *colon = 0;
5123 * See which interface the caller is talking about.
5126 switch (cmd) {
5128 * These ioctl calls:
5129 * - can be done by all.
5130 * - atomic and do not require locking.
5131 * - return a value
5133 case SIOCGIFFLAGS:
5134 case SIOCGIFMETRIC:
5135 case SIOCGIFMTU:
5136 case SIOCGIFHWADDR:
5137 case SIOCGIFSLAVE:
5138 case SIOCGIFMAP:
5139 case SIOCGIFINDEX:
5140 case SIOCGIFTXQLEN:
5141 dev_load(net, ifr.ifr_name);
5142 rcu_read_lock();
5143 ret = dev_ifsioc_locked(net, &ifr, cmd);
5144 rcu_read_unlock();
5145 if (!ret) {
5146 if (colon)
5147 *colon = ':';
5148 if (copy_to_user(arg, &ifr,
5149 sizeof(struct ifreq)))
5150 ret = -EFAULT;
5152 return ret;
5154 case SIOCETHTOOL:
5155 dev_load(net, ifr.ifr_name);
5156 rtnl_lock();
5157 ret = dev_ethtool(net, &ifr);
5158 rtnl_unlock();
5159 if (!ret) {
5160 if (colon)
5161 *colon = ':';
5162 if (copy_to_user(arg, &ifr,
5163 sizeof(struct ifreq)))
5164 ret = -EFAULT;
5166 return ret;
5169 * These ioctl calls:
5170 * - require superuser power.
5171 * - require strict serialization.
5172 * - return a value
5174 case SIOCGMIIPHY:
5175 case SIOCGMIIREG:
5176 case SIOCSIFNAME:
5177 if (!capable(CAP_NET_ADMIN))
5178 return -EPERM;
5179 dev_load(net, ifr.ifr_name);
5180 rtnl_lock();
5181 ret = dev_ifsioc(net, &ifr, cmd);
5182 rtnl_unlock();
5183 if (!ret) {
5184 if (colon)
5185 *colon = ':';
5186 if (copy_to_user(arg, &ifr,
5187 sizeof(struct ifreq)))
5188 ret = -EFAULT;
5190 return ret;
5193 * These ioctl calls:
5194 * - require superuser power.
5195 * - require strict serialization.
5196 * - do not return a value
5198 case SIOCSIFFLAGS:
5199 case SIOCSIFMETRIC:
5200 case SIOCSIFMTU:
5201 case SIOCSIFMAP:
5202 case SIOCSIFHWADDR:
5203 case SIOCSIFSLAVE:
5204 case SIOCADDMULTI:
5205 case SIOCDELMULTI:
5206 case SIOCSIFHWBROADCAST:
5207 case SIOCSIFTXQLEN:
5208 case SIOCSMIIREG:
5209 case SIOCBONDENSLAVE:
5210 case SIOCBONDRELEASE:
5211 case SIOCBONDSETHWADDR:
5212 case SIOCBONDCHANGEACTIVE:
5213 case SIOCBRADDIF:
5214 case SIOCBRDELIF:
5215 case SIOCSHWTSTAMP:
5216 if (!capable(CAP_NET_ADMIN))
5217 return -EPERM;
5218 /* fall through */
5219 case SIOCBONDSLAVEINFOQUERY:
5220 case SIOCBONDINFOQUERY:
5221 dev_load(net, ifr.ifr_name);
5222 rtnl_lock();
5223 ret = dev_ifsioc(net, &ifr, cmd);
5224 rtnl_unlock();
5225 return ret;
5227 case SIOCGIFMEM:
5228 /* Get the per device memory space. We can add this but
5229 * currently do not support it */
5230 case SIOCSIFMEM:
5231 /* Set the per device memory buffer space.
5232 * Not applicable in our case */
5233 case SIOCSIFLINK:
5234 return -ENOTTY;
5237 * Unknown or private ioctl.
5239 default:
5240 if (cmd == SIOCWANDEV ||
5241 (cmd >= SIOCDEVPRIVATE &&
5242 cmd <= SIOCDEVPRIVATE + 15)) {
5243 dev_load(net, ifr.ifr_name);
5244 rtnl_lock();
5245 ret = dev_ifsioc(net, &ifr, cmd);
5246 rtnl_unlock();
5247 if (!ret && copy_to_user(arg, &ifr,
5248 sizeof(struct ifreq)))
5249 ret = -EFAULT;
5250 return ret;
5252 /* Take care of Wireless Extensions */
5253 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5254 return wext_handle_ioctl(net, &ifr, cmd, arg);
5255 return -ENOTTY;
5261 * dev_new_index - allocate an ifindex
5262 * @net: the applicable net namespace
5264 * Returns a suitable unique value for a new device interface
5265 * number. The caller must hold the rtnl semaphore or the
5266 * dev_base_lock to be sure it remains unique.
5268 static int dev_new_index(struct net *net)
5270 static int ifindex;
5271 for (;;) {
5272 if (++ifindex <= 0)
5273 ifindex = 1;
5274 if (!__dev_get_by_index(net, ifindex))
5275 return ifindex;
5279 /* Delayed registration/unregisteration */
5280 static LIST_HEAD(net_todo_list);
5282 static void net_set_todo(struct net_device *dev)
5284 list_add_tail(&dev->todo_list, &net_todo_list);
5287 static void rollback_registered_many(struct list_head *head)
5289 struct net_device *dev, *tmp;
5291 BUG_ON(dev_boot_phase);
5292 ASSERT_RTNL();
5294 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5295 /* Some devices call without registering
5296 * for initialization unwind. Remove those
5297 * devices and proceed with the remaining.
5299 if (dev->reg_state == NETREG_UNINITIALIZED) {
5300 pr_debug("unregister_netdevice: device %s/%p never "
5301 "was registered\n", dev->name, dev);
5303 WARN_ON(1);
5304 list_del(&dev->unreg_list);
5305 continue;
5307 dev->dismantle = true;
5308 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5311 /* If device is running, close it first. */
5312 dev_close_many(head);
5314 list_for_each_entry(dev, head, unreg_list) {
5315 /* And unlink it from device chain. */
5316 unlist_netdevice(dev);
5318 dev->reg_state = NETREG_UNREGISTERING;
5321 synchronize_net();
5323 list_for_each_entry(dev, head, unreg_list) {
5324 /* Shutdown queueing discipline. */
5325 dev_shutdown(dev);
5328 /* Notify protocols, that we are about to destroy
5329 this device. They should clean all the things.
5331 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5333 if (!dev->rtnl_link_ops ||
5334 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5335 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5338 * Flush the unicast and multicast chains
5340 dev_uc_flush(dev);
5341 dev_mc_flush(dev);
5343 if (dev->netdev_ops->ndo_uninit)
5344 dev->netdev_ops->ndo_uninit(dev);
5346 /* Notifier chain MUST detach us from master device. */
5347 WARN_ON(dev->master);
5349 /* Remove entries from kobject tree */
5350 netdev_unregister_kobject(dev);
5353 /* Process any work delayed until the end of the batch */
5354 dev = list_first_entry(head, struct net_device, unreg_list);
5355 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5357 synchronize_net();
5359 list_for_each_entry(dev, head, unreg_list)
5360 dev_put(dev);
5363 static void rollback_registered(struct net_device *dev)
5365 LIST_HEAD(single);
5367 list_add(&dev->unreg_list, &single);
5368 rollback_registered_many(&single);
5369 list_del(&single);
5372 static u32 netdev_fix_features(struct net_device *dev, u32 features)
5374 /* Fix illegal checksum combinations */
5375 if ((features & NETIF_F_HW_CSUM) &&
5376 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5377 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5378 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5381 if ((features & NETIF_F_NO_CSUM) &&
5382 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5383 netdev_warn(dev, "mixed no checksumming and other settings.\n");
5384 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5387 /* Fix illegal SG+CSUM combinations. */
5388 if ((features & NETIF_F_SG) &&
5389 !(features & NETIF_F_ALL_CSUM)) {
5390 netdev_dbg(dev,
5391 "Dropping NETIF_F_SG since no checksum feature.\n");
5392 features &= ~NETIF_F_SG;
5395 /* TSO requires that SG is present as well. */
5396 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5397 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5398 features &= ~NETIF_F_ALL_TSO;
5401 /* TSO ECN requires that TSO is present as well. */
5402 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5403 features &= ~NETIF_F_TSO_ECN;
5405 /* Software GSO depends on SG. */
5406 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5407 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5408 features &= ~NETIF_F_GSO;
5411 /* UFO needs SG and checksumming */
5412 if (features & NETIF_F_UFO) {
5413 /* maybe split UFO into V4 and V6? */
5414 if (!((features & NETIF_F_GEN_CSUM) ||
5415 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5416 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5417 netdev_dbg(dev,
5418 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5419 features &= ~NETIF_F_UFO;
5422 if (!(features & NETIF_F_SG)) {
5423 netdev_dbg(dev,
5424 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5425 features &= ~NETIF_F_UFO;
5429 return features;
5432 int __netdev_update_features(struct net_device *dev)
5434 u32 features;
5435 int err = 0;
5437 ASSERT_RTNL();
5439 features = netdev_get_wanted_features(dev);
5441 if (dev->netdev_ops->ndo_fix_features)
5442 features = dev->netdev_ops->ndo_fix_features(dev, features);
5444 /* driver might be less strict about feature dependencies */
5445 features = netdev_fix_features(dev, features);
5447 if (dev->features == features)
5448 return 0;
5450 netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n",
5451 dev->features, features);
5453 if (dev->netdev_ops->ndo_set_features)
5454 err = dev->netdev_ops->ndo_set_features(dev, features);
5456 if (unlikely(err < 0)) {
5457 netdev_err(dev,
5458 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5459 err, features, dev->features);
5460 return -1;
5463 if (!err)
5464 dev->features = features;
5466 return 1;
5470 * netdev_update_features - recalculate device features
5471 * @dev: the device to check
5473 * Recalculate dev->features set and send notifications if it
5474 * has changed. Should be called after driver or hardware dependent
5475 * conditions might have changed that influence the features.
5477 void netdev_update_features(struct net_device *dev)
5479 if (__netdev_update_features(dev))
5480 netdev_features_change(dev);
5482 EXPORT_SYMBOL(netdev_update_features);
5485 * netdev_change_features - recalculate device features
5486 * @dev: the device to check
5488 * Recalculate dev->features set and send notifications even
5489 * if they have not changed. Should be called instead of
5490 * netdev_update_features() if also dev->vlan_features might
5491 * have changed to allow the changes to be propagated to stacked
5492 * VLAN devices.
5494 void netdev_change_features(struct net_device *dev)
5496 __netdev_update_features(dev);
5497 netdev_features_change(dev);
5499 EXPORT_SYMBOL(netdev_change_features);
5502 * netif_stacked_transfer_operstate - transfer operstate
5503 * @rootdev: the root or lower level device to transfer state from
5504 * @dev: the device to transfer operstate to
5506 * Transfer operational state from root to device. This is normally
5507 * called when a stacking relationship exists between the root
5508 * device and the device(a leaf device).
5510 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5511 struct net_device *dev)
5513 if (rootdev->operstate == IF_OPER_DORMANT)
5514 netif_dormant_on(dev);
5515 else
5516 netif_dormant_off(dev);
5518 if (netif_carrier_ok(rootdev)) {
5519 if (!netif_carrier_ok(dev))
5520 netif_carrier_on(dev);
5521 } else {
5522 if (netif_carrier_ok(dev))
5523 netif_carrier_off(dev);
5526 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5528 #ifdef CONFIG_RPS
5529 static int netif_alloc_rx_queues(struct net_device *dev)
5531 unsigned int i, count = dev->num_rx_queues;
5532 struct netdev_rx_queue *rx;
5534 BUG_ON(count < 1);
5536 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5537 if (!rx) {
5538 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5539 return -ENOMEM;
5541 dev->_rx = rx;
5543 for (i = 0; i < count; i++)
5544 rx[i].dev = dev;
5545 return 0;
5547 #endif
5549 static void netdev_init_one_queue(struct net_device *dev,
5550 struct netdev_queue *queue, void *_unused)
5552 /* Initialize queue lock */
5553 spin_lock_init(&queue->_xmit_lock);
5554 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5555 queue->xmit_lock_owner = -1;
5556 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5557 queue->dev = dev;
5560 static int netif_alloc_netdev_queues(struct net_device *dev)
5562 unsigned int count = dev->num_tx_queues;
5563 struct netdev_queue *tx;
5565 BUG_ON(count < 1);
5567 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5568 if (!tx) {
5569 pr_err("netdev: Unable to allocate %u tx queues.\n",
5570 count);
5571 return -ENOMEM;
5573 dev->_tx = tx;
5575 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5576 spin_lock_init(&dev->tx_global_lock);
5578 return 0;
5582 * register_netdevice - register a network device
5583 * @dev: device to register
5585 * Take a completed network device structure and add it to the kernel
5586 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5587 * chain. 0 is returned on success. A negative errno code is returned
5588 * on a failure to set up the device, or if the name is a duplicate.
5590 * Callers must hold the rtnl semaphore. You may want
5591 * register_netdev() instead of this.
5593 * BUGS:
5594 * The locking appears insufficient to guarantee two parallel registers
5595 * will not get the same name.
5598 int register_netdevice(struct net_device *dev)
5600 int ret;
5601 struct net *net = dev_net(dev);
5603 BUG_ON(dev_boot_phase);
5604 ASSERT_RTNL();
5606 might_sleep();
5608 /* When net_device's are persistent, this will be fatal. */
5609 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5610 BUG_ON(!net);
5612 spin_lock_init(&dev->addr_list_lock);
5613 netdev_set_addr_lockdep_class(dev);
5615 dev->iflink = -1;
5617 ret = dev_get_valid_name(dev, dev->name);
5618 if (ret < 0)
5619 goto out;
5621 /* Init, if this function is available */
5622 if (dev->netdev_ops->ndo_init) {
5623 ret = dev->netdev_ops->ndo_init(dev);
5624 if (ret) {
5625 if (ret > 0)
5626 ret = -EIO;
5627 goto out;
5631 dev->ifindex = dev_new_index(net);
5632 if (dev->iflink == -1)
5633 dev->iflink = dev->ifindex;
5635 /* Transfer changeable features to wanted_features and enable
5636 * software offloads (GSO and GRO).
5638 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5639 dev->features |= NETIF_F_SOFT_FEATURES;
5640 dev->wanted_features = dev->features & dev->hw_features;
5642 /* Turn on no cache copy if HW is doing checksum */
5643 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5644 if ((dev->features & NETIF_F_ALL_CSUM) &&
5645 !(dev->features & NETIF_F_NO_CSUM)) {
5646 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5647 dev->features |= NETIF_F_NOCACHE_COPY;
5650 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5652 dev->vlan_features |= NETIF_F_HIGHDMA;
5654 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5655 ret = notifier_to_errno(ret);
5656 if (ret)
5657 goto err_uninit;
5659 ret = netdev_register_kobject(dev);
5660 if (ret)
5661 goto err_uninit;
5662 dev->reg_state = NETREG_REGISTERED;
5664 __netdev_update_features(dev);
5667 * Default initial state at registry is that the
5668 * device is present.
5671 set_bit(__LINK_STATE_PRESENT, &dev->state);
5673 dev_init_scheduler(dev);
5674 dev_hold(dev);
5675 list_netdevice(dev);
5677 /* Notify protocols, that a new device appeared. */
5678 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5679 ret = notifier_to_errno(ret);
5680 if (ret) {
5681 rollback_registered(dev);
5682 dev->reg_state = NETREG_UNREGISTERED;
5685 * Prevent userspace races by waiting until the network
5686 * device is fully setup before sending notifications.
5688 if (!dev->rtnl_link_ops ||
5689 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5690 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5692 out:
5693 return ret;
5695 err_uninit:
5696 if (dev->netdev_ops->ndo_uninit)
5697 dev->netdev_ops->ndo_uninit(dev);
5698 goto out;
5700 EXPORT_SYMBOL(register_netdevice);
5703 * init_dummy_netdev - init a dummy network device for NAPI
5704 * @dev: device to init
5706 * This takes a network device structure and initialize the minimum
5707 * amount of fields so it can be used to schedule NAPI polls without
5708 * registering a full blown interface. This is to be used by drivers
5709 * that need to tie several hardware interfaces to a single NAPI
5710 * poll scheduler due to HW limitations.
5712 int init_dummy_netdev(struct net_device *dev)
5714 /* Clear everything. Note we don't initialize spinlocks
5715 * are they aren't supposed to be taken by any of the
5716 * NAPI code and this dummy netdev is supposed to be
5717 * only ever used for NAPI polls
5719 memset(dev, 0, sizeof(struct net_device));
5721 /* make sure we BUG if trying to hit standard
5722 * register/unregister code path
5724 dev->reg_state = NETREG_DUMMY;
5726 /* NAPI wants this */
5727 INIT_LIST_HEAD(&dev->napi_list);
5729 /* a dummy interface is started by default */
5730 set_bit(__LINK_STATE_PRESENT, &dev->state);
5731 set_bit(__LINK_STATE_START, &dev->state);
5733 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5734 * because users of this 'device' dont need to change
5735 * its refcount.
5738 return 0;
5740 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5744 * register_netdev - register a network device
5745 * @dev: device to register
5747 * Take a completed network device structure and add it to the kernel
5748 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5749 * chain. 0 is returned on success. A negative errno code is returned
5750 * on a failure to set up the device, or if the name is a duplicate.
5752 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5753 * and expands the device name if you passed a format string to
5754 * alloc_netdev.
5756 int register_netdev(struct net_device *dev)
5758 int err;
5760 rtnl_lock();
5761 err = register_netdevice(dev);
5762 rtnl_unlock();
5763 return err;
5765 EXPORT_SYMBOL(register_netdev);
5767 int netdev_refcnt_read(const struct net_device *dev)
5769 int i, refcnt = 0;
5771 for_each_possible_cpu(i)
5772 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5773 return refcnt;
5775 EXPORT_SYMBOL(netdev_refcnt_read);
5778 * netdev_wait_allrefs - wait until all references are gone.
5780 * This is called when unregistering network devices.
5782 * Any protocol or device that holds a reference should register
5783 * for netdevice notification, and cleanup and put back the
5784 * reference if they receive an UNREGISTER event.
5785 * We can get stuck here if buggy protocols don't correctly
5786 * call dev_put.
5788 static void netdev_wait_allrefs(struct net_device *dev)
5790 unsigned long rebroadcast_time, warning_time;
5791 int refcnt;
5793 linkwatch_forget_dev(dev);
5795 rebroadcast_time = warning_time = jiffies;
5796 refcnt = netdev_refcnt_read(dev);
5798 while (refcnt != 0) {
5799 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5800 rtnl_lock();
5802 /* Rebroadcast unregister notification */
5803 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5804 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5805 * should have already handle it the first time */
5807 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5808 &dev->state)) {
5809 /* We must not have linkwatch events
5810 * pending on unregister. If this
5811 * happens, we simply run the queue
5812 * unscheduled, resulting in a noop
5813 * for this device.
5815 linkwatch_run_queue();
5818 __rtnl_unlock();
5820 rebroadcast_time = jiffies;
5823 msleep(250);
5825 refcnt = netdev_refcnt_read(dev);
5827 if (time_after(jiffies, warning_time + 10 * HZ)) {
5828 printk(KERN_EMERG "unregister_netdevice: "
5829 "waiting for %s to become free. Usage "
5830 "count = %d\n",
5831 dev->name, refcnt);
5832 warning_time = jiffies;
5837 /* The sequence is:
5839 * rtnl_lock();
5840 * ...
5841 * register_netdevice(x1);
5842 * register_netdevice(x2);
5843 * ...
5844 * unregister_netdevice(y1);
5845 * unregister_netdevice(y2);
5846 * ...
5847 * rtnl_unlock();
5848 * free_netdev(y1);
5849 * free_netdev(y2);
5851 * We are invoked by rtnl_unlock().
5852 * This allows us to deal with problems:
5853 * 1) We can delete sysfs objects which invoke hotplug
5854 * without deadlocking with linkwatch via keventd.
5855 * 2) Since we run with the RTNL semaphore not held, we can sleep
5856 * safely in order to wait for the netdev refcnt to drop to zero.
5858 * We must not return until all unregister events added during
5859 * the interval the lock was held have been completed.
5861 void netdev_run_todo(void)
5863 struct list_head list;
5865 /* Snapshot list, allow later requests */
5866 list_replace_init(&net_todo_list, &list);
5868 __rtnl_unlock();
5870 /* Wait for rcu callbacks to finish before attempting to drain
5871 * the device list. This usually avoids a 250ms wait.
5873 if (!list_empty(&list))
5874 rcu_barrier();
5876 while (!list_empty(&list)) {
5877 struct net_device *dev
5878 = list_first_entry(&list, struct net_device, todo_list);
5879 list_del(&dev->todo_list);
5881 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5882 printk(KERN_ERR "network todo '%s' but state %d\n",
5883 dev->name, dev->reg_state);
5884 dump_stack();
5885 continue;
5888 dev->reg_state = NETREG_UNREGISTERED;
5890 on_each_cpu(flush_backlog, dev, 1);
5892 netdev_wait_allrefs(dev);
5894 /* paranoia */
5895 BUG_ON(netdev_refcnt_read(dev));
5896 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5897 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5898 WARN_ON(dev->dn_ptr);
5900 if (dev->destructor)
5901 dev->destructor(dev);
5903 /* Free network device */
5904 kobject_put(&dev->dev.kobj);
5908 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5909 * fields in the same order, with only the type differing.
5911 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5912 const struct net_device_stats *netdev_stats)
5914 #if BITS_PER_LONG == 64
5915 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5916 memcpy(stats64, netdev_stats, sizeof(*stats64));
5917 #else
5918 size_t i, n = sizeof(*stats64) / sizeof(u64);
5919 const unsigned long *src = (const unsigned long *)netdev_stats;
5920 u64 *dst = (u64 *)stats64;
5922 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5923 sizeof(*stats64) / sizeof(u64));
5924 for (i = 0; i < n; i++)
5925 dst[i] = src[i];
5926 #endif
5930 * dev_get_stats - get network device statistics
5931 * @dev: device to get statistics from
5932 * @storage: place to store stats
5934 * Get network statistics from device. Return @storage.
5935 * The device driver may provide its own method by setting
5936 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5937 * otherwise the internal statistics structure is used.
5939 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5940 struct rtnl_link_stats64 *storage)
5942 const struct net_device_ops *ops = dev->netdev_ops;
5944 if (ops->ndo_get_stats64) {
5945 memset(storage, 0, sizeof(*storage));
5946 ops->ndo_get_stats64(dev, storage);
5947 } else if (ops->ndo_get_stats) {
5948 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5949 } else {
5950 netdev_stats_to_stats64(storage, &dev->stats);
5952 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5953 return storage;
5955 EXPORT_SYMBOL(dev_get_stats);
5957 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5959 struct netdev_queue *queue = dev_ingress_queue(dev);
5961 #ifdef CONFIG_NET_CLS_ACT
5962 if (queue)
5963 return queue;
5964 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5965 if (!queue)
5966 return NULL;
5967 netdev_init_one_queue(dev, queue, NULL);
5968 queue->qdisc = &noop_qdisc;
5969 queue->qdisc_sleeping = &noop_qdisc;
5970 rcu_assign_pointer(dev->ingress_queue, queue);
5971 #endif
5972 return queue;
5976 * alloc_netdev_mqs - allocate network device
5977 * @sizeof_priv: size of private data to allocate space for
5978 * @name: device name format string
5979 * @setup: callback to initialize device
5980 * @txqs: the number of TX subqueues to allocate
5981 * @rxqs: the number of RX subqueues to allocate
5983 * Allocates a struct net_device with private data area for driver use
5984 * and performs basic initialization. Also allocates subquue structs
5985 * for each queue on the device.
5987 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5988 void (*setup)(struct net_device *),
5989 unsigned int txqs, unsigned int rxqs)
5991 struct net_device *dev;
5992 size_t alloc_size;
5993 struct net_device *p;
5995 BUG_ON(strlen(name) >= sizeof(dev->name));
5997 if (txqs < 1) {
5998 pr_err("alloc_netdev: Unable to allocate device "
5999 "with zero queues.\n");
6000 return NULL;
6003 #ifdef CONFIG_RPS
6004 if (rxqs < 1) {
6005 pr_err("alloc_netdev: Unable to allocate device "
6006 "with zero RX queues.\n");
6007 return NULL;
6009 #endif
6011 alloc_size = sizeof(struct net_device);
6012 if (sizeof_priv) {
6013 /* ensure 32-byte alignment of private area */
6014 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6015 alloc_size += sizeof_priv;
6017 /* ensure 32-byte alignment of whole construct */
6018 alloc_size += NETDEV_ALIGN - 1;
6020 p = kzalloc(alloc_size, GFP_KERNEL);
6021 if (!p) {
6022 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
6023 return NULL;
6026 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6027 dev->padded = (char *)dev - (char *)p;
6029 dev->pcpu_refcnt = alloc_percpu(int);
6030 if (!dev->pcpu_refcnt)
6031 goto free_p;
6033 if (dev_addr_init(dev))
6034 goto free_pcpu;
6036 dev_mc_init(dev);
6037 dev_uc_init(dev);
6039 dev_net_set(dev, &init_net);
6041 dev->gso_max_size = GSO_MAX_SIZE;
6043 INIT_LIST_HEAD(&dev->napi_list);
6044 INIT_LIST_HEAD(&dev->unreg_list);
6045 INIT_LIST_HEAD(&dev->link_watch_list);
6046 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6047 setup(dev);
6049 dev->num_tx_queues = txqs;
6050 dev->real_num_tx_queues = txqs;
6051 if (netif_alloc_netdev_queues(dev))
6052 goto free_all;
6054 #ifdef CONFIG_RPS
6055 dev->num_rx_queues = rxqs;
6056 dev->real_num_rx_queues = rxqs;
6057 if (netif_alloc_rx_queues(dev))
6058 goto free_all;
6059 #endif
6061 strcpy(dev->name, name);
6062 dev->group = INIT_NETDEV_GROUP;
6063 return dev;
6065 free_all:
6066 free_netdev(dev);
6067 return NULL;
6069 free_pcpu:
6070 free_percpu(dev->pcpu_refcnt);
6071 kfree(dev->_tx);
6072 #ifdef CONFIG_RPS
6073 kfree(dev->_rx);
6074 #endif
6076 free_p:
6077 kfree(p);
6078 return NULL;
6080 EXPORT_SYMBOL(alloc_netdev_mqs);
6083 * free_netdev - free network device
6084 * @dev: device
6086 * This function does the last stage of destroying an allocated device
6087 * interface. The reference to the device object is released.
6088 * If this is the last reference then it will be freed.
6090 void free_netdev(struct net_device *dev)
6092 struct napi_struct *p, *n;
6094 release_net(dev_net(dev));
6096 kfree(dev->_tx);
6097 #ifdef CONFIG_RPS
6098 kfree(dev->_rx);
6099 #endif
6101 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6103 /* Flush device addresses */
6104 dev_addr_flush(dev);
6106 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6107 netif_napi_del(p);
6109 free_percpu(dev->pcpu_refcnt);
6110 dev->pcpu_refcnt = NULL;
6112 /* Compatibility with error handling in drivers */
6113 if (dev->reg_state == NETREG_UNINITIALIZED) {
6114 kfree((char *)dev - dev->padded);
6115 return;
6118 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6119 dev->reg_state = NETREG_RELEASED;
6121 /* will free via device release */
6122 put_device(&dev->dev);
6124 EXPORT_SYMBOL(free_netdev);
6127 * synchronize_net - Synchronize with packet receive processing
6129 * Wait for packets currently being received to be done.
6130 * Does not block later packets from starting.
6132 void synchronize_net(void)
6134 might_sleep();
6135 if (rtnl_is_locked())
6136 synchronize_rcu_expedited();
6137 else
6138 synchronize_rcu();
6140 EXPORT_SYMBOL(synchronize_net);
6143 * unregister_netdevice_queue - remove device from the kernel
6144 * @dev: device
6145 * @head: list
6147 * This function shuts down a device interface and removes it
6148 * from the kernel tables.
6149 * If head not NULL, device is queued to be unregistered later.
6151 * Callers must hold the rtnl semaphore. You may want
6152 * unregister_netdev() instead of this.
6155 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6157 ASSERT_RTNL();
6159 if (head) {
6160 list_move_tail(&dev->unreg_list, head);
6161 } else {
6162 rollback_registered(dev);
6163 /* Finish processing unregister after unlock */
6164 net_set_todo(dev);
6167 EXPORT_SYMBOL(unregister_netdevice_queue);
6170 * unregister_netdevice_many - unregister many devices
6171 * @head: list of devices
6173 void unregister_netdevice_many(struct list_head *head)
6175 struct net_device *dev;
6177 if (!list_empty(head)) {
6178 rollback_registered_many(head);
6179 list_for_each_entry(dev, head, unreg_list)
6180 net_set_todo(dev);
6183 EXPORT_SYMBOL(unregister_netdevice_many);
6186 * unregister_netdev - remove device from the kernel
6187 * @dev: device
6189 * This function shuts down a device interface and removes it
6190 * from the kernel tables.
6192 * This is just a wrapper for unregister_netdevice that takes
6193 * the rtnl semaphore. In general you want to use this and not
6194 * unregister_netdevice.
6196 void unregister_netdev(struct net_device *dev)
6198 rtnl_lock();
6199 unregister_netdevice(dev);
6200 rtnl_unlock();
6202 EXPORT_SYMBOL(unregister_netdev);
6205 * dev_change_net_namespace - move device to different nethost namespace
6206 * @dev: device
6207 * @net: network namespace
6208 * @pat: If not NULL name pattern to try if the current device name
6209 * is already taken in the destination network namespace.
6211 * This function shuts down a device interface and moves it
6212 * to a new network namespace. On success 0 is returned, on
6213 * a failure a netagive errno code is returned.
6215 * Callers must hold the rtnl semaphore.
6218 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6220 int err;
6222 ASSERT_RTNL();
6224 /* Don't allow namespace local devices to be moved. */
6225 err = -EINVAL;
6226 if (dev->features & NETIF_F_NETNS_LOCAL)
6227 goto out;
6229 /* Ensure the device has been registrered */
6230 err = -EINVAL;
6231 if (dev->reg_state != NETREG_REGISTERED)
6232 goto out;
6234 /* Get out if there is nothing todo */
6235 err = 0;
6236 if (net_eq(dev_net(dev), net))
6237 goto out;
6239 /* Pick the destination device name, and ensure
6240 * we can use it in the destination network namespace.
6242 err = -EEXIST;
6243 if (__dev_get_by_name(net, dev->name)) {
6244 /* We get here if we can't use the current device name */
6245 if (!pat)
6246 goto out;
6247 if (dev_get_valid_name(dev, pat) < 0)
6248 goto out;
6252 * And now a mini version of register_netdevice unregister_netdevice.
6255 /* If device is running close it first. */
6256 dev_close(dev);
6258 /* And unlink it from device chain */
6259 err = -ENODEV;
6260 unlist_netdevice(dev);
6262 synchronize_net();
6264 /* Shutdown queueing discipline. */
6265 dev_shutdown(dev);
6267 /* Notify protocols, that we are about to destroy
6268 this device. They should clean all the things.
6270 Note that dev->reg_state stays at NETREG_REGISTERED.
6271 This is wanted because this way 8021q and macvlan know
6272 the device is just moving and can keep their slaves up.
6274 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6275 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6276 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6279 * Flush the unicast and multicast chains
6281 dev_uc_flush(dev);
6282 dev_mc_flush(dev);
6284 /* Actually switch the network namespace */
6285 dev_net_set(dev, net);
6287 /* If there is an ifindex conflict assign a new one */
6288 if (__dev_get_by_index(net, dev->ifindex)) {
6289 int iflink = (dev->iflink == dev->ifindex);
6290 dev->ifindex = dev_new_index(net);
6291 if (iflink)
6292 dev->iflink = dev->ifindex;
6295 /* Fixup kobjects */
6296 err = device_rename(&dev->dev, dev->name);
6297 WARN_ON(err);
6299 /* Add the device back in the hashes */
6300 list_netdevice(dev);
6302 /* Notify protocols, that a new device appeared. */
6303 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6306 * Prevent userspace races by waiting until the network
6307 * device is fully setup before sending notifications.
6309 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6311 synchronize_net();
6312 err = 0;
6313 out:
6314 return err;
6316 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6318 static int dev_cpu_callback(struct notifier_block *nfb,
6319 unsigned long action,
6320 void *ocpu)
6322 struct sk_buff **list_skb;
6323 struct sk_buff *skb;
6324 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6325 struct softnet_data *sd, *oldsd;
6327 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6328 return NOTIFY_OK;
6330 local_irq_disable();
6331 cpu = smp_processor_id();
6332 sd = &per_cpu(softnet_data, cpu);
6333 oldsd = &per_cpu(softnet_data, oldcpu);
6335 /* Find end of our completion_queue. */
6336 list_skb = &sd->completion_queue;
6337 while (*list_skb)
6338 list_skb = &(*list_skb)->next;
6339 /* Append completion queue from offline CPU. */
6340 *list_skb = oldsd->completion_queue;
6341 oldsd->completion_queue = NULL;
6343 /* Append output queue from offline CPU. */
6344 if (oldsd->output_queue) {
6345 *sd->output_queue_tailp = oldsd->output_queue;
6346 sd->output_queue_tailp = oldsd->output_queue_tailp;
6347 oldsd->output_queue = NULL;
6348 oldsd->output_queue_tailp = &oldsd->output_queue;
6350 /* Append NAPI poll list from offline CPU. */
6351 if (!list_empty(&oldsd->poll_list)) {
6352 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6353 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6356 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6357 local_irq_enable();
6359 /* Process offline CPU's input_pkt_queue */
6360 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6361 netif_rx(skb);
6362 input_queue_head_incr(oldsd);
6364 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6365 netif_rx(skb);
6366 input_queue_head_incr(oldsd);
6369 return NOTIFY_OK;
6374 * netdev_increment_features - increment feature set by one
6375 * @all: current feature set
6376 * @one: new feature set
6377 * @mask: mask feature set
6379 * Computes a new feature set after adding a device with feature set
6380 * @one to the master device with current feature set @all. Will not
6381 * enable anything that is off in @mask. Returns the new feature set.
6383 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6385 if (mask & NETIF_F_GEN_CSUM)
6386 mask |= NETIF_F_ALL_CSUM;
6387 mask |= NETIF_F_VLAN_CHALLENGED;
6389 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6390 all &= one | ~NETIF_F_ALL_FOR_ALL;
6392 /* If device needs checksumming, downgrade to it. */
6393 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM))
6394 all &= ~NETIF_F_NO_CSUM;
6396 /* If one device supports hw checksumming, set for all. */
6397 if (all & NETIF_F_GEN_CSUM)
6398 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6400 return all;
6402 EXPORT_SYMBOL(netdev_increment_features);
6404 static struct hlist_head *netdev_create_hash(void)
6406 int i;
6407 struct hlist_head *hash;
6409 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6410 if (hash != NULL)
6411 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6412 INIT_HLIST_HEAD(&hash[i]);
6414 return hash;
6417 /* Initialize per network namespace state */
6418 static int __net_init netdev_init(struct net *net)
6420 INIT_LIST_HEAD(&net->dev_base_head);
6422 net->dev_name_head = netdev_create_hash();
6423 if (net->dev_name_head == NULL)
6424 goto err_name;
6426 net->dev_index_head = netdev_create_hash();
6427 if (net->dev_index_head == NULL)
6428 goto err_idx;
6430 return 0;
6432 err_idx:
6433 kfree(net->dev_name_head);
6434 err_name:
6435 return -ENOMEM;
6439 * netdev_drivername - network driver for the device
6440 * @dev: network device
6442 * Determine network driver for device.
6444 const char *netdev_drivername(const struct net_device *dev)
6446 const struct device_driver *driver;
6447 const struct device *parent;
6448 const char *empty = "";
6450 parent = dev->dev.parent;
6451 if (!parent)
6452 return empty;
6454 driver = parent->driver;
6455 if (driver && driver->name)
6456 return driver->name;
6457 return empty;
6460 int __netdev_printk(const char *level, const struct net_device *dev,
6461 struct va_format *vaf)
6463 int r;
6465 if (dev && dev->dev.parent)
6466 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6467 netdev_name(dev), vaf);
6468 else if (dev)
6469 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6470 else
6471 r = printk("%s(NULL net_device): %pV", level, vaf);
6473 return r;
6475 EXPORT_SYMBOL(__netdev_printk);
6477 int netdev_printk(const char *level, const struct net_device *dev,
6478 const char *format, ...)
6480 struct va_format vaf;
6481 va_list args;
6482 int r;
6484 va_start(args, format);
6486 vaf.fmt = format;
6487 vaf.va = &args;
6489 r = __netdev_printk(level, dev, &vaf);
6490 va_end(args);
6492 return r;
6494 EXPORT_SYMBOL(netdev_printk);
6496 #define define_netdev_printk_level(func, level) \
6497 int func(const struct net_device *dev, const char *fmt, ...) \
6499 int r; \
6500 struct va_format vaf; \
6501 va_list args; \
6503 va_start(args, fmt); \
6505 vaf.fmt = fmt; \
6506 vaf.va = &args; \
6508 r = __netdev_printk(level, dev, &vaf); \
6509 va_end(args); \
6511 return r; \
6513 EXPORT_SYMBOL(func);
6515 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6516 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6517 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6518 define_netdev_printk_level(netdev_err, KERN_ERR);
6519 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6520 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6521 define_netdev_printk_level(netdev_info, KERN_INFO);
6523 static void __net_exit netdev_exit(struct net *net)
6525 kfree(net->dev_name_head);
6526 kfree(net->dev_index_head);
6529 static struct pernet_operations __net_initdata netdev_net_ops = {
6530 .init = netdev_init,
6531 .exit = netdev_exit,
6534 static void __net_exit default_device_exit(struct net *net)
6536 struct net_device *dev, *aux;
6538 * Push all migratable network devices back to the
6539 * initial network namespace
6541 rtnl_lock();
6542 for_each_netdev_safe(net, dev, aux) {
6543 int err;
6544 char fb_name[IFNAMSIZ];
6546 /* Ignore unmoveable devices (i.e. loopback) */
6547 if (dev->features & NETIF_F_NETNS_LOCAL)
6548 continue;
6550 /* Leave virtual devices for the generic cleanup */
6551 if (dev->rtnl_link_ops)
6552 continue;
6554 /* Push remaining network devices to init_net */
6555 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6556 err = dev_change_net_namespace(dev, &init_net, fb_name);
6557 if (err) {
6558 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6559 __func__, dev->name, err);
6560 BUG();
6563 rtnl_unlock();
6566 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6568 /* At exit all network devices most be removed from a network
6569 * namespace. Do this in the reverse order of registration.
6570 * Do this across as many network namespaces as possible to
6571 * improve batching efficiency.
6573 struct net_device *dev;
6574 struct net *net;
6575 LIST_HEAD(dev_kill_list);
6577 rtnl_lock();
6578 list_for_each_entry(net, net_list, exit_list) {
6579 for_each_netdev_reverse(net, dev) {
6580 if (dev->rtnl_link_ops)
6581 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6582 else
6583 unregister_netdevice_queue(dev, &dev_kill_list);
6586 unregister_netdevice_many(&dev_kill_list);
6587 list_del(&dev_kill_list);
6588 rtnl_unlock();
6591 static struct pernet_operations __net_initdata default_device_ops = {
6592 .exit = default_device_exit,
6593 .exit_batch = default_device_exit_batch,
6597 * Initialize the DEV module. At boot time this walks the device list and
6598 * unhooks any devices that fail to initialise (normally hardware not
6599 * present) and leaves us with a valid list of present and active devices.
6604 * This is called single threaded during boot, so no need
6605 * to take the rtnl semaphore.
6607 static int __init net_dev_init(void)
6609 int i, rc = -ENOMEM;
6611 BUG_ON(!dev_boot_phase);
6613 if (dev_proc_init())
6614 goto out;
6616 if (netdev_kobject_init())
6617 goto out;
6619 INIT_LIST_HEAD(&ptype_all);
6620 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6621 INIT_LIST_HEAD(&ptype_base[i]);
6623 if (register_pernet_subsys(&netdev_net_ops))
6624 goto out;
6627 * Initialise the packet receive queues.
6630 for_each_possible_cpu(i) {
6631 struct softnet_data *sd = &per_cpu(softnet_data, i);
6633 memset(sd, 0, sizeof(*sd));
6634 skb_queue_head_init(&sd->input_pkt_queue);
6635 skb_queue_head_init(&sd->process_queue);
6636 sd->completion_queue = NULL;
6637 INIT_LIST_HEAD(&sd->poll_list);
6638 sd->output_queue = NULL;
6639 sd->output_queue_tailp = &sd->output_queue;
6640 #ifdef CONFIG_RPS
6641 sd->csd.func = rps_trigger_softirq;
6642 sd->csd.info = sd;
6643 sd->csd.flags = 0;
6644 sd->cpu = i;
6645 #endif
6647 sd->backlog.poll = process_backlog;
6648 sd->backlog.weight = weight_p;
6649 sd->backlog.gro_list = NULL;
6650 sd->backlog.gro_count = 0;
6653 dev_boot_phase = 0;
6655 /* The loopback device is special if any other network devices
6656 * is present in a network namespace the loopback device must
6657 * be present. Since we now dynamically allocate and free the
6658 * loopback device ensure this invariant is maintained by
6659 * keeping the loopback device as the first device on the
6660 * list of network devices. Ensuring the loopback devices
6661 * is the first device that appears and the last network device
6662 * that disappears.
6664 if (register_pernet_device(&loopback_net_ops))
6665 goto out;
6667 if (register_pernet_device(&default_device_ops))
6668 goto out;
6670 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6671 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6673 hotcpu_notifier(dev_cpu_callback, 0);
6674 dst_init();
6675 dev_mcast_init();
6676 rc = 0;
6677 out:
6678 return rc;
6681 subsys_initcall(net_dev_init);
6683 static int __init initialize_hashrnd(void)
6685 get_random_bytes(&hashrnd, sizeof(hashrnd));
6686 return 0;
6689 late_initcall_sync(initialize_hashrnd);