[PATCH] PCI: resource address mismatch
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ieee80211 / ieee80211_crypt_wep.c
blob649e581fa565c323859e804cf4ea13f1e9c6359c
1 /*
2 * Host AP crypt: host-based WEP encryption implementation for Host AP driver
4 * Copyright (c) 2002-2004, Jouni Malinen <jkmaline@cc.hut.fi>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation. See README and COPYING for
9 * more details.
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/random.h>
17 #include <linux/skbuff.h>
18 #include <asm/string.h>
20 #include <net/ieee80211.h>
22 #include <linux/crypto.h>
23 #include <asm/scatterlist.h>
24 #include <linux/crc32.h>
26 MODULE_AUTHOR("Jouni Malinen");
27 MODULE_DESCRIPTION("Host AP crypt: WEP");
28 MODULE_LICENSE("GPL");
30 struct prism2_wep_data {
31 u32 iv;
32 #define WEP_KEY_LEN 13
33 u8 key[WEP_KEY_LEN + 1];
34 u8 key_len;
35 u8 key_idx;
36 struct crypto_tfm *tfm;
39 static void *prism2_wep_init(int keyidx)
41 struct prism2_wep_data *priv;
43 priv = kmalloc(sizeof(*priv), GFP_ATOMIC);
44 if (priv == NULL)
45 goto fail;
46 memset(priv, 0, sizeof(*priv));
47 priv->key_idx = keyidx;
49 priv->tfm = crypto_alloc_tfm("arc4", 0);
50 if (priv->tfm == NULL) {
51 printk(KERN_DEBUG "ieee80211_crypt_wep: could not allocate "
52 "crypto API arc4\n");
53 goto fail;
56 /* start WEP IV from a random value */
57 get_random_bytes(&priv->iv, 4);
59 return priv;
61 fail:
62 if (priv) {
63 if (priv->tfm)
64 crypto_free_tfm(priv->tfm);
65 kfree(priv);
67 return NULL;
70 static void prism2_wep_deinit(void *priv)
72 struct prism2_wep_data *_priv = priv;
73 if (_priv && _priv->tfm)
74 crypto_free_tfm(_priv->tfm);
75 kfree(priv);
78 /* Add WEP IV/key info to a frame that has at least 4 bytes of headroom */
79 static int prism2_wep_build_iv(struct sk_buff *skb, int hdr_len,
80 u8 *key, int keylen, void *priv)
82 struct prism2_wep_data *wep = priv;
83 u32 klen, len;
84 u8 *pos;
86 if (skb_headroom(skb) < 4 || skb->len < hdr_len)
87 return -1;
89 len = skb->len - hdr_len;
90 pos = skb_push(skb, 4);
91 memmove(pos, pos + 4, hdr_len);
92 pos += hdr_len;
94 klen = 3 + wep->key_len;
96 wep->iv++;
98 /* Fluhrer, Mantin, and Shamir have reported weaknesses in the key
99 * scheduling algorithm of RC4. At least IVs (KeyByte + 3, 0xff, N)
100 * can be used to speedup attacks, so avoid using them. */
101 if ((wep->iv & 0xff00) == 0xff00) {
102 u8 B = (wep->iv >> 16) & 0xff;
103 if (B >= 3 && B < klen)
104 wep->iv += 0x0100;
107 /* Prepend 24-bit IV to RC4 key and TX frame */
108 *pos++ = (wep->iv >> 16) & 0xff;
109 *pos++ = (wep->iv >> 8) & 0xff;
110 *pos++ = wep->iv & 0xff;
111 *pos++ = wep->key_idx << 6;
113 return 0;
116 /* Perform WEP encryption on given skb that has at least 4 bytes of headroom
117 * for IV and 4 bytes of tailroom for ICV. Both IV and ICV will be transmitted,
118 * so the payload length increases with 8 bytes.
120 * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
122 static int prism2_wep_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
124 struct prism2_wep_data *wep = priv;
125 u32 crc, klen, len;
126 u8 *pos, *icv;
127 struct scatterlist sg;
128 u8 key[WEP_KEY_LEN + 3];
130 /* other checks are in prism2_wep_build_iv */
131 if (skb_tailroom(skb) < 4)
132 return -1;
134 /* add the IV to the frame */
135 if (prism2_wep_build_iv(skb, hdr_len, NULL, 0, priv))
136 return -1;
138 /* Copy the IV into the first 3 bytes of the key */
139 memcpy(key, skb->data + hdr_len, 3);
141 /* Copy rest of the WEP key (the secret part) */
142 memcpy(key + 3, wep->key, wep->key_len);
144 len = skb->len - hdr_len - 4;
145 pos = skb->data + hdr_len + 4;
146 klen = 3 + wep->key_len;
148 /* Append little-endian CRC32 over only the data and encrypt it to produce ICV */
149 crc = ~crc32_le(~0, pos, len);
150 icv = skb_put(skb, 4);
151 icv[0] = crc;
152 icv[1] = crc >> 8;
153 icv[2] = crc >> 16;
154 icv[3] = crc >> 24;
156 crypto_cipher_setkey(wep->tfm, key, klen);
157 sg.page = virt_to_page(pos);
158 sg.offset = offset_in_page(pos);
159 sg.length = len + 4;
160 crypto_cipher_encrypt(wep->tfm, &sg, &sg, len + 4);
162 return 0;
165 /* Perform WEP decryption on given buffer. Buffer includes whole WEP part of
166 * the frame: IV (4 bytes), encrypted payload (including SNAP header),
167 * ICV (4 bytes). len includes both IV and ICV.
169 * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
170 * failure. If frame is OK, IV and ICV will be removed.
172 static int prism2_wep_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
174 struct prism2_wep_data *wep = priv;
175 u32 crc, klen, plen;
176 u8 key[WEP_KEY_LEN + 3];
177 u8 keyidx, *pos, icv[4];
178 struct scatterlist sg;
180 if (skb->len < hdr_len + 8)
181 return -1;
183 pos = skb->data + hdr_len;
184 key[0] = *pos++;
185 key[1] = *pos++;
186 key[2] = *pos++;
187 keyidx = *pos++ >> 6;
188 if (keyidx != wep->key_idx)
189 return -1;
191 klen = 3 + wep->key_len;
193 /* Copy rest of the WEP key (the secret part) */
194 memcpy(key + 3, wep->key, wep->key_len);
196 /* Apply RC4 to data and compute CRC32 over decrypted data */
197 plen = skb->len - hdr_len - 8;
199 crypto_cipher_setkey(wep->tfm, key, klen);
200 sg.page = virt_to_page(pos);
201 sg.offset = offset_in_page(pos);
202 sg.length = plen + 4;
203 crypto_cipher_decrypt(wep->tfm, &sg, &sg, plen + 4);
205 crc = ~crc32_le(~0, pos, plen);
206 icv[0] = crc;
207 icv[1] = crc >> 8;
208 icv[2] = crc >> 16;
209 icv[3] = crc >> 24;
210 if (memcmp(icv, pos + plen, 4) != 0) {
211 /* ICV mismatch - drop frame */
212 return -2;
215 /* Remove IV and ICV */
216 memmove(skb->data + 4, skb->data, hdr_len);
217 skb_pull(skb, 4);
218 skb_trim(skb, skb->len - 4);
220 return 0;
223 static int prism2_wep_set_key(void *key, int len, u8 * seq, void *priv)
225 struct prism2_wep_data *wep = priv;
227 if (len < 0 || len > WEP_KEY_LEN)
228 return -1;
230 memcpy(wep->key, key, len);
231 wep->key_len = len;
233 return 0;
236 static int prism2_wep_get_key(void *key, int len, u8 * seq, void *priv)
238 struct prism2_wep_data *wep = priv;
240 if (len < wep->key_len)
241 return -1;
243 memcpy(key, wep->key, wep->key_len);
245 return wep->key_len;
248 static char *prism2_wep_print_stats(char *p, void *priv)
250 struct prism2_wep_data *wep = priv;
251 p += sprintf(p, "key[%d] alg=WEP len=%d\n", wep->key_idx, wep->key_len);
252 return p;
255 static struct ieee80211_crypto_ops ieee80211_crypt_wep = {
256 .name = "WEP",
257 .init = prism2_wep_init,
258 .deinit = prism2_wep_deinit,
259 .build_iv = prism2_wep_build_iv,
260 .encrypt_mpdu = prism2_wep_encrypt,
261 .decrypt_mpdu = prism2_wep_decrypt,
262 .encrypt_msdu = NULL,
263 .decrypt_msdu = NULL,
264 .set_key = prism2_wep_set_key,
265 .get_key = prism2_wep_get_key,
266 .print_stats = prism2_wep_print_stats,
267 .extra_mpdu_prefix_len = 4, /* IV */
268 .extra_mpdu_postfix_len = 4, /* ICV */
269 .owner = THIS_MODULE,
272 static int __init ieee80211_crypto_wep_init(void)
274 return ieee80211_register_crypto_ops(&ieee80211_crypt_wep);
277 static void __exit ieee80211_crypto_wep_exit(void)
279 ieee80211_unregister_crypto_ops(&ieee80211_crypt_wep);
282 module_init(ieee80211_crypto_wep_init);
283 module_exit(ieee80211_crypto_wep_exit);