reiserfs: truncate blocks not used by a write
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / swap.c
blob65e68259835ecf90165f4c73b500a7e7b0416384
1 /*
2 * linux/mm/swap.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
34 /* How many pages do we try to swap or page in/out together? */
35 int page_cluster;
37 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs);
38 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs);
39 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 * This path almost never happens for VM activity - pages are normally
43 * freed via pagevecs. But it gets used by networking.
45 static void __page_cache_release(struct page *page)
47 if (PageLRU(page)) {
48 unsigned long flags;
49 struct zone *zone = page_zone(page);
51 spin_lock_irqsave(&zone->lru_lock, flags);
52 VM_BUG_ON(!PageLRU(page));
53 __ClearPageLRU(page);
54 del_page_from_lru(zone, page);
55 spin_unlock_irqrestore(&zone->lru_lock, flags);
57 free_hot_page(page);
60 static void put_compound_page(struct page *page)
62 page = compound_head(page);
63 if (put_page_testzero(page)) {
64 compound_page_dtor *dtor;
66 dtor = get_compound_page_dtor(page);
67 (*dtor)(page);
71 void put_page(struct page *page)
73 if (unlikely(PageCompound(page)))
74 put_compound_page(page);
75 else if (put_page_testzero(page))
76 __page_cache_release(page);
78 EXPORT_SYMBOL(put_page);
80 /**
81 * put_pages_list() - release a list of pages
82 * @pages: list of pages threaded on page->lru
84 * Release a list of pages which are strung together on page.lru. Currently
85 * used by read_cache_pages() and related error recovery code.
87 void put_pages_list(struct list_head *pages)
89 while (!list_empty(pages)) {
90 struct page *victim;
92 victim = list_entry(pages->prev, struct page, lru);
93 list_del(&victim->lru);
94 page_cache_release(victim);
97 EXPORT_SYMBOL(put_pages_list);
100 * pagevec_move_tail() must be called with IRQ disabled.
101 * Otherwise this may cause nasty races.
103 static void pagevec_move_tail(struct pagevec *pvec)
105 int i;
106 int pgmoved = 0;
107 struct zone *zone = NULL;
109 for (i = 0; i < pagevec_count(pvec); i++) {
110 struct page *page = pvec->pages[i];
111 struct zone *pagezone = page_zone(page);
113 if (pagezone != zone) {
114 if (zone)
115 spin_unlock(&zone->lru_lock);
116 zone = pagezone;
117 spin_lock(&zone->lru_lock);
119 if (PageLRU(page) && !PageActive(page)) {
120 list_move_tail(&page->lru, &zone->inactive_list);
121 pgmoved++;
124 if (zone)
125 spin_unlock(&zone->lru_lock);
126 __count_vm_events(PGROTATED, pgmoved);
127 release_pages(pvec->pages, pvec->nr, pvec->cold);
128 pagevec_reinit(pvec);
132 * Writeback is about to end against a page which has been marked for immediate
133 * reclaim. If it still appears to be reclaimable, move it to the tail of the
134 * inactive list.
136 void rotate_reclaimable_page(struct page *page)
138 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
139 PageLRU(page)) {
140 struct pagevec *pvec;
141 unsigned long flags;
143 page_cache_get(page);
144 local_irq_save(flags);
145 pvec = &__get_cpu_var(lru_rotate_pvecs);
146 if (!pagevec_add(pvec, page))
147 pagevec_move_tail(pvec);
148 local_irq_restore(flags);
153 * FIXME: speed this up?
155 void activate_page(struct page *page)
157 struct zone *zone = page_zone(page);
159 spin_lock_irq(&zone->lru_lock);
160 if (PageLRU(page) && !PageActive(page)) {
161 del_page_from_inactive_list(zone, page);
162 SetPageActive(page);
163 add_page_to_active_list(zone, page);
164 __count_vm_event(PGACTIVATE);
165 mem_cgroup_move_lists(page, true);
167 spin_unlock_irq(&zone->lru_lock);
171 * Mark a page as having seen activity.
173 * inactive,unreferenced -> inactive,referenced
174 * inactive,referenced -> active,unreferenced
175 * active,unreferenced -> active,referenced
177 void mark_page_accessed(struct page *page)
179 if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
180 activate_page(page);
181 ClearPageReferenced(page);
182 } else if (!PageReferenced(page)) {
183 SetPageReferenced(page);
187 EXPORT_SYMBOL(mark_page_accessed);
190 * lru_cache_add: add a page to the page lists
191 * @page: the page to add
193 void lru_cache_add(struct page *page)
195 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
197 page_cache_get(page);
198 if (!pagevec_add(pvec, page))
199 __pagevec_lru_add(pvec);
200 put_cpu_var(lru_add_pvecs);
203 void lru_cache_add_active(struct page *page)
205 struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
207 page_cache_get(page);
208 if (!pagevec_add(pvec, page))
209 __pagevec_lru_add_active(pvec);
210 put_cpu_var(lru_add_active_pvecs);
214 * Drain pages out of the cpu's pagevecs.
215 * Either "cpu" is the current CPU, and preemption has already been
216 * disabled; or "cpu" is being hot-unplugged, and is already dead.
218 static void drain_cpu_pagevecs(int cpu)
220 struct pagevec *pvec;
222 pvec = &per_cpu(lru_add_pvecs, cpu);
223 if (pagevec_count(pvec))
224 __pagevec_lru_add(pvec);
226 pvec = &per_cpu(lru_add_active_pvecs, cpu);
227 if (pagevec_count(pvec))
228 __pagevec_lru_add_active(pvec);
230 pvec = &per_cpu(lru_rotate_pvecs, cpu);
231 if (pagevec_count(pvec)) {
232 unsigned long flags;
234 /* No harm done if a racing interrupt already did this */
235 local_irq_save(flags);
236 pagevec_move_tail(pvec);
237 local_irq_restore(flags);
241 void lru_add_drain(void)
243 drain_cpu_pagevecs(get_cpu());
244 put_cpu();
247 static void lru_add_drain_per_cpu(struct work_struct *dummy)
249 lru_add_drain();
253 * Returns 0 for success
255 int lru_add_drain_all(void)
257 return schedule_on_each_cpu(lru_add_drain_per_cpu);
261 * Batched page_cache_release(). Decrement the reference count on all the
262 * passed pages. If it fell to zero then remove the page from the LRU and
263 * free it.
265 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
266 * for the remainder of the operation.
268 * The locking in this function is against shrink_inactive_list(): we recheck
269 * the page count inside the lock to see whether shrink_inactive_list()
270 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
271 * will free it.
273 void release_pages(struct page **pages, int nr, int cold)
275 int i;
276 struct pagevec pages_to_free;
277 struct zone *zone = NULL;
278 unsigned long uninitialized_var(flags);
280 pagevec_init(&pages_to_free, cold);
281 for (i = 0; i < nr; i++) {
282 struct page *page = pages[i];
284 if (unlikely(PageCompound(page))) {
285 if (zone) {
286 spin_unlock_irqrestore(&zone->lru_lock, flags);
287 zone = NULL;
289 put_compound_page(page);
290 continue;
293 if (!put_page_testzero(page))
294 continue;
296 if (PageLRU(page)) {
297 struct zone *pagezone = page_zone(page);
298 if (pagezone != zone) {
299 if (zone)
300 spin_unlock_irqrestore(&zone->lru_lock,
301 flags);
302 zone = pagezone;
303 spin_lock_irqsave(&zone->lru_lock, flags);
305 VM_BUG_ON(!PageLRU(page));
306 __ClearPageLRU(page);
307 del_page_from_lru(zone, page);
310 if (!pagevec_add(&pages_to_free, page)) {
311 if (zone) {
312 spin_unlock_irqrestore(&zone->lru_lock, flags);
313 zone = NULL;
315 __pagevec_free(&pages_to_free);
316 pagevec_reinit(&pages_to_free);
319 if (zone)
320 spin_unlock_irqrestore(&zone->lru_lock, flags);
322 pagevec_free(&pages_to_free);
326 * The pages which we're about to release may be in the deferred lru-addition
327 * queues. That would prevent them from really being freed right now. That's
328 * OK from a correctness point of view but is inefficient - those pages may be
329 * cache-warm and we want to give them back to the page allocator ASAP.
331 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
332 * and __pagevec_lru_add_active() call release_pages() directly to avoid
333 * mutual recursion.
335 void __pagevec_release(struct pagevec *pvec)
337 lru_add_drain();
338 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
339 pagevec_reinit(pvec);
342 EXPORT_SYMBOL(__pagevec_release);
345 * pagevec_release() for pages which are known to not be on the LRU
347 * This function reinitialises the caller's pagevec.
349 void __pagevec_release_nonlru(struct pagevec *pvec)
351 int i;
352 struct pagevec pages_to_free;
354 pagevec_init(&pages_to_free, pvec->cold);
355 for (i = 0; i < pagevec_count(pvec); i++) {
356 struct page *page = pvec->pages[i];
358 VM_BUG_ON(PageLRU(page));
359 if (put_page_testzero(page))
360 pagevec_add(&pages_to_free, page);
362 pagevec_free(&pages_to_free);
363 pagevec_reinit(pvec);
367 * Add the passed pages to the LRU, then drop the caller's refcount
368 * on them. Reinitialises the caller's pagevec.
370 void __pagevec_lru_add(struct pagevec *pvec)
372 int i;
373 struct zone *zone = NULL;
375 for (i = 0; i < pagevec_count(pvec); i++) {
376 struct page *page = pvec->pages[i];
377 struct zone *pagezone = page_zone(page);
379 if (pagezone != zone) {
380 if (zone)
381 spin_unlock_irq(&zone->lru_lock);
382 zone = pagezone;
383 spin_lock_irq(&zone->lru_lock);
385 VM_BUG_ON(PageLRU(page));
386 SetPageLRU(page);
387 add_page_to_inactive_list(zone, page);
389 if (zone)
390 spin_unlock_irq(&zone->lru_lock);
391 release_pages(pvec->pages, pvec->nr, pvec->cold);
392 pagevec_reinit(pvec);
395 EXPORT_SYMBOL(__pagevec_lru_add);
397 void __pagevec_lru_add_active(struct pagevec *pvec)
399 int i;
400 struct zone *zone = NULL;
402 for (i = 0; i < pagevec_count(pvec); i++) {
403 struct page *page = pvec->pages[i];
404 struct zone *pagezone = page_zone(page);
406 if (pagezone != zone) {
407 if (zone)
408 spin_unlock_irq(&zone->lru_lock);
409 zone = pagezone;
410 spin_lock_irq(&zone->lru_lock);
412 VM_BUG_ON(PageLRU(page));
413 SetPageLRU(page);
414 VM_BUG_ON(PageActive(page));
415 SetPageActive(page);
416 add_page_to_active_list(zone, page);
418 if (zone)
419 spin_unlock_irq(&zone->lru_lock);
420 release_pages(pvec->pages, pvec->nr, pvec->cold);
421 pagevec_reinit(pvec);
425 * Try to drop buffers from the pages in a pagevec
427 void pagevec_strip(struct pagevec *pvec)
429 int i;
431 for (i = 0; i < pagevec_count(pvec); i++) {
432 struct page *page = pvec->pages[i];
434 if (PagePrivate(page) && trylock_page(page)) {
435 if (PagePrivate(page))
436 try_to_release_page(page, 0);
437 unlock_page(page);
443 * pagevec_lookup - gang pagecache lookup
444 * @pvec: Where the resulting pages are placed
445 * @mapping: The address_space to search
446 * @start: The starting page index
447 * @nr_pages: The maximum number of pages
449 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
450 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
451 * reference against the pages in @pvec.
453 * The search returns a group of mapping-contiguous pages with ascending
454 * indexes. There may be holes in the indices due to not-present pages.
456 * pagevec_lookup() returns the number of pages which were found.
458 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
459 pgoff_t start, unsigned nr_pages)
461 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
462 return pagevec_count(pvec);
465 EXPORT_SYMBOL(pagevec_lookup);
467 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
468 pgoff_t *index, int tag, unsigned nr_pages)
470 pvec->nr = find_get_pages_tag(mapping, index, tag,
471 nr_pages, pvec->pages);
472 return pagevec_count(pvec);
475 EXPORT_SYMBOL(pagevec_lookup_tag);
477 #ifdef CONFIG_SMP
479 * We tolerate a little inaccuracy to avoid ping-ponging the counter between
480 * CPUs
482 #define ACCT_THRESHOLD max(16, NR_CPUS * 2)
484 static DEFINE_PER_CPU(long, committed_space);
486 void vm_acct_memory(long pages)
488 long *local;
490 preempt_disable();
491 local = &__get_cpu_var(committed_space);
492 *local += pages;
493 if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
494 atomic_long_add(*local, &vm_committed_space);
495 *local = 0;
497 preempt_enable();
500 #ifdef CONFIG_HOTPLUG_CPU
502 /* Drop the CPU's cached committed space back into the central pool. */
503 static int cpu_swap_callback(struct notifier_block *nfb,
504 unsigned long action,
505 void *hcpu)
507 long *committed;
509 committed = &per_cpu(committed_space, (long)hcpu);
510 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
511 atomic_long_add(*committed, &vm_committed_space);
512 *committed = 0;
513 drain_cpu_pagevecs((long)hcpu);
515 return NOTIFY_OK;
517 #endif /* CONFIG_HOTPLUG_CPU */
518 #endif /* CONFIG_SMP */
521 * Perform any setup for the swap system
523 void __init swap_setup(void)
525 unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
527 #ifdef CONFIG_SWAP
528 bdi_init(swapper_space.backing_dev_info);
529 #endif
531 /* Use a smaller cluster for small-memory machines */
532 if (megs < 16)
533 page_cluster = 2;
534 else
535 page_cluster = 3;
537 * Right now other parts of the system means that we
538 * _really_ don't want to cluster much more
540 #ifdef CONFIG_HOTPLUG_CPU
541 hotcpu_notifier(cpu_swap_callback, 0);
542 #endif