nfsd: make export cache allocated per network namespace context
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / nvme.c
blob38a2d0631882ccd192ee475fc3b0f7a2e3b9d0cb
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45 #define NVME_Q_DEPTH 1024
46 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
47 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
48 #define NVME_MINORS 64
49 #define NVME_IO_TIMEOUT (5 * HZ)
50 #define ADMIN_TIMEOUT (60 * HZ)
52 static int nvme_major;
53 module_param(nvme_major, int, 0);
55 static int use_threaded_interrupts;
56 module_param(use_threaded_interrupts, int, 0);
58 static DEFINE_SPINLOCK(dev_list_lock);
59 static LIST_HEAD(dev_list);
60 static struct task_struct *nvme_thread;
63 * Represents an NVM Express device. Each nvme_dev is a PCI function.
65 struct nvme_dev {
66 struct list_head node;
67 struct nvme_queue **queues;
68 u32 __iomem *dbs;
69 struct pci_dev *pci_dev;
70 struct dma_pool *prp_page_pool;
71 struct dma_pool *prp_small_pool;
72 int instance;
73 int queue_count;
74 int db_stride;
75 u32 ctrl_config;
76 struct msix_entry *entry;
77 struct nvme_bar __iomem *bar;
78 struct list_head namespaces;
79 char serial[20];
80 char model[40];
81 char firmware_rev[8];
85 * An NVM Express namespace is equivalent to a SCSI LUN
87 struct nvme_ns {
88 struct list_head list;
90 struct nvme_dev *dev;
91 struct request_queue *queue;
92 struct gendisk *disk;
94 int ns_id;
95 int lba_shift;
99 * An NVM Express queue. Each device has at least two (one for admin
100 * commands and one for I/O commands).
102 struct nvme_queue {
103 struct device *q_dmadev;
104 struct nvme_dev *dev;
105 spinlock_t q_lock;
106 struct nvme_command *sq_cmds;
107 volatile struct nvme_completion *cqes;
108 dma_addr_t sq_dma_addr;
109 dma_addr_t cq_dma_addr;
110 wait_queue_head_t sq_full;
111 wait_queue_t sq_cong_wait;
112 struct bio_list sq_cong;
113 u32 __iomem *q_db;
114 u16 q_depth;
115 u16 cq_vector;
116 u16 sq_head;
117 u16 sq_tail;
118 u16 cq_head;
119 u16 cq_phase;
120 unsigned long cmdid_data[];
124 * Check we didin't inadvertently grow the command struct
126 static inline void _nvme_check_size(void)
128 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
136 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
139 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
140 struct nvme_completion *);
142 struct nvme_cmd_info {
143 nvme_completion_fn fn;
144 void *ctx;
145 unsigned long timeout;
148 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
150 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
154 * alloc_cmdid() - Allocate a Command ID
155 * @nvmeq: The queue that will be used for this command
156 * @ctx: A pointer that will be passed to the handler
157 * @handler: The function to call on completion
159 * Allocate a Command ID for a queue. The data passed in will
160 * be passed to the completion handler. This is implemented by using
161 * the bottom two bits of the ctx pointer to store the handler ID.
162 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
163 * We can change this if it becomes a problem.
165 * May be called with local interrupts disabled and the q_lock held,
166 * or with interrupts enabled and no locks held.
168 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
169 nvme_completion_fn handler, unsigned timeout)
171 int depth = nvmeq->q_depth - 1;
172 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
173 int cmdid;
175 do {
176 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
177 if (cmdid >= depth)
178 return -EBUSY;
179 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
181 info[cmdid].fn = handler;
182 info[cmdid].ctx = ctx;
183 info[cmdid].timeout = jiffies + timeout;
184 return cmdid;
187 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
188 nvme_completion_fn handler, unsigned timeout)
190 int cmdid;
191 wait_event_killable(nvmeq->sq_full,
192 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
193 return (cmdid < 0) ? -EINTR : cmdid;
196 /* Special values must be less than 0x1000 */
197 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
198 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
199 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
200 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
201 #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
203 static void special_completion(struct nvme_dev *dev, void *ctx,
204 struct nvme_completion *cqe)
206 if (ctx == CMD_CTX_CANCELLED)
207 return;
208 if (ctx == CMD_CTX_FLUSH)
209 return;
210 if (ctx == CMD_CTX_COMPLETED) {
211 dev_warn(&dev->pci_dev->dev,
212 "completed id %d twice on queue %d\n",
213 cqe->command_id, le16_to_cpup(&cqe->sq_id));
214 return;
216 if (ctx == CMD_CTX_INVALID) {
217 dev_warn(&dev->pci_dev->dev,
218 "invalid id %d completed on queue %d\n",
219 cqe->command_id, le16_to_cpup(&cqe->sq_id));
220 return;
223 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
227 * Called with local interrupts disabled and the q_lock held. May not sleep.
229 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
230 nvme_completion_fn *fn)
232 void *ctx;
233 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
235 if (cmdid >= nvmeq->q_depth) {
236 *fn = special_completion;
237 return CMD_CTX_INVALID;
239 *fn = info[cmdid].fn;
240 ctx = info[cmdid].ctx;
241 info[cmdid].fn = special_completion;
242 info[cmdid].ctx = CMD_CTX_COMPLETED;
243 clear_bit(cmdid, nvmeq->cmdid_data);
244 wake_up(&nvmeq->sq_full);
245 return ctx;
248 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
249 nvme_completion_fn *fn)
251 void *ctx;
252 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
253 if (fn)
254 *fn = info[cmdid].fn;
255 ctx = info[cmdid].ctx;
256 info[cmdid].fn = special_completion;
257 info[cmdid].ctx = CMD_CTX_CANCELLED;
258 return ctx;
261 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
263 return dev->queues[get_cpu() + 1];
266 static void put_nvmeq(struct nvme_queue *nvmeq)
268 put_cpu();
272 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
273 * @nvmeq: The queue to use
274 * @cmd: The command to send
276 * Safe to use from interrupt context
278 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
280 unsigned long flags;
281 u16 tail;
282 spin_lock_irqsave(&nvmeq->q_lock, flags);
283 tail = nvmeq->sq_tail;
284 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
285 if (++tail == nvmeq->q_depth)
286 tail = 0;
287 writel(tail, nvmeq->q_db);
288 nvmeq->sq_tail = tail;
289 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
291 return 0;
295 * The nvme_iod describes the data in an I/O, including the list of PRP
296 * entries. You can't see it in this data structure because C doesn't let
297 * me express that. Use nvme_alloc_iod to ensure there's enough space
298 * allocated to store the PRP list.
300 struct nvme_iod {
301 void *private; /* For the use of the submitter of the I/O */
302 int npages; /* In the PRP list. 0 means small pool in use */
303 int offset; /* Of PRP list */
304 int nents; /* Used in scatterlist */
305 int length; /* Of data, in bytes */
306 dma_addr_t first_dma;
307 struct scatterlist sg[0];
310 static __le64 **iod_list(struct nvme_iod *iod)
312 return ((void *)iod) + iod->offset;
316 * Will slightly overestimate the number of pages needed. This is OK
317 * as it only leads to a small amount of wasted memory for the lifetime of
318 * the I/O.
320 static int nvme_npages(unsigned size)
322 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
323 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
326 static struct nvme_iod *
327 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
329 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
330 sizeof(__le64 *) * nvme_npages(nbytes) +
331 sizeof(struct scatterlist) * nseg, gfp);
333 if (iod) {
334 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
335 iod->npages = -1;
336 iod->length = nbytes;
339 return iod;
342 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
344 const int last_prp = PAGE_SIZE / 8 - 1;
345 int i;
346 __le64 **list = iod_list(iod);
347 dma_addr_t prp_dma = iod->first_dma;
349 if (iod->npages == 0)
350 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
351 for (i = 0; i < iod->npages; i++) {
352 __le64 *prp_list = list[i];
353 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
354 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
355 prp_dma = next_prp_dma;
357 kfree(iod);
360 static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
362 struct nvme_queue *nvmeq = get_nvmeq(dev);
363 if (bio_list_empty(&nvmeq->sq_cong))
364 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
365 bio_list_add(&nvmeq->sq_cong, bio);
366 put_nvmeq(nvmeq);
367 wake_up_process(nvme_thread);
370 static void bio_completion(struct nvme_dev *dev, void *ctx,
371 struct nvme_completion *cqe)
373 struct nvme_iod *iod = ctx;
374 struct bio *bio = iod->private;
375 u16 status = le16_to_cpup(&cqe->status) >> 1;
377 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
378 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
379 nvme_free_iod(dev, iod);
380 if (status) {
381 bio_endio(bio, -EIO);
382 } else if (bio->bi_vcnt > bio->bi_idx) {
383 requeue_bio(dev, bio);
384 } else {
385 bio_endio(bio, 0);
389 /* length is in bytes. gfp flags indicates whether we may sleep. */
390 static int nvme_setup_prps(struct nvme_dev *dev,
391 struct nvme_common_command *cmd, struct nvme_iod *iod,
392 int total_len, gfp_t gfp)
394 struct dma_pool *pool;
395 int length = total_len;
396 struct scatterlist *sg = iod->sg;
397 int dma_len = sg_dma_len(sg);
398 u64 dma_addr = sg_dma_address(sg);
399 int offset = offset_in_page(dma_addr);
400 __le64 *prp_list;
401 __le64 **list = iod_list(iod);
402 dma_addr_t prp_dma;
403 int nprps, i;
405 cmd->prp1 = cpu_to_le64(dma_addr);
406 length -= (PAGE_SIZE - offset);
407 if (length <= 0)
408 return total_len;
410 dma_len -= (PAGE_SIZE - offset);
411 if (dma_len) {
412 dma_addr += (PAGE_SIZE - offset);
413 } else {
414 sg = sg_next(sg);
415 dma_addr = sg_dma_address(sg);
416 dma_len = sg_dma_len(sg);
419 if (length <= PAGE_SIZE) {
420 cmd->prp2 = cpu_to_le64(dma_addr);
421 return total_len;
424 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
425 if (nprps <= (256 / 8)) {
426 pool = dev->prp_small_pool;
427 iod->npages = 0;
428 } else {
429 pool = dev->prp_page_pool;
430 iod->npages = 1;
433 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
434 if (!prp_list) {
435 cmd->prp2 = cpu_to_le64(dma_addr);
436 iod->npages = -1;
437 return (total_len - length) + PAGE_SIZE;
439 list[0] = prp_list;
440 iod->first_dma = prp_dma;
441 cmd->prp2 = cpu_to_le64(prp_dma);
442 i = 0;
443 for (;;) {
444 if (i == PAGE_SIZE / 8) {
445 __le64 *old_prp_list = prp_list;
446 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
447 if (!prp_list)
448 return total_len - length;
449 list[iod->npages++] = prp_list;
450 prp_list[0] = old_prp_list[i - 1];
451 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
452 i = 1;
454 prp_list[i++] = cpu_to_le64(dma_addr);
455 dma_len -= PAGE_SIZE;
456 dma_addr += PAGE_SIZE;
457 length -= PAGE_SIZE;
458 if (length <= 0)
459 break;
460 if (dma_len > 0)
461 continue;
462 BUG_ON(dma_len < 0);
463 sg = sg_next(sg);
464 dma_addr = sg_dma_address(sg);
465 dma_len = sg_dma_len(sg);
468 return total_len;
471 /* NVMe scatterlists require no holes in the virtual address */
472 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
473 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
475 static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
476 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
478 struct bio_vec *bvec, *bvprv = NULL;
479 struct scatterlist *sg = NULL;
480 int i, old_idx, length = 0, nsegs = 0;
482 sg_init_table(iod->sg, psegs);
483 old_idx = bio->bi_idx;
484 bio_for_each_segment(bvec, bio, i) {
485 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
486 sg->length += bvec->bv_len;
487 } else {
488 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
489 break;
490 sg = sg ? sg + 1 : iod->sg;
491 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
492 bvec->bv_offset);
493 nsegs++;
495 length += bvec->bv_len;
496 bvprv = bvec;
498 bio->bi_idx = i;
499 iod->nents = nsegs;
500 sg_mark_end(sg);
501 if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
502 bio->bi_idx = old_idx;
503 return -ENOMEM;
505 return length;
508 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
509 int cmdid)
511 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
513 memset(cmnd, 0, sizeof(*cmnd));
514 cmnd->common.opcode = nvme_cmd_flush;
515 cmnd->common.command_id = cmdid;
516 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
518 if (++nvmeq->sq_tail == nvmeq->q_depth)
519 nvmeq->sq_tail = 0;
520 writel(nvmeq->sq_tail, nvmeq->q_db);
522 return 0;
525 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
527 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
528 special_completion, NVME_IO_TIMEOUT);
529 if (unlikely(cmdid < 0))
530 return cmdid;
532 return nvme_submit_flush(nvmeq, ns, cmdid);
536 * Called with local interrupts disabled and the q_lock held. May not sleep.
538 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
539 struct bio *bio)
541 struct nvme_command *cmnd;
542 struct nvme_iod *iod;
543 enum dma_data_direction dma_dir;
544 int cmdid, length, result = -ENOMEM;
545 u16 control;
546 u32 dsmgmt;
547 int psegs = bio_phys_segments(ns->queue, bio);
549 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
550 result = nvme_submit_flush_data(nvmeq, ns);
551 if (result)
552 return result;
555 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
556 if (!iod)
557 goto nomem;
558 iod->private = bio;
560 result = -EBUSY;
561 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
562 if (unlikely(cmdid < 0))
563 goto free_iod;
565 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
566 return nvme_submit_flush(nvmeq, ns, cmdid);
568 control = 0;
569 if (bio->bi_rw & REQ_FUA)
570 control |= NVME_RW_FUA;
571 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
572 control |= NVME_RW_LR;
574 dsmgmt = 0;
575 if (bio->bi_rw & REQ_RAHEAD)
576 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
578 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
580 memset(cmnd, 0, sizeof(*cmnd));
581 if (bio_data_dir(bio)) {
582 cmnd->rw.opcode = nvme_cmd_write;
583 dma_dir = DMA_TO_DEVICE;
584 } else {
585 cmnd->rw.opcode = nvme_cmd_read;
586 dma_dir = DMA_FROM_DEVICE;
589 result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
590 if (result < 0)
591 goto free_iod;
592 length = result;
594 cmnd->rw.command_id = cmdid;
595 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
596 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
597 GFP_ATOMIC);
598 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
599 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
600 cmnd->rw.control = cpu_to_le16(control);
601 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
603 bio->bi_sector += length >> 9;
605 if (++nvmeq->sq_tail == nvmeq->q_depth)
606 nvmeq->sq_tail = 0;
607 writel(nvmeq->sq_tail, nvmeq->q_db);
609 return 0;
611 free_iod:
612 nvme_free_iod(nvmeq->dev, iod);
613 nomem:
614 return result;
617 static void nvme_make_request(struct request_queue *q, struct bio *bio)
619 struct nvme_ns *ns = q->queuedata;
620 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
621 int result = -EBUSY;
623 spin_lock_irq(&nvmeq->q_lock);
624 if (bio_list_empty(&nvmeq->sq_cong))
625 result = nvme_submit_bio_queue(nvmeq, ns, bio);
626 if (unlikely(result)) {
627 if (bio_list_empty(&nvmeq->sq_cong))
628 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
629 bio_list_add(&nvmeq->sq_cong, bio);
632 spin_unlock_irq(&nvmeq->q_lock);
633 put_nvmeq(nvmeq);
636 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
638 u16 head, phase;
640 head = nvmeq->cq_head;
641 phase = nvmeq->cq_phase;
643 for (;;) {
644 void *ctx;
645 nvme_completion_fn fn;
646 struct nvme_completion cqe = nvmeq->cqes[head];
647 if ((le16_to_cpu(cqe.status) & 1) != phase)
648 break;
649 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
650 if (++head == nvmeq->q_depth) {
651 head = 0;
652 phase = !phase;
655 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
656 fn(nvmeq->dev, ctx, &cqe);
659 /* If the controller ignores the cq head doorbell and continuously
660 * writes to the queue, it is theoretically possible to wrap around
661 * the queue twice and mistakenly return IRQ_NONE. Linux only
662 * requires that 0.1% of your interrupts are handled, so this isn't
663 * a big problem.
665 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
666 return IRQ_NONE;
668 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
669 nvmeq->cq_head = head;
670 nvmeq->cq_phase = phase;
672 return IRQ_HANDLED;
675 static irqreturn_t nvme_irq(int irq, void *data)
677 irqreturn_t result;
678 struct nvme_queue *nvmeq = data;
679 spin_lock(&nvmeq->q_lock);
680 result = nvme_process_cq(nvmeq);
681 spin_unlock(&nvmeq->q_lock);
682 return result;
685 static irqreturn_t nvme_irq_check(int irq, void *data)
687 struct nvme_queue *nvmeq = data;
688 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
689 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
690 return IRQ_NONE;
691 return IRQ_WAKE_THREAD;
694 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
696 spin_lock_irq(&nvmeq->q_lock);
697 cancel_cmdid(nvmeq, cmdid, NULL);
698 spin_unlock_irq(&nvmeq->q_lock);
701 struct sync_cmd_info {
702 struct task_struct *task;
703 u32 result;
704 int status;
707 static void sync_completion(struct nvme_dev *dev, void *ctx,
708 struct nvme_completion *cqe)
710 struct sync_cmd_info *cmdinfo = ctx;
711 cmdinfo->result = le32_to_cpup(&cqe->result);
712 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
713 wake_up_process(cmdinfo->task);
717 * Returns 0 on success. If the result is negative, it's a Linux error code;
718 * if the result is positive, it's an NVM Express status code
720 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
721 struct nvme_command *cmd, u32 *result, unsigned timeout)
723 int cmdid;
724 struct sync_cmd_info cmdinfo;
726 cmdinfo.task = current;
727 cmdinfo.status = -EINTR;
729 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
730 timeout);
731 if (cmdid < 0)
732 return cmdid;
733 cmd->common.command_id = cmdid;
735 set_current_state(TASK_KILLABLE);
736 nvme_submit_cmd(nvmeq, cmd);
737 schedule();
739 if (cmdinfo.status == -EINTR) {
740 nvme_abort_command(nvmeq, cmdid);
741 return -EINTR;
744 if (result)
745 *result = cmdinfo.result;
747 return cmdinfo.status;
750 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
751 u32 *result)
753 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
756 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
758 int status;
759 struct nvme_command c;
761 memset(&c, 0, sizeof(c));
762 c.delete_queue.opcode = opcode;
763 c.delete_queue.qid = cpu_to_le16(id);
765 status = nvme_submit_admin_cmd(dev, &c, NULL);
766 if (status)
767 return -EIO;
768 return 0;
771 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
772 struct nvme_queue *nvmeq)
774 int status;
775 struct nvme_command c;
776 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
778 memset(&c, 0, sizeof(c));
779 c.create_cq.opcode = nvme_admin_create_cq;
780 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
781 c.create_cq.cqid = cpu_to_le16(qid);
782 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
783 c.create_cq.cq_flags = cpu_to_le16(flags);
784 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
786 status = nvme_submit_admin_cmd(dev, &c, NULL);
787 if (status)
788 return -EIO;
789 return 0;
792 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
793 struct nvme_queue *nvmeq)
795 int status;
796 struct nvme_command c;
797 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
799 memset(&c, 0, sizeof(c));
800 c.create_sq.opcode = nvme_admin_create_sq;
801 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
802 c.create_sq.sqid = cpu_to_le16(qid);
803 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
804 c.create_sq.sq_flags = cpu_to_le16(flags);
805 c.create_sq.cqid = cpu_to_le16(qid);
807 status = nvme_submit_admin_cmd(dev, &c, NULL);
808 if (status)
809 return -EIO;
810 return 0;
813 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
815 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
818 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
820 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
823 static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
824 dma_addr_t dma_addr)
826 struct nvme_command c;
828 memset(&c, 0, sizeof(c));
829 c.identify.opcode = nvme_admin_identify;
830 c.identify.nsid = cpu_to_le32(nsid);
831 c.identify.prp1 = cpu_to_le64(dma_addr);
832 c.identify.cns = cpu_to_le32(cns);
834 return nvme_submit_admin_cmd(dev, &c, NULL);
837 static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
838 unsigned dword11, dma_addr_t dma_addr)
840 struct nvme_command c;
842 memset(&c, 0, sizeof(c));
843 c.features.opcode = nvme_admin_get_features;
844 c.features.prp1 = cpu_to_le64(dma_addr);
845 c.features.fid = cpu_to_le32(fid);
846 c.features.dword11 = cpu_to_le32(dword11);
848 return nvme_submit_admin_cmd(dev, &c, NULL);
851 static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
852 unsigned dword11, dma_addr_t dma_addr, u32 *result)
854 struct nvme_command c;
856 memset(&c, 0, sizeof(c));
857 c.features.opcode = nvme_admin_set_features;
858 c.features.prp1 = cpu_to_le64(dma_addr);
859 c.features.fid = cpu_to_le32(fid);
860 c.features.dword11 = cpu_to_le32(dword11);
862 return nvme_submit_admin_cmd(dev, &c, result);
865 static void nvme_free_queue(struct nvme_dev *dev, int qid)
867 struct nvme_queue *nvmeq = dev->queues[qid];
868 int vector = dev->entry[nvmeq->cq_vector].vector;
870 irq_set_affinity_hint(vector, NULL);
871 free_irq(vector, nvmeq);
873 /* Don't tell the adapter to delete the admin queue */
874 if (qid) {
875 adapter_delete_sq(dev, qid);
876 adapter_delete_cq(dev, qid);
879 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
880 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
881 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
882 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
883 kfree(nvmeq);
886 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
887 int depth, int vector)
889 struct device *dmadev = &dev->pci_dev->dev;
890 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
891 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
892 if (!nvmeq)
893 return NULL;
895 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
896 &nvmeq->cq_dma_addr, GFP_KERNEL);
897 if (!nvmeq->cqes)
898 goto free_nvmeq;
899 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
901 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
902 &nvmeq->sq_dma_addr, GFP_KERNEL);
903 if (!nvmeq->sq_cmds)
904 goto free_cqdma;
906 nvmeq->q_dmadev = dmadev;
907 nvmeq->dev = dev;
908 spin_lock_init(&nvmeq->q_lock);
909 nvmeq->cq_head = 0;
910 nvmeq->cq_phase = 1;
911 init_waitqueue_head(&nvmeq->sq_full);
912 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
913 bio_list_init(&nvmeq->sq_cong);
914 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
915 nvmeq->q_depth = depth;
916 nvmeq->cq_vector = vector;
918 return nvmeq;
920 free_cqdma:
921 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
922 nvmeq->cq_dma_addr);
923 free_nvmeq:
924 kfree(nvmeq);
925 return NULL;
928 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
929 const char *name)
931 if (use_threaded_interrupts)
932 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
933 nvme_irq_check, nvme_irq,
934 IRQF_DISABLED | IRQF_SHARED,
935 name, nvmeq);
936 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
937 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
940 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
941 int qid, int cq_size, int vector)
943 int result;
944 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
946 if (!nvmeq)
947 return ERR_PTR(-ENOMEM);
949 result = adapter_alloc_cq(dev, qid, nvmeq);
950 if (result < 0)
951 goto free_nvmeq;
953 result = adapter_alloc_sq(dev, qid, nvmeq);
954 if (result < 0)
955 goto release_cq;
957 result = queue_request_irq(dev, nvmeq, "nvme");
958 if (result < 0)
959 goto release_sq;
961 return nvmeq;
963 release_sq:
964 adapter_delete_sq(dev, qid);
965 release_cq:
966 adapter_delete_cq(dev, qid);
967 free_nvmeq:
968 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
969 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
970 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
971 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
972 kfree(nvmeq);
973 return ERR_PTR(result);
976 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
978 int result;
979 u32 aqa;
980 u64 cap;
981 unsigned long timeout;
982 struct nvme_queue *nvmeq;
984 dev->dbs = ((void __iomem *)dev->bar) + 4096;
986 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
987 if (!nvmeq)
988 return -ENOMEM;
990 aqa = nvmeq->q_depth - 1;
991 aqa |= aqa << 16;
993 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
994 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
995 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
996 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
998 writel(0, &dev->bar->cc);
999 writel(aqa, &dev->bar->aqa);
1000 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1001 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1002 writel(dev->ctrl_config, &dev->bar->cc);
1004 cap = readq(&dev->bar->cap);
1005 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1006 dev->db_stride = NVME_CAP_STRIDE(cap);
1008 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1009 msleep(100);
1010 if (fatal_signal_pending(current))
1011 return -EINTR;
1012 if (time_after(jiffies, timeout)) {
1013 dev_err(&dev->pci_dev->dev,
1014 "Device not ready; aborting initialisation\n");
1015 return -ENODEV;
1019 result = queue_request_irq(dev, nvmeq, "nvme admin");
1020 dev->queues[0] = nvmeq;
1021 return result;
1024 static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1025 unsigned long addr, unsigned length)
1027 int i, err, count, nents, offset;
1028 struct scatterlist *sg;
1029 struct page **pages;
1030 struct nvme_iod *iod;
1032 if (addr & 3)
1033 return ERR_PTR(-EINVAL);
1034 if (!length)
1035 return ERR_PTR(-EINVAL);
1037 offset = offset_in_page(addr);
1038 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1039 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1041 err = get_user_pages_fast(addr, count, 1, pages);
1042 if (err < count) {
1043 count = err;
1044 err = -EFAULT;
1045 goto put_pages;
1048 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1049 sg = iod->sg;
1050 sg_init_table(sg, count);
1051 for (i = 0; i < count; i++) {
1052 sg_set_page(&sg[i], pages[i],
1053 min_t(int, length, PAGE_SIZE - offset), offset);
1054 length -= (PAGE_SIZE - offset);
1055 offset = 0;
1057 sg_mark_end(&sg[i - 1]);
1058 iod->nents = count;
1060 err = -ENOMEM;
1061 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1062 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1063 if (!nents)
1064 goto free_iod;
1066 kfree(pages);
1067 return iod;
1069 free_iod:
1070 kfree(iod);
1071 put_pages:
1072 for (i = 0; i < count; i++)
1073 put_page(pages[i]);
1074 kfree(pages);
1075 return ERR_PTR(err);
1078 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1079 struct nvme_iod *iod)
1081 int i;
1083 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1084 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1086 for (i = 0; i < iod->nents; i++)
1087 put_page(sg_page(&iod->sg[i]));
1090 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1092 struct nvme_dev *dev = ns->dev;
1093 struct nvme_queue *nvmeq;
1094 struct nvme_user_io io;
1095 struct nvme_command c;
1096 unsigned length;
1097 int status;
1098 struct nvme_iod *iod;
1100 if (copy_from_user(&io, uio, sizeof(io)))
1101 return -EFAULT;
1102 length = (io.nblocks + 1) << ns->lba_shift;
1104 switch (io.opcode) {
1105 case nvme_cmd_write:
1106 case nvme_cmd_read:
1107 case nvme_cmd_compare:
1108 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1109 break;
1110 default:
1111 return -EINVAL;
1114 if (IS_ERR(iod))
1115 return PTR_ERR(iod);
1117 memset(&c, 0, sizeof(c));
1118 c.rw.opcode = io.opcode;
1119 c.rw.flags = io.flags;
1120 c.rw.nsid = cpu_to_le32(ns->ns_id);
1121 c.rw.slba = cpu_to_le64(io.slba);
1122 c.rw.length = cpu_to_le16(io.nblocks);
1123 c.rw.control = cpu_to_le16(io.control);
1124 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1125 c.rw.reftag = io.reftag;
1126 c.rw.apptag = io.apptag;
1127 c.rw.appmask = io.appmask;
1128 /* XXX: metadata */
1129 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1131 nvmeq = get_nvmeq(dev);
1133 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1134 * disabled. We may be preempted at any point, and be rescheduled
1135 * to a different CPU. That will cause cacheline bouncing, but no
1136 * additional races since q_lock already protects against other CPUs.
1138 put_nvmeq(nvmeq);
1139 if (length != (io.nblocks + 1) << ns->lba_shift)
1140 status = -ENOMEM;
1141 else
1142 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1144 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1145 nvme_free_iod(dev, iod);
1146 return status;
1149 static int nvme_user_admin_cmd(struct nvme_ns *ns,
1150 struct nvme_admin_cmd __user *ucmd)
1152 struct nvme_dev *dev = ns->dev;
1153 struct nvme_admin_cmd cmd;
1154 struct nvme_command c;
1155 int status, length;
1156 struct nvme_iod *iod;
1158 if (!capable(CAP_SYS_ADMIN))
1159 return -EACCES;
1160 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1161 return -EFAULT;
1163 memset(&c, 0, sizeof(c));
1164 c.common.opcode = cmd.opcode;
1165 c.common.flags = cmd.flags;
1166 c.common.nsid = cpu_to_le32(cmd.nsid);
1167 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1168 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1169 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1170 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1171 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1172 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1173 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1174 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1176 length = cmd.data_len;
1177 if (cmd.data_len) {
1178 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1179 length);
1180 if (IS_ERR(iod))
1181 return PTR_ERR(iod);
1182 length = nvme_setup_prps(dev, &c.common, iod, length,
1183 GFP_KERNEL);
1186 if (length != cmd.data_len)
1187 status = -ENOMEM;
1188 else
1189 status = nvme_submit_admin_cmd(dev, &c, NULL);
1191 if (cmd.data_len) {
1192 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1193 nvme_free_iod(dev, iod);
1195 return status;
1198 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1199 unsigned long arg)
1201 struct nvme_ns *ns = bdev->bd_disk->private_data;
1203 switch (cmd) {
1204 case NVME_IOCTL_ID:
1205 return ns->ns_id;
1206 case NVME_IOCTL_ADMIN_CMD:
1207 return nvme_user_admin_cmd(ns, (void __user *)arg);
1208 case NVME_IOCTL_SUBMIT_IO:
1209 return nvme_submit_io(ns, (void __user *)arg);
1210 default:
1211 return -ENOTTY;
1215 static const struct block_device_operations nvme_fops = {
1216 .owner = THIS_MODULE,
1217 .ioctl = nvme_ioctl,
1218 .compat_ioctl = nvme_ioctl,
1221 static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1223 int depth = nvmeq->q_depth - 1;
1224 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1225 unsigned long now = jiffies;
1226 int cmdid;
1228 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1229 void *ctx;
1230 nvme_completion_fn fn;
1231 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1233 if (!time_after(now, info[cmdid].timeout))
1234 continue;
1235 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1236 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1237 fn(nvmeq->dev, ctx, &cqe);
1241 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1243 while (bio_list_peek(&nvmeq->sq_cong)) {
1244 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1245 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1246 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1247 bio_list_add_head(&nvmeq->sq_cong, bio);
1248 break;
1250 if (bio_list_empty(&nvmeq->sq_cong))
1251 remove_wait_queue(&nvmeq->sq_full,
1252 &nvmeq->sq_cong_wait);
1256 static int nvme_kthread(void *data)
1258 struct nvme_dev *dev;
1260 while (!kthread_should_stop()) {
1261 __set_current_state(TASK_RUNNING);
1262 spin_lock(&dev_list_lock);
1263 list_for_each_entry(dev, &dev_list, node) {
1264 int i;
1265 for (i = 0; i < dev->queue_count; i++) {
1266 struct nvme_queue *nvmeq = dev->queues[i];
1267 if (!nvmeq)
1268 continue;
1269 spin_lock_irq(&nvmeq->q_lock);
1270 if (nvme_process_cq(nvmeq))
1271 printk("process_cq did something\n");
1272 nvme_timeout_ios(nvmeq);
1273 nvme_resubmit_bios(nvmeq);
1274 spin_unlock_irq(&nvmeq->q_lock);
1277 spin_unlock(&dev_list_lock);
1278 set_current_state(TASK_INTERRUPTIBLE);
1279 schedule_timeout(HZ);
1281 return 0;
1284 static DEFINE_IDA(nvme_index_ida);
1286 static int nvme_get_ns_idx(void)
1288 int index, error;
1290 do {
1291 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1292 return -1;
1294 spin_lock(&dev_list_lock);
1295 error = ida_get_new(&nvme_index_ida, &index);
1296 spin_unlock(&dev_list_lock);
1297 } while (error == -EAGAIN);
1299 if (error)
1300 index = -1;
1301 return index;
1304 static void nvme_put_ns_idx(int index)
1306 spin_lock(&dev_list_lock);
1307 ida_remove(&nvme_index_ida, index);
1308 spin_unlock(&dev_list_lock);
1311 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1312 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1314 struct nvme_ns *ns;
1315 struct gendisk *disk;
1316 int lbaf;
1318 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1319 return NULL;
1321 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1322 if (!ns)
1323 return NULL;
1324 ns->queue = blk_alloc_queue(GFP_KERNEL);
1325 if (!ns->queue)
1326 goto out_free_ns;
1327 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1328 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1329 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1330 /* queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
1331 blk_queue_make_request(ns->queue, nvme_make_request);
1332 ns->dev = dev;
1333 ns->queue->queuedata = ns;
1335 disk = alloc_disk(NVME_MINORS);
1336 if (!disk)
1337 goto out_free_queue;
1338 ns->ns_id = nsid;
1339 ns->disk = disk;
1340 lbaf = id->flbas & 0xf;
1341 ns->lba_shift = id->lbaf[lbaf].ds;
1343 disk->major = nvme_major;
1344 disk->minors = NVME_MINORS;
1345 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1346 disk->fops = &nvme_fops;
1347 disk->private_data = ns;
1348 disk->queue = ns->queue;
1349 disk->driverfs_dev = &dev->pci_dev->dev;
1350 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1351 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1353 return ns;
1355 out_free_queue:
1356 blk_cleanup_queue(ns->queue);
1357 out_free_ns:
1358 kfree(ns);
1359 return NULL;
1362 static void nvme_ns_free(struct nvme_ns *ns)
1364 int index = ns->disk->first_minor / NVME_MINORS;
1365 put_disk(ns->disk);
1366 nvme_put_ns_idx(index);
1367 blk_cleanup_queue(ns->queue);
1368 kfree(ns);
1371 static int set_queue_count(struct nvme_dev *dev, int count)
1373 int status;
1374 u32 result;
1375 u32 q_count = (count - 1) | ((count - 1) << 16);
1377 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1378 &result);
1379 if (status)
1380 return -EIO;
1381 return min(result & 0xffff, result >> 16) + 1;
1384 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1386 int result, cpu, i, nr_io_queues, db_bar_size;
1388 nr_io_queues = num_online_cpus();
1389 result = set_queue_count(dev, nr_io_queues);
1390 if (result < 0)
1391 return result;
1392 if (result < nr_io_queues)
1393 nr_io_queues = result;
1395 /* Deregister the admin queue's interrupt */
1396 free_irq(dev->entry[0].vector, dev->queues[0]);
1398 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1399 if (db_bar_size > 8192) {
1400 iounmap(dev->bar);
1401 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1402 db_bar_size);
1403 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1404 dev->queues[0]->q_db = dev->dbs;
1407 for (i = 0; i < nr_io_queues; i++)
1408 dev->entry[i].entry = i;
1409 for (;;) {
1410 result = pci_enable_msix(dev->pci_dev, dev->entry,
1411 nr_io_queues);
1412 if (result == 0) {
1413 break;
1414 } else if (result > 0) {
1415 nr_io_queues = result;
1416 continue;
1417 } else {
1418 nr_io_queues = 1;
1419 break;
1423 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1424 /* XXX: handle failure here */
1426 cpu = cpumask_first(cpu_online_mask);
1427 for (i = 0; i < nr_io_queues; i++) {
1428 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1429 cpu = cpumask_next(cpu, cpu_online_mask);
1432 for (i = 0; i < nr_io_queues; i++) {
1433 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1434 NVME_Q_DEPTH, i);
1435 if (IS_ERR(dev->queues[i + 1]))
1436 return PTR_ERR(dev->queues[i + 1]);
1437 dev->queue_count++;
1440 for (; i < num_possible_cpus(); i++) {
1441 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1442 dev->queues[i + 1] = dev->queues[target + 1];
1445 return 0;
1448 static void nvme_free_queues(struct nvme_dev *dev)
1450 int i;
1452 for (i = dev->queue_count - 1; i >= 0; i--)
1453 nvme_free_queue(dev, i);
1456 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1458 int res, nn, i;
1459 struct nvme_ns *ns, *next;
1460 struct nvme_id_ctrl *ctrl;
1461 struct nvme_id_ns *id_ns;
1462 void *mem;
1463 dma_addr_t dma_addr;
1465 res = nvme_setup_io_queues(dev);
1466 if (res)
1467 return res;
1469 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1470 GFP_KERNEL);
1472 res = nvme_identify(dev, 0, 1, dma_addr);
1473 if (res) {
1474 res = -EIO;
1475 goto out_free;
1478 ctrl = mem;
1479 nn = le32_to_cpup(&ctrl->nn);
1480 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1481 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1482 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1484 id_ns = mem;
1485 for (i = 1; i <= nn; i++) {
1486 res = nvme_identify(dev, i, 0, dma_addr);
1487 if (res)
1488 continue;
1490 if (id_ns->ncap == 0)
1491 continue;
1493 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1494 dma_addr + 4096);
1495 if (res)
1496 continue;
1498 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1499 if (ns)
1500 list_add_tail(&ns->list, &dev->namespaces);
1502 list_for_each_entry(ns, &dev->namespaces, list)
1503 add_disk(ns->disk);
1505 goto out;
1507 out_free:
1508 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1509 list_del(&ns->list);
1510 nvme_ns_free(ns);
1513 out:
1514 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1515 return res;
1518 static int nvme_dev_remove(struct nvme_dev *dev)
1520 struct nvme_ns *ns, *next;
1522 spin_lock(&dev_list_lock);
1523 list_del(&dev->node);
1524 spin_unlock(&dev_list_lock);
1526 /* TODO: wait all I/O finished or cancel them */
1528 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1529 list_del(&ns->list);
1530 del_gendisk(ns->disk);
1531 nvme_ns_free(ns);
1534 nvme_free_queues(dev);
1536 return 0;
1539 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1541 struct device *dmadev = &dev->pci_dev->dev;
1542 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1543 PAGE_SIZE, PAGE_SIZE, 0);
1544 if (!dev->prp_page_pool)
1545 return -ENOMEM;
1547 /* Optimisation for I/Os between 4k and 128k */
1548 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1549 256, 256, 0);
1550 if (!dev->prp_small_pool) {
1551 dma_pool_destroy(dev->prp_page_pool);
1552 return -ENOMEM;
1554 return 0;
1557 static void nvme_release_prp_pools(struct nvme_dev *dev)
1559 dma_pool_destroy(dev->prp_page_pool);
1560 dma_pool_destroy(dev->prp_small_pool);
1563 /* XXX: Use an ida or something to let remove / add work correctly */
1564 static void nvme_set_instance(struct nvme_dev *dev)
1566 static int instance;
1567 dev->instance = instance++;
1570 static void nvme_release_instance(struct nvme_dev *dev)
1574 static int __devinit nvme_probe(struct pci_dev *pdev,
1575 const struct pci_device_id *id)
1577 int bars, result = -ENOMEM;
1578 struct nvme_dev *dev;
1580 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1581 if (!dev)
1582 return -ENOMEM;
1583 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1584 GFP_KERNEL);
1585 if (!dev->entry)
1586 goto free;
1587 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1588 GFP_KERNEL);
1589 if (!dev->queues)
1590 goto free;
1592 if (pci_enable_device_mem(pdev))
1593 goto free;
1594 pci_set_master(pdev);
1595 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1596 if (pci_request_selected_regions(pdev, bars, "nvme"))
1597 goto disable;
1599 INIT_LIST_HEAD(&dev->namespaces);
1600 dev->pci_dev = pdev;
1601 pci_set_drvdata(pdev, dev);
1602 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1603 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1604 nvme_set_instance(dev);
1605 dev->entry[0].vector = pdev->irq;
1607 result = nvme_setup_prp_pools(dev);
1608 if (result)
1609 goto disable_msix;
1611 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1612 if (!dev->bar) {
1613 result = -ENOMEM;
1614 goto disable_msix;
1617 result = nvme_configure_admin_queue(dev);
1618 if (result)
1619 goto unmap;
1620 dev->queue_count++;
1622 spin_lock(&dev_list_lock);
1623 list_add(&dev->node, &dev_list);
1624 spin_unlock(&dev_list_lock);
1626 result = nvme_dev_add(dev);
1627 if (result)
1628 goto delete;
1630 return 0;
1632 delete:
1633 spin_lock(&dev_list_lock);
1634 list_del(&dev->node);
1635 spin_unlock(&dev_list_lock);
1637 nvme_free_queues(dev);
1638 unmap:
1639 iounmap(dev->bar);
1640 disable_msix:
1641 pci_disable_msix(pdev);
1642 nvme_release_instance(dev);
1643 nvme_release_prp_pools(dev);
1644 disable:
1645 pci_disable_device(pdev);
1646 pci_release_regions(pdev);
1647 free:
1648 kfree(dev->queues);
1649 kfree(dev->entry);
1650 kfree(dev);
1651 return result;
1654 static void __devexit nvme_remove(struct pci_dev *pdev)
1656 struct nvme_dev *dev = pci_get_drvdata(pdev);
1657 nvme_dev_remove(dev);
1658 pci_disable_msix(pdev);
1659 iounmap(dev->bar);
1660 nvme_release_instance(dev);
1661 nvme_release_prp_pools(dev);
1662 pci_disable_device(pdev);
1663 pci_release_regions(pdev);
1664 kfree(dev->queues);
1665 kfree(dev->entry);
1666 kfree(dev);
1669 /* These functions are yet to be implemented */
1670 #define nvme_error_detected NULL
1671 #define nvme_dump_registers NULL
1672 #define nvme_link_reset NULL
1673 #define nvme_slot_reset NULL
1674 #define nvme_error_resume NULL
1675 #define nvme_suspend NULL
1676 #define nvme_resume NULL
1678 static struct pci_error_handlers nvme_err_handler = {
1679 .error_detected = nvme_error_detected,
1680 .mmio_enabled = nvme_dump_registers,
1681 .link_reset = nvme_link_reset,
1682 .slot_reset = nvme_slot_reset,
1683 .resume = nvme_error_resume,
1686 /* Move to pci_ids.h later */
1687 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
1689 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1690 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1691 { 0, }
1693 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1695 static struct pci_driver nvme_driver = {
1696 .name = "nvme",
1697 .id_table = nvme_id_table,
1698 .probe = nvme_probe,
1699 .remove = __devexit_p(nvme_remove),
1700 .suspend = nvme_suspend,
1701 .resume = nvme_resume,
1702 .err_handler = &nvme_err_handler,
1705 static int __init nvme_init(void)
1707 int result = -EBUSY;
1709 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1710 if (IS_ERR(nvme_thread))
1711 return PTR_ERR(nvme_thread);
1713 nvme_major = register_blkdev(nvme_major, "nvme");
1714 if (nvme_major <= 0)
1715 goto kill_kthread;
1717 result = pci_register_driver(&nvme_driver);
1718 if (result)
1719 goto unregister_blkdev;
1720 return 0;
1722 unregister_blkdev:
1723 unregister_blkdev(nvme_major, "nvme");
1724 kill_kthread:
1725 kthread_stop(nvme_thread);
1726 return result;
1729 static void __exit nvme_exit(void)
1731 pci_unregister_driver(&nvme_driver);
1732 unregister_blkdev(nvme_major, "nvme");
1733 kthread_stop(nvme_thread);
1736 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1737 MODULE_LICENSE("GPL");
1738 MODULE_VERSION("0.8");
1739 module_init(nvme_init);
1740 module_exit(nvme_exit);