hwspinlock/core: use a mutex to protect the radix tree
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / init / calibrate.c
blobaae2f40fea4cbea200f0658c7f6afddb60f1d934
1 /* calibrate.c: default delay calibration
3 * Excised from init/main.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/jiffies.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/timex.h>
11 #include <linux/smp.h>
13 unsigned long lpj_fine;
14 unsigned long preset_lpj;
15 static int __init lpj_setup(char *str)
17 preset_lpj = simple_strtoul(str,NULL,0);
18 return 1;
21 __setup("lpj=", lpj_setup);
23 #ifdef ARCH_HAS_READ_CURRENT_TIMER
25 /* This routine uses the read_current_timer() routine and gets the
26 * loops per jiffy directly, instead of guessing it using delay().
27 * Also, this code tries to handle non-maskable asynchronous events
28 * (like SMIs)
30 #define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
31 #define MAX_DIRECT_CALIBRATION_RETRIES 5
33 static unsigned long __cpuinit calibrate_delay_direct(void)
35 unsigned long pre_start, start, post_start;
36 unsigned long pre_end, end, post_end;
37 unsigned long start_jiffies;
38 unsigned long timer_rate_min, timer_rate_max;
39 unsigned long good_timer_sum = 0;
40 unsigned long good_timer_count = 0;
41 unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
42 int max = -1; /* index of measured_times with max/min values or not set */
43 int min = -1;
44 int i;
46 if (read_current_timer(&pre_start) < 0 )
47 return 0;
50 * A simple loop like
51 * while ( jiffies < start_jiffies+1)
52 * start = read_current_timer();
53 * will not do. As we don't really know whether jiffy switch
54 * happened first or timer_value was read first. And some asynchronous
55 * event can happen between these two events introducing errors in lpj.
57 * So, we do
58 * 1. pre_start <- When we are sure that jiffy switch hasn't happened
59 * 2. check jiffy switch
60 * 3. start <- timer value before or after jiffy switch
61 * 4. post_start <- When we are sure that jiffy switch has happened
63 * Note, we don't know anything about order of 2 and 3.
64 * Now, by looking at post_start and pre_start difference, we can
65 * check whether any asynchronous event happened or not
68 for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
69 pre_start = 0;
70 read_current_timer(&start);
71 start_jiffies = jiffies;
72 while (time_before_eq(jiffies, start_jiffies + 1)) {
73 pre_start = start;
74 read_current_timer(&start);
76 read_current_timer(&post_start);
78 pre_end = 0;
79 end = post_start;
80 while (time_before_eq(jiffies, start_jiffies + 1 +
81 DELAY_CALIBRATION_TICKS)) {
82 pre_end = end;
83 read_current_timer(&end);
85 read_current_timer(&post_end);
87 timer_rate_max = (post_end - pre_start) /
88 DELAY_CALIBRATION_TICKS;
89 timer_rate_min = (pre_end - post_start) /
90 DELAY_CALIBRATION_TICKS;
93 * If the upper limit and lower limit of the timer_rate is
94 * >= 12.5% apart, redo calibration.
96 if (start >= post_end)
97 printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
98 "timer_rate as we had a TSC wrap around"
99 " start=%lu >=post_end=%lu\n",
100 start, post_end);
101 if (start < post_end && pre_start != 0 && pre_end != 0 &&
102 (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
103 good_timer_count++;
104 good_timer_sum += timer_rate_max;
105 measured_times[i] = timer_rate_max;
106 if (max < 0 || timer_rate_max > measured_times[max])
107 max = i;
108 if (min < 0 || timer_rate_max < measured_times[min])
109 min = i;
110 } else
111 measured_times[i] = 0;
116 * Find the maximum & minimum - if they differ too much throw out the
117 * one with the largest difference from the mean and try again...
119 while (good_timer_count > 1) {
120 unsigned long estimate;
121 unsigned long maxdiff;
123 /* compute the estimate */
124 estimate = (good_timer_sum/good_timer_count);
125 maxdiff = estimate >> 3;
127 /* if range is within 12% let's take it */
128 if ((measured_times[max] - measured_times[min]) < maxdiff)
129 return estimate;
131 /* ok - drop the worse value and try again... */
132 good_timer_sum = 0;
133 good_timer_count = 0;
134 if ((measured_times[max] - estimate) <
135 (estimate - measured_times[min])) {
136 printk(KERN_NOTICE "calibrate_delay_direct() dropping "
137 "min bogoMips estimate %d = %lu\n",
138 min, measured_times[min]);
139 measured_times[min] = 0;
140 min = max;
141 } else {
142 printk(KERN_NOTICE "calibrate_delay_direct() dropping "
143 "max bogoMips estimate %d = %lu\n",
144 max, measured_times[max]);
145 measured_times[max] = 0;
146 max = min;
149 for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
150 if (measured_times[i] == 0)
151 continue;
152 good_timer_count++;
153 good_timer_sum += measured_times[i];
154 if (measured_times[i] < measured_times[min])
155 min = i;
156 if (measured_times[i] > measured_times[max])
157 max = i;
162 printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
163 "estimate for loops_per_jiffy.\nProbably due to long platform "
164 "interrupts. Consider using \"lpj=\" boot option.\n");
165 return 0;
167 #else
168 static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;}
169 #endif
172 * This is the number of bits of precision for the loops_per_jiffy. Each
173 * time we refine our estimate after the first takes 1.5/HZ seconds, so try
174 * to start with a good estimate.
175 * For the boot cpu we can skip the delay calibration and assign it a value
176 * calculated based on the timer frequency.
177 * For the rest of the CPUs we cannot assume that the timer frequency is same as
178 * the cpu frequency, hence do the calibration for those.
180 #define LPS_PREC 8
182 static unsigned long __cpuinit calibrate_delay_converge(void)
184 /* First stage - slowly accelerate to find initial bounds */
185 unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
186 int trials = 0, band = 0, trial_in_band = 0;
188 lpj = (1<<12);
190 /* wait for "start of" clock tick */
191 ticks = jiffies;
192 while (ticks == jiffies)
193 ; /* nothing */
194 /* Go .. */
195 ticks = jiffies;
196 do {
197 if (++trial_in_band == (1<<band)) {
198 ++band;
199 trial_in_band = 0;
201 __delay(lpj * band);
202 trials += band;
203 } while (ticks == jiffies);
205 * We overshot, so retreat to a clear underestimate. Then estimate
206 * the largest likely undershoot. This defines our chop bounds.
208 trials -= band;
209 loopadd_base = lpj * band;
210 lpj_base = lpj * trials;
212 recalibrate:
213 lpj = lpj_base;
214 loopadd = loopadd_base;
217 * Do a binary approximation to get lpj set to
218 * equal one clock (up to LPS_PREC bits)
220 chop_limit = lpj >> LPS_PREC;
221 while (loopadd > chop_limit) {
222 lpj += loopadd;
223 ticks = jiffies;
224 while (ticks == jiffies)
225 ; /* nothing */
226 ticks = jiffies;
227 __delay(lpj);
228 if (jiffies != ticks) /* longer than 1 tick */
229 lpj -= loopadd;
230 loopadd >>= 1;
233 * If we incremented every single time possible, presume we've
234 * massively underestimated initially, and retry with a higher
235 * start, and larger range. (Only seen on x86_64, due to SMIs)
237 if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
238 lpj_base = lpj;
239 loopadd_base <<= 2;
240 goto recalibrate;
243 return lpj;
246 void __cpuinit calibrate_delay(void)
248 unsigned long lpj;
249 static bool printed;
251 if (preset_lpj) {
252 lpj = preset_lpj;
253 if (!printed)
254 pr_info("Calibrating delay loop (skipped) "
255 "preset value.. ");
256 } else if ((!printed) && lpj_fine) {
257 lpj = lpj_fine;
258 pr_info("Calibrating delay loop (skipped), "
259 "value calculated using timer frequency.. ");
260 } else if ((lpj = calibrate_delay_direct()) != 0) {
261 if (!printed)
262 pr_info("Calibrating delay using timer "
263 "specific routine.. ");
264 } else {
265 if (!printed)
266 pr_info("Calibrating delay loop... ");
267 lpj = calibrate_delay_converge();
269 if (!printed)
270 pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
271 lpj/(500000/HZ),
272 (lpj/(5000/HZ)) % 100, lpj);
274 loops_per_jiffy = lpj;
275 printed = true;