ring-buffer: Reset "real_end" when page is filled
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / libsas / sas_expander.c
blobc65af02dcfe832f59ff2a8f5ff05b4c18b8d7323
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
35 static int sas_discover_expander(struct domain_device *dev);
36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37 static int sas_configure_phy(struct domain_device *dev, int phy_id,
38 u8 *sas_addr, int include);
39 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41 /* ---------- SMP task management ---------- */
43 static void smp_task_timedout(unsigned long _task)
45 struct sas_task *task = (void *) _task;
46 unsigned long flags;
48 spin_lock_irqsave(&task->task_state_lock, flags);
49 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51 spin_unlock_irqrestore(&task->task_state_lock, flags);
53 complete(&task->completion);
56 static void smp_task_done(struct sas_task *task)
58 if (!del_timer(&task->timer))
59 return;
60 complete(&task->completion);
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67 void *resp, int resp_size)
69 int res, retry;
70 struct sas_task *task = NULL;
71 struct sas_internal *i =
72 to_sas_internal(dev->port->ha->core.shost->transportt);
74 for (retry = 0; retry < 3; retry++) {
75 task = sas_alloc_task(GFP_KERNEL);
76 if (!task)
77 return -ENOMEM;
79 task->dev = dev;
80 task->task_proto = dev->tproto;
81 sg_init_one(&task->smp_task.smp_req, req, req_size);
82 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
84 task->task_done = smp_task_done;
86 task->timer.data = (unsigned long) task;
87 task->timer.function = smp_task_timedout;
88 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89 add_timer(&task->timer);
91 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
93 if (res) {
94 del_timer(&task->timer);
95 SAS_DPRINTK("executing SMP task failed:%d\n", res);
96 goto ex_err;
99 wait_for_completion(&task->completion);
100 res = -ECOMM;
101 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102 SAS_DPRINTK("smp task timed out or aborted\n");
103 i->dft->lldd_abort_task(task);
104 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105 SAS_DPRINTK("SMP task aborted and not done\n");
106 goto ex_err;
109 if (task->task_status.resp == SAS_TASK_COMPLETE &&
110 task->task_status.stat == SAM_GOOD) {
111 res = 0;
112 break;
113 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
114 task->task_status.stat == SAS_DATA_UNDERRUN) {
115 /* no error, but return the number of bytes of
116 * underrun */
117 res = task->task_status.residual;
118 break;
119 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
120 task->task_status.stat == SAS_DATA_OVERRUN) {
121 res = -EMSGSIZE;
122 break;
123 } else {
124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125 "status 0x%x\n", __func__,
126 SAS_ADDR(dev->sas_addr),
127 task->task_status.resp,
128 task->task_status.stat);
129 sas_free_task(task);
130 task = NULL;
133 ex_err:
134 BUG_ON(retry == 3 && task != NULL);
135 if (task != NULL) {
136 sas_free_task(task);
138 return res;
141 /* ---------- Allocations ---------- */
143 static inline void *alloc_smp_req(int size)
145 u8 *p = kzalloc(size, GFP_KERNEL);
146 if (p)
147 p[0] = SMP_REQUEST;
148 return p;
151 static inline void *alloc_smp_resp(int size)
153 return kzalloc(size, GFP_KERNEL);
156 /* ---------- Expander configuration ---------- */
158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159 void *disc_resp)
161 struct expander_device *ex = &dev->ex_dev;
162 struct ex_phy *phy = &ex->ex_phy[phy_id];
163 struct smp_resp *resp = disc_resp;
164 struct discover_resp *dr = &resp->disc;
165 struct sas_rphy *rphy = dev->rphy;
166 int rediscover = (phy->phy != NULL);
168 if (!rediscover) {
169 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
171 /* FIXME: error_handling */
172 BUG_ON(!phy->phy);
175 switch (resp->result) {
176 case SMP_RESP_PHY_VACANT:
177 phy->phy_state = PHY_VACANT;
178 return;
179 default:
180 phy->phy_state = PHY_NOT_PRESENT;
181 return;
182 case SMP_RESP_FUNC_ACC:
183 phy->phy_state = PHY_EMPTY; /* do not know yet */
184 break;
187 phy->phy_id = phy_id;
188 phy->attached_dev_type = dr->attached_dev_type;
189 phy->linkrate = dr->linkrate;
190 phy->attached_sata_host = dr->attached_sata_host;
191 phy->attached_sata_dev = dr->attached_sata_dev;
192 phy->attached_sata_ps = dr->attached_sata_ps;
193 phy->attached_iproto = dr->iproto << 1;
194 phy->attached_tproto = dr->tproto << 1;
195 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
196 phy->attached_phy_id = dr->attached_phy_id;
197 phy->phy_change_count = dr->change_count;
198 phy->routing_attr = dr->routing_attr;
199 phy->virtual = dr->virtual;
200 phy->last_da_index = -1;
202 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
203 phy->phy->identify.target_port_protocols = phy->attached_tproto;
204 phy->phy->identify.phy_identifier = phy_id;
205 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
206 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
207 phy->phy->minimum_linkrate = dr->pmin_linkrate;
208 phy->phy->maximum_linkrate = dr->pmax_linkrate;
209 phy->phy->negotiated_linkrate = phy->linkrate;
211 if (!rediscover)
212 sas_phy_add(phy->phy);
214 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
215 SAS_ADDR(dev->sas_addr), phy->phy_id,
216 phy->routing_attr == TABLE_ROUTING ? 'T' :
217 phy->routing_attr == DIRECT_ROUTING ? 'D' :
218 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
219 SAS_ADDR(phy->attached_sas_addr));
221 return;
224 #define DISCOVER_REQ_SIZE 16
225 #define DISCOVER_RESP_SIZE 56
227 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
228 u8 *disc_resp, int single)
230 int i, res;
232 disc_req[9] = single;
233 for (i = 1 ; i < 3; i++) {
234 struct discover_resp *dr;
236 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
237 disc_resp, DISCOVER_RESP_SIZE);
238 if (res)
239 return res;
240 /* This is detecting a failure to transmit inital
241 * dev to host FIS as described in section G.5 of
242 * sas-2 r 04b */
243 dr = &((struct smp_resp *)disc_resp)->disc;
244 if (!(dr->attached_dev_type == 0 &&
245 dr->attached_sata_dev))
246 break;
247 /* In order to generate the dev to host FIS, we
248 * send a link reset to the expander port */
249 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
250 /* Wait for the reset to trigger the negotiation */
251 msleep(500);
253 sas_set_ex_phy(dev, single, disc_resp);
254 return 0;
257 static int sas_ex_phy_discover(struct domain_device *dev, int single)
259 struct expander_device *ex = &dev->ex_dev;
260 int res = 0;
261 u8 *disc_req;
262 u8 *disc_resp;
264 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
265 if (!disc_req)
266 return -ENOMEM;
268 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
269 if (!disc_resp) {
270 kfree(disc_req);
271 return -ENOMEM;
274 disc_req[1] = SMP_DISCOVER;
276 if (0 <= single && single < ex->num_phys) {
277 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
278 } else {
279 int i;
281 for (i = 0; i < ex->num_phys; i++) {
282 res = sas_ex_phy_discover_helper(dev, disc_req,
283 disc_resp, i);
284 if (res)
285 goto out_err;
288 out_err:
289 kfree(disc_resp);
290 kfree(disc_req);
291 return res;
294 static int sas_expander_discover(struct domain_device *dev)
296 struct expander_device *ex = &dev->ex_dev;
297 int res = -ENOMEM;
299 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
300 if (!ex->ex_phy)
301 return -ENOMEM;
303 res = sas_ex_phy_discover(dev, -1);
304 if (res)
305 goto out_err;
307 return 0;
308 out_err:
309 kfree(ex->ex_phy);
310 ex->ex_phy = NULL;
311 return res;
314 #define MAX_EXPANDER_PHYS 128
316 static void ex_assign_report_general(struct domain_device *dev,
317 struct smp_resp *resp)
319 struct report_general_resp *rg = &resp->rg;
321 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
322 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
323 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
324 dev->ex_dev.conf_route_table = rg->conf_route_table;
325 dev->ex_dev.configuring = rg->configuring;
326 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
329 #define RG_REQ_SIZE 8
330 #define RG_RESP_SIZE 32
332 static int sas_ex_general(struct domain_device *dev)
334 u8 *rg_req;
335 struct smp_resp *rg_resp;
336 int res;
337 int i;
339 rg_req = alloc_smp_req(RG_REQ_SIZE);
340 if (!rg_req)
341 return -ENOMEM;
343 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
344 if (!rg_resp) {
345 kfree(rg_req);
346 return -ENOMEM;
349 rg_req[1] = SMP_REPORT_GENERAL;
351 for (i = 0; i < 5; i++) {
352 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
353 RG_RESP_SIZE);
355 if (res) {
356 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
357 SAS_ADDR(dev->sas_addr), res);
358 goto out;
359 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
360 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
361 SAS_ADDR(dev->sas_addr), rg_resp->result);
362 res = rg_resp->result;
363 goto out;
366 ex_assign_report_general(dev, rg_resp);
368 if (dev->ex_dev.configuring) {
369 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
370 SAS_ADDR(dev->sas_addr));
371 schedule_timeout_interruptible(5*HZ);
372 } else
373 break;
375 out:
376 kfree(rg_req);
377 kfree(rg_resp);
378 return res;
381 static void ex_assign_manuf_info(struct domain_device *dev, void
382 *_mi_resp)
384 u8 *mi_resp = _mi_resp;
385 struct sas_rphy *rphy = dev->rphy;
386 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
388 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
389 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
390 memcpy(edev->product_rev, mi_resp + 36,
391 SAS_EXPANDER_PRODUCT_REV_LEN);
393 if (mi_resp[8] & 1) {
394 memcpy(edev->component_vendor_id, mi_resp + 40,
395 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
396 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
397 edev->component_revision_id = mi_resp[50];
401 #define MI_REQ_SIZE 8
402 #define MI_RESP_SIZE 64
404 static int sas_ex_manuf_info(struct domain_device *dev)
406 u8 *mi_req;
407 u8 *mi_resp;
408 int res;
410 mi_req = alloc_smp_req(MI_REQ_SIZE);
411 if (!mi_req)
412 return -ENOMEM;
414 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
415 if (!mi_resp) {
416 kfree(mi_req);
417 return -ENOMEM;
420 mi_req[1] = SMP_REPORT_MANUF_INFO;
422 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
423 if (res) {
424 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
425 SAS_ADDR(dev->sas_addr), res);
426 goto out;
427 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
428 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
429 SAS_ADDR(dev->sas_addr), mi_resp[2]);
430 goto out;
433 ex_assign_manuf_info(dev, mi_resp);
434 out:
435 kfree(mi_req);
436 kfree(mi_resp);
437 return res;
440 #define PC_REQ_SIZE 44
441 #define PC_RESP_SIZE 8
443 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
444 enum phy_func phy_func,
445 struct sas_phy_linkrates *rates)
447 u8 *pc_req;
448 u8 *pc_resp;
449 int res;
451 pc_req = alloc_smp_req(PC_REQ_SIZE);
452 if (!pc_req)
453 return -ENOMEM;
455 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
456 if (!pc_resp) {
457 kfree(pc_req);
458 return -ENOMEM;
461 pc_req[1] = SMP_PHY_CONTROL;
462 pc_req[9] = phy_id;
463 pc_req[10]= phy_func;
464 if (rates) {
465 pc_req[32] = rates->minimum_linkrate << 4;
466 pc_req[33] = rates->maximum_linkrate << 4;
469 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
471 kfree(pc_resp);
472 kfree(pc_req);
473 return res;
476 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
478 struct expander_device *ex = &dev->ex_dev;
479 struct ex_phy *phy = &ex->ex_phy[phy_id];
481 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
482 phy->linkrate = SAS_PHY_DISABLED;
485 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
487 struct expander_device *ex = &dev->ex_dev;
488 int i;
490 for (i = 0; i < ex->num_phys; i++) {
491 struct ex_phy *phy = &ex->ex_phy[i];
493 if (phy->phy_state == PHY_VACANT ||
494 phy->phy_state == PHY_NOT_PRESENT)
495 continue;
497 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
498 sas_ex_disable_phy(dev, i);
502 static int sas_dev_present_in_domain(struct asd_sas_port *port,
503 u8 *sas_addr)
505 struct domain_device *dev;
507 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
508 return 1;
509 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
510 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
511 return 1;
513 return 0;
516 #define RPEL_REQ_SIZE 16
517 #define RPEL_RESP_SIZE 32
518 int sas_smp_get_phy_events(struct sas_phy *phy)
520 int res;
521 u8 *req;
522 u8 *resp;
523 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
524 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
526 req = alloc_smp_req(RPEL_REQ_SIZE);
527 if (!req)
528 return -ENOMEM;
530 resp = alloc_smp_resp(RPEL_RESP_SIZE);
531 if (!resp) {
532 kfree(req);
533 return -ENOMEM;
536 req[1] = SMP_REPORT_PHY_ERR_LOG;
537 req[9] = phy->number;
539 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
540 resp, RPEL_RESP_SIZE);
542 if (!res)
543 goto out;
545 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
546 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
547 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
548 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
550 out:
551 kfree(resp);
552 return res;
556 #ifdef CONFIG_SCSI_SAS_ATA
558 #define RPS_REQ_SIZE 16
559 #define RPS_RESP_SIZE 60
561 static int sas_get_report_phy_sata(struct domain_device *dev,
562 int phy_id,
563 struct smp_resp *rps_resp)
565 int res;
566 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
567 u8 *resp = (u8 *)rps_resp;
569 if (!rps_req)
570 return -ENOMEM;
572 rps_req[1] = SMP_REPORT_PHY_SATA;
573 rps_req[9] = phy_id;
575 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
576 rps_resp, RPS_RESP_SIZE);
578 /* 0x34 is the FIS type for the D2H fis. There's a potential
579 * standards cockup here. sas-2 explicitly specifies the FIS
580 * should be encoded so that FIS type is in resp[24].
581 * However, some expanders endian reverse this. Undo the
582 * reversal here */
583 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
584 int i;
586 for (i = 0; i < 5; i++) {
587 int j = 24 + (i*4);
588 u8 a, b;
589 a = resp[j + 0];
590 b = resp[j + 1];
591 resp[j + 0] = resp[j + 3];
592 resp[j + 1] = resp[j + 2];
593 resp[j + 2] = b;
594 resp[j + 3] = a;
598 kfree(rps_req);
599 return res;
601 #endif
603 static void sas_ex_get_linkrate(struct domain_device *parent,
604 struct domain_device *child,
605 struct ex_phy *parent_phy)
607 struct expander_device *parent_ex = &parent->ex_dev;
608 struct sas_port *port;
609 int i;
611 child->pathways = 0;
613 port = parent_phy->port;
615 for (i = 0; i < parent_ex->num_phys; i++) {
616 struct ex_phy *phy = &parent_ex->ex_phy[i];
618 if (phy->phy_state == PHY_VACANT ||
619 phy->phy_state == PHY_NOT_PRESENT)
620 continue;
622 if (SAS_ADDR(phy->attached_sas_addr) ==
623 SAS_ADDR(child->sas_addr)) {
625 child->min_linkrate = min(parent->min_linkrate,
626 phy->linkrate);
627 child->max_linkrate = max(parent->max_linkrate,
628 phy->linkrate);
629 child->pathways++;
630 sas_port_add_phy(port, phy->phy);
633 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
634 child->pathways = min(child->pathways, parent->pathways);
637 static struct domain_device *sas_ex_discover_end_dev(
638 struct domain_device *parent, int phy_id)
640 struct expander_device *parent_ex = &parent->ex_dev;
641 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
642 struct domain_device *child = NULL;
643 struct sas_rphy *rphy;
644 int res;
646 if (phy->attached_sata_host || phy->attached_sata_ps)
647 return NULL;
649 child = kzalloc(sizeof(*child), GFP_KERNEL);
650 if (!child)
651 return NULL;
653 child->parent = parent;
654 child->port = parent->port;
655 child->iproto = phy->attached_iproto;
656 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
657 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
658 if (!phy->port) {
659 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
660 if (unlikely(!phy->port))
661 goto out_err;
662 if (unlikely(sas_port_add(phy->port) != 0)) {
663 sas_port_free(phy->port);
664 goto out_err;
667 sas_ex_get_linkrate(parent, child, phy);
669 #ifdef CONFIG_SCSI_SAS_ATA
670 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
671 child->dev_type = SATA_DEV;
672 if (phy->attached_tproto & SAS_PROTOCOL_STP)
673 child->tproto = phy->attached_tproto;
674 if (phy->attached_sata_dev)
675 child->tproto |= SATA_DEV;
676 res = sas_get_report_phy_sata(parent, phy_id,
677 &child->sata_dev.rps_resp);
678 if (res) {
679 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
680 "0x%x\n", SAS_ADDR(parent->sas_addr),
681 phy_id, res);
682 goto out_free;
684 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
685 sizeof(struct dev_to_host_fis));
687 rphy = sas_end_device_alloc(phy->port);
688 if (unlikely(!rphy))
689 goto out_free;
691 sas_init_dev(child);
693 child->rphy = rphy;
695 spin_lock_irq(&parent->port->dev_list_lock);
696 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
697 spin_unlock_irq(&parent->port->dev_list_lock);
699 res = sas_discover_sata(child);
700 if (res) {
701 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
702 "%016llx:0x%x returned 0x%x\n",
703 SAS_ADDR(child->sas_addr),
704 SAS_ADDR(parent->sas_addr), phy_id, res);
705 goto out_list_del;
707 } else
708 #endif
709 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
710 child->dev_type = SAS_END_DEV;
711 rphy = sas_end_device_alloc(phy->port);
712 /* FIXME: error handling */
713 if (unlikely(!rphy))
714 goto out_free;
715 child->tproto = phy->attached_tproto;
716 sas_init_dev(child);
718 child->rphy = rphy;
719 sas_fill_in_rphy(child, rphy);
721 spin_lock_irq(&parent->port->dev_list_lock);
722 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
723 spin_unlock_irq(&parent->port->dev_list_lock);
725 res = sas_discover_end_dev(child);
726 if (res) {
727 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
728 "at %016llx:0x%x returned 0x%x\n",
729 SAS_ADDR(child->sas_addr),
730 SAS_ADDR(parent->sas_addr), phy_id, res);
731 goto out_list_del;
733 } else {
734 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
735 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
736 phy_id);
737 goto out_free;
740 list_add_tail(&child->siblings, &parent_ex->children);
741 return child;
743 out_list_del:
744 sas_rphy_free(child->rphy);
745 child->rphy = NULL;
746 list_del(&child->dev_list_node);
747 out_free:
748 sas_port_delete(phy->port);
749 out_err:
750 phy->port = NULL;
751 kfree(child);
752 return NULL;
755 /* See if this phy is part of a wide port */
756 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
758 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
759 int i;
761 for (i = 0; i < parent->ex_dev.num_phys; i++) {
762 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
764 if (ephy == phy)
765 continue;
767 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
768 SAS_ADDR_SIZE) && ephy->port) {
769 sas_port_add_phy(ephy->port, phy->phy);
770 phy->port = ephy->port;
771 phy->phy_state = PHY_DEVICE_DISCOVERED;
772 return 0;
776 return -ENODEV;
779 static struct domain_device *sas_ex_discover_expander(
780 struct domain_device *parent, int phy_id)
782 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
783 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
784 struct domain_device *child = NULL;
785 struct sas_rphy *rphy;
786 struct sas_expander_device *edev;
787 struct asd_sas_port *port;
788 int res;
790 if (phy->routing_attr == DIRECT_ROUTING) {
791 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
792 "allowed\n",
793 SAS_ADDR(parent->sas_addr), phy_id,
794 SAS_ADDR(phy->attached_sas_addr),
795 phy->attached_phy_id);
796 return NULL;
798 child = kzalloc(sizeof(*child), GFP_KERNEL);
799 if (!child)
800 return NULL;
802 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
803 /* FIXME: better error handling */
804 BUG_ON(sas_port_add(phy->port) != 0);
807 switch (phy->attached_dev_type) {
808 case EDGE_DEV:
809 rphy = sas_expander_alloc(phy->port,
810 SAS_EDGE_EXPANDER_DEVICE);
811 break;
812 case FANOUT_DEV:
813 rphy = sas_expander_alloc(phy->port,
814 SAS_FANOUT_EXPANDER_DEVICE);
815 break;
816 default:
817 rphy = NULL; /* shut gcc up */
818 BUG();
820 port = parent->port;
821 child->rphy = rphy;
822 edev = rphy_to_expander_device(rphy);
823 child->dev_type = phy->attached_dev_type;
824 child->parent = parent;
825 child->port = port;
826 child->iproto = phy->attached_iproto;
827 child->tproto = phy->attached_tproto;
828 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
829 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
830 sas_ex_get_linkrate(parent, child, phy);
831 edev->level = parent_ex->level + 1;
832 parent->port->disc.max_level = max(parent->port->disc.max_level,
833 edev->level);
834 sas_init_dev(child);
835 sas_fill_in_rphy(child, rphy);
836 sas_rphy_add(rphy);
838 spin_lock_irq(&parent->port->dev_list_lock);
839 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
840 spin_unlock_irq(&parent->port->dev_list_lock);
842 res = sas_discover_expander(child);
843 if (res) {
844 kfree(child);
845 return NULL;
847 list_add_tail(&child->siblings, &parent->ex_dev.children);
848 return child;
851 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
853 struct expander_device *ex = &dev->ex_dev;
854 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
855 struct domain_device *child = NULL;
856 int res = 0;
858 /* Phy state */
859 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
860 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
861 res = sas_ex_phy_discover(dev, phy_id);
862 if (res)
863 return res;
866 /* Parent and domain coherency */
867 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
868 SAS_ADDR(dev->port->sas_addr))) {
869 sas_add_parent_port(dev, phy_id);
870 return 0;
872 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
873 SAS_ADDR(dev->parent->sas_addr))) {
874 sas_add_parent_port(dev, phy_id);
875 if (ex_phy->routing_attr == TABLE_ROUTING)
876 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
877 return 0;
880 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
881 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
883 if (ex_phy->attached_dev_type == NO_DEVICE) {
884 if (ex_phy->routing_attr == DIRECT_ROUTING) {
885 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
886 sas_configure_routing(dev, ex_phy->attached_sas_addr);
888 return 0;
889 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
890 return 0;
892 if (ex_phy->attached_dev_type != SAS_END_DEV &&
893 ex_phy->attached_dev_type != FANOUT_DEV &&
894 ex_phy->attached_dev_type != EDGE_DEV) {
895 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
896 "phy 0x%x\n", ex_phy->attached_dev_type,
897 SAS_ADDR(dev->sas_addr),
898 phy_id);
899 return 0;
902 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
903 if (res) {
904 SAS_DPRINTK("configure routing for dev %016llx "
905 "reported 0x%x. Forgotten\n",
906 SAS_ADDR(ex_phy->attached_sas_addr), res);
907 sas_disable_routing(dev, ex_phy->attached_sas_addr);
908 return res;
911 res = sas_ex_join_wide_port(dev, phy_id);
912 if (!res) {
913 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
914 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
915 return res;
918 switch (ex_phy->attached_dev_type) {
919 case SAS_END_DEV:
920 child = sas_ex_discover_end_dev(dev, phy_id);
921 break;
922 case FANOUT_DEV:
923 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
924 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
925 "attached to ex %016llx phy 0x%x\n",
926 SAS_ADDR(ex_phy->attached_sas_addr),
927 ex_phy->attached_phy_id,
928 SAS_ADDR(dev->sas_addr),
929 phy_id);
930 sas_ex_disable_phy(dev, phy_id);
931 break;
932 } else
933 memcpy(dev->port->disc.fanout_sas_addr,
934 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
935 /* fallthrough */
936 case EDGE_DEV:
937 child = sas_ex_discover_expander(dev, phy_id);
938 break;
939 default:
940 break;
943 if (child) {
944 int i;
946 for (i = 0; i < ex->num_phys; i++) {
947 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
948 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
949 continue;
951 * Due to races, the phy might not get added to the
952 * wide port, so we add the phy to the wide port here.
954 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
955 SAS_ADDR(child->sas_addr)) {
956 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
957 res = sas_ex_join_wide_port(dev, i);
958 if (!res)
959 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
960 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
966 return res;
969 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
971 struct expander_device *ex = &dev->ex_dev;
972 int i;
974 for (i = 0; i < ex->num_phys; i++) {
975 struct ex_phy *phy = &ex->ex_phy[i];
977 if (phy->phy_state == PHY_VACANT ||
978 phy->phy_state == PHY_NOT_PRESENT)
979 continue;
981 if ((phy->attached_dev_type == EDGE_DEV ||
982 phy->attached_dev_type == FANOUT_DEV) &&
983 phy->routing_attr == SUBTRACTIVE_ROUTING) {
985 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
987 return 1;
990 return 0;
993 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
995 struct expander_device *ex = &dev->ex_dev;
996 struct domain_device *child;
997 u8 sub_addr[8] = {0, };
999 list_for_each_entry(child, &ex->children, siblings) {
1000 if (child->dev_type != EDGE_DEV &&
1001 child->dev_type != FANOUT_DEV)
1002 continue;
1003 if (sub_addr[0] == 0) {
1004 sas_find_sub_addr(child, sub_addr);
1005 continue;
1006 } else {
1007 u8 s2[8];
1009 if (sas_find_sub_addr(child, s2) &&
1010 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1012 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1013 "diverges from subtractive "
1014 "boundary %016llx\n",
1015 SAS_ADDR(dev->sas_addr),
1016 SAS_ADDR(child->sas_addr),
1017 SAS_ADDR(s2),
1018 SAS_ADDR(sub_addr));
1020 sas_ex_disable_port(child, s2);
1024 return 0;
1027 * sas_ex_discover_devices -- discover devices attached to this expander
1028 * dev: pointer to the expander domain device
1029 * single: if you want to do a single phy, else set to -1;
1031 * Configure this expander for use with its devices and register the
1032 * devices of this expander.
1034 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1036 struct expander_device *ex = &dev->ex_dev;
1037 int i = 0, end = ex->num_phys;
1038 int res = 0;
1040 if (0 <= single && single < end) {
1041 i = single;
1042 end = i+1;
1045 for ( ; i < end; i++) {
1046 struct ex_phy *ex_phy = &ex->ex_phy[i];
1048 if (ex_phy->phy_state == PHY_VACANT ||
1049 ex_phy->phy_state == PHY_NOT_PRESENT ||
1050 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1051 continue;
1053 switch (ex_phy->linkrate) {
1054 case SAS_PHY_DISABLED:
1055 case SAS_PHY_RESET_PROBLEM:
1056 case SAS_SATA_PORT_SELECTOR:
1057 continue;
1058 default:
1059 res = sas_ex_discover_dev(dev, i);
1060 if (res)
1061 break;
1062 continue;
1066 if (!res)
1067 sas_check_level_subtractive_boundary(dev);
1069 return res;
1072 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1074 struct expander_device *ex = &dev->ex_dev;
1075 int i;
1076 u8 *sub_sas_addr = NULL;
1078 if (dev->dev_type != EDGE_DEV)
1079 return 0;
1081 for (i = 0; i < ex->num_phys; i++) {
1082 struct ex_phy *phy = &ex->ex_phy[i];
1084 if (phy->phy_state == PHY_VACANT ||
1085 phy->phy_state == PHY_NOT_PRESENT)
1086 continue;
1088 if ((phy->attached_dev_type == FANOUT_DEV ||
1089 phy->attached_dev_type == EDGE_DEV) &&
1090 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1092 if (!sub_sas_addr)
1093 sub_sas_addr = &phy->attached_sas_addr[0];
1094 else if (SAS_ADDR(sub_sas_addr) !=
1095 SAS_ADDR(phy->attached_sas_addr)) {
1097 SAS_DPRINTK("ex %016llx phy 0x%x "
1098 "diverges(%016llx) on subtractive "
1099 "boundary(%016llx). Disabled\n",
1100 SAS_ADDR(dev->sas_addr), i,
1101 SAS_ADDR(phy->attached_sas_addr),
1102 SAS_ADDR(sub_sas_addr));
1103 sas_ex_disable_phy(dev, i);
1107 return 0;
1110 static void sas_print_parent_topology_bug(struct domain_device *child,
1111 struct ex_phy *parent_phy,
1112 struct ex_phy *child_phy)
1114 static const char ra_char[] = {
1115 [DIRECT_ROUTING] = 'D',
1116 [SUBTRACTIVE_ROUTING] = 'S',
1117 [TABLE_ROUTING] = 'T',
1119 static const char *ex_type[] = {
1120 [EDGE_DEV] = "edge",
1121 [FANOUT_DEV] = "fanout",
1123 struct domain_device *parent = child->parent;
1125 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1126 "has %c:%c routing link!\n",
1128 ex_type[parent->dev_type],
1129 SAS_ADDR(parent->sas_addr),
1130 parent_phy->phy_id,
1132 ex_type[child->dev_type],
1133 SAS_ADDR(child->sas_addr),
1134 child_phy->phy_id,
1136 ra_char[parent_phy->routing_attr],
1137 ra_char[child_phy->routing_attr]);
1140 static int sas_check_eeds(struct domain_device *child,
1141 struct ex_phy *parent_phy,
1142 struct ex_phy *child_phy)
1144 int res = 0;
1145 struct domain_device *parent = child->parent;
1147 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1148 res = -ENODEV;
1149 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1150 "phy S:0x%x, while there is a fanout ex %016llx\n",
1151 SAS_ADDR(parent->sas_addr),
1152 parent_phy->phy_id,
1153 SAS_ADDR(child->sas_addr),
1154 child_phy->phy_id,
1155 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1156 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1157 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1158 SAS_ADDR_SIZE);
1159 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1160 SAS_ADDR_SIZE);
1161 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1162 SAS_ADDR(parent->sas_addr)) ||
1163 (SAS_ADDR(parent->port->disc.eeds_a) ==
1164 SAS_ADDR(child->sas_addr)))
1166 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1167 SAS_ADDR(parent->sas_addr)) ||
1168 (SAS_ADDR(parent->port->disc.eeds_b) ==
1169 SAS_ADDR(child->sas_addr))))
1171 else {
1172 res = -ENODEV;
1173 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1174 "phy 0x%x link forms a third EEDS!\n",
1175 SAS_ADDR(parent->sas_addr),
1176 parent_phy->phy_id,
1177 SAS_ADDR(child->sas_addr),
1178 child_phy->phy_id);
1181 return res;
1184 /* Here we spill over 80 columns. It is intentional.
1186 static int sas_check_parent_topology(struct domain_device *child)
1188 struct expander_device *child_ex = &child->ex_dev;
1189 struct expander_device *parent_ex;
1190 int i;
1191 int res = 0;
1193 if (!child->parent)
1194 return 0;
1196 if (child->parent->dev_type != EDGE_DEV &&
1197 child->parent->dev_type != FANOUT_DEV)
1198 return 0;
1200 parent_ex = &child->parent->ex_dev;
1202 for (i = 0; i < parent_ex->num_phys; i++) {
1203 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1204 struct ex_phy *child_phy;
1206 if (parent_phy->phy_state == PHY_VACANT ||
1207 parent_phy->phy_state == PHY_NOT_PRESENT)
1208 continue;
1210 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1211 continue;
1213 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1215 switch (child->parent->dev_type) {
1216 case EDGE_DEV:
1217 if (child->dev_type == FANOUT_DEV) {
1218 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1219 child_phy->routing_attr != TABLE_ROUTING) {
1220 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1221 res = -ENODEV;
1223 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1224 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1225 res = sas_check_eeds(child, parent_phy, child_phy);
1226 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1227 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1228 res = -ENODEV;
1230 } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1231 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1232 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1233 res = -ENODEV;
1235 break;
1236 case FANOUT_DEV:
1237 if (parent_phy->routing_attr != TABLE_ROUTING ||
1238 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1239 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1240 res = -ENODEV;
1242 break;
1243 default:
1244 break;
1248 return res;
1251 #define RRI_REQ_SIZE 16
1252 #define RRI_RESP_SIZE 44
1254 static int sas_configure_present(struct domain_device *dev, int phy_id,
1255 u8 *sas_addr, int *index, int *present)
1257 int i, res = 0;
1258 struct expander_device *ex = &dev->ex_dev;
1259 struct ex_phy *phy = &ex->ex_phy[phy_id];
1260 u8 *rri_req;
1261 u8 *rri_resp;
1263 *present = 0;
1264 *index = 0;
1266 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1267 if (!rri_req)
1268 return -ENOMEM;
1270 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1271 if (!rri_resp) {
1272 kfree(rri_req);
1273 return -ENOMEM;
1276 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1277 rri_req[9] = phy_id;
1279 for (i = 0; i < ex->max_route_indexes ; i++) {
1280 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1281 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1282 RRI_RESP_SIZE);
1283 if (res)
1284 goto out;
1285 res = rri_resp[2];
1286 if (res == SMP_RESP_NO_INDEX) {
1287 SAS_DPRINTK("overflow of indexes: dev %016llx "
1288 "phy 0x%x index 0x%x\n",
1289 SAS_ADDR(dev->sas_addr), phy_id, i);
1290 goto out;
1291 } else if (res != SMP_RESP_FUNC_ACC) {
1292 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1293 "result 0x%x\n", __func__,
1294 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1295 goto out;
1297 if (SAS_ADDR(sas_addr) != 0) {
1298 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1299 *index = i;
1300 if ((rri_resp[12] & 0x80) == 0x80)
1301 *present = 0;
1302 else
1303 *present = 1;
1304 goto out;
1305 } else if (SAS_ADDR(rri_resp+16) == 0) {
1306 *index = i;
1307 *present = 0;
1308 goto out;
1310 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1311 phy->last_da_index < i) {
1312 phy->last_da_index = i;
1313 *index = i;
1314 *present = 0;
1315 goto out;
1318 res = -1;
1319 out:
1320 kfree(rri_req);
1321 kfree(rri_resp);
1322 return res;
1325 #define CRI_REQ_SIZE 44
1326 #define CRI_RESP_SIZE 8
1328 static int sas_configure_set(struct domain_device *dev, int phy_id,
1329 u8 *sas_addr, int index, int include)
1331 int res;
1332 u8 *cri_req;
1333 u8 *cri_resp;
1335 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1336 if (!cri_req)
1337 return -ENOMEM;
1339 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1340 if (!cri_resp) {
1341 kfree(cri_req);
1342 return -ENOMEM;
1345 cri_req[1] = SMP_CONF_ROUTE_INFO;
1346 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1347 cri_req[9] = phy_id;
1348 if (SAS_ADDR(sas_addr) == 0 || !include)
1349 cri_req[12] |= 0x80;
1350 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1352 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1353 CRI_RESP_SIZE);
1354 if (res)
1355 goto out;
1356 res = cri_resp[2];
1357 if (res == SMP_RESP_NO_INDEX) {
1358 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1359 "index 0x%x\n",
1360 SAS_ADDR(dev->sas_addr), phy_id, index);
1362 out:
1363 kfree(cri_req);
1364 kfree(cri_resp);
1365 return res;
1368 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1369 u8 *sas_addr, int include)
1371 int index;
1372 int present;
1373 int res;
1375 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1376 if (res)
1377 return res;
1378 if (include ^ present)
1379 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1381 return res;
1385 * sas_configure_parent -- configure routing table of parent
1386 * parent: parent expander
1387 * child: child expander
1388 * sas_addr: SAS port identifier of device directly attached to child
1390 static int sas_configure_parent(struct domain_device *parent,
1391 struct domain_device *child,
1392 u8 *sas_addr, int include)
1394 struct expander_device *ex_parent = &parent->ex_dev;
1395 int res = 0;
1396 int i;
1398 if (parent->parent) {
1399 res = sas_configure_parent(parent->parent, parent, sas_addr,
1400 include);
1401 if (res)
1402 return res;
1405 if (ex_parent->conf_route_table == 0) {
1406 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1407 SAS_ADDR(parent->sas_addr));
1408 return 0;
1411 for (i = 0; i < ex_parent->num_phys; i++) {
1412 struct ex_phy *phy = &ex_parent->ex_phy[i];
1414 if ((phy->routing_attr == TABLE_ROUTING) &&
1415 (SAS_ADDR(phy->attached_sas_addr) ==
1416 SAS_ADDR(child->sas_addr))) {
1417 res = sas_configure_phy(parent, i, sas_addr, include);
1418 if (res)
1419 return res;
1423 return res;
1427 * sas_configure_routing -- configure routing
1428 * dev: expander device
1429 * sas_addr: port identifier of device directly attached to the expander device
1431 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1433 if (dev->parent)
1434 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1435 return 0;
1438 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1440 if (dev->parent)
1441 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1442 return 0;
1446 * sas_discover_expander -- expander discovery
1447 * @ex: pointer to expander domain device
1449 * See comment in sas_discover_sata().
1451 static int sas_discover_expander(struct domain_device *dev)
1453 int res;
1455 res = sas_notify_lldd_dev_found(dev);
1456 if (res)
1457 return res;
1459 res = sas_ex_general(dev);
1460 if (res)
1461 goto out_err;
1462 res = sas_ex_manuf_info(dev);
1463 if (res)
1464 goto out_err;
1466 res = sas_expander_discover(dev);
1467 if (res) {
1468 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1469 SAS_ADDR(dev->sas_addr), res);
1470 goto out_err;
1473 sas_check_ex_subtractive_boundary(dev);
1474 res = sas_check_parent_topology(dev);
1475 if (res)
1476 goto out_err;
1477 return 0;
1478 out_err:
1479 sas_notify_lldd_dev_gone(dev);
1480 return res;
1483 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1485 int res = 0;
1486 struct domain_device *dev;
1488 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1489 if (dev->dev_type == EDGE_DEV ||
1490 dev->dev_type == FANOUT_DEV) {
1491 struct sas_expander_device *ex =
1492 rphy_to_expander_device(dev->rphy);
1494 if (level == ex->level)
1495 res = sas_ex_discover_devices(dev, -1);
1496 else if (level > 0)
1497 res = sas_ex_discover_devices(port->port_dev, -1);
1502 return res;
1505 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1507 int res;
1508 int level;
1510 do {
1511 level = port->disc.max_level;
1512 res = sas_ex_level_discovery(port, level);
1513 mb();
1514 } while (level < port->disc.max_level);
1516 return res;
1519 int sas_discover_root_expander(struct domain_device *dev)
1521 int res;
1522 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1524 res = sas_rphy_add(dev->rphy);
1525 if (res)
1526 goto out_err;
1528 ex->level = dev->port->disc.max_level; /* 0 */
1529 res = sas_discover_expander(dev);
1530 if (res)
1531 goto out_err2;
1533 sas_ex_bfs_disc(dev->port);
1535 return res;
1537 out_err2:
1538 sas_rphy_remove(dev->rphy);
1539 out_err:
1540 return res;
1543 /* ---------- Domain revalidation ---------- */
1545 static int sas_get_phy_discover(struct domain_device *dev,
1546 int phy_id, struct smp_resp *disc_resp)
1548 int res;
1549 u8 *disc_req;
1551 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1552 if (!disc_req)
1553 return -ENOMEM;
1555 disc_req[1] = SMP_DISCOVER;
1556 disc_req[9] = phy_id;
1558 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1559 disc_resp, DISCOVER_RESP_SIZE);
1560 if (res)
1561 goto out;
1562 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1563 res = disc_resp->result;
1564 goto out;
1566 out:
1567 kfree(disc_req);
1568 return res;
1571 static int sas_get_phy_change_count(struct domain_device *dev,
1572 int phy_id, int *pcc)
1574 int res;
1575 struct smp_resp *disc_resp;
1577 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1578 if (!disc_resp)
1579 return -ENOMEM;
1581 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1582 if (!res)
1583 *pcc = disc_resp->disc.change_count;
1585 kfree(disc_resp);
1586 return res;
1589 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1590 int phy_id, u8 *attached_sas_addr)
1592 int res;
1593 struct smp_resp *disc_resp;
1594 struct discover_resp *dr;
1596 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1597 if (!disc_resp)
1598 return -ENOMEM;
1599 dr = &disc_resp->disc;
1601 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1602 if (!res) {
1603 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1604 if (dr->attached_dev_type == 0)
1605 memset(attached_sas_addr, 0, 8);
1607 kfree(disc_resp);
1608 return res;
1611 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1612 int from_phy, bool update)
1614 struct expander_device *ex = &dev->ex_dev;
1615 int res = 0;
1616 int i;
1618 for (i = from_phy; i < ex->num_phys; i++) {
1619 int phy_change_count = 0;
1621 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1622 if (res)
1623 goto out;
1624 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1625 if (update)
1626 ex->ex_phy[i].phy_change_count =
1627 phy_change_count;
1628 *phy_id = i;
1629 return 0;
1632 out:
1633 return res;
1636 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1638 int res;
1639 u8 *rg_req;
1640 struct smp_resp *rg_resp;
1642 rg_req = alloc_smp_req(RG_REQ_SIZE);
1643 if (!rg_req)
1644 return -ENOMEM;
1646 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1647 if (!rg_resp) {
1648 kfree(rg_req);
1649 return -ENOMEM;
1652 rg_req[1] = SMP_REPORT_GENERAL;
1654 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1655 RG_RESP_SIZE);
1656 if (res)
1657 goto out;
1658 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1659 res = rg_resp->result;
1660 goto out;
1663 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1664 out:
1665 kfree(rg_resp);
1666 kfree(rg_req);
1667 return res;
1670 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1671 * @dev:domain device to be detect.
1672 * @src_dev: the device which originated BROADCAST(CHANGE).
1674 * Add self-configuration expander suport. Suppose two expander cascading,
1675 * when the first level expander is self-configuring, hotplug the disks in
1676 * second level expander, BROADCAST(CHANGE) will not only be originated
1677 * in the second level expander, but also be originated in the first level
1678 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1679 * expander changed count in two level expanders will all increment at least
1680 * once, but the phy which chang count has changed is the source device which
1681 * we concerned.
1684 static int sas_find_bcast_dev(struct domain_device *dev,
1685 struct domain_device **src_dev)
1687 struct expander_device *ex = &dev->ex_dev;
1688 int ex_change_count = -1;
1689 int phy_id = -1;
1690 int res;
1691 struct domain_device *ch;
1693 res = sas_get_ex_change_count(dev, &ex_change_count);
1694 if (res)
1695 goto out;
1696 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1697 /* Just detect if this expander phys phy change count changed,
1698 * in order to determine if this expander originate BROADCAST,
1699 * and do not update phy change count field in our structure.
1701 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1702 if (phy_id != -1) {
1703 *src_dev = dev;
1704 ex->ex_change_count = ex_change_count;
1705 SAS_DPRINTK("Expander phy change count has changed\n");
1706 return res;
1707 } else
1708 SAS_DPRINTK("Expander phys DID NOT change\n");
1710 list_for_each_entry(ch, &ex->children, siblings) {
1711 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1712 res = sas_find_bcast_dev(ch, src_dev);
1713 if (src_dev)
1714 return res;
1717 out:
1718 return res;
1721 static void sas_unregister_ex_tree(struct domain_device *dev)
1723 struct expander_device *ex = &dev->ex_dev;
1724 struct domain_device *child, *n;
1726 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1727 if (child->dev_type == EDGE_DEV ||
1728 child->dev_type == FANOUT_DEV)
1729 sas_unregister_ex_tree(child);
1730 else
1731 sas_unregister_dev(child);
1733 sas_unregister_dev(dev);
1736 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1737 int phy_id, bool last)
1739 struct expander_device *ex_dev = &parent->ex_dev;
1740 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1741 struct domain_device *child, *n;
1742 if (last) {
1743 list_for_each_entry_safe(child, n,
1744 &ex_dev->children, siblings) {
1745 if (SAS_ADDR(child->sas_addr) ==
1746 SAS_ADDR(phy->attached_sas_addr)) {
1747 if (child->dev_type == EDGE_DEV ||
1748 child->dev_type == FANOUT_DEV)
1749 sas_unregister_ex_tree(child);
1750 else
1751 sas_unregister_dev(child);
1752 break;
1755 sas_disable_routing(parent, phy->attached_sas_addr);
1757 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1758 sas_port_delete_phy(phy->port, phy->phy);
1759 if (phy->port->num_phys == 0)
1760 sas_port_delete(phy->port);
1761 phy->port = NULL;
1764 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1765 const int level)
1767 struct expander_device *ex_root = &root->ex_dev;
1768 struct domain_device *child;
1769 int res = 0;
1771 list_for_each_entry(child, &ex_root->children, siblings) {
1772 if (child->dev_type == EDGE_DEV ||
1773 child->dev_type == FANOUT_DEV) {
1774 struct sas_expander_device *ex =
1775 rphy_to_expander_device(child->rphy);
1777 if (level > ex->level)
1778 res = sas_discover_bfs_by_root_level(child,
1779 level);
1780 else if (level == ex->level)
1781 res = sas_ex_discover_devices(child, -1);
1784 return res;
1787 static int sas_discover_bfs_by_root(struct domain_device *dev)
1789 int res;
1790 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1791 int level = ex->level+1;
1793 res = sas_ex_discover_devices(dev, -1);
1794 if (res)
1795 goto out;
1796 do {
1797 res = sas_discover_bfs_by_root_level(dev, level);
1798 mb();
1799 level += 1;
1800 } while (level <= dev->port->disc.max_level);
1801 out:
1802 return res;
1805 static int sas_discover_new(struct domain_device *dev, int phy_id)
1807 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1808 struct domain_device *child;
1809 bool found = false;
1810 int res, i;
1812 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1813 SAS_ADDR(dev->sas_addr), phy_id);
1814 res = sas_ex_phy_discover(dev, phy_id);
1815 if (res)
1816 goto out;
1817 /* to support the wide port inserted */
1818 for (i = 0; i < dev->ex_dev.num_phys; i++) {
1819 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1820 if (i == phy_id)
1821 continue;
1822 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1823 SAS_ADDR(ex_phy->attached_sas_addr)) {
1824 found = true;
1825 break;
1828 if (found) {
1829 sas_ex_join_wide_port(dev, phy_id);
1830 return 0;
1832 res = sas_ex_discover_devices(dev, phy_id);
1833 if (!res)
1834 goto out;
1835 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1836 if (SAS_ADDR(child->sas_addr) ==
1837 SAS_ADDR(ex_phy->attached_sas_addr)) {
1838 if (child->dev_type == EDGE_DEV ||
1839 child->dev_type == FANOUT_DEV)
1840 res = sas_discover_bfs_by_root(child);
1841 break;
1844 out:
1845 return res;
1848 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1850 struct expander_device *ex = &dev->ex_dev;
1851 struct ex_phy *phy = &ex->ex_phy[phy_id];
1852 u8 attached_sas_addr[8];
1853 int res;
1855 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1856 switch (res) {
1857 case SMP_RESP_NO_PHY:
1858 phy->phy_state = PHY_NOT_PRESENT;
1859 sas_unregister_devs_sas_addr(dev, phy_id, last);
1860 goto out; break;
1861 case SMP_RESP_PHY_VACANT:
1862 phy->phy_state = PHY_VACANT;
1863 sas_unregister_devs_sas_addr(dev, phy_id, last);
1864 goto out; break;
1865 case SMP_RESP_FUNC_ACC:
1866 break;
1869 if (SAS_ADDR(attached_sas_addr) == 0) {
1870 phy->phy_state = PHY_EMPTY;
1871 sas_unregister_devs_sas_addr(dev, phy_id, last);
1872 } else if (SAS_ADDR(attached_sas_addr) ==
1873 SAS_ADDR(phy->attached_sas_addr)) {
1874 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1875 SAS_ADDR(dev->sas_addr), phy_id);
1876 sas_ex_phy_discover(dev, phy_id);
1877 } else
1878 res = sas_discover_new(dev, phy_id);
1879 out:
1880 return res;
1884 * sas_rediscover - revalidate the domain.
1885 * @dev:domain device to be detect.
1886 * @phy_id: the phy id will be detected.
1888 * NOTE: this process _must_ quit (return) as soon as any connection
1889 * errors are encountered. Connection recovery is done elsewhere.
1890 * Discover process only interrogates devices in order to discover the
1891 * domain.For plugging out, we un-register the device only when it is
1892 * the last phy in the port, for other phys in this port, we just delete it
1893 * from the port.For inserting, we do discovery when it is the
1894 * first phy,for other phys in this port, we add it to the port to
1895 * forming the wide-port.
1897 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1899 struct expander_device *ex = &dev->ex_dev;
1900 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1901 int res = 0;
1902 int i;
1903 bool last = true; /* is this the last phy of the port */
1905 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1906 SAS_ADDR(dev->sas_addr), phy_id);
1908 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1909 for (i = 0; i < ex->num_phys; i++) {
1910 struct ex_phy *phy = &ex->ex_phy[i];
1912 if (i == phy_id)
1913 continue;
1914 if (SAS_ADDR(phy->attached_sas_addr) ==
1915 SAS_ADDR(changed_phy->attached_sas_addr)) {
1916 SAS_DPRINTK("phy%d part of wide port with "
1917 "phy%d\n", phy_id, i);
1918 last = false;
1919 break;
1922 res = sas_rediscover_dev(dev, phy_id, last);
1923 } else
1924 res = sas_discover_new(dev, phy_id);
1925 return res;
1929 * sas_revalidate_domain -- revalidate the domain
1930 * @port: port to the domain of interest
1932 * NOTE: this process _must_ quit (return) as soon as any connection
1933 * errors are encountered. Connection recovery is done elsewhere.
1934 * Discover process only interrogates devices in order to discover the
1935 * domain.
1937 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1939 int res;
1940 struct domain_device *dev = NULL;
1942 res = sas_find_bcast_dev(port_dev, &dev);
1943 if (res)
1944 goto out;
1945 if (dev) {
1946 struct expander_device *ex = &dev->ex_dev;
1947 int i = 0, phy_id;
1949 do {
1950 phy_id = -1;
1951 res = sas_find_bcast_phy(dev, &phy_id, i, true);
1952 if (phy_id == -1)
1953 break;
1954 res = sas_rediscover(dev, phy_id);
1955 i = phy_id + 1;
1956 } while (i < ex->num_phys);
1958 out:
1959 return res;
1962 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1963 struct request *req)
1965 struct domain_device *dev;
1966 int ret, type;
1967 struct request *rsp = req->next_rq;
1969 if (!rsp) {
1970 printk("%s: space for a smp response is missing\n",
1971 __func__);
1972 return -EINVAL;
1975 /* no rphy means no smp target support (ie aic94xx host) */
1976 if (!rphy)
1977 return sas_smp_host_handler(shost, req, rsp);
1979 type = rphy->identify.device_type;
1981 if (type != SAS_EDGE_EXPANDER_DEVICE &&
1982 type != SAS_FANOUT_EXPANDER_DEVICE) {
1983 printk("%s: can we send a smp request to a device?\n",
1984 __func__);
1985 return -EINVAL;
1988 dev = sas_find_dev_by_rphy(rphy);
1989 if (!dev) {
1990 printk("%s: fail to find a domain_device?\n", __func__);
1991 return -EINVAL;
1994 /* do we need to support multiple segments? */
1995 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
1996 printk("%s: multiple segments req %u %u, rsp %u %u\n",
1997 __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
1998 rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
1999 return -EINVAL;
2002 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2003 bio_data(rsp->bio), blk_rq_bytes(rsp));
2004 if (ret > 0) {
2005 /* positive number is the untransferred residual */
2006 rsp->resid_len = ret;
2007 req->resid_len = 0;
2008 ret = 0;
2009 } else if (ret == 0) {
2010 rsp->resid_len = 0;
2011 req->resid_len = 0;
2014 return ret;