2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
36 #include <asm/irq_regs.h>
39 * Each CPU has a list of per CPU events:
41 static DEFINE_PER_CPU(struct perf_cpu_context
, perf_cpu_context
);
43 int perf_max_events __read_mostly
= 1;
44 static int perf_reserved_percpu __read_mostly
;
45 static int perf_overcommit __read_mostly
= 1;
47 static atomic_t nr_events __read_mostly
;
48 static atomic_t nr_mmap_events __read_mostly
;
49 static atomic_t nr_comm_events __read_mostly
;
50 static atomic_t nr_task_events __read_mostly
;
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
59 int sysctl_perf_event_paranoid __read_mostly
= 1;
61 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
64 * max perf event sample rate
66 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
68 static atomic64_t perf_event_id
;
71 * Lock for (sysadmin-configurable) event reservations:
73 static DEFINE_SPINLOCK(perf_resource_lock
);
76 * Architecture provided APIs - weak aliases:
78 extern __weak
const struct pmu
*hw_perf_event_init(struct perf_event
*event
)
83 void __weak
hw_perf_disable(void) { barrier(); }
84 void __weak
hw_perf_enable(void) { barrier(); }
86 void __weak
perf_event_print_debug(void) { }
88 static DEFINE_PER_CPU(int, perf_disable_count
);
90 void perf_disable(void)
92 if (!__get_cpu_var(perf_disable_count
)++)
96 void perf_enable(void)
98 if (!--__get_cpu_var(perf_disable_count
))
102 static void get_ctx(struct perf_event_context
*ctx
)
104 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
107 static void free_ctx(struct rcu_head
*head
)
109 struct perf_event_context
*ctx
;
111 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
115 static void put_ctx(struct perf_event_context
*ctx
)
117 if (atomic_dec_and_test(&ctx
->refcount
)) {
119 put_ctx(ctx
->parent_ctx
);
121 put_task_struct(ctx
->task
);
122 call_rcu(&ctx
->rcu_head
, free_ctx
);
126 static void unclone_ctx(struct perf_event_context
*ctx
)
128 if (ctx
->parent_ctx
) {
129 put_ctx(ctx
->parent_ctx
);
130 ctx
->parent_ctx
= NULL
;
135 * If we inherit events we want to return the parent event id
138 static u64
primary_event_id(struct perf_event
*event
)
143 id
= event
->parent
->id
;
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
153 static struct perf_event_context
*
154 perf_lock_task_context(struct task_struct
*task
, unsigned long *flags
)
156 struct perf_event_context
*ctx
;
160 ctx
= rcu_dereference(task
->perf_event_ctxp
);
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
172 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
173 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
)) {
174 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
178 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
179 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
192 static struct perf_event_context
*perf_pin_task_context(struct task_struct
*task
)
194 struct perf_event_context
*ctx
;
197 ctx
= perf_lock_task_context(task
, &flags
);
200 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
205 static void perf_unpin_context(struct perf_event_context
*ctx
)
209 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
211 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
215 static inline u64
perf_clock(void)
217 return cpu_clock(raw_smp_processor_id());
221 * Update the record of the current time in a context.
223 static void update_context_time(struct perf_event_context
*ctx
)
225 u64 now
= perf_clock();
227 ctx
->time
+= now
- ctx
->timestamp
;
228 ctx
->timestamp
= now
;
232 * Update the total_time_enabled and total_time_running fields for a event.
234 static void update_event_times(struct perf_event
*event
)
236 struct perf_event_context
*ctx
= event
->ctx
;
239 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
240 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
246 run_end
= event
->tstamp_stopped
;
248 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
250 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
251 run_end
= event
->tstamp_stopped
;
255 event
->total_time_running
= run_end
- event
->tstamp_running
;
259 * Update total_time_enabled and total_time_running for all events in a group.
261 static void update_group_times(struct perf_event
*leader
)
263 struct perf_event
*event
;
265 update_event_times(leader
);
266 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
267 update_event_times(event
);
270 static struct list_head
*
271 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
273 if (event
->attr
.pinned
)
274 return &ctx
->pinned_groups
;
276 return &ctx
->flexible_groups
;
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
284 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
286 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
287 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
290 * If we're a stand alone event or group leader, we go to the context
291 * list, group events are kept attached to the group so that
292 * perf_group_detach can, at all times, locate all siblings.
294 if (event
->group_leader
== event
) {
295 struct list_head
*list
;
297 if (is_software_event(event
))
298 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
300 list
= ctx_group_list(event
, ctx
);
301 list_add_tail(&event
->group_entry
, list
);
304 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
306 if (event
->attr
.inherit_stat
)
310 static void perf_group_attach(struct perf_event
*event
)
312 struct perf_event
*group_leader
= event
->group_leader
;
314 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_GROUP
);
315 event
->attach_state
|= PERF_ATTACH_GROUP
;
317 if (group_leader
== event
)
320 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
321 !is_software_event(event
))
322 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
324 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
325 group_leader
->nr_siblings
++;
329 * Remove a event from the lists for its context.
330 * Must be called with ctx->mutex and ctx->lock held.
333 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
336 * We can have double detach due to exit/hot-unplug + close.
338 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
341 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
344 if (event
->attr
.inherit_stat
)
347 list_del_rcu(&event
->event_entry
);
349 if (event
->group_leader
== event
)
350 list_del_init(&event
->group_entry
);
352 update_group_times(event
);
355 * If event was in error state, then keep it
356 * that way, otherwise bogus counts will be
357 * returned on read(). The only way to get out
358 * of error state is by explicit re-enabling
361 if (event
->state
> PERF_EVENT_STATE_OFF
)
362 event
->state
= PERF_EVENT_STATE_OFF
;
365 static void perf_group_detach(struct perf_event
*event
)
367 struct perf_event
*sibling
, *tmp
;
368 struct list_head
*list
= NULL
;
371 * We can have double detach due to exit/hot-unplug + close.
373 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
376 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
379 * If this is a sibling, remove it from its group.
381 if (event
->group_leader
!= event
) {
382 list_del_init(&event
->group_entry
);
383 event
->group_leader
->nr_siblings
--;
387 if (!list_empty(&event
->group_entry
))
388 list
= &event
->group_entry
;
391 * If this was a group event with sibling events then
392 * upgrade the siblings to singleton events by adding them
393 * to whatever list we are on.
395 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
397 list_move_tail(&sibling
->group_entry
, list
);
398 sibling
->group_leader
= sibling
;
400 /* Inherit group flags from the previous leader */
401 sibling
->group_flags
= event
->group_flags
;
406 event_sched_out(struct perf_event
*event
,
407 struct perf_cpu_context
*cpuctx
,
408 struct perf_event_context
*ctx
)
410 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
413 event
->state
= PERF_EVENT_STATE_INACTIVE
;
414 if (event
->pending_disable
) {
415 event
->pending_disable
= 0;
416 event
->state
= PERF_EVENT_STATE_OFF
;
418 event
->tstamp_stopped
= ctx
->time
;
419 event
->pmu
->disable(event
);
422 if (!is_software_event(event
))
423 cpuctx
->active_oncpu
--;
425 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
426 cpuctx
->exclusive
= 0;
430 group_sched_out(struct perf_event
*group_event
,
431 struct perf_cpu_context
*cpuctx
,
432 struct perf_event_context
*ctx
)
434 struct perf_event
*event
;
436 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
439 event_sched_out(group_event
, cpuctx
, ctx
);
442 * Schedule out siblings (if any):
444 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
445 event_sched_out(event
, cpuctx
, ctx
);
447 if (group_event
->attr
.exclusive
)
448 cpuctx
->exclusive
= 0;
452 * Cross CPU call to remove a performance event
454 * We disable the event on the hardware level first. After that we
455 * remove it from the context list.
457 static void __perf_event_remove_from_context(void *info
)
459 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
460 struct perf_event
*event
= info
;
461 struct perf_event_context
*ctx
= event
->ctx
;
464 * If this is a task context, we need to check whether it is
465 * the current task context of this cpu. If not it has been
466 * scheduled out before the smp call arrived.
468 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
471 raw_spin_lock(&ctx
->lock
);
473 * Protect the list operation against NMI by disabling the
474 * events on a global level.
478 event_sched_out(event
, cpuctx
, ctx
);
480 list_del_event(event
, ctx
);
484 * Allow more per task events with respect to the
487 cpuctx
->max_pertask
=
488 min(perf_max_events
- ctx
->nr_events
,
489 perf_max_events
- perf_reserved_percpu
);
493 raw_spin_unlock(&ctx
->lock
);
498 * Remove the event from a task's (or a CPU's) list of events.
500 * Must be called with ctx->mutex held.
502 * CPU events are removed with a smp call. For task events we only
503 * call when the task is on a CPU.
505 * If event->ctx is a cloned context, callers must make sure that
506 * every task struct that event->ctx->task could possibly point to
507 * remains valid. This is OK when called from perf_release since
508 * that only calls us on the top-level context, which can't be a clone.
509 * When called from perf_event_exit_task, it's OK because the
510 * context has been detached from its task.
512 static void perf_event_remove_from_context(struct perf_event
*event
)
514 struct perf_event_context
*ctx
= event
->ctx
;
515 struct task_struct
*task
= ctx
->task
;
519 * Per cpu events are removed via an smp call and
520 * the removal is always successful.
522 smp_call_function_single(event
->cpu
,
523 __perf_event_remove_from_context
,
529 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
532 raw_spin_lock_irq(&ctx
->lock
);
534 * If the context is active we need to retry the smp call.
536 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
537 raw_spin_unlock_irq(&ctx
->lock
);
542 * The lock prevents that this context is scheduled in so we
543 * can remove the event safely, if the call above did not
546 if (!list_empty(&event
->group_entry
))
547 list_del_event(event
, ctx
);
548 raw_spin_unlock_irq(&ctx
->lock
);
552 * Cross CPU call to disable a performance event
554 static void __perf_event_disable(void *info
)
556 struct perf_event
*event
= info
;
557 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
558 struct perf_event_context
*ctx
= event
->ctx
;
561 * If this is a per-task event, need to check whether this
562 * event's task is the current task on this cpu.
564 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
567 raw_spin_lock(&ctx
->lock
);
570 * If the event is on, turn it off.
571 * If it is in error state, leave it in error state.
573 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
574 update_context_time(ctx
);
575 update_group_times(event
);
576 if (event
== event
->group_leader
)
577 group_sched_out(event
, cpuctx
, ctx
);
579 event_sched_out(event
, cpuctx
, ctx
);
580 event
->state
= PERF_EVENT_STATE_OFF
;
583 raw_spin_unlock(&ctx
->lock
);
589 * If event->ctx is a cloned context, callers must make sure that
590 * every task struct that event->ctx->task could possibly point to
591 * remains valid. This condition is satisifed when called through
592 * perf_event_for_each_child or perf_event_for_each because they
593 * hold the top-level event's child_mutex, so any descendant that
594 * goes to exit will block in sync_child_event.
595 * When called from perf_pending_event it's OK because event->ctx
596 * is the current context on this CPU and preemption is disabled,
597 * hence we can't get into perf_event_task_sched_out for this context.
599 void perf_event_disable(struct perf_event
*event
)
601 struct perf_event_context
*ctx
= event
->ctx
;
602 struct task_struct
*task
= ctx
->task
;
606 * Disable the event on the cpu that it's on
608 smp_call_function_single(event
->cpu
, __perf_event_disable
,
614 task_oncpu_function_call(task
, __perf_event_disable
, event
);
616 raw_spin_lock_irq(&ctx
->lock
);
618 * If the event is still active, we need to retry the cross-call.
620 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
621 raw_spin_unlock_irq(&ctx
->lock
);
626 * Since we have the lock this context can't be scheduled
627 * in, so we can change the state safely.
629 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
630 update_group_times(event
);
631 event
->state
= PERF_EVENT_STATE_OFF
;
634 raw_spin_unlock_irq(&ctx
->lock
);
638 event_sched_in(struct perf_event
*event
,
639 struct perf_cpu_context
*cpuctx
,
640 struct perf_event_context
*ctx
)
642 if (event
->state
<= PERF_EVENT_STATE_OFF
)
645 event
->state
= PERF_EVENT_STATE_ACTIVE
;
646 event
->oncpu
= smp_processor_id();
648 * The new state must be visible before we turn it on in the hardware:
652 if (event
->pmu
->enable(event
)) {
653 event
->state
= PERF_EVENT_STATE_INACTIVE
;
658 event
->tstamp_running
+= ctx
->time
- event
->tstamp_stopped
;
660 if (!is_software_event(event
))
661 cpuctx
->active_oncpu
++;
664 if (event
->attr
.exclusive
)
665 cpuctx
->exclusive
= 1;
671 group_sched_in(struct perf_event
*group_event
,
672 struct perf_cpu_context
*cpuctx
,
673 struct perf_event_context
*ctx
)
675 struct perf_event
*event
, *partial_group
= NULL
;
676 const struct pmu
*pmu
= group_event
->pmu
;
680 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
683 /* Check if group transaction availabe */
690 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
692 pmu
->cancel_txn(pmu
);
697 * Schedule in siblings as one group (if any):
699 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
700 if (event_sched_in(event
, cpuctx
, ctx
)) {
701 partial_group
= event
;
709 ret
= pmu
->commit_txn(pmu
);
711 pmu
->cancel_txn(pmu
);
717 * Groups can be scheduled in as one unit only, so undo any
718 * partial group before returning:
720 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
721 if (event
== partial_group
)
723 event_sched_out(event
, cpuctx
, ctx
);
725 event_sched_out(group_event
, cpuctx
, ctx
);
728 pmu
->cancel_txn(pmu
);
734 * Work out whether we can put this event group on the CPU now.
736 static int group_can_go_on(struct perf_event
*event
,
737 struct perf_cpu_context
*cpuctx
,
741 * Groups consisting entirely of software events can always go on.
743 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
746 * If an exclusive group is already on, no other hardware
749 if (cpuctx
->exclusive
)
752 * If this group is exclusive and there are already
753 * events on the CPU, it can't go on.
755 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
758 * Otherwise, try to add it if all previous groups were able
764 static void add_event_to_ctx(struct perf_event
*event
,
765 struct perf_event_context
*ctx
)
767 list_add_event(event
, ctx
);
768 perf_group_attach(event
);
769 event
->tstamp_enabled
= ctx
->time
;
770 event
->tstamp_running
= ctx
->time
;
771 event
->tstamp_stopped
= ctx
->time
;
775 * Cross CPU call to install and enable a performance event
777 * Must be called with ctx->mutex held
779 static void __perf_install_in_context(void *info
)
781 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
782 struct perf_event
*event
= info
;
783 struct perf_event_context
*ctx
= event
->ctx
;
784 struct perf_event
*leader
= event
->group_leader
;
788 * If this is a task context, we need to check whether it is
789 * the current task context of this cpu. If not it has been
790 * scheduled out before the smp call arrived.
791 * Or possibly this is the right context but it isn't
792 * on this cpu because it had no events.
794 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
795 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
797 cpuctx
->task_ctx
= ctx
;
800 raw_spin_lock(&ctx
->lock
);
802 update_context_time(ctx
);
805 * Protect the list operation against NMI by disabling the
806 * events on a global level. NOP for non NMI based events.
810 add_event_to_ctx(event
, ctx
);
812 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
816 * Don't put the event on if it is disabled or if
817 * it is in a group and the group isn't on.
819 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
820 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
824 * An exclusive event can't go on if there are already active
825 * hardware events, and no hardware event can go on if there
826 * is already an exclusive event on.
828 if (!group_can_go_on(event
, cpuctx
, 1))
831 err
= event_sched_in(event
, cpuctx
, ctx
);
835 * This event couldn't go on. If it is in a group
836 * then we have to pull the whole group off.
837 * If the event group is pinned then put it in error state.
840 group_sched_out(leader
, cpuctx
, ctx
);
841 if (leader
->attr
.pinned
) {
842 update_group_times(leader
);
843 leader
->state
= PERF_EVENT_STATE_ERROR
;
847 if (!err
&& !ctx
->task
&& cpuctx
->max_pertask
)
848 cpuctx
->max_pertask
--;
853 raw_spin_unlock(&ctx
->lock
);
857 * Attach a performance event to a context
859 * First we add the event to the list with the hardware enable bit
860 * in event->hw_config cleared.
862 * If the event is attached to a task which is on a CPU we use a smp
863 * call to enable it in the task context. The task might have been
864 * scheduled away, but we check this in the smp call again.
866 * Must be called with ctx->mutex held.
869 perf_install_in_context(struct perf_event_context
*ctx
,
870 struct perf_event
*event
,
873 struct task_struct
*task
= ctx
->task
;
877 * Per cpu events are installed via an smp call and
878 * the install is always successful.
880 smp_call_function_single(cpu
, __perf_install_in_context
,
886 task_oncpu_function_call(task
, __perf_install_in_context
,
889 raw_spin_lock_irq(&ctx
->lock
);
891 * we need to retry the smp call.
893 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
894 raw_spin_unlock_irq(&ctx
->lock
);
899 * The lock prevents that this context is scheduled in so we
900 * can add the event safely, if it the call above did not
903 if (list_empty(&event
->group_entry
))
904 add_event_to_ctx(event
, ctx
);
905 raw_spin_unlock_irq(&ctx
->lock
);
909 * Put a event into inactive state and update time fields.
910 * Enabling the leader of a group effectively enables all
911 * the group members that aren't explicitly disabled, so we
912 * have to update their ->tstamp_enabled also.
913 * Note: this works for group members as well as group leaders
914 * since the non-leader members' sibling_lists will be empty.
916 static void __perf_event_mark_enabled(struct perf_event
*event
,
917 struct perf_event_context
*ctx
)
919 struct perf_event
*sub
;
921 event
->state
= PERF_EVENT_STATE_INACTIVE
;
922 event
->tstamp_enabled
= ctx
->time
- event
->total_time_enabled
;
923 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
)
924 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
925 sub
->tstamp_enabled
=
926 ctx
->time
- sub
->total_time_enabled
;
930 * Cross CPU call to enable a performance event
932 static void __perf_event_enable(void *info
)
934 struct perf_event
*event
= info
;
935 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
936 struct perf_event_context
*ctx
= event
->ctx
;
937 struct perf_event
*leader
= event
->group_leader
;
941 * If this is a per-task event, need to check whether this
942 * event's task is the current task on this cpu.
944 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
945 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
947 cpuctx
->task_ctx
= ctx
;
950 raw_spin_lock(&ctx
->lock
);
952 update_context_time(ctx
);
954 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
956 __perf_event_mark_enabled(event
, ctx
);
958 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
962 * If the event is in a group and isn't the group leader,
963 * then don't put it on unless the group is on.
965 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
968 if (!group_can_go_on(event
, cpuctx
, 1)) {
973 err
= group_sched_in(event
, cpuctx
, ctx
);
975 err
= event_sched_in(event
, cpuctx
, ctx
);
981 * If this event can't go on and it's part of a
982 * group, then the whole group has to come off.
985 group_sched_out(leader
, cpuctx
, ctx
);
986 if (leader
->attr
.pinned
) {
987 update_group_times(leader
);
988 leader
->state
= PERF_EVENT_STATE_ERROR
;
993 raw_spin_unlock(&ctx
->lock
);
999 * If event->ctx is a cloned context, callers must make sure that
1000 * every task struct that event->ctx->task could possibly point to
1001 * remains valid. This condition is satisfied when called through
1002 * perf_event_for_each_child or perf_event_for_each as described
1003 * for perf_event_disable.
1005 void perf_event_enable(struct perf_event
*event
)
1007 struct perf_event_context
*ctx
= event
->ctx
;
1008 struct task_struct
*task
= ctx
->task
;
1012 * Enable the event on the cpu that it's on
1014 smp_call_function_single(event
->cpu
, __perf_event_enable
,
1019 raw_spin_lock_irq(&ctx
->lock
);
1020 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1024 * If the event is in error state, clear that first.
1025 * That way, if we see the event in error state below, we
1026 * know that it has gone back into error state, as distinct
1027 * from the task having been scheduled away before the
1028 * cross-call arrived.
1030 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1031 event
->state
= PERF_EVENT_STATE_OFF
;
1034 raw_spin_unlock_irq(&ctx
->lock
);
1035 task_oncpu_function_call(task
, __perf_event_enable
, event
);
1037 raw_spin_lock_irq(&ctx
->lock
);
1040 * If the context is active and the event is still off,
1041 * we need to retry the cross-call.
1043 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
1047 * Since we have the lock this context can't be scheduled
1048 * in, so we can change the state safely.
1050 if (event
->state
== PERF_EVENT_STATE_OFF
)
1051 __perf_event_mark_enabled(event
, ctx
);
1054 raw_spin_unlock_irq(&ctx
->lock
);
1057 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1060 * not supported on inherited events
1062 if (event
->attr
.inherit
)
1065 atomic_add(refresh
, &event
->event_limit
);
1066 perf_event_enable(event
);
1072 EVENT_FLEXIBLE
= 0x1,
1074 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
1077 static void ctx_sched_out(struct perf_event_context
*ctx
,
1078 struct perf_cpu_context
*cpuctx
,
1079 enum event_type_t event_type
)
1081 struct perf_event
*event
;
1083 raw_spin_lock(&ctx
->lock
);
1085 if (likely(!ctx
->nr_events
))
1087 update_context_time(ctx
);
1090 if (!ctx
->nr_active
)
1093 if (event_type
& EVENT_PINNED
)
1094 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
1095 group_sched_out(event
, cpuctx
, ctx
);
1097 if (event_type
& EVENT_FLEXIBLE
)
1098 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
1099 group_sched_out(event
, cpuctx
, ctx
);
1104 raw_spin_unlock(&ctx
->lock
);
1108 * Test whether two contexts are equivalent, i.e. whether they
1109 * have both been cloned from the same version of the same context
1110 * and they both have the same number of enabled events.
1111 * If the number of enabled events is the same, then the set
1112 * of enabled events should be the same, because these are both
1113 * inherited contexts, therefore we can't access individual events
1114 * in them directly with an fd; we can only enable/disable all
1115 * events via prctl, or enable/disable all events in a family
1116 * via ioctl, which will have the same effect on both contexts.
1118 static int context_equiv(struct perf_event_context
*ctx1
,
1119 struct perf_event_context
*ctx2
)
1121 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1122 && ctx1
->parent_gen
== ctx2
->parent_gen
1123 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1126 static void __perf_event_sync_stat(struct perf_event
*event
,
1127 struct perf_event
*next_event
)
1131 if (!event
->attr
.inherit_stat
)
1135 * Update the event value, we cannot use perf_event_read()
1136 * because we're in the middle of a context switch and have IRQs
1137 * disabled, which upsets smp_call_function_single(), however
1138 * we know the event must be on the current CPU, therefore we
1139 * don't need to use it.
1141 switch (event
->state
) {
1142 case PERF_EVENT_STATE_ACTIVE
:
1143 event
->pmu
->read(event
);
1146 case PERF_EVENT_STATE_INACTIVE
:
1147 update_event_times(event
);
1155 * In order to keep per-task stats reliable we need to flip the event
1156 * values when we flip the contexts.
1158 value
= atomic64_read(&next_event
->count
);
1159 value
= atomic64_xchg(&event
->count
, value
);
1160 atomic64_set(&next_event
->count
, value
);
1162 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1163 swap(event
->total_time_running
, next_event
->total_time_running
);
1166 * Since we swizzled the values, update the user visible data too.
1168 perf_event_update_userpage(event
);
1169 perf_event_update_userpage(next_event
);
1172 #define list_next_entry(pos, member) \
1173 list_entry(pos->member.next, typeof(*pos), member)
1175 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1176 struct perf_event_context
*next_ctx
)
1178 struct perf_event
*event
, *next_event
;
1183 update_context_time(ctx
);
1185 event
= list_first_entry(&ctx
->event_list
,
1186 struct perf_event
, event_entry
);
1188 next_event
= list_first_entry(&next_ctx
->event_list
,
1189 struct perf_event
, event_entry
);
1191 while (&event
->event_entry
!= &ctx
->event_list
&&
1192 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1194 __perf_event_sync_stat(event
, next_event
);
1196 event
= list_next_entry(event
, event_entry
);
1197 next_event
= list_next_entry(next_event
, event_entry
);
1202 * Called from scheduler to remove the events of the current task,
1203 * with interrupts disabled.
1205 * We stop each event and update the event value in event->count.
1207 * This does not protect us against NMI, but disable()
1208 * sets the disabled bit in the control field of event _before_
1209 * accessing the event control register. If a NMI hits, then it will
1210 * not restart the event.
1212 void perf_event_task_sched_out(struct task_struct
*task
,
1213 struct task_struct
*next
)
1215 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1216 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1217 struct perf_event_context
*next_ctx
;
1218 struct perf_event_context
*parent
;
1221 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, NULL
, 0);
1223 if (likely(!ctx
|| !cpuctx
->task_ctx
))
1227 parent
= rcu_dereference(ctx
->parent_ctx
);
1228 next_ctx
= next
->perf_event_ctxp
;
1229 if (parent
&& next_ctx
&&
1230 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1232 * Looks like the two contexts are clones, so we might be
1233 * able to optimize the context switch. We lock both
1234 * contexts and check that they are clones under the
1235 * lock (including re-checking that neither has been
1236 * uncloned in the meantime). It doesn't matter which
1237 * order we take the locks because no other cpu could
1238 * be trying to lock both of these tasks.
1240 raw_spin_lock(&ctx
->lock
);
1241 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1242 if (context_equiv(ctx
, next_ctx
)) {
1244 * XXX do we need a memory barrier of sorts
1245 * wrt to rcu_dereference() of perf_event_ctxp
1247 task
->perf_event_ctxp
= next_ctx
;
1248 next
->perf_event_ctxp
= ctx
;
1250 next_ctx
->task
= task
;
1253 perf_event_sync_stat(ctx
, next_ctx
);
1255 raw_spin_unlock(&next_ctx
->lock
);
1256 raw_spin_unlock(&ctx
->lock
);
1261 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
1262 cpuctx
->task_ctx
= NULL
;
1266 static void task_ctx_sched_out(struct perf_event_context
*ctx
,
1267 enum event_type_t event_type
)
1269 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1271 if (!cpuctx
->task_ctx
)
1274 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1277 ctx_sched_out(ctx
, cpuctx
, event_type
);
1278 cpuctx
->task_ctx
= NULL
;
1282 * Called with IRQs disabled
1284 static void __perf_event_task_sched_out(struct perf_event_context
*ctx
)
1286 task_ctx_sched_out(ctx
, EVENT_ALL
);
1290 * Called with IRQs disabled
1292 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
1293 enum event_type_t event_type
)
1295 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
1299 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
1300 struct perf_cpu_context
*cpuctx
)
1302 struct perf_event
*event
;
1304 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1305 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1307 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1310 if (group_can_go_on(event
, cpuctx
, 1))
1311 group_sched_in(event
, cpuctx
, ctx
);
1314 * If this pinned group hasn't been scheduled,
1315 * put it in error state.
1317 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1318 update_group_times(event
);
1319 event
->state
= PERF_EVENT_STATE_ERROR
;
1325 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
1326 struct perf_cpu_context
*cpuctx
)
1328 struct perf_event
*event
;
1331 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1332 /* Ignore events in OFF or ERROR state */
1333 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1336 * Listen to the 'cpu' scheduling filter constraint
1339 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1342 if (group_can_go_on(event
, cpuctx
, can_add_hw
))
1343 if (group_sched_in(event
, cpuctx
, ctx
))
1349 ctx_sched_in(struct perf_event_context
*ctx
,
1350 struct perf_cpu_context
*cpuctx
,
1351 enum event_type_t event_type
)
1353 raw_spin_lock(&ctx
->lock
);
1355 if (likely(!ctx
->nr_events
))
1358 ctx
->timestamp
= perf_clock();
1363 * First go through the list and put on any pinned groups
1364 * in order to give them the best chance of going on.
1366 if (event_type
& EVENT_PINNED
)
1367 ctx_pinned_sched_in(ctx
, cpuctx
);
1369 /* Then walk through the lower prio flexible groups */
1370 if (event_type
& EVENT_FLEXIBLE
)
1371 ctx_flexible_sched_in(ctx
, cpuctx
);
1375 raw_spin_unlock(&ctx
->lock
);
1378 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
1379 enum event_type_t event_type
)
1381 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1383 ctx_sched_in(ctx
, cpuctx
, event_type
);
1386 static void task_ctx_sched_in(struct task_struct
*task
,
1387 enum event_type_t event_type
)
1389 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1390 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1394 if (cpuctx
->task_ctx
== ctx
)
1396 ctx_sched_in(ctx
, cpuctx
, event_type
);
1397 cpuctx
->task_ctx
= ctx
;
1400 * Called from scheduler to add the events of the current task
1401 * with interrupts disabled.
1403 * We restore the event value and then enable it.
1405 * This does not protect us against NMI, but enable()
1406 * sets the enabled bit in the control field of event _before_
1407 * accessing the event control register. If a NMI hits, then it will
1408 * keep the event running.
1410 void perf_event_task_sched_in(struct task_struct
*task
)
1412 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1413 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1418 if (cpuctx
->task_ctx
== ctx
)
1424 * We want to keep the following priority order:
1425 * cpu pinned (that don't need to move), task pinned,
1426 * cpu flexible, task flexible.
1428 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1430 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
);
1431 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1432 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
);
1434 cpuctx
->task_ctx
= ctx
;
1439 #define MAX_INTERRUPTS (~0ULL)
1441 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1443 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1445 u64 frequency
= event
->attr
.sample_freq
;
1446 u64 sec
= NSEC_PER_SEC
;
1447 u64 divisor
, dividend
;
1449 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
1451 count_fls
= fls64(count
);
1452 nsec_fls
= fls64(nsec
);
1453 frequency_fls
= fls64(frequency
);
1457 * We got @count in @nsec, with a target of sample_freq HZ
1458 * the target period becomes:
1461 * period = -------------------
1462 * @nsec * sample_freq
1467 * Reduce accuracy by one bit such that @a and @b converge
1468 * to a similar magnitude.
1470 #define REDUCE_FLS(a, b) \
1472 if (a##_fls > b##_fls) { \
1482 * Reduce accuracy until either term fits in a u64, then proceed with
1483 * the other, so that finally we can do a u64/u64 division.
1485 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
1486 REDUCE_FLS(nsec
, frequency
);
1487 REDUCE_FLS(sec
, count
);
1490 if (count_fls
+ sec_fls
> 64) {
1491 divisor
= nsec
* frequency
;
1493 while (count_fls
+ sec_fls
> 64) {
1494 REDUCE_FLS(count
, sec
);
1498 dividend
= count
* sec
;
1500 dividend
= count
* sec
;
1502 while (nsec_fls
+ frequency_fls
> 64) {
1503 REDUCE_FLS(nsec
, frequency
);
1507 divisor
= nsec
* frequency
;
1513 return div64_u64(dividend
, divisor
);
1516 static void perf_event_stop(struct perf_event
*event
)
1518 if (!event
->pmu
->stop
)
1519 return event
->pmu
->disable(event
);
1521 return event
->pmu
->stop(event
);
1524 static int perf_event_start(struct perf_event
*event
)
1526 if (!event
->pmu
->start
)
1527 return event
->pmu
->enable(event
);
1529 return event
->pmu
->start(event
);
1532 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1534 struct hw_perf_event
*hwc
= &event
->hw
;
1535 s64 period
, sample_period
;
1538 period
= perf_calculate_period(event
, nsec
, count
);
1540 delta
= (s64
)(period
- hwc
->sample_period
);
1541 delta
= (delta
+ 7) / 8; /* low pass filter */
1543 sample_period
= hwc
->sample_period
+ delta
;
1548 hwc
->sample_period
= sample_period
;
1550 if (atomic64_read(&hwc
->period_left
) > 8*sample_period
) {
1552 perf_event_stop(event
);
1553 atomic64_set(&hwc
->period_left
, 0);
1554 perf_event_start(event
);
1559 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
)
1561 struct perf_event
*event
;
1562 struct hw_perf_event
*hwc
;
1563 u64 interrupts
, now
;
1566 raw_spin_lock(&ctx
->lock
);
1567 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
1568 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1571 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1576 interrupts
= hwc
->interrupts
;
1577 hwc
->interrupts
= 0;
1580 * unthrottle events on the tick
1582 if (interrupts
== MAX_INTERRUPTS
) {
1583 perf_log_throttle(event
, 1);
1585 event
->pmu
->unthrottle(event
);
1589 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1593 event
->pmu
->read(event
);
1594 now
= atomic64_read(&event
->count
);
1595 delta
= now
- hwc
->freq_count_stamp
;
1596 hwc
->freq_count_stamp
= now
;
1599 perf_adjust_period(event
, TICK_NSEC
, delta
);
1602 raw_spin_unlock(&ctx
->lock
);
1606 * Round-robin a context's events:
1608 static void rotate_ctx(struct perf_event_context
*ctx
)
1610 raw_spin_lock(&ctx
->lock
);
1612 /* Rotate the first entry last of non-pinned groups */
1613 list_rotate_left(&ctx
->flexible_groups
);
1615 raw_spin_unlock(&ctx
->lock
);
1618 void perf_event_task_tick(struct task_struct
*curr
)
1620 struct perf_cpu_context
*cpuctx
;
1621 struct perf_event_context
*ctx
;
1624 if (!atomic_read(&nr_events
))
1627 cpuctx
= &__get_cpu_var(perf_cpu_context
);
1628 if (cpuctx
->ctx
.nr_events
&&
1629 cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
1632 ctx
= curr
->perf_event_ctxp
;
1633 if (ctx
&& ctx
->nr_events
&& ctx
->nr_events
!= ctx
->nr_active
)
1636 perf_ctx_adjust_freq(&cpuctx
->ctx
);
1638 perf_ctx_adjust_freq(ctx
);
1644 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1646 task_ctx_sched_out(ctx
, EVENT_FLEXIBLE
);
1648 rotate_ctx(&cpuctx
->ctx
);
1652 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1654 task_ctx_sched_in(curr
, EVENT_FLEXIBLE
);
1658 static int event_enable_on_exec(struct perf_event
*event
,
1659 struct perf_event_context
*ctx
)
1661 if (!event
->attr
.enable_on_exec
)
1664 event
->attr
.enable_on_exec
= 0;
1665 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1668 __perf_event_mark_enabled(event
, ctx
);
1674 * Enable all of a task's events that have been marked enable-on-exec.
1675 * This expects task == current.
1677 static void perf_event_enable_on_exec(struct task_struct
*task
)
1679 struct perf_event_context
*ctx
;
1680 struct perf_event
*event
;
1681 unsigned long flags
;
1685 local_irq_save(flags
);
1686 ctx
= task
->perf_event_ctxp
;
1687 if (!ctx
|| !ctx
->nr_events
)
1690 __perf_event_task_sched_out(ctx
);
1692 raw_spin_lock(&ctx
->lock
);
1694 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1695 ret
= event_enable_on_exec(event
, ctx
);
1700 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1701 ret
= event_enable_on_exec(event
, ctx
);
1707 * Unclone this context if we enabled any event.
1712 raw_spin_unlock(&ctx
->lock
);
1714 perf_event_task_sched_in(task
);
1716 local_irq_restore(flags
);
1720 * Cross CPU call to read the hardware event
1722 static void __perf_event_read(void *info
)
1724 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1725 struct perf_event
*event
= info
;
1726 struct perf_event_context
*ctx
= event
->ctx
;
1729 * If this is a task context, we need to check whether it is
1730 * the current task context of this cpu. If not it has been
1731 * scheduled out before the smp call arrived. In that case
1732 * event->count would have been updated to a recent sample
1733 * when the event was scheduled out.
1735 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1738 raw_spin_lock(&ctx
->lock
);
1739 update_context_time(ctx
);
1740 update_event_times(event
);
1741 raw_spin_unlock(&ctx
->lock
);
1743 event
->pmu
->read(event
);
1746 static u64
perf_event_read(struct perf_event
*event
)
1749 * If event is enabled and currently active on a CPU, update the
1750 * value in the event structure:
1752 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1753 smp_call_function_single(event
->oncpu
,
1754 __perf_event_read
, event
, 1);
1755 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1756 struct perf_event_context
*ctx
= event
->ctx
;
1757 unsigned long flags
;
1759 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1760 update_context_time(ctx
);
1761 update_event_times(event
);
1762 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1765 return atomic64_read(&event
->count
);
1769 * Initialize the perf_event context in a task_struct:
1772 __perf_event_init_context(struct perf_event_context
*ctx
,
1773 struct task_struct
*task
)
1775 raw_spin_lock_init(&ctx
->lock
);
1776 mutex_init(&ctx
->mutex
);
1777 INIT_LIST_HEAD(&ctx
->pinned_groups
);
1778 INIT_LIST_HEAD(&ctx
->flexible_groups
);
1779 INIT_LIST_HEAD(&ctx
->event_list
);
1780 atomic_set(&ctx
->refcount
, 1);
1784 static struct perf_event_context
*find_get_context(pid_t pid
, int cpu
)
1786 struct perf_event_context
*ctx
;
1787 struct perf_cpu_context
*cpuctx
;
1788 struct task_struct
*task
;
1789 unsigned long flags
;
1792 if (pid
== -1 && cpu
!= -1) {
1793 /* Must be root to operate on a CPU event: */
1794 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1795 return ERR_PTR(-EACCES
);
1797 if (cpu
< 0 || cpu
>= nr_cpumask_bits
)
1798 return ERR_PTR(-EINVAL
);
1801 * We could be clever and allow to attach a event to an
1802 * offline CPU and activate it when the CPU comes up, but
1805 if (!cpu_online(cpu
))
1806 return ERR_PTR(-ENODEV
);
1808 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1819 task
= find_task_by_vpid(pid
);
1821 get_task_struct(task
);
1825 return ERR_PTR(-ESRCH
);
1828 * Can't attach events to a dying task.
1831 if (task
->flags
& PF_EXITING
)
1834 /* Reuse ptrace permission checks for now. */
1836 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
1840 ctx
= perf_lock_task_context(task
, &flags
);
1843 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1847 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
1851 __perf_event_init_context(ctx
, task
);
1853 if (cmpxchg(&task
->perf_event_ctxp
, NULL
, ctx
)) {
1855 * We raced with some other task; use
1856 * the context they set.
1861 get_task_struct(task
);
1864 put_task_struct(task
);
1868 put_task_struct(task
);
1869 return ERR_PTR(err
);
1872 static void perf_event_free_filter(struct perf_event
*event
);
1874 static void free_event_rcu(struct rcu_head
*head
)
1876 struct perf_event
*event
;
1878 event
= container_of(head
, struct perf_event
, rcu_head
);
1880 put_pid_ns(event
->ns
);
1881 perf_event_free_filter(event
);
1885 static void perf_pending_sync(struct perf_event
*event
);
1886 static void perf_mmap_data_put(struct perf_mmap_data
*data
);
1888 static void free_event(struct perf_event
*event
)
1890 perf_pending_sync(event
);
1892 if (!event
->parent
) {
1893 atomic_dec(&nr_events
);
1894 if (event
->attr
.mmap
)
1895 atomic_dec(&nr_mmap_events
);
1896 if (event
->attr
.comm
)
1897 atomic_dec(&nr_comm_events
);
1898 if (event
->attr
.task
)
1899 atomic_dec(&nr_task_events
);
1903 perf_mmap_data_put(event
->data
);
1908 event
->destroy(event
);
1910 put_ctx(event
->ctx
);
1911 call_rcu(&event
->rcu_head
, free_event_rcu
);
1914 int perf_event_release_kernel(struct perf_event
*event
)
1916 struct perf_event_context
*ctx
= event
->ctx
;
1919 * Remove from the PMU, can't get re-enabled since we got
1920 * here because the last ref went.
1922 perf_event_disable(event
);
1924 WARN_ON_ONCE(ctx
->parent_ctx
);
1926 * There are two ways this annotation is useful:
1928 * 1) there is a lock recursion from perf_event_exit_task
1929 * see the comment there.
1931 * 2) there is a lock-inversion with mmap_sem through
1932 * perf_event_read_group(), which takes faults while
1933 * holding ctx->mutex, however this is called after
1934 * the last filedesc died, so there is no possibility
1935 * to trigger the AB-BA case.
1937 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
1938 raw_spin_lock_irq(&ctx
->lock
);
1939 perf_group_detach(event
);
1940 list_del_event(event
, ctx
);
1941 raw_spin_unlock_irq(&ctx
->lock
);
1942 mutex_unlock(&ctx
->mutex
);
1944 mutex_lock(&event
->owner
->perf_event_mutex
);
1945 list_del_init(&event
->owner_entry
);
1946 mutex_unlock(&event
->owner
->perf_event_mutex
);
1947 put_task_struct(event
->owner
);
1953 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
1956 * Called when the last reference to the file is gone.
1958 static int perf_release(struct inode
*inode
, struct file
*file
)
1960 struct perf_event
*event
= file
->private_data
;
1962 file
->private_data
= NULL
;
1964 return perf_event_release_kernel(event
);
1967 static int perf_event_read_size(struct perf_event
*event
)
1969 int entry
= sizeof(u64
); /* value */
1973 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1974 size
+= sizeof(u64
);
1976 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1977 size
+= sizeof(u64
);
1979 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1980 entry
+= sizeof(u64
);
1982 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1983 nr
+= event
->group_leader
->nr_siblings
;
1984 size
+= sizeof(u64
);
1992 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
1994 struct perf_event
*child
;
2000 mutex_lock(&event
->child_mutex
);
2001 total
+= perf_event_read(event
);
2002 *enabled
+= event
->total_time_enabled
+
2003 atomic64_read(&event
->child_total_time_enabled
);
2004 *running
+= event
->total_time_running
+
2005 atomic64_read(&event
->child_total_time_running
);
2007 list_for_each_entry(child
, &event
->child_list
, child_list
) {
2008 total
+= perf_event_read(child
);
2009 *enabled
+= child
->total_time_enabled
;
2010 *running
+= child
->total_time_running
;
2012 mutex_unlock(&event
->child_mutex
);
2016 EXPORT_SYMBOL_GPL(perf_event_read_value
);
2018 static int perf_event_read_group(struct perf_event
*event
,
2019 u64 read_format
, char __user
*buf
)
2021 struct perf_event
*leader
= event
->group_leader
, *sub
;
2022 int n
= 0, size
= 0, ret
= -EFAULT
;
2023 struct perf_event_context
*ctx
= leader
->ctx
;
2025 u64 count
, enabled
, running
;
2027 mutex_lock(&ctx
->mutex
);
2028 count
= perf_event_read_value(leader
, &enabled
, &running
);
2030 values
[n
++] = 1 + leader
->nr_siblings
;
2031 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2032 values
[n
++] = enabled
;
2033 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2034 values
[n
++] = running
;
2035 values
[n
++] = count
;
2036 if (read_format
& PERF_FORMAT_ID
)
2037 values
[n
++] = primary_event_id(leader
);
2039 size
= n
* sizeof(u64
);
2041 if (copy_to_user(buf
, values
, size
))
2046 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2049 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
2050 if (read_format
& PERF_FORMAT_ID
)
2051 values
[n
++] = primary_event_id(sub
);
2053 size
= n
* sizeof(u64
);
2055 if (copy_to_user(buf
+ ret
, values
, size
)) {
2063 mutex_unlock(&ctx
->mutex
);
2068 static int perf_event_read_one(struct perf_event
*event
,
2069 u64 read_format
, char __user
*buf
)
2071 u64 enabled
, running
;
2075 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
2076 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2077 values
[n
++] = enabled
;
2078 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2079 values
[n
++] = running
;
2080 if (read_format
& PERF_FORMAT_ID
)
2081 values
[n
++] = primary_event_id(event
);
2083 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
2086 return n
* sizeof(u64
);
2090 * Read the performance event - simple non blocking version for now
2093 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
2095 u64 read_format
= event
->attr
.read_format
;
2099 * Return end-of-file for a read on a event that is in
2100 * error state (i.e. because it was pinned but it couldn't be
2101 * scheduled on to the CPU at some point).
2103 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2106 if (count
< perf_event_read_size(event
))
2109 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2110 if (read_format
& PERF_FORMAT_GROUP
)
2111 ret
= perf_event_read_group(event
, read_format
, buf
);
2113 ret
= perf_event_read_one(event
, read_format
, buf
);
2119 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
2121 struct perf_event
*event
= file
->private_data
;
2123 return perf_read_hw(event
, buf
, count
);
2126 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
2128 struct perf_event
*event
= file
->private_data
;
2129 struct perf_mmap_data
*data
;
2130 unsigned int events
= POLL_HUP
;
2133 data
= rcu_dereference(event
->data
);
2135 events
= atomic_xchg(&data
->poll
, 0);
2138 poll_wait(file
, &event
->waitq
, wait
);
2143 static void perf_event_reset(struct perf_event
*event
)
2145 (void)perf_event_read(event
);
2146 atomic64_set(&event
->count
, 0);
2147 perf_event_update_userpage(event
);
2151 * Holding the top-level event's child_mutex means that any
2152 * descendant process that has inherited this event will block
2153 * in sync_child_event if it goes to exit, thus satisfying the
2154 * task existence requirements of perf_event_enable/disable.
2156 static void perf_event_for_each_child(struct perf_event
*event
,
2157 void (*func
)(struct perf_event
*))
2159 struct perf_event
*child
;
2161 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2162 mutex_lock(&event
->child_mutex
);
2164 list_for_each_entry(child
, &event
->child_list
, child_list
)
2166 mutex_unlock(&event
->child_mutex
);
2169 static void perf_event_for_each(struct perf_event
*event
,
2170 void (*func
)(struct perf_event
*))
2172 struct perf_event_context
*ctx
= event
->ctx
;
2173 struct perf_event
*sibling
;
2175 WARN_ON_ONCE(ctx
->parent_ctx
);
2176 mutex_lock(&ctx
->mutex
);
2177 event
= event
->group_leader
;
2179 perf_event_for_each_child(event
, func
);
2181 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
2182 perf_event_for_each_child(event
, func
);
2183 mutex_unlock(&ctx
->mutex
);
2186 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
2188 struct perf_event_context
*ctx
= event
->ctx
;
2193 if (!event
->attr
.sample_period
)
2196 size
= copy_from_user(&value
, arg
, sizeof(value
));
2197 if (size
!= sizeof(value
))
2203 raw_spin_lock_irq(&ctx
->lock
);
2204 if (event
->attr
.freq
) {
2205 if (value
> sysctl_perf_event_sample_rate
) {
2210 event
->attr
.sample_freq
= value
;
2212 event
->attr
.sample_period
= value
;
2213 event
->hw
.sample_period
= value
;
2216 raw_spin_unlock_irq(&ctx
->lock
);
2221 static const struct file_operations perf_fops
;
2223 static struct perf_event
*perf_fget_light(int fd
, int *fput_needed
)
2227 file
= fget_light(fd
, fput_needed
);
2229 return ERR_PTR(-EBADF
);
2231 if (file
->f_op
!= &perf_fops
) {
2232 fput_light(file
, *fput_needed
);
2234 return ERR_PTR(-EBADF
);
2237 return file
->private_data
;
2240 static int perf_event_set_output(struct perf_event
*event
,
2241 struct perf_event
*output_event
);
2242 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
2244 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2246 struct perf_event
*event
= file
->private_data
;
2247 void (*func
)(struct perf_event
*);
2251 case PERF_EVENT_IOC_ENABLE
:
2252 func
= perf_event_enable
;
2254 case PERF_EVENT_IOC_DISABLE
:
2255 func
= perf_event_disable
;
2257 case PERF_EVENT_IOC_RESET
:
2258 func
= perf_event_reset
;
2261 case PERF_EVENT_IOC_REFRESH
:
2262 return perf_event_refresh(event
, arg
);
2264 case PERF_EVENT_IOC_PERIOD
:
2265 return perf_event_period(event
, (u64 __user
*)arg
);
2267 case PERF_EVENT_IOC_SET_OUTPUT
:
2269 struct perf_event
*output_event
= NULL
;
2270 int fput_needed
= 0;
2274 output_event
= perf_fget_light(arg
, &fput_needed
);
2275 if (IS_ERR(output_event
))
2276 return PTR_ERR(output_event
);
2279 ret
= perf_event_set_output(event
, output_event
);
2281 fput_light(output_event
->filp
, fput_needed
);
2286 case PERF_EVENT_IOC_SET_FILTER
:
2287 return perf_event_set_filter(event
, (void __user
*)arg
);
2293 if (flags
& PERF_IOC_FLAG_GROUP
)
2294 perf_event_for_each(event
, func
);
2296 perf_event_for_each_child(event
, func
);
2301 int perf_event_task_enable(void)
2303 struct perf_event
*event
;
2305 mutex_lock(¤t
->perf_event_mutex
);
2306 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2307 perf_event_for_each_child(event
, perf_event_enable
);
2308 mutex_unlock(¤t
->perf_event_mutex
);
2313 int perf_event_task_disable(void)
2315 struct perf_event
*event
;
2317 mutex_lock(¤t
->perf_event_mutex
);
2318 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2319 perf_event_for_each_child(event
, perf_event_disable
);
2320 mutex_unlock(¤t
->perf_event_mutex
);
2325 #ifndef PERF_EVENT_INDEX_OFFSET
2326 # define PERF_EVENT_INDEX_OFFSET 0
2329 static int perf_event_index(struct perf_event
*event
)
2331 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2334 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2338 * Callers need to ensure there can be no nesting of this function, otherwise
2339 * the seqlock logic goes bad. We can not serialize this because the arch
2340 * code calls this from NMI context.
2342 void perf_event_update_userpage(struct perf_event
*event
)
2344 struct perf_event_mmap_page
*userpg
;
2345 struct perf_mmap_data
*data
;
2348 data
= rcu_dereference(event
->data
);
2352 userpg
= data
->user_page
;
2355 * Disable preemption so as to not let the corresponding user-space
2356 * spin too long if we get preempted.
2361 userpg
->index
= perf_event_index(event
);
2362 userpg
->offset
= atomic64_read(&event
->count
);
2363 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2364 userpg
->offset
-= atomic64_read(&event
->hw
.prev_count
);
2366 userpg
->time_enabled
= event
->total_time_enabled
+
2367 atomic64_read(&event
->child_total_time_enabled
);
2369 userpg
->time_running
= event
->total_time_running
+
2370 atomic64_read(&event
->child_total_time_running
);
2379 #ifndef CONFIG_PERF_USE_VMALLOC
2382 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2385 static struct page
*
2386 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2388 if (pgoff
> data
->nr_pages
)
2392 return virt_to_page(data
->user_page
);
2394 return virt_to_page(data
->data_pages
[pgoff
- 1]);
2397 static void *perf_mmap_alloc_page(int cpu
)
2402 node
= (cpu
== -1) ? cpu
: cpu_to_node(cpu
);
2403 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
2407 return page_address(page
);
2410 static struct perf_mmap_data
*
2411 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2413 struct perf_mmap_data
*data
;
2417 size
= sizeof(struct perf_mmap_data
);
2418 size
+= nr_pages
* sizeof(void *);
2420 data
= kzalloc(size
, GFP_KERNEL
);
2424 data
->user_page
= perf_mmap_alloc_page(event
->cpu
);
2425 if (!data
->user_page
)
2426 goto fail_user_page
;
2428 for (i
= 0; i
< nr_pages
; i
++) {
2429 data
->data_pages
[i
] = perf_mmap_alloc_page(event
->cpu
);
2430 if (!data
->data_pages
[i
])
2431 goto fail_data_pages
;
2434 data
->nr_pages
= nr_pages
;
2439 for (i
--; i
>= 0; i
--)
2440 free_page((unsigned long)data
->data_pages
[i
]);
2442 free_page((unsigned long)data
->user_page
);
2451 static void perf_mmap_free_page(unsigned long addr
)
2453 struct page
*page
= virt_to_page((void *)addr
);
2455 page
->mapping
= NULL
;
2459 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2463 perf_mmap_free_page((unsigned long)data
->user_page
);
2464 for (i
= 0; i
< data
->nr_pages
; i
++)
2465 perf_mmap_free_page((unsigned long)data
->data_pages
[i
]);
2469 static inline int page_order(struct perf_mmap_data
*data
)
2477 * Back perf_mmap() with vmalloc memory.
2479 * Required for architectures that have d-cache aliasing issues.
2482 static inline int page_order(struct perf_mmap_data
*data
)
2484 return data
->page_order
;
2487 static struct page
*
2488 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2490 if (pgoff
> (1UL << page_order(data
)))
2493 return vmalloc_to_page((void *)data
->user_page
+ pgoff
* PAGE_SIZE
);
2496 static void perf_mmap_unmark_page(void *addr
)
2498 struct page
*page
= vmalloc_to_page(addr
);
2500 page
->mapping
= NULL
;
2503 static void perf_mmap_data_free_work(struct work_struct
*work
)
2505 struct perf_mmap_data
*data
;
2509 data
= container_of(work
, struct perf_mmap_data
, work
);
2510 nr
= 1 << page_order(data
);
2512 base
= data
->user_page
;
2513 for (i
= 0; i
< nr
+ 1; i
++)
2514 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2520 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2522 schedule_work(&data
->work
);
2525 static struct perf_mmap_data
*
2526 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2528 struct perf_mmap_data
*data
;
2532 size
= sizeof(struct perf_mmap_data
);
2533 size
+= sizeof(void *);
2535 data
= kzalloc(size
, GFP_KERNEL
);
2539 INIT_WORK(&data
->work
, perf_mmap_data_free_work
);
2541 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
2545 data
->user_page
= all_buf
;
2546 data
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
2547 data
->page_order
= ilog2(nr_pages
);
2561 static unsigned long perf_data_size(struct perf_mmap_data
*data
)
2563 return data
->nr_pages
<< (PAGE_SHIFT
+ page_order(data
));
2566 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2568 struct perf_event
*event
= vma
->vm_file
->private_data
;
2569 struct perf_mmap_data
*data
;
2570 int ret
= VM_FAULT_SIGBUS
;
2572 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2573 if (vmf
->pgoff
== 0)
2579 data
= rcu_dereference(event
->data
);
2583 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
2586 vmf
->page
= perf_mmap_to_page(data
, vmf
->pgoff
);
2590 get_page(vmf
->page
);
2591 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2592 vmf
->page
->index
= vmf
->pgoff
;
2602 perf_mmap_data_init(struct perf_event
*event
, struct perf_mmap_data
*data
)
2604 long max_size
= perf_data_size(data
);
2606 if (event
->attr
.watermark
) {
2607 data
->watermark
= min_t(long, max_size
,
2608 event
->attr
.wakeup_watermark
);
2611 if (!data
->watermark
)
2612 data
->watermark
= max_size
/ 2;
2614 atomic_set(&data
->refcount
, 1);
2615 rcu_assign_pointer(event
->data
, data
);
2618 static void perf_mmap_data_free_rcu(struct rcu_head
*rcu_head
)
2620 struct perf_mmap_data
*data
;
2622 data
= container_of(rcu_head
, struct perf_mmap_data
, rcu_head
);
2623 perf_mmap_data_free(data
);
2626 static struct perf_mmap_data
*perf_mmap_data_get(struct perf_event
*event
)
2628 struct perf_mmap_data
*data
;
2631 data
= rcu_dereference(event
->data
);
2633 if (!atomic_inc_not_zero(&data
->refcount
))
2641 static void perf_mmap_data_put(struct perf_mmap_data
*data
)
2643 if (!atomic_dec_and_test(&data
->refcount
))
2646 call_rcu(&data
->rcu_head
, perf_mmap_data_free_rcu
);
2649 static void perf_mmap_open(struct vm_area_struct
*vma
)
2651 struct perf_event
*event
= vma
->vm_file
->private_data
;
2653 atomic_inc(&event
->mmap_count
);
2656 static void perf_mmap_close(struct vm_area_struct
*vma
)
2658 struct perf_event
*event
= vma
->vm_file
->private_data
;
2660 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
2661 unsigned long size
= perf_data_size(event
->data
);
2662 struct user_struct
*user
= event
->mmap_user
;
2663 struct perf_mmap_data
*data
= event
->data
;
2665 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
2666 vma
->vm_mm
->locked_vm
-= event
->mmap_locked
;
2667 rcu_assign_pointer(event
->data
, NULL
);
2668 mutex_unlock(&event
->mmap_mutex
);
2670 perf_mmap_data_put(data
);
2675 static const struct vm_operations_struct perf_mmap_vmops
= {
2676 .open
= perf_mmap_open
,
2677 .close
= perf_mmap_close
,
2678 .fault
= perf_mmap_fault
,
2679 .page_mkwrite
= perf_mmap_fault
,
2682 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2684 struct perf_event
*event
= file
->private_data
;
2685 unsigned long user_locked
, user_lock_limit
;
2686 struct user_struct
*user
= current_user();
2687 unsigned long locked
, lock_limit
;
2688 struct perf_mmap_data
*data
;
2689 unsigned long vma_size
;
2690 unsigned long nr_pages
;
2691 long user_extra
, extra
;
2695 * Don't allow mmap() of inherited per-task counters. This would
2696 * create a performance issue due to all children writing to the
2699 if (event
->cpu
== -1 && event
->attr
.inherit
)
2702 if (!(vma
->vm_flags
& VM_SHARED
))
2705 vma_size
= vma
->vm_end
- vma
->vm_start
;
2706 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
2709 * If we have data pages ensure they're a power-of-two number, so we
2710 * can do bitmasks instead of modulo.
2712 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
2715 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
2718 if (vma
->vm_pgoff
!= 0)
2721 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2722 mutex_lock(&event
->mmap_mutex
);
2724 if (event
->data
->nr_pages
== nr_pages
)
2725 atomic_inc(&event
->data
->refcount
);
2731 user_extra
= nr_pages
+ 1;
2732 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
2735 * Increase the limit linearly with more CPUs:
2737 user_lock_limit
*= num_online_cpus();
2739 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
2742 if (user_locked
> user_lock_limit
)
2743 extra
= user_locked
- user_lock_limit
;
2745 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
2746 lock_limit
>>= PAGE_SHIFT
;
2747 locked
= vma
->vm_mm
->locked_vm
+ extra
;
2749 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
2750 !capable(CAP_IPC_LOCK
)) {
2755 WARN_ON(event
->data
);
2757 data
= perf_mmap_data_alloc(event
, nr_pages
);
2763 perf_mmap_data_init(event
, data
);
2764 if (vma
->vm_flags
& VM_WRITE
)
2765 event
->data
->writable
= 1;
2767 atomic_long_add(user_extra
, &user
->locked_vm
);
2768 event
->mmap_locked
= extra
;
2769 event
->mmap_user
= get_current_user();
2770 vma
->vm_mm
->locked_vm
+= event
->mmap_locked
;
2774 atomic_inc(&event
->mmap_count
);
2775 mutex_unlock(&event
->mmap_mutex
);
2777 vma
->vm_flags
|= VM_RESERVED
;
2778 vma
->vm_ops
= &perf_mmap_vmops
;
2783 static int perf_fasync(int fd
, struct file
*filp
, int on
)
2785 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2786 struct perf_event
*event
= filp
->private_data
;
2789 mutex_lock(&inode
->i_mutex
);
2790 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
2791 mutex_unlock(&inode
->i_mutex
);
2799 static const struct file_operations perf_fops
= {
2800 .llseek
= no_llseek
,
2801 .release
= perf_release
,
2804 .unlocked_ioctl
= perf_ioctl
,
2805 .compat_ioctl
= perf_ioctl
,
2807 .fasync
= perf_fasync
,
2813 * If there's data, ensure we set the poll() state and publish everything
2814 * to user-space before waking everybody up.
2817 void perf_event_wakeup(struct perf_event
*event
)
2819 wake_up_all(&event
->waitq
);
2821 if (event
->pending_kill
) {
2822 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
2823 event
->pending_kill
= 0;
2830 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2832 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2833 * single linked list and use cmpxchg() to add entries lockless.
2836 static void perf_pending_event(struct perf_pending_entry
*entry
)
2838 struct perf_event
*event
= container_of(entry
,
2839 struct perf_event
, pending
);
2841 if (event
->pending_disable
) {
2842 event
->pending_disable
= 0;
2843 __perf_event_disable(event
);
2846 if (event
->pending_wakeup
) {
2847 event
->pending_wakeup
= 0;
2848 perf_event_wakeup(event
);
2852 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2854 static DEFINE_PER_CPU(struct perf_pending_entry
*, perf_pending_head
) = {
2858 static void perf_pending_queue(struct perf_pending_entry
*entry
,
2859 void (*func
)(struct perf_pending_entry
*))
2861 struct perf_pending_entry
**head
;
2863 if (cmpxchg(&entry
->next
, NULL
, PENDING_TAIL
) != NULL
)
2868 head
= &get_cpu_var(perf_pending_head
);
2871 entry
->next
= *head
;
2872 } while (cmpxchg(head
, entry
->next
, entry
) != entry
->next
);
2874 set_perf_event_pending();
2876 put_cpu_var(perf_pending_head
);
2879 static int __perf_pending_run(void)
2881 struct perf_pending_entry
*list
;
2884 list
= xchg(&__get_cpu_var(perf_pending_head
), PENDING_TAIL
);
2885 while (list
!= PENDING_TAIL
) {
2886 void (*func
)(struct perf_pending_entry
*);
2887 struct perf_pending_entry
*entry
= list
;
2894 * Ensure we observe the unqueue before we issue the wakeup,
2895 * so that we won't be waiting forever.
2896 * -- see perf_not_pending().
2907 static inline int perf_not_pending(struct perf_event
*event
)
2910 * If we flush on whatever cpu we run, there is a chance we don't
2914 __perf_pending_run();
2918 * Ensure we see the proper queue state before going to sleep
2919 * so that we do not miss the wakeup. -- see perf_pending_handle()
2922 return event
->pending
.next
== NULL
;
2925 static void perf_pending_sync(struct perf_event
*event
)
2927 wait_event(event
->waitq
, perf_not_pending(event
));
2930 void perf_event_do_pending(void)
2932 __perf_pending_run();
2936 * Callchain support -- arch specific
2939 __weak
struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2945 void perf_arch_fetch_caller_regs(struct pt_regs
*regs
, unsigned long ip
, int skip
)
2951 * We assume there is only KVM supporting the callbacks.
2952 * Later on, we might change it to a list if there is
2953 * another virtualization implementation supporting the callbacks.
2955 struct perf_guest_info_callbacks
*perf_guest_cbs
;
2957 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
2959 perf_guest_cbs
= cbs
;
2962 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
2964 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
2966 perf_guest_cbs
= NULL
;
2969 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
2974 static bool perf_output_space(struct perf_mmap_data
*data
, unsigned long tail
,
2975 unsigned long offset
, unsigned long head
)
2979 if (!data
->writable
)
2982 mask
= perf_data_size(data
) - 1;
2984 offset
= (offset
- tail
) & mask
;
2985 head
= (head
- tail
) & mask
;
2987 if ((int)(head
- offset
) < 0)
2993 static void perf_output_wakeup(struct perf_output_handle
*handle
)
2995 atomic_set(&handle
->data
->poll
, POLL_IN
);
2998 handle
->event
->pending_wakeup
= 1;
2999 perf_pending_queue(&handle
->event
->pending
,
3000 perf_pending_event
);
3002 perf_event_wakeup(handle
->event
);
3006 * We need to ensure a later event_id doesn't publish a head when a former
3007 * event isn't done writing. However since we need to deal with NMIs we
3008 * cannot fully serialize things.
3010 * We only publish the head (and generate a wakeup) when the outer-most
3013 static void perf_output_get_handle(struct perf_output_handle
*handle
)
3015 struct perf_mmap_data
*data
= handle
->data
;
3018 local_inc(&data
->nest
);
3019 handle
->wakeup
= local_read(&data
->wakeup
);
3022 static void perf_output_put_handle(struct perf_output_handle
*handle
)
3024 struct perf_mmap_data
*data
= handle
->data
;
3028 head
= local_read(&data
->head
);
3031 * IRQ/NMI can happen here, which means we can miss a head update.
3034 if (!local_dec_and_test(&data
->nest
))
3038 * Publish the known good head. Rely on the full barrier implied
3039 * by atomic_dec_and_test() order the data->head read and this
3042 data
->user_page
->data_head
= head
;
3045 * Now check if we missed an update, rely on the (compiler)
3046 * barrier in atomic_dec_and_test() to re-read data->head.
3048 if (unlikely(head
!= local_read(&data
->head
))) {
3049 local_inc(&data
->nest
);
3053 if (handle
->wakeup
!= local_read(&data
->wakeup
))
3054 perf_output_wakeup(handle
);
3060 __always_inline
void perf_output_copy(struct perf_output_handle
*handle
,
3061 const void *buf
, unsigned int len
)
3064 unsigned long size
= min_t(unsigned long, handle
->size
, len
);
3066 memcpy(handle
->addr
, buf
, size
);
3069 handle
->addr
+= size
;
3071 handle
->size
-= size
;
3072 if (!handle
->size
) {
3073 struct perf_mmap_data
*data
= handle
->data
;
3076 handle
->page
&= data
->nr_pages
- 1;
3077 handle
->addr
= data
->data_pages
[handle
->page
];
3078 handle
->size
= PAGE_SIZE
<< page_order(data
);
3083 int perf_output_begin(struct perf_output_handle
*handle
,
3084 struct perf_event
*event
, unsigned int size
,
3085 int nmi
, int sample
)
3087 struct perf_mmap_data
*data
;
3088 unsigned long tail
, offset
, head
;
3091 struct perf_event_header header
;
3098 * For inherited events we send all the output towards the parent.
3101 event
= event
->parent
;
3103 data
= rcu_dereference(event
->data
);
3107 handle
->data
= data
;
3108 handle
->event
= event
;
3110 handle
->sample
= sample
;
3112 if (!data
->nr_pages
)
3115 have_lost
= local_read(&data
->lost
);
3117 size
+= sizeof(lost_event
);
3119 perf_output_get_handle(handle
);
3123 * Userspace could choose to issue a mb() before updating the
3124 * tail pointer. So that all reads will be completed before the
3127 tail
= ACCESS_ONCE(data
->user_page
->data_tail
);
3129 offset
= head
= local_read(&data
->head
);
3131 if (unlikely(!perf_output_space(data
, tail
, offset
, head
)))
3133 } while (local_cmpxchg(&data
->head
, offset
, head
) != offset
);
3135 if (head
- local_read(&data
->wakeup
) > data
->watermark
)
3136 local_add(data
->watermark
, &data
->wakeup
);
3138 handle
->page
= offset
>> (PAGE_SHIFT
+ page_order(data
));
3139 handle
->page
&= data
->nr_pages
- 1;
3140 handle
->size
= offset
& ((PAGE_SIZE
<< page_order(data
)) - 1);
3141 handle
->addr
= data
->data_pages
[handle
->page
];
3142 handle
->addr
+= handle
->size
;
3143 handle
->size
= (PAGE_SIZE
<< page_order(data
)) - handle
->size
;
3146 lost_event
.header
.type
= PERF_RECORD_LOST
;
3147 lost_event
.header
.misc
= 0;
3148 lost_event
.header
.size
= sizeof(lost_event
);
3149 lost_event
.id
= event
->id
;
3150 lost_event
.lost
= local_xchg(&data
->lost
, 0);
3152 perf_output_put(handle
, lost_event
);
3158 local_inc(&data
->lost
);
3159 perf_output_put_handle(handle
);
3166 void perf_output_end(struct perf_output_handle
*handle
)
3168 struct perf_event
*event
= handle
->event
;
3169 struct perf_mmap_data
*data
= handle
->data
;
3171 int wakeup_events
= event
->attr
.wakeup_events
;
3173 if (handle
->sample
&& wakeup_events
) {
3174 int events
= local_inc_return(&data
->events
);
3175 if (events
>= wakeup_events
) {
3176 local_sub(wakeup_events
, &data
->events
);
3177 local_inc(&data
->wakeup
);
3181 perf_output_put_handle(handle
);
3185 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
3188 * only top level events have the pid namespace they were created in
3191 event
= event
->parent
;
3193 return task_tgid_nr_ns(p
, event
->ns
);
3196 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
3199 * only top level events have the pid namespace they were created in
3202 event
= event
->parent
;
3204 return task_pid_nr_ns(p
, event
->ns
);
3207 static void perf_output_read_one(struct perf_output_handle
*handle
,
3208 struct perf_event
*event
)
3210 u64 read_format
= event
->attr
.read_format
;
3214 values
[n
++] = atomic64_read(&event
->count
);
3215 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
3216 values
[n
++] = event
->total_time_enabled
+
3217 atomic64_read(&event
->child_total_time_enabled
);
3219 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
3220 values
[n
++] = event
->total_time_running
+
3221 atomic64_read(&event
->child_total_time_running
);
3223 if (read_format
& PERF_FORMAT_ID
)
3224 values
[n
++] = primary_event_id(event
);
3226 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3230 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3232 static void perf_output_read_group(struct perf_output_handle
*handle
,
3233 struct perf_event
*event
)
3235 struct perf_event
*leader
= event
->group_leader
, *sub
;
3236 u64 read_format
= event
->attr
.read_format
;
3240 values
[n
++] = 1 + leader
->nr_siblings
;
3242 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3243 values
[n
++] = leader
->total_time_enabled
;
3245 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3246 values
[n
++] = leader
->total_time_running
;
3248 if (leader
!= event
)
3249 leader
->pmu
->read(leader
);
3251 values
[n
++] = atomic64_read(&leader
->count
);
3252 if (read_format
& PERF_FORMAT_ID
)
3253 values
[n
++] = primary_event_id(leader
);
3255 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3257 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3261 sub
->pmu
->read(sub
);
3263 values
[n
++] = atomic64_read(&sub
->count
);
3264 if (read_format
& PERF_FORMAT_ID
)
3265 values
[n
++] = primary_event_id(sub
);
3267 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3271 static void perf_output_read(struct perf_output_handle
*handle
,
3272 struct perf_event
*event
)
3274 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
3275 perf_output_read_group(handle
, event
);
3277 perf_output_read_one(handle
, event
);
3280 void perf_output_sample(struct perf_output_handle
*handle
,
3281 struct perf_event_header
*header
,
3282 struct perf_sample_data
*data
,
3283 struct perf_event
*event
)
3285 u64 sample_type
= data
->type
;
3287 perf_output_put(handle
, *header
);
3289 if (sample_type
& PERF_SAMPLE_IP
)
3290 perf_output_put(handle
, data
->ip
);
3292 if (sample_type
& PERF_SAMPLE_TID
)
3293 perf_output_put(handle
, data
->tid_entry
);
3295 if (sample_type
& PERF_SAMPLE_TIME
)
3296 perf_output_put(handle
, data
->time
);
3298 if (sample_type
& PERF_SAMPLE_ADDR
)
3299 perf_output_put(handle
, data
->addr
);
3301 if (sample_type
& PERF_SAMPLE_ID
)
3302 perf_output_put(handle
, data
->id
);
3304 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3305 perf_output_put(handle
, data
->stream_id
);
3307 if (sample_type
& PERF_SAMPLE_CPU
)
3308 perf_output_put(handle
, data
->cpu_entry
);
3310 if (sample_type
& PERF_SAMPLE_PERIOD
)
3311 perf_output_put(handle
, data
->period
);
3313 if (sample_type
& PERF_SAMPLE_READ
)
3314 perf_output_read(handle
, event
);
3316 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3317 if (data
->callchain
) {
3320 if (data
->callchain
)
3321 size
+= data
->callchain
->nr
;
3323 size
*= sizeof(u64
);
3325 perf_output_copy(handle
, data
->callchain
, size
);
3328 perf_output_put(handle
, nr
);
3332 if (sample_type
& PERF_SAMPLE_RAW
) {
3334 perf_output_put(handle
, data
->raw
->size
);
3335 perf_output_copy(handle
, data
->raw
->data
,
3342 .size
= sizeof(u32
),
3345 perf_output_put(handle
, raw
);
3350 void perf_prepare_sample(struct perf_event_header
*header
,
3351 struct perf_sample_data
*data
,
3352 struct perf_event
*event
,
3353 struct pt_regs
*regs
)
3355 u64 sample_type
= event
->attr
.sample_type
;
3357 data
->type
= sample_type
;
3359 header
->type
= PERF_RECORD_SAMPLE
;
3360 header
->size
= sizeof(*header
);
3363 header
->misc
|= perf_misc_flags(regs
);
3365 if (sample_type
& PERF_SAMPLE_IP
) {
3366 data
->ip
= perf_instruction_pointer(regs
);
3368 header
->size
+= sizeof(data
->ip
);
3371 if (sample_type
& PERF_SAMPLE_TID
) {
3372 /* namespace issues */
3373 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3374 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3376 header
->size
+= sizeof(data
->tid_entry
);
3379 if (sample_type
& PERF_SAMPLE_TIME
) {
3380 data
->time
= perf_clock();
3382 header
->size
+= sizeof(data
->time
);
3385 if (sample_type
& PERF_SAMPLE_ADDR
)
3386 header
->size
+= sizeof(data
->addr
);
3388 if (sample_type
& PERF_SAMPLE_ID
) {
3389 data
->id
= primary_event_id(event
);
3391 header
->size
+= sizeof(data
->id
);
3394 if (sample_type
& PERF_SAMPLE_STREAM_ID
) {
3395 data
->stream_id
= event
->id
;
3397 header
->size
+= sizeof(data
->stream_id
);
3400 if (sample_type
& PERF_SAMPLE_CPU
) {
3401 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3402 data
->cpu_entry
.reserved
= 0;
3404 header
->size
+= sizeof(data
->cpu_entry
);
3407 if (sample_type
& PERF_SAMPLE_PERIOD
)
3408 header
->size
+= sizeof(data
->period
);
3410 if (sample_type
& PERF_SAMPLE_READ
)
3411 header
->size
+= perf_event_read_size(event
);
3413 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3416 data
->callchain
= perf_callchain(regs
);
3418 if (data
->callchain
)
3419 size
+= data
->callchain
->nr
;
3421 header
->size
+= size
* sizeof(u64
);
3424 if (sample_type
& PERF_SAMPLE_RAW
) {
3425 int size
= sizeof(u32
);
3428 size
+= data
->raw
->size
;
3430 size
+= sizeof(u32
);
3432 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3433 header
->size
+= size
;
3437 static void perf_event_output(struct perf_event
*event
, int nmi
,
3438 struct perf_sample_data
*data
,
3439 struct pt_regs
*regs
)
3441 struct perf_output_handle handle
;
3442 struct perf_event_header header
;
3444 perf_prepare_sample(&header
, data
, event
, regs
);
3446 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3449 perf_output_sample(&handle
, &header
, data
, event
);
3451 perf_output_end(&handle
);
3458 struct perf_read_event
{
3459 struct perf_event_header header
;
3466 perf_event_read_event(struct perf_event
*event
,
3467 struct task_struct
*task
)
3469 struct perf_output_handle handle
;
3470 struct perf_read_event read_event
= {
3472 .type
= PERF_RECORD_READ
,
3474 .size
= sizeof(read_event
) + perf_event_read_size(event
),
3476 .pid
= perf_event_pid(event
, task
),
3477 .tid
= perf_event_tid(event
, task
),
3481 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3485 perf_output_put(&handle
, read_event
);
3486 perf_output_read(&handle
, event
);
3488 perf_output_end(&handle
);
3492 * task tracking -- fork/exit
3494 * enabled by: attr.comm | attr.mmap | attr.task
3497 struct perf_task_event
{
3498 struct task_struct
*task
;
3499 struct perf_event_context
*task_ctx
;
3502 struct perf_event_header header
;
3512 static void perf_event_task_output(struct perf_event
*event
,
3513 struct perf_task_event
*task_event
)
3515 struct perf_output_handle handle
;
3516 struct task_struct
*task
= task_event
->task
;
3519 size
= task_event
->event_id
.header
.size
;
3520 ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3525 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3526 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3528 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3529 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3531 perf_output_put(&handle
, task_event
->event_id
);
3533 perf_output_end(&handle
);
3536 static int perf_event_task_match(struct perf_event
*event
)
3538 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3541 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3544 if (event
->attr
.comm
|| event
->attr
.mmap
|| event
->attr
.task
)
3550 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3551 struct perf_task_event
*task_event
)
3553 struct perf_event
*event
;
3555 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3556 if (perf_event_task_match(event
))
3557 perf_event_task_output(event
, task_event
);
3561 static void perf_event_task_event(struct perf_task_event
*task_event
)
3563 struct perf_cpu_context
*cpuctx
;
3564 struct perf_event_context
*ctx
= task_event
->task_ctx
;
3567 cpuctx
= &get_cpu_var(perf_cpu_context
);
3568 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3570 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3572 perf_event_task_ctx(ctx
, task_event
);
3573 put_cpu_var(perf_cpu_context
);
3577 static void perf_event_task(struct task_struct
*task
,
3578 struct perf_event_context
*task_ctx
,
3581 struct perf_task_event task_event
;
3583 if (!atomic_read(&nr_comm_events
) &&
3584 !atomic_read(&nr_mmap_events
) &&
3585 !atomic_read(&nr_task_events
))
3588 task_event
= (struct perf_task_event
){
3590 .task_ctx
= task_ctx
,
3593 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3595 .size
= sizeof(task_event
.event_id
),
3601 .time
= perf_clock(),
3605 perf_event_task_event(&task_event
);
3608 void perf_event_fork(struct task_struct
*task
)
3610 perf_event_task(task
, NULL
, 1);
3617 struct perf_comm_event
{
3618 struct task_struct
*task
;
3623 struct perf_event_header header
;
3630 static void perf_event_comm_output(struct perf_event
*event
,
3631 struct perf_comm_event
*comm_event
)
3633 struct perf_output_handle handle
;
3634 int size
= comm_event
->event_id
.header
.size
;
3635 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3640 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
3641 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
3643 perf_output_put(&handle
, comm_event
->event_id
);
3644 perf_output_copy(&handle
, comm_event
->comm
,
3645 comm_event
->comm_size
);
3646 perf_output_end(&handle
);
3649 static int perf_event_comm_match(struct perf_event
*event
)
3651 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3654 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3657 if (event
->attr
.comm
)
3663 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
3664 struct perf_comm_event
*comm_event
)
3666 struct perf_event
*event
;
3668 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3669 if (perf_event_comm_match(event
))
3670 perf_event_comm_output(event
, comm_event
);
3674 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
3676 struct perf_cpu_context
*cpuctx
;
3677 struct perf_event_context
*ctx
;
3679 char comm
[TASK_COMM_LEN
];
3681 memset(comm
, 0, sizeof(comm
));
3682 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3683 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3685 comm_event
->comm
= comm
;
3686 comm_event
->comm_size
= size
;
3688 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
3691 cpuctx
= &get_cpu_var(perf_cpu_context
);
3692 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
3693 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3695 perf_event_comm_ctx(ctx
, comm_event
);
3696 put_cpu_var(perf_cpu_context
);
3700 void perf_event_comm(struct task_struct
*task
)
3702 struct perf_comm_event comm_event
;
3704 if (task
->perf_event_ctxp
)
3705 perf_event_enable_on_exec(task
);
3707 if (!atomic_read(&nr_comm_events
))
3710 comm_event
= (struct perf_comm_event
){
3716 .type
= PERF_RECORD_COMM
,
3725 perf_event_comm_event(&comm_event
);
3732 struct perf_mmap_event
{
3733 struct vm_area_struct
*vma
;
3735 const char *file_name
;
3739 struct perf_event_header header
;
3749 static void perf_event_mmap_output(struct perf_event
*event
,
3750 struct perf_mmap_event
*mmap_event
)
3752 struct perf_output_handle handle
;
3753 int size
= mmap_event
->event_id
.header
.size
;
3754 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3759 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
3760 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
3762 perf_output_put(&handle
, mmap_event
->event_id
);
3763 perf_output_copy(&handle
, mmap_event
->file_name
,
3764 mmap_event
->file_size
);
3765 perf_output_end(&handle
);
3768 static int perf_event_mmap_match(struct perf_event
*event
,
3769 struct perf_mmap_event
*mmap_event
)
3771 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3774 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3777 if (event
->attr
.mmap
)
3783 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
3784 struct perf_mmap_event
*mmap_event
)
3786 struct perf_event
*event
;
3788 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3789 if (perf_event_mmap_match(event
, mmap_event
))
3790 perf_event_mmap_output(event
, mmap_event
);
3794 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
3796 struct perf_cpu_context
*cpuctx
;
3797 struct perf_event_context
*ctx
;
3798 struct vm_area_struct
*vma
= mmap_event
->vma
;
3799 struct file
*file
= vma
->vm_file
;
3805 memset(tmp
, 0, sizeof(tmp
));
3809 * d_path works from the end of the buffer backwards, so we
3810 * need to add enough zero bytes after the string to handle
3811 * the 64bit alignment we do later.
3813 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
3815 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
3818 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
3820 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
3824 if (arch_vma_name(mmap_event
->vma
)) {
3825 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
3831 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
3835 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
3840 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
3842 mmap_event
->file_name
= name
;
3843 mmap_event
->file_size
= size
;
3845 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
3848 cpuctx
= &get_cpu_var(perf_cpu_context
);
3849 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
);
3850 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3852 perf_event_mmap_ctx(ctx
, mmap_event
);
3853 put_cpu_var(perf_cpu_context
);
3859 void __perf_event_mmap(struct vm_area_struct
*vma
)
3861 struct perf_mmap_event mmap_event
;
3863 if (!atomic_read(&nr_mmap_events
))
3866 mmap_event
= (struct perf_mmap_event
){
3872 .type
= PERF_RECORD_MMAP
,
3873 .misc
= PERF_RECORD_MISC_USER
,
3878 .start
= vma
->vm_start
,
3879 .len
= vma
->vm_end
- vma
->vm_start
,
3880 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
3884 perf_event_mmap_event(&mmap_event
);
3888 * IRQ throttle logging
3891 static void perf_log_throttle(struct perf_event
*event
, int enable
)
3893 struct perf_output_handle handle
;
3897 struct perf_event_header header
;
3901 } throttle_event
= {
3903 .type
= PERF_RECORD_THROTTLE
,
3905 .size
= sizeof(throttle_event
),
3907 .time
= perf_clock(),
3908 .id
= primary_event_id(event
),
3909 .stream_id
= event
->id
,
3913 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
3915 ret
= perf_output_begin(&handle
, event
, sizeof(throttle_event
), 1, 0);
3919 perf_output_put(&handle
, throttle_event
);
3920 perf_output_end(&handle
);
3924 * Generic event overflow handling, sampling.
3927 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
3928 int throttle
, struct perf_sample_data
*data
,
3929 struct pt_regs
*regs
)
3931 int events
= atomic_read(&event
->event_limit
);
3932 struct hw_perf_event
*hwc
= &event
->hw
;
3935 throttle
= (throttle
&& event
->pmu
->unthrottle
!= NULL
);
3940 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
3942 if (HZ
* hwc
->interrupts
>
3943 (u64
)sysctl_perf_event_sample_rate
) {
3944 hwc
->interrupts
= MAX_INTERRUPTS
;
3945 perf_log_throttle(event
, 0);
3950 * Keep re-disabling events even though on the previous
3951 * pass we disabled it - just in case we raced with a
3952 * sched-in and the event got enabled again:
3958 if (event
->attr
.freq
) {
3959 u64 now
= perf_clock();
3960 s64 delta
= now
- hwc
->freq_time_stamp
;
3962 hwc
->freq_time_stamp
= now
;
3964 if (delta
> 0 && delta
< 2*TICK_NSEC
)
3965 perf_adjust_period(event
, delta
, hwc
->last_period
);
3969 * XXX event_limit might not quite work as expected on inherited
3973 event
->pending_kill
= POLL_IN
;
3974 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
3976 event
->pending_kill
= POLL_HUP
;
3978 event
->pending_disable
= 1;
3979 perf_pending_queue(&event
->pending
,
3980 perf_pending_event
);
3982 perf_event_disable(event
);
3985 if (event
->overflow_handler
)
3986 event
->overflow_handler(event
, nmi
, data
, regs
);
3988 perf_event_output(event
, nmi
, data
, regs
);
3993 int perf_event_overflow(struct perf_event
*event
, int nmi
,
3994 struct perf_sample_data
*data
,
3995 struct pt_regs
*regs
)
3997 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
4001 * Generic software event infrastructure
4005 * We directly increment event->count and keep a second value in
4006 * event->hw.period_left to count intervals. This period event
4007 * is kept in the range [-sample_period, 0] so that we can use the
4011 static u64
perf_swevent_set_period(struct perf_event
*event
)
4013 struct hw_perf_event
*hwc
= &event
->hw
;
4014 u64 period
= hwc
->last_period
;
4018 hwc
->last_period
= hwc
->sample_period
;
4021 old
= val
= atomic64_read(&hwc
->period_left
);
4025 nr
= div64_u64(period
+ val
, period
);
4026 offset
= nr
* period
;
4028 if (atomic64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
4034 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
4035 int nmi
, struct perf_sample_data
*data
,
4036 struct pt_regs
*regs
)
4038 struct hw_perf_event
*hwc
= &event
->hw
;
4041 data
->period
= event
->hw
.last_period
;
4043 overflow
= perf_swevent_set_period(event
);
4045 if (hwc
->interrupts
== MAX_INTERRUPTS
)
4048 for (; overflow
; overflow
--) {
4049 if (__perf_event_overflow(event
, nmi
, throttle
,
4052 * We inhibit the overflow from happening when
4053 * hwc->interrupts == MAX_INTERRUPTS.
4061 static void perf_swevent_add(struct perf_event
*event
, u64 nr
,
4062 int nmi
, struct perf_sample_data
*data
,
4063 struct pt_regs
*regs
)
4065 struct hw_perf_event
*hwc
= &event
->hw
;
4067 atomic64_add(nr
, &event
->count
);
4072 if (!hwc
->sample_period
)
4075 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
4076 return perf_swevent_overflow(event
, 1, nmi
, data
, regs
);
4078 if (atomic64_add_negative(nr
, &hwc
->period_left
))
4081 perf_swevent_overflow(event
, 0, nmi
, data
, regs
);
4084 static int perf_exclude_event(struct perf_event
*event
,
4085 struct pt_regs
*regs
)
4088 if (event
->attr
.exclude_user
&& user_mode(regs
))
4091 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
4098 static int perf_swevent_match(struct perf_event
*event
,
4099 enum perf_type_id type
,
4101 struct perf_sample_data
*data
,
4102 struct pt_regs
*regs
)
4104 if (event
->attr
.type
!= type
)
4107 if (event
->attr
.config
!= event_id
)
4110 if (perf_exclude_event(event
, regs
))
4116 static inline u64
swevent_hash(u64 type
, u32 event_id
)
4118 u64 val
= event_id
| (type
<< 32);
4120 return hash_64(val
, SWEVENT_HLIST_BITS
);
4123 static inline struct hlist_head
*
4124 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
4126 u64 hash
= swevent_hash(type
, event_id
);
4128 return &hlist
->heads
[hash
];
4131 /* For the read side: events when they trigger */
4132 static inline struct hlist_head
*
4133 find_swevent_head_rcu(struct perf_cpu_context
*ctx
, u64 type
, u32 event_id
)
4135 struct swevent_hlist
*hlist
;
4137 hlist
= rcu_dereference(ctx
->swevent_hlist
);
4141 return __find_swevent_head(hlist
, type
, event_id
);
4144 /* For the event head insertion and removal in the hlist */
4145 static inline struct hlist_head
*
4146 find_swevent_head(struct perf_cpu_context
*ctx
, struct perf_event
*event
)
4148 struct swevent_hlist
*hlist
;
4149 u32 event_id
= event
->attr
.config
;
4150 u64 type
= event
->attr
.type
;
4153 * Event scheduling is always serialized against hlist allocation
4154 * and release. Which makes the protected version suitable here.
4155 * The context lock guarantees that.
4157 hlist
= rcu_dereference_protected(ctx
->swevent_hlist
,
4158 lockdep_is_held(&event
->ctx
->lock
));
4162 return __find_swevent_head(hlist
, type
, event_id
);
4165 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
4167 struct perf_sample_data
*data
,
4168 struct pt_regs
*regs
)
4170 struct perf_cpu_context
*cpuctx
;
4171 struct perf_event
*event
;
4172 struct hlist_node
*node
;
4173 struct hlist_head
*head
;
4175 cpuctx
= &__get_cpu_var(perf_cpu_context
);
4179 head
= find_swevent_head_rcu(cpuctx
, type
, event_id
);
4184 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4185 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
4186 perf_swevent_add(event
, nr
, nmi
, data
, regs
);
4192 int perf_swevent_get_recursion_context(void)
4194 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
4201 else if (in_softirq())
4206 if (cpuctx
->recursion
[rctx
])
4209 cpuctx
->recursion
[rctx
]++;
4214 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
4216 void perf_swevent_put_recursion_context(int rctx
)
4218 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
4220 cpuctx
->recursion
[rctx
]--;
4222 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context
);
4225 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
4226 struct pt_regs
*regs
, u64 addr
)
4228 struct perf_sample_data data
;
4231 preempt_disable_notrace();
4232 rctx
= perf_swevent_get_recursion_context();
4236 perf_sample_data_init(&data
, addr
);
4238 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
, &data
, regs
);
4240 perf_swevent_put_recursion_context(rctx
);
4241 preempt_enable_notrace();
4244 static void perf_swevent_read(struct perf_event
*event
)
4248 static int perf_swevent_enable(struct perf_event
*event
)
4250 struct hw_perf_event
*hwc
= &event
->hw
;
4251 struct perf_cpu_context
*cpuctx
;
4252 struct hlist_head
*head
;
4254 cpuctx
= &__get_cpu_var(perf_cpu_context
);
4256 if (hwc
->sample_period
) {
4257 hwc
->last_period
= hwc
->sample_period
;
4258 perf_swevent_set_period(event
);
4261 head
= find_swevent_head(cpuctx
, event
);
4262 if (WARN_ON_ONCE(!head
))
4265 hlist_add_head_rcu(&event
->hlist_entry
, head
);
4270 static void perf_swevent_disable(struct perf_event
*event
)
4272 hlist_del_rcu(&event
->hlist_entry
);
4275 static void perf_swevent_void(struct perf_event
*event
)
4279 static int perf_swevent_int(struct perf_event
*event
)
4284 static const struct pmu perf_ops_generic
= {
4285 .enable
= perf_swevent_enable
,
4286 .disable
= perf_swevent_disable
,
4287 .start
= perf_swevent_int
,
4288 .stop
= perf_swevent_void
,
4289 .read
= perf_swevent_read
,
4290 .unthrottle
= perf_swevent_void
, /* hwc->interrupts already reset */
4294 * hrtimer based swevent callback
4297 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
4299 enum hrtimer_restart ret
= HRTIMER_RESTART
;
4300 struct perf_sample_data data
;
4301 struct pt_regs
*regs
;
4302 struct perf_event
*event
;
4305 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
4306 event
->pmu
->read(event
);
4308 perf_sample_data_init(&data
, 0);
4309 data
.period
= event
->hw
.last_period
;
4310 regs
= get_irq_regs();
4312 if (regs
&& !perf_exclude_event(event
, regs
)) {
4313 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
4314 if (perf_event_overflow(event
, 0, &data
, regs
))
4315 ret
= HRTIMER_NORESTART
;
4318 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
4319 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
4324 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
4326 struct hw_perf_event
*hwc
= &event
->hw
;
4328 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4329 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
4330 if (hwc
->sample_period
) {
4333 if (hwc
->remaining
) {
4334 if (hwc
->remaining
< 0)
4337 period
= hwc
->remaining
;
4340 period
= max_t(u64
, 10000, hwc
->sample_period
);
4342 __hrtimer_start_range_ns(&hwc
->hrtimer
,
4343 ns_to_ktime(period
), 0,
4344 HRTIMER_MODE_REL
, 0);
4348 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
4350 struct hw_perf_event
*hwc
= &event
->hw
;
4352 if (hwc
->sample_period
) {
4353 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
4354 hwc
->remaining
= ktime_to_ns(remaining
);
4356 hrtimer_cancel(&hwc
->hrtimer
);
4361 * Software event: cpu wall time clock
4364 static void cpu_clock_perf_event_update(struct perf_event
*event
)
4366 int cpu
= raw_smp_processor_id();
4370 now
= cpu_clock(cpu
);
4371 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4372 atomic64_add(now
- prev
, &event
->count
);
4375 static int cpu_clock_perf_event_enable(struct perf_event
*event
)
4377 struct hw_perf_event
*hwc
= &event
->hw
;
4378 int cpu
= raw_smp_processor_id();
4380 atomic64_set(&hwc
->prev_count
, cpu_clock(cpu
));
4381 perf_swevent_start_hrtimer(event
);
4386 static void cpu_clock_perf_event_disable(struct perf_event
*event
)
4388 perf_swevent_cancel_hrtimer(event
);
4389 cpu_clock_perf_event_update(event
);
4392 static void cpu_clock_perf_event_read(struct perf_event
*event
)
4394 cpu_clock_perf_event_update(event
);
4397 static const struct pmu perf_ops_cpu_clock
= {
4398 .enable
= cpu_clock_perf_event_enable
,
4399 .disable
= cpu_clock_perf_event_disable
,
4400 .read
= cpu_clock_perf_event_read
,
4404 * Software event: task time clock
4407 static void task_clock_perf_event_update(struct perf_event
*event
, u64 now
)
4412 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4414 atomic64_add(delta
, &event
->count
);
4417 static int task_clock_perf_event_enable(struct perf_event
*event
)
4419 struct hw_perf_event
*hwc
= &event
->hw
;
4422 now
= event
->ctx
->time
;
4424 atomic64_set(&hwc
->prev_count
, now
);
4426 perf_swevent_start_hrtimer(event
);
4431 static void task_clock_perf_event_disable(struct perf_event
*event
)
4433 perf_swevent_cancel_hrtimer(event
);
4434 task_clock_perf_event_update(event
, event
->ctx
->time
);
4438 static void task_clock_perf_event_read(struct perf_event
*event
)
4443 update_context_time(event
->ctx
);
4444 time
= event
->ctx
->time
;
4446 u64 now
= perf_clock();
4447 u64 delta
= now
- event
->ctx
->timestamp
;
4448 time
= event
->ctx
->time
+ delta
;
4451 task_clock_perf_event_update(event
, time
);
4454 static const struct pmu perf_ops_task_clock
= {
4455 .enable
= task_clock_perf_event_enable
,
4456 .disable
= task_clock_perf_event_disable
,
4457 .read
= task_clock_perf_event_read
,
4460 /* Deref the hlist from the update side */
4461 static inline struct swevent_hlist
*
4462 swevent_hlist_deref(struct perf_cpu_context
*cpuctx
)
4464 return rcu_dereference_protected(cpuctx
->swevent_hlist
,
4465 lockdep_is_held(&cpuctx
->hlist_mutex
));
4468 static void swevent_hlist_release_rcu(struct rcu_head
*rcu_head
)
4470 struct swevent_hlist
*hlist
;
4472 hlist
= container_of(rcu_head
, struct swevent_hlist
, rcu_head
);
4476 static void swevent_hlist_release(struct perf_cpu_context
*cpuctx
)
4478 struct swevent_hlist
*hlist
= swevent_hlist_deref(cpuctx
);
4483 rcu_assign_pointer(cpuctx
->swevent_hlist
, NULL
);
4484 call_rcu(&hlist
->rcu_head
, swevent_hlist_release_rcu
);
4487 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
4489 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4491 mutex_lock(&cpuctx
->hlist_mutex
);
4493 if (!--cpuctx
->hlist_refcount
)
4494 swevent_hlist_release(cpuctx
);
4496 mutex_unlock(&cpuctx
->hlist_mutex
);
4499 static void swevent_hlist_put(struct perf_event
*event
)
4503 if (event
->cpu
!= -1) {
4504 swevent_hlist_put_cpu(event
, event
->cpu
);
4508 for_each_possible_cpu(cpu
)
4509 swevent_hlist_put_cpu(event
, cpu
);
4512 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
4514 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4517 mutex_lock(&cpuctx
->hlist_mutex
);
4519 if (!swevent_hlist_deref(cpuctx
) && cpu_online(cpu
)) {
4520 struct swevent_hlist
*hlist
;
4522 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
4527 rcu_assign_pointer(cpuctx
->swevent_hlist
, hlist
);
4529 cpuctx
->hlist_refcount
++;
4531 mutex_unlock(&cpuctx
->hlist_mutex
);
4536 static int swevent_hlist_get(struct perf_event
*event
)
4539 int cpu
, failed_cpu
;
4541 if (event
->cpu
!= -1)
4542 return swevent_hlist_get_cpu(event
, event
->cpu
);
4545 for_each_possible_cpu(cpu
) {
4546 err
= swevent_hlist_get_cpu(event
, cpu
);
4556 for_each_possible_cpu(cpu
) {
4557 if (cpu
== failed_cpu
)
4559 swevent_hlist_put_cpu(event
, cpu
);
4566 #ifdef CONFIG_EVENT_TRACING
4568 static const struct pmu perf_ops_tracepoint
= {
4569 .enable
= perf_trace_enable
,
4570 .disable
= perf_trace_disable
,
4571 .start
= perf_swevent_int
,
4572 .stop
= perf_swevent_void
,
4573 .read
= perf_swevent_read
,
4574 .unthrottle
= perf_swevent_void
,
4577 static int perf_tp_filter_match(struct perf_event
*event
,
4578 struct perf_sample_data
*data
)
4580 void *record
= data
->raw
->data
;
4582 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
4587 static int perf_tp_event_match(struct perf_event
*event
,
4588 struct perf_sample_data
*data
,
4589 struct pt_regs
*regs
)
4592 * All tracepoints are from kernel-space.
4594 if (event
->attr
.exclude_kernel
)
4597 if (!perf_tp_filter_match(event
, data
))
4603 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
4604 struct pt_regs
*regs
, struct hlist_head
*head
)
4606 struct perf_sample_data data
;
4607 struct perf_event
*event
;
4608 struct hlist_node
*node
;
4610 struct perf_raw_record raw
= {
4615 perf_sample_data_init(&data
, addr
);
4619 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4620 if (perf_tp_event_match(event
, &data
, regs
))
4621 perf_swevent_add(event
, count
, 1, &data
, regs
);
4625 EXPORT_SYMBOL_GPL(perf_tp_event
);
4627 static void tp_perf_event_destroy(struct perf_event
*event
)
4629 perf_trace_destroy(event
);
4632 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4637 * Raw tracepoint data is a severe data leak, only allow root to
4640 if ((event
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
4641 perf_paranoid_tracepoint_raw() &&
4642 !capable(CAP_SYS_ADMIN
))
4643 return ERR_PTR(-EPERM
);
4645 err
= perf_trace_init(event
);
4649 event
->destroy
= tp_perf_event_destroy
;
4651 return &perf_ops_tracepoint
;
4654 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4659 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4662 filter_str
= strndup_user(arg
, PAGE_SIZE
);
4663 if (IS_ERR(filter_str
))
4664 return PTR_ERR(filter_str
);
4666 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
4672 static void perf_event_free_filter(struct perf_event
*event
)
4674 ftrace_profile_free_filter(event
);
4679 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4684 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4689 static void perf_event_free_filter(struct perf_event
*event
)
4693 #endif /* CONFIG_EVENT_TRACING */
4695 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4696 static void bp_perf_event_destroy(struct perf_event
*event
)
4698 release_bp_slot(event
);
4701 static const struct pmu
*bp_perf_event_init(struct perf_event
*bp
)
4705 err
= register_perf_hw_breakpoint(bp
);
4707 return ERR_PTR(err
);
4709 bp
->destroy
= bp_perf_event_destroy
;
4711 return &perf_ops_bp
;
4714 void perf_bp_event(struct perf_event
*bp
, void *data
)
4716 struct perf_sample_data sample
;
4717 struct pt_regs
*regs
= data
;
4719 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
);
4721 if (!perf_exclude_event(bp
, regs
))
4722 perf_swevent_add(bp
, 1, 1, &sample
, regs
);
4725 static const struct pmu
*bp_perf_event_init(struct perf_event
*bp
)
4730 void perf_bp_event(struct perf_event
*bp
, void *regs
)
4735 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4737 static void sw_perf_event_destroy(struct perf_event
*event
)
4739 u64 event_id
= event
->attr
.config
;
4741 WARN_ON(event
->parent
);
4743 atomic_dec(&perf_swevent_enabled
[event_id
]);
4744 swevent_hlist_put(event
);
4747 static const struct pmu
*sw_perf_event_init(struct perf_event
*event
)
4749 const struct pmu
*pmu
= NULL
;
4750 u64 event_id
= event
->attr
.config
;
4753 * Software events (currently) can't in general distinguish
4754 * between user, kernel and hypervisor events.
4755 * However, context switches and cpu migrations are considered
4756 * to be kernel events, and page faults are never hypervisor
4760 case PERF_COUNT_SW_CPU_CLOCK
:
4761 pmu
= &perf_ops_cpu_clock
;
4764 case PERF_COUNT_SW_TASK_CLOCK
:
4766 * If the user instantiates this as a per-cpu event,
4767 * use the cpu_clock event instead.
4769 if (event
->ctx
->task
)
4770 pmu
= &perf_ops_task_clock
;
4772 pmu
= &perf_ops_cpu_clock
;
4775 case PERF_COUNT_SW_PAGE_FAULTS
:
4776 case PERF_COUNT_SW_PAGE_FAULTS_MIN
:
4777 case PERF_COUNT_SW_PAGE_FAULTS_MAJ
:
4778 case PERF_COUNT_SW_CONTEXT_SWITCHES
:
4779 case PERF_COUNT_SW_CPU_MIGRATIONS
:
4780 case PERF_COUNT_SW_ALIGNMENT_FAULTS
:
4781 case PERF_COUNT_SW_EMULATION_FAULTS
:
4782 if (!event
->parent
) {
4785 err
= swevent_hlist_get(event
);
4787 return ERR_PTR(err
);
4789 atomic_inc(&perf_swevent_enabled
[event_id
]);
4790 event
->destroy
= sw_perf_event_destroy
;
4792 pmu
= &perf_ops_generic
;
4800 * Allocate and initialize a event structure
4802 static struct perf_event
*
4803 perf_event_alloc(struct perf_event_attr
*attr
,
4805 struct perf_event_context
*ctx
,
4806 struct perf_event
*group_leader
,
4807 struct perf_event
*parent_event
,
4808 perf_overflow_handler_t overflow_handler
,
4811 const struct pmu
*pmu
;
4812 struct perf_event
*event
;
4813 struct hw_perf_event
*hwc
;
4816 event
= kzalloc(sizeof(*event
), gfpflags
);
4818 return ERR_PTR(-ENOMEM
);
4821 * Single events are their own group leaders, with an
4822 * empty sibling list:
4825 group_leader
= event
;
4827 mutex_init(&event
->child_mutex
);
4828 INIT_LIST_HEAD(&event
->child_list
);
4830 INIT_LIST_HEAD(&event
->group_entry
);
4831 INIT_LIST_HEAD(&event
->event_entry
);
4832 INIT_LIST_HEAD(&event
->sibling_list
);
4833 init_waitqueue_head(&event
->waitq
);
4835 mutex_init(&event
->mmap_mutex
);
4838 event
->attr
= *attr
;
4839 event
->group_leader
= group_leader
;
4844 event
->parent
= parent_event
;
4846 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
4847 event
->id
= atomic64_inc_return(&perf_event_id
);
4849 event
->state
= PERF_EVENT_STATE_INACTIVE
;
4851 if (!overflow_handler
&& parent_event
)
4852 overflow_handler
= parent_event
->overflow_handler
;
4854 event
->overflow_handler
= overflow_handler
;
4857 event
->state
= PERF_EVENT_STATE_OFF
;
4862 hwc
->sample_period
= attr
->sample_period
;
4863 if (attr
->freq
&& attr
->sample_freq
)
4864 hwc
->sample_period
= 1;
4865 hwc
->last_period
= hwc
->sample_period
;
4867 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
4870 * we currently do not support PERF_FORMAT_GROUP on inherited events
4872 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
4875 switch (attr
->type
) {
4877 case PERF_TYPE_HARDWARE
:
4878 case PERF_TYPE_HW_CACHE
:
4879 pmu
= hw_perf_event_init(event
);
4882 case PERF_TYPE_SOFTWARE
:
4883 pmu
= sw_perf_event_init(event
);
4886 case PERF_TYPE_TRACEPOINT
:
4887 pmu
= tp_perf_event_init(event
);
4890 case PERF_TYPE_BREAKPOINT
:
4891 pmu
= bp_perf_event_init(event
);
4902 else if (IS_ERR(pmu
))
4907 put_pid_ns(event
->ns
);
4909 return ERR_PTR(err
);
4914 if (!event
->parent
) {
4915 atomic_inc(&nr_events
);
4916 if (event
->attr
.mmap
)
4917 atomic_inc(&nr_mmap_events
);
4918 if (event
->attr
.comm
)
4919 atomic_inc(&nr_comm_events
);
4920 if (event
->attr
.task
)
4921 atomic_inc(&nr_task_events
);
4927 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
4928 struct perf_event_attr
*attr
)
4933 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
4937 * zero the full structure, so that a short copy will be nice.
4939 memset(attr
, 0, sizeof(*attr
));
4941 ret
= get_user(size
, &uattr
->size
);
4945 if (size
> PAGE_SIZE
) /* silly large */
4948 if (!size
) /* abi compat */
4949 size
= PERF_ATTR_SIZE_VER0
;
4951 if (size
< PERF_ATTR_SIZE_VER0
)
4955 * If we're handed a bigger struct than we know of,
4956 * ensure all the unknown bits are 0 - i.e. new
4957 * user-space does not rely on any kernel feature
4958 * extensions we dont know about yet.
4960 if (size
> sizeof(*attr
)) {
4961 unsigned char __user
*addr
;
4962 unsigned char __user
*end
;
4965 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4966 end
= (void __user
*)uattr
+ size
;
4968 for (; addr
< end
; addr
++) {
4969 ret
= get_user(val
, addr
);
4975 size
= sizeof(*attr
);
4978 ret
= copy_from_user(attr
, uattr
, size
);
4983 * If the type exists, the corresponding creation will verify
4986 if (attr
->type
>= PERF_TYPE_MAX
)
4989 if (attr
->__reserved_1
)
4992 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
4995 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
5002 put_user(sizeof(*attr
), &uattr
->size
);
5008 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
5010 struct perf_mmap_data
*data
= NULL
, *old_data
= NULL
;
5016 /* don't allow circular references */
5017 if (event
== output_event
)
5021 * Don't allow cross-cpu buffers
5023 if (output_event
->cpu
!= event
->cpu
)
5027 * If its not a per-cpu buffer, it must be the same task.
5029 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
5033 mutex_lock(&event
->mmap_mutex
);
5034 /* Can't redirect output if we've got an active mmap() */
5035 if (atomic_read(&event
->mmap_count
))
5039 /* get the buffer we want to redirect to */
5040 data
= perf_mmap_data_get(output_event
);
5045 old_data
= event
->data
;
5046 rcu_assign_pointer(event
->data
, data
);
5049 mutex_unlock(&event
->mmap_mutex
);
5052 perf_mmap_data_put(old_data
);
5058 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5060 * @attr_uptr: event_id type attributes for monitoring/sampling
5063 * @group_fd: group leader event fd
5065 SYSCALL_DEFINE5(perf_event_open
,
5066 struct perf_event_attr __user
*, attr_uptr
,
5067 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
5069 struct perf_event
*event
, *group_leader
= NULL
, *output_event
= NULL
;
5070 struct perf_event_attr attr
;
5071 struct perf_event_context
*ctx
;
5072 struct file
*event_file
= NULL
;
5073 struct file
*group_file
= NULL
;
5075 int fput_needed
= 0;
5078 /* for future expandability... */
5079 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
5082 err
= perf_copy_attr(attr_uptr
, &attr
);
5086 if (!attr
.exclude_kernel
) {
5087 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
5092 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
5096 event_fd
= get_unused_fd_flags(O_RDWR
);
5101 * Get the target context (task or percpu):
5103 ctx
= find_get_context(pid
, cpu
);
5109 if (group_fd
!= -1) {
5110 group_leader
= perf_fget_light(group_fd
, &fput_needed
);
5111 if (IS_ERR(group_leader
)) {
5112 err
= PTR_ERR(group_leader
);
5113 goto err_put_context
;
5115 group_file
= group_leader
->filp
;
5116 if (flags
& PERF_FLAG_FD_OUTPUT
)
5117 output_event
= group_leader
;
5118 if (flags
& PERF_FLAG_FD_NO_GROUP
)
5119 group_leader
= NULL
;
5123 * Look up the group leader (we will attach this event to it):
5129 * Do not allow a recursive hierarchy (this new sibling
5130 * becoming part of another group-sibling):
5132 if (group_leader
->group_leader
!= group_leader
)
5133 goto err_put_context
;
5135 * Do not allow to attach to a group in a different
5136 * task or CPU context:
5138 if (group_leader
->ctx
!= ctx
)
5139 goto err_put_context
;
5141 * Only a group leader can be exclusive or pinned
5143 if (attr
.exclusive
|| attr
.pinned
)
5144 goto err_put_context
;
5147 event
= perf_event_alloc(&attr
, cpu
, ctx
, group_leader
,
5148 NULL
, NULL
, GFP_KERNEL
);
5149 if (IS_ERR(event
)) {
5150 err
= PTR_ERR(event
);
5151 goto err_put_context
;
5155 err
= perf_event_set_output(event
, output_event
);
5157 goto err_free_put_context
;
5160 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
, O_RDWR
);
5161 if (IS_ERR(event_file
)) {
5162 err
= PTR_ERR(event_file
);
5163 goto err_free_put_context
;
5166 event
->filp
= event_file
;
5167 WARN_ON_ONCE(ctx
->parent_ctx
);
5168 mutex_lock(&ctx
->mutex
);
5169 perf_install_in_context(ctx
, event
, cpu
);
5171 mutex_unlock(&ctx
->mutex
);
5173 event
->owner
= current
;
5174 get_task_struct(current
);
5175 mutex_lock(¤t
->perf_event_mutex
);
5176 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
5177 mutex_unlock(¤t
->perf_event_mutex
);
5180 * Drop the reference on the group_event after placing the
5181 * new event on the sibling_list. This ensures destruction
5182 * of the group leader will find the pointer to itself in
5183 * perf_group_detach().
5185 fput_light(group_file
, fput_needed
);
5186 fd_install(event_fd
, event_file
);
5189 err_free_put_context
:
5192 fput_light(group_file
, fput_needed
);
5195 put_unused_fd(event_fd
);
5200 * perf_event_create_kernel_counter
5202 * @attr: attributes of the counter to create
5203 * @cpu: cpu in which the counter is bound
5204 * @pid: task to profile
5207 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
5209 perf_overflow_handler_t overflow_handler
)
5211 struct perf_event
*event
;
5212 struct perf_event_context
*ctx
;
5216 * Get the target context (task or percpu):
5219 ctx
= find_get_context(pid
, cpu
);
5225 event
= perf_event_alloc(attr
, cpu
, ctx
, NULL
,
5226 NULL
, overflow_handler
, GFP_KERNEL
);
5227 if (IS_ERR(event
)) {
5228 err
= PTR_ERR(event
);
5229 goto err_put_context
;
5233 WARN_ON_ONCE(ctx
->parent_ctx
);
5234 mutex_lock(&ctx
->mutex
);
5235 perf_install_in_context(ctx
, event
, cpu
);
5237 mutex_unlock(&ctx
->mutex
);
5239 event
->owner
= current
;
5240 get_task_struct(current
);
5241 mutex_lock(¤t
->perf_event_mutex
);
5242 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
5243 mutex_unlock(¤t
->perf_event_mutex
);
5250 return ERR_PTR(err
);
5252 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
5255 * inherit a event from parent task to child task:
5257 static struct perf_event
*
5258 inherit_event(struct perf_event
*parent_event
,
5259 struct task_struct
*parent
,
5260 struct perf_event_context
*parent_ctx
,
5261 struct task_struct
*child
,
5262 struct perf_event
*group_leader
,
5263 struct perf_event_context
*child_ctx
)
5265 struct perf_event
*child_event
;
5268 * Instead of creating recursive hierarchies of events,
5269 * we link inherited events back to the original parent,
5270 * which has a filp for sure, which we use as the reference
5273 if (parent_event
->parent
)
5274 parent_event
= parent_event
->parent
;
5276 child_event
= perf_event_alloc(&parent_event
->attr
,
5277 parent_event
->cpu
, child_ctx
,
5278 group_leader
, parent_event
,
5280 if (IS_ERR(child_event
))
5285 * Make the child state follow the state of the parent event,
5286 * not its attr.disabled bit. We hold the parent's mutex,
5287 * so we won't race with perf_event_{en, dis}able_family.
5289 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
5290 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
5292 child_event
->state
= PERF_EVENT_STATE_OFF
;
5294 if (parent_event
->attr
.freq
) {
5295 u64 sample_period
= parent_event
->hw
.sample_period
;
5296 struct hw_perf_event
*hwc
= &child_event
->hw
;
5298 hwc
->sample_period
= sample_period
;
5299 hwc
->last_period
= sample_period
;
5301 atomic64_set(&hwc
->period_left
, sample_period
);
5304 child_event
->overflow_handler
= parent_event
->overflow_handler
;
5307 * Link it up in the child's context:
5309 add_event_to_ctx(child_event
, child_ctx
);
5312 * Get a reference to the parent filp - we will fput it
5313 * when the child event exits. This is safe to do because
5314 * we are in the parent and we know that the filp still
5315 * exists and has a nonzero count:
5317 atomic_long_inc(&parent_event
->filp
->f_count
);
5320 * Link this into the parent event's child list
5322 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
5323 mutex_lock(&parent_event
->child_mutex
);
5324 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
5325 mutex_unlock(&parent_event
->child_mutex
);
5330 static int inherit_group(struct perf_event
*parent_event
,
5331 struct task_struct
*parent
,
5332 struct perf_event_context
*parent_ctx
,
5333 struct task_struct
*child
,
5334 struct perf_event_context
*child_ctx
)
5336 struct perf_event
*leader
;
5337 struct perf_event
*sub
;
5338 struct perf_event
*child_ctr
;
5340 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
5341 child
, NULL
, child_ctx
);
5343 return PTR_ERR(leader
);
5344 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
5345 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
5346 child
, leader
, child_ctx
);
5347 if (IS_ERR(child_ctr
))
5348 return PTR_ERR(child_ctr
);
5353 static void sync_child_event(struct perf_event
*child_event
,
5354 struct task_struct
*child
)
5356 struct perf_event
*parent_event
= child_event
->parent
;
5359 if (child_event
->attr
.inherit_stat
)
5360 perf_event_read_event(child_event
, child
);
5362 child_val
= atomic64_read(&child_event
->count
);
5365 * Add back the child's count to the parent's count:
5367 atomic64_add(child_val
, &parent_event
->count
);
5368 atomic64_add(child_event
->total_time_enabled
,
5369 &parent_event
->child_total_time_enabled
);
5370 atomic64_add(child_event
->total_time_running
,
5371 &parent_event
->child_total_time_running
);
5374 * Remove this event from the parent's list
5376 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
5377 mutex_lock(&parent_event
->child_mutex
);
5378 list_del_init(&child_event
->child_list
);
5379 mutex_unlock(&parent_event
->child_mutex
);
5382 * Release the parent event, if this was the last
5385 fput(parent_event
->filp
);
5389 __perf_event_exit_task(struct perf_event
*child_event
,
5390 struct perf_event_context
*child_ctx
,
5391 struct task_struct
*child
)
5393 struct perf_event
*parent_event
;
5395 perf_event_remove_from_context(child_event
);
5397 parent_event
= child_event
->parent
;
5399 * It can happen that parent exits first, and has events
5400 * that are still around due to the child reference. These
5401 * events need to be zapped - but otherwise linger.
5404 sync_child_event(child_event
, child
);
5405 free_event(child_event
);
5410 * When a child task exits, feed back event values to parent events.
5412 void perf_event_exit_task(struct task_struct
*child
)
5414 struct perf_event
*child_event
, *tmp
;
5415 struct perf_event_context
*child_ctx
;
5416 unsigned long flags
;
5418 if (likely(!child
->perf_event_ctxp
)) {
5419 perf_event_task(child
, NULL
, 0);
5423 local_irq_save(flags
);
5425 * We can't reschedule here because interrupts are disabled,
5426 * and either child is current or it is a task that can't be
5427 * scheduled, so we are now safe from rescheduling changing
5430 child_ctx
= child
->perf_event_ctxp
;
5431 __perf_event_task_sched_out(child_ctx
);
5434 * Take the context lock here so that if find_get_context is
5435 * reading child->perf_event_ctxp, we wait until it has
5436 * incremented the context's refcount before we do put_ctx below.
5438 raw_spin_lock(&child_ctx
->lock
);
5439 child
->perf_event_ctxp
= NULL
;
5441 * If this context is a clone; unclone it so it can't get
5442 * swapped to another process while we're removing all
5443 * the events from it.
5445 unclone_ctx(child_ctx
);
5446 update_context_time(child_ctx
);
5447 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
5450 * Report the task dead after unscheduling the events so that we
5451 * won't get any samples after PERF_RECORD_EXIT. We can however still
5452 * get a few PERF_RECORD_READ events.
5454 perf_event_task(child
, child_ctx
, 0);
5457 * We can recurse on the same lock type through:
5459 * __perf_event_exit_task()
5460 * sync_child_event()
5461 * fput(parent_event->filp)
5463 * mutex_lock(&ctx->mutex)
5465 * But since its the parent context it won't be the same instance.
5467 mutex_lock(&child_ctx
->mutex
);
5470 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
5472 __perf_event_exit_task(child_event
, child_ctx
, child
);
5474 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
5476 __perf_event_exit_task(child_event
, child_ctx
, child
);
5479 * If the last event was a group event, it will have appended all
5480 * its siblings to the list, but we obtained 'tmp' before that which
5481 * will still point to the list head terminating the iteration.
5483 if (!list_empty(&child_ctx
->pinned_groups
) ||
5484 !list_empty(&child_ctx
->flexible_groups
))
5487 mutex_unlock(&child_ctx
->mutex
);
5492 static void perf_free_event(struct perf_event
*event
,
5493 struct perf_event_context
*ctx
)
5495 struct perf_event
*parent
= event
->parent
;
5497 if (WARN_ON_ONCE(!parent
))
5500 mutex_lock(&parent
->child_mutex
);
5501 list_del_init(&event
->child_list
);
5502 mutex_unlock(&parent
->child_mutex
);
5506 perf_group_detach(event
);
5507 list_del_event(event
, ctx
);
5512 * free an unexposed, unused context as created by inheritance by
5513 * init_task below, used by fork() in case of fail.
5515 void perf_event_free_task(struct task_struct
*task
)
5517 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
5518 struct perf_event
*event
, *tmp
;
5523 mutex_lock(&ctx
->mutex
);
5525 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
5526 perf_free_event(event
, ctx
);
5528 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
5530 perf_free_event(event
, ctx
);
5532 if (!list_empty(&ctx
->pinned_groups
) ||
5533 !list_empty(&ctx
->flexible_groups
))
5536 mutex_unlock(&ctx
->mutex
);
5542 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
5543 struct perf_event_context
*parent_ctx
,
5544 struct task_struct
*child
,
5548 struct perf_event_context
*child_ctx
= child
->perf_event_ctxp
;
5550 if (!event
->attr
.inherit
) {
5557 * This is executed from the parent task context, so
5558 * inherit events that have been marked for cloning.
5559 * First allocate and initialize a context for the
5563 child_ctx
= kzalloc(sizeof(struct perf_event_context
),
5568 __perf_event_init_context(child_ctx
, child
);
5569 child
->perf_event_ctxp
= child_ctx
;
5570 get_task_struct(child
);
5573 ret
= inherit_group(event
, parent
, parent_ctx
,
5584 * Initialize the perf_event context in task_struct
5586 int perf_event_init_task(struct task_struct
*child
)
5588 struct perf_event_context
*child_ctx
, *parent_ctx
;
5589 struct perf_event_context
*cloned_ctx
;
5590 struct perf_event
*event
;
5591 struct task_struct
*parent
= current
;
5592 int inherited_all
= 1;
5595 child
->perf_event_ctxp
= NULL
;
5597 mutex_init(&child
->perf_event_mutex
);
5598 INIT_LIST_HEAD(&child
->perf_event_list
);
5600 if (likely(!parent
->perf_event_ctxp
))
5604 * If the parent's context is a clone, pin it so it won't get
5607 parent_ctx
= perf_pin_task_context(parent
);
5610 * No need to check if parent_ctx != NULL here; since we saw
5611 * it non-NULL earlier, the only reason for it to become NULL
5612 * is if we exit, and since we're currently in the middle of
5613 * a fork we can't be exiting at the same time.
5617 * Lock the parent list. No need to lock the child - not PID
5618 * hashed yet and not running, so nobody can access it.
5620 mutex_lock(&parent_ctx
->mutex
);
5623 * We dont have to disable NMIs - we are only looking at
5624 * the list, not manipulating it:
5626 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
5627 ret
= inherit_task_group(event
, parent
, parent_ctx
, child
,
5633 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
5634 ret
= inherit_task_group(event
, parent
, parent_ctx
, child
,
5640 child_ctx
= child
->perf_event_ctxp
;
5642 if (child_ctx
&& inherited_all
) {
5644 * Mark the child context as a clone of the parent
5645 * context, or of whatever the parent is a clone of.
5646 * Note that if the parent is a clone, it could get
5647 * uncloned at any point, but that doesn't matter
5648 * because the list of events and the generation
5649 * count can't have changed since we took the mutex.
5651 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
5653 child_ctx
->parent_ctx
= cloned_ctx
;
5654 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
5656 child_ctx
->parent_ctx
= parent_ctx
;
5657 child_ctx
->parent_gen
= parent_ctx
->generation
;
5659 get_ctx(child_ctx
->parent_ctx
);
5662 mutex_unlock(&parent_ctx
->mutex
);
5664 perf_unpin_context(parent_ctx
);
5669 static void __init
perf_event_init_all_cpus(void)
5672 struct perf_cpu_context
*cpuctx
;
5674 for_each_possible_cpu(cpu
) {
5675 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5676 mutex_init(&cpuctx
->hlist_mutex
);
5677 __perf_event_init_context(&cpuctx
->ctx
, NULL
);
5681 static void __cpuinit
perf_event_init_cpu(int cpu
)
5683 struct perf_cpu_context
*cpuctx
;
5685 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5687 spin_lock(&perf_resource_lock
);
5688 cpuctx
->max_pertask
= perf_max_events
- perf_reserved_percpu
;
5689 spin_unlock(&perf_resource_lock
);
5691 mutex_lock(&cpuctx
->hlist_mutex
);
5692 if (cpuctx
->hlist_refcount
> 0) {
5693 struct swevent_hlist
*hlist
;
5695 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
5696 WARN_ON_ONCE(!hlist
);
5697 rcu_assign_pointer(cpuctx
->swevent_hlist
, hlist
);
5699 mutex_unlock(&cpuctx
->hlist_mutex
);
5702 #ifdef CONFIG_HOTPLUG_CPU
5703 static void __perf_event_exit_cpu(void *info
)
5705 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
5706 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5707 struct perf_event
*event
, *tmp
;
5709 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
5710 __perf_event_remove_from_context(event
);
5711 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
5712 __perf_event_remove_from_context(event
);
5714 static void perf_event_exit_cpu(int cpu
)
5716 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5717 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5719 mutex_lock(&cpuctx
->hlist_mutex
);
5720 swevent_hlist_release(cpuctx
);
5721 mutex_unlock(&cpuctx
->hlist_mutex
);
5723 mutex_lock(&ctx
->mutex
);
5724 smp_call_function_single(cpu
, __perf_event_exit_cpu
, NULL
, 1);
5725 mutex_unlock(&ctx
->mutex
);
5728 static inline void perf_event_exit_cpu(int cpu
) { }
5731 static int __cpuinit
5732 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
5734 unsigned int cpu
= (long)hcpu
;
5738 case CPU_UP_PREPARE
:
5739 case CPU_UP_PREPARE_FROZEN
:
5740 perf_event_init_cpu(cpu
);
5743 case CPU_DOWN_PREPARE
:
5744 case CPU_DOWN_PREPARE_FROZEN
:
5745 perf_event_exit_cpu(cpu
);
5756 * This has to have a higher priority than migration_notifier in sched.c.
5758 static struct notifier_block __cpuinitdata perf_cpu_nb
= {
5759 .notifier_call
= perf_cpu_notify
,
5763 void __init
perf_event_init(void)
5765 perf_event_init_all_cpus();
5766 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_UP_PREPARE
,
5767 (void *)(long)smp_processor_id());
5768 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_ONLINE
,
5769 (void *)(long)smp_processor_id());
5770 register_cpu_notifier(&perf_cpu_nb
);
5773 static ssize_t
perf_show_reserve_percpu(struct sysdev_class
*class,
5774 struct sysdev_class_attribute
*attr
,
5777 return sprintf(buf
, "%d\n", perf_reserved_percpu
);
5781 perf_set_reserve_percpu(struct sysdev_class
*class,
5782 struct sysdev_class_attribute
*attr
,
5786 struct perf_cpu_context
*cpuctx
;
5790 err
= strict_strtoul(buf
, 10, &val
);
5793 if (val
> perf_max_events
)
5796 spin_lock(&perf_resource_lock
);
5797 perf_reserved_percpu
= val
;
5798 for_each_online_cpu(cpu
) {
5799 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5800 raw_spin_lock_irq(&cpuctx
->ctx
.lock
);
5801 mpt
= min(perf_max_events
- cpuctx
->ctx
.nr_events
,
5802 perf_max_events
- perf_reserved_percpu
);
5803 cpuctx
->max_pertask
= mpt
;
5804 raw_spin_unlock_irq(&cpuctx
->ctx
.lock
);
5806 spin_unlock(&perf_resource_lock
);
5811 static ssize_t
perf_show_overcommit(struct sysdev_class
*class,
5812 struct sysdev_class_attribute
*attr
,
5815 return sprintf(buf
, "%d\n", perf_overcommit
);
5819 perf_set_overcommit(struct sysdev_class
*class,
5820 struct sysdev_class_attribute
*attr
,
5821 const char *buf
, size_t count
)
5826 err
= strict_strtoul(buf
, 10, &val
);
5832 spin_lock(&perf_resource_lock
);
5833 perf_overcommit
= val
;
5834 spin_unlock(&perf_resource_lock
);
5839 static SYSDEV_CLASS_ATTR(
5842 perf_show_reserve_percpu
,
5843 perf_set_reserve_percpu
5846 static SYSDEV_CLASS_ATTR(
5849 perf_show_overcommit
,
5853 static struct attribute
*perfclass_attrs
[] = {
5854 &attr_reserve_percpu
.attr
,
5855 &attr_overcommit
.attr
,
5859 static struct attribute_group perfclass_attr_group
= {
5860 .attrs
= perfclass_attrs
,
5861 .name
= "perf_events",
5864 static int __init
perf_event_sysfs_init(void)
5866 return sysfs_create_group(&cpu_sysdev_class
.kset
.kobj
,
5867 &perfclass_attr_group
);
5869 device_initcall(perf_event_sysfs_init
);